1
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Dahlgren M, Lettiero B, Dalal H, Mårtensson K, Gaber A, Nodin B, Gruvberger-Saal SK, Saal LH, Howlin J. CITED1 as a marker of favourable outcome in anti-endocrine treated, estrogen-receptor positive, lymph-node negative breast cancer. BMC Res Notes 2023; 16:105. [PMID: 37322548 PMCID: PMC10268435 DOI: 10.1186/s13104-023-06376-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE To investigate CITED1 as a potential biomarker of anti-endocrine response and breast cancer recurrence, given its previously determined role in mediating estrogen-dependant transcription. The study is a continuation of earlier work establishing the role of CITED1 in mammary gland development. RESULTS CITED1 mRNA is associated with estrogen-receptor positivity and selectively expressed in the GOBO dataset of cell lines and tumours representing the luminal-molecular subtype. In patients treated with tamoxifen, higher CITED1 correlated with better outcome, suggesting a role in anti-estrogen response. The effect was particularly evident in the subset of estrogen-receptor positive, lymph-node negative (ER+/LN-) patients although noticeable divergence of the groups was apparent only after five years. Tissue microarray (TMA) analysis further validated the association of CITED1 protein, by immunohistochemistry, with favourable outcome in ER+, tamoxifen-treated patients. Although we also found a favourable response to anti-endocrine treatment in a larger TCGA dataset, the tamoxifen-specific effect was not replicated. Finally, MCF7 cells overexpressing CITED1 showed selective amplification of AREG but not TGFα suggesting that maintenance of specific ERα-CITED1 mediated transcription is important for the long-term response to anti-endocrine therapy. These findings together confirm the proposed mechanism of action of CITED1 and support its potential use as a prognostic biomarker.
Collapse
Affiliation(s)
- Malin Dahlgren
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Barbara Lettiero
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Hina Dalal
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Kira Mårtensson
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Alexander Gaber
- Therapeutic Pathology, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Björn Nodin
- Therapeutic Pathology, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Sofia K Gruvberger-Saal
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Lao H Saal
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Jillian Howlin
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Almeida CF, Teixeira N, Valente MJ, Vinggaard AM, Correia-da-Silva G, Amaral C. Cannabidiol as a Promising Adjuvant Therapy for Estrogen Receptor-Positive Breast Tumors: Unveiling Its Benefits with Aromatase Inhibitors. Cancers (Basel) 2023; 15:cancers15092517. [PMID: 37173983 PMCID: PMC10177097 DOI: 10.3390/cancers15092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Estrogen receptor-positive (ER+) breast cancer is the most diagnosed subtype, with aromatase inhibitors (AIs) being one of the therapeutic drug types used in the clinic. However, endocrine resistance may develop after prolonged treatment, and different approaches, such as combining endocrine and targeted therapies, have been applied. Recently, we demonstrated that cannabidiol (CBD) induces anti-tumor actions in ER+ breast cancer cells by targeting aromatase and ERs. Considering this, we studied, in vitro, whether CBD when combined with AIs could improve their effectiveness. METHODS MCF-7aro cells were used and the effects on cell viability and on the modulation of specific targets were investigated. RESULTS CBD when combined with anastrozole (Ana) and letrozole (Let) caused no beneficial effect in comparison to the isolated AIs. In contrast, when combined with the AI exemestane (Exe), CBD potentiated its pro-cell death effects, abolished its estrogen-like effect, impaired ERα activation, and prevented its oncogenic role on the androgen receptor (AR). Moreover, this combination inhibited ERK1/2 activation, promoting apoptosis. The study of the hormonal microenvironment suggests that this combination should not be applied in early stages of ER+ breast tumors. CONCLUSIONS Contrary to Ana and Let, this study highlights the potential benefits of combining CBD with Exe to improve breast cancer treatment and opens up the possibility of new therapeutic approaches comprising the use of cannabinoids.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Georgina Correia-da-Silva
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Amaral C, Correia-da-Silva G, Almeida CF, Valente MJ, Varela C, Tavares-da-Silva E, Vinggaard AM, Teixeira N, Roleira FMF. An Exemestane Derivative, Oxymestane-D1, as a New Multi-Target Steroidal Aromatase Inhibitor for Estrogen Receptor-Positive (ER +) Breast Cancer: Effects on Sensitive and Resistant Cell Lines. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020789. [PMID: 36677847 PMCID: PMC9865664 DOI: 10.3390/molecules28020789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Around 70-85% of all breast cancer (BC) cases are estrogen receptor-positive (ER+). The third generation of aromatase inhibitors (AIs) is the first-line treatment option for these tumors. Despite their therapeutic success, they induce several side effects and resistance, which limits their efficacy. Thus, it is crucial to search for novel, safe and more effective anti-cancer molecules. Currently, multi-target drugs are emerging, as they present higher efficacy and lower toxicity in comparison to standard options. Considering this, this work aimed to investigate the anti-cancer properties and the multi-target potential of the compound 1α,2α-epoxy-6-methylenandrost-4-ene-3,17-dione (Oxy), also designated by Oxymestane-D1, a derivative of Exemestane, which we previously synthesized and demonstrated to be a potent AI. For this purpose, it was studied for its effects on the ER+ BC cell line that overexpresses aromatase, MCF-7aro cells, as well as on the AIs-resistant BC cell line, LTEDaro cells. Oxy reduces cell viability, impairs DNA synthesis and induces apoptosis in MCF-7aro cells. Moreover, its growth-inhibitory properties are inhibited in the presence of ERα, ERβ and AR antagonists, suggesting a mechanism of action dependent on these receptors. In fact, Oxy decreased ERα expression and activation and induced AR overexpression with a pro-death effect. Complementary transactivation assays demonstrated that Oxy presents ER antagonist and AR agonist activities. In addition, Oxy also decreased the viability and caused apoptosis of LTEDaro cells. Therefore, this work highlights the discovery of a new and promising multi-target drug that, besides acting as an AI, appears to also act as an ERα antagonist and AR agonist. Thus, the multi-target action of Oxy may be a therapeutic advantage over the three AIs applied in clinic. Furthermore, this new multi-target compound has the ability to sensitize the AI-resistant BC cells, which represents another advantage over the endocrine therapy used in the clinic, since resistance is a major drawback in the clinic.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (C.A.); (F.M.F.R.); Tel.: +351-220428560 (C.A.); +351-239488400 (F.M.F.R.); Fax: +351-226093390 (C.A.); +351-239488503 (F.M.F.R.)
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina Ferreira Almeida
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Carla Varela
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- CIEPQPF, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Pólo III Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Elisiário Tavares-da-Silva
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernanda M. F. Roleira
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- Correspondence: (C.A.); (F.M.F.R.); Tel.: +351-220428560 (C.A.); +351-239488400 (F.M.F.R.); Fax: +351-226093390 (C.A.); +351-239488503 (F.M.F.R.)
| |
Collapse
|
5
|
Seefried F, Haller L, Fukuda S, Thongmao A, Schneider N, Utikal J, Higashiyama S, Bosserhoff AK, Kuphal S. Nuclear
AREG
affects a low‐proliferative phenotype and contributes to drug resistance of melanoma. Int J Cancer 2022; 151:2244-2264. [DOI: 10.1002/ijc.34254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Felix Seefried
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Lucia Haller
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry Aichi Gakuin University Nagoya Japan
| | - Aranya Thongmao
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Nadja Schneider
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Jochen Utikal
- Department of Dermatology Heidelberg University, Mannheim, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg Germany
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumour Regulation, Proteo‐Science Center Ehime University, Toon, 791‐0295, Japan and Department of Molecular and Cellular Biology, Osaka International Cancer Institute Osaka Japan
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich Alexander University Erlangen‐Nürnberg, Fahrstrasse17 Erlangen Germany
| |
Collapse
|
6
|
Wang Y, Jing F, Wang H. Role of Exemestane in the Treatment of Estrogen-Receptor-Positive Breast Cancer: A Narrative Review of Recent Evidence. Adv Ther 2022; 39:862-891. [PMID: 34989983 DOI: 10.1007/s12325-021-01924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most common type of cancer diagnosed among women worldwide with an estimated 2.3 million new cases every year. Almost two-thirds of all patients with BC have estrogen receptor-positive (ER+) tumors. In this review, the clinical evidence of exemestane in different treatment settings in ER+ BC is presented and summarized. SEARCH STRATEGY A search strategy with the keywords "breast cancer [MeSH Terms]" AND "exemestane [Title/Abstract]" was devised and a search was performed in PubMed. RESULTS The efficacy of exemestane in different treatment settings has been established by numerous clinical studies. Exemestane is recommended as an adjuvant treatment in postmenopausal women previously treated with tamoxifen in trials comparing 5 years of tamoxifen with 2-3 years of tamoxifen combined with 2-3 years of exemestane, which proved that treatment with exemestane provided better survival outcomes. Similarly, exemestane could be considered as a safe treatment option for neoadjuvant treatment, prevention of chemotherapy, and treatment of advanced BC either alone or in combination with other targeted therapy drugs in both pre- and postmenopausal women. CONCLUSION Exemestane could be considered as a reasonable therapeutic option in the treatment of ER+ BC at any stage in pre- and postmenopausal women.
Collapse
|
7
|
Wang SF, Chang YL, Tzeng YD, Wu CL, Wang YZ, Tseng LM, Chen S, Lee HC. Mitochondrial stress adaptation promotes resistance to aromatase inhibitor in human breast cancer cells via ROS/calcium up-regulated amphiregulin-estrogen receptor loop signaling. Cancer Lett 2021; 523:82-99. [PMID: 34610415 DOI: 10.1016/j.canlet.2021.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Many breast cancer patients harbor high estrogen receptor (ER) expression in tumors that can be treated with endocrine therapy, which includes aromatase inhibitors (AI); unfortunately, resistance often occurs. Mitochondrial dysfunction has been thought to contribute to progression and to be related to hormone receptor expression in breast tumors. Mitochondrial alterations in AI-resistant breast cancer have not yet been defined. In this study, we characterized mitochondrial alterations and their roles in AI resistance. MCF-7aro AI-resistant breast cancer cells were shown to have significant changes in mitochondria. Low expressions of mitochondrial genes and proteins could be poor prognostic factors for breast cancer patients. Long-term mitochondrial inhibitor treatments-mediated mitochondrial stress adaptation could induce letrozole resistance. ERα-amphiregulin (AREG) loop signaling was activated and contributed to mitochondrial stress adaptation-mediated letrozole resistance. The up-regulation of AREG-epidermal growth factor receptor (EGFR) crosstalk activated the PI3K/Akt/mTOR and ERK pathways and was responsible for ERα activation. Moreover, mitochondrial stress adaptation-increased intracellular levels of reactive oxygen species (ROS) and calcium were shown to induce AREG expression and secretion. In conclusion, our results support the claim that mitochondrial stress adaptation contributes to AI resistance via ROS/calcium-mediated AREG-ERα loop signaling and provide possible treatment targets for overcoming AI resistance.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yen-Dun Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chun-Ling Wu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuan-Zhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA, 91010, USA
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA, 91010, USA.
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
8
|
Augusto TV, Amaral C, Almeida CF, Teixeira N, Correia-da-Silva G. Differential biological effects of aromatase inhibitors: Apoptosis, autophagy, senescence and modulation of the hormonal status in breast cancer cells. Mol Cell Endocrinol 2021; 537:111426. [PMID: 34391846 DOI: 10.1016/j.mce.2021.111426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
Estrogen receptor-positive (ER+) breast carcinomas are the most common subtype, corresponding to 60% of the cases in premenopausal and 75% in postmenopausal women. The third-generation of aromatase inhibitors (AIs), the non-steroidal Anastrozole (Ana) and Letrozole (Let) and the steroidal Exemestane (Exe), are considered a first-line endocrine therapy for postmenopausal women. Despite their clinical success, the development of resistance is the major setback in clinical practice. Nevertheless, the lack of cross-resistance between AIs hints that these drugs may act through distinct mechanisms. Therefore, this work studied the different effects induced by AIs on biological processes, such as cell proliferation, death, autophagy and senescence. Moreover, their effects on the regulation of the hormonal environment were also explored. The non-steroidal AIs induce senescence, through increased YPEL3 expression, on aromatase-overexpressing breast cancer cells (MCF-7aro), whereas Exe promotes a cytoprotective autophagy, thus blocking senescence induction. In addition, in a hormone-enriched environment, the non-steroidal AIs prevent estrogen signaling, despite up-regulating the estrogen receptor alpha (ERα), while Exe down-regulates ERα and maintains its activation. In these conditions, all AIs up-regulate the androgen receptor (AR) which blocks EGR3 transcription in Exe-treated cells. On the other hand, in hormone-depleted conditions, a crosstalk between AR and ERα occurs, enhancing the estrogenic effects of Exe. This indicates that Exe modulates both ERα and AR, while Ana and Let act as pure AIs. Thus, this study highlights the potential clinical benefit of combining AR antagonists with Exe and discourages the sequential use of Exe as second-line therapy in postmenopausal breast cancer.
Collapse
Affiliation(s)
- Tiago V Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313, Porto, Portugal
| | - Cristina F Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313, Porto, Portugal.
| |
Collapse
|
9
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
10
|
Wang Y, Tzeng YDT, Chang G, Wang X, Chen S. Amphiregulin retains ERα expression in acquired aromatase inhibitor resistant breast cancer cells. Endocr Relat Cancer 2020; 27:671-683. [PMID: 33112819 PMCID: PMC7665895 DOI: 10.1530/erc-20-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Acquired resistance to aromatase inhibitors (AIs) is a significant clinical issue in endocrine therapy for estrogen receptor (ER) positive breast cancer which accounts for the majority of breast cancer. Despite estrogen production being suppressed, ERα signaling remains active and plays a key role in most AI-resistant breast tumors. Here, we found that amphiregulin (AREG), an ERα transcriptional target and EGF receptor (EGFR) ligand, is crucial for maintaining ERα expression and signaling in acquired AI-resistant breast cancer cells. AREG was deregulated and critical for cell viability in ER+ AI-resistant breast cancer cells, and ectopic expression of AREG in hormone responsive breast cancer cells promoted endocrine resistance. RNA-sequencing and reverse phase protein array analyses revealed that AREG maintains ERα expression and signaling by activation of PI3K/Akt/mTOR signaling and upregulation of forkhead box M1 (FOXM1) and serum- and glucocorticoid-inducible kinase 3 (SGK3) expression. Our study uncovers a previously unappreciated role of AREG in maintaining ERα expression and signaling, and establishes the AREG-ERα crosstalk as a driver of acquired AI resistance in breast cancer.
Collapse
Affiliation(s)
- Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yun-Dun Tony Tzeng
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan (R.O.C.)
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiaoqiang Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Corresponding author: Shiuan Chen, , Tel: (626) 218-3454; Fax: (626) 301-8972
| |
Collapse
|
11
|
Heregulin Drives Endocrine Resistance by Altering IL-8 Expression in ER-Positive Breast Cancer. Int J Mol Sci 2020; 21:ijms21207737. [PMID: 33086721 PMCID: PMC7589856 DOI: 10.3390/ijms21207737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023] Open
Abstract
Sustained HER2/HER3 signaling due to the overproduction of the HER3 ligand heregulin (HRG) is proposed as a key contributor to endocrine resistance in estrogen receptor-positive (ER+) breast cancer. The molecular mechanisms linking HER2 transactivation by HRG-bound HER3 to the acquisition of a hormone-independent phenotype in ER+ breast cancer is, however, largely unknown. Here, we explored the possibility that autocrine HRG signaling drives cytokine-related endocrine resistance in ER+ breast cancer cells. We used human cytokine antibody arrays to semi-quantitatively measure the expression level of 60 cytokines and growth factors in the extracellular milieu of MCF-7 cells engineered to overexpress full-length HRGβ2 (MCF-7/HRG cells). Interleukin-8 (IL-8), a chemokine closely linked to ER inaction, emerged as one the most differentially expressed cytokines. Cytokine profiling using structural deletion mutants lacking both the N-terminus and the cytoplasmic-transmembrane region of HRGβ2-which is not secreted and cannot transactivate HER2-or lacking a nuclear localization signal at the N-terminus-which cannot localize at the nucleus but is actively secreted and transactivates HER2-revealed that the HRG-driven activation of IL-8 expression in ER+ cells required HRG secretion and transactivation of HER2 but not HRG nuclear localization. The functional blockade of IL-8 with a specific antibody inversely regulated ERα-driven transcriptional activation in endocrine-sensitive MCF-7 cells and endocrine-resistant MCF-7/HRG cells. Overall, these findings suggest that IL-8 participates in the HRG-driven endocrine resistance program in ER+/HER2- breast cancer and might illuminate a potential clinical setting for IL8- or CXCR1/2-neutralizing antibodies.
Collapse
|
12
|
Amaral C, Augusto TV, Almada M, Cunha SC, Correia-da-Silva G, Teixeira N. The potential clinical benefit of targeting androgen receptor (AR) in estrogen-receptor positive breast cancer cells treated with Exemestane. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165661. [PMID: 31891807 DOI: 10.1016/j.bbadis.2019.165661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 01/19/2023]
Abstract
The development of acquired resistance to the aromatase inhibitors (AIs) used in clinic is being considered the major concern in estrogen-receptor positive (ER+) breast cancer therapy. Recently, androgen receptor (AR) has gained attention in the clinical setting, since it has been implicated in AIs-resistance, although, different roles for AR in cell fate have been described. In this work, our group elucidates, for the first time, the oncogenic role of AR in sensitive and resistant ER+ breast cancer cells treated with the potent third-generation steroidal AI Exemestane (Exe). We demonstrate that Exe promotes an overexpression/activation of AR, which has an oncogenic and pro-survival role in Exe-sensitive and Exe-resistant cells. Moreover, we also disclose that targeting AR with bicalutamide (CDX) in Exe-treated cells, enhances the efficacy of this AI in sensitive cells and re-sensitizes resistant cells to Exe treatment. Furthermore, by targeting AR in Exe-resistant cells, it is also possible to block the activation of the ERK1/2 and PI3K cell survival pathways, hamper ERα activation and increase ERβ expression. Thus, this study, highlights a new mechanism involved in Exe-acquired resistance, implicating AR as a key molecule in this setting and suggesting that Exe-resistant cells may have an AR-dependent but ER-independent mechanism. Hence we propose AR antagonism as a potential and attractive therapeutic strategy to overcome Exe-acquired resistance or to enhance the growth inhibitory properties of Exe on ER+ breast cancer cells, improving breast cancer treatment.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Tiago V Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Marta Almada
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV.REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
14
|
Hsieh MJ, Chen YH, Lee IN, Huang C, Ku YJ, Chen JC. Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma. Int J Oncol 2019; 55:949-959. [PMID: 31485602 DOI: 10.3892/ijo.2019.4866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Despite advances in surgery, radiotherapy and chemotherapy, the overall 5‑year survival rate of patients with OSCC has not significantly improved. In addition, the prognosis of patients with advanced‑stage OSCC remains poor. Therefore, it is necessary to develop novel therapeutic modalities. Vincristine (VCR), a naturally occurring vinca alkaloid, is a classical microtubule‑destabilizing agent and is widely used in the treatment of a number of cancers. Despite the proven antitumor benefits of VCR treatment, one of the major reasons for the failure of treatment is drug resistance. Changes in the tumor microenvironment are responsible for cross‑talk between cells, which may facilitate drug resistance in cancers; secreted proteins may promote communication between cancer cells to induce the development of resistance. To identify the secreted proteins involved in VCR resistance, conditioned media was obtained, and an antibody array was conducted to screen a comprehensive secretion profile between VCR‑resistant (SAS‑VCR) and parental (SAS) OSCC cell lines. The results showed that amphiregulin (AREG) was highly expressed and secreted in SAS‑VCR cells. Pretreatment with exogenous recombinant AREG markedly increased drug resistance against VCR in OSCC cells, as assessed by an MTT assay. Colony formation, MTT and western blot assays were performed to investigate the effects of AREG knockdown on VCR sensitivity. The results indicated that AREG expression can regulate VCR resistance in OSCC cells; overexpression of AREG increased VCR resistance in parental cells, whereas AREG knockdown decreased the VCR resistance of resistant cells. In addition, it was also demonstrated that the glycogen synthase kinase‑3β pathway may be involved in AREG‑induced VCR resistance. These findings may provide rationale to combine VCR with blockade of AREG‑related pathways for the effective treatment of OSCC.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yin-Hong Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang‑Ming University, Taipei 112, Taiwan, R.O.C
| | - Yu-Ju Ku
- The Center for General Education of China Medical University, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| |
Collapse
|
15
|
Chen JC, Lee IN, Huang C, Wu YP, Chung CY, Lee MH, Lin MHC, Yang JT. Valproic acid-induced amphiregulin secretion confers resistance to temozolomide treatment in human glioma cells. BMC Cancer 2019; 19:756. [PMID: 31370819 PMCID: PMC6670223 DOI: 10.1186/s12885-019-5843-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/16/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most severe type of primary brain tumor with a high mortality rate. Although extensive treatments for GBM, including resection, irradiation, chemotherapy and immunotherapy, have been tried, the prognosis is still poor. Temozolomide (TMZ), an alkylating agent, is a front-line chemotherapeutic drug for the clinical treatment of GBM; however, its effects are very limited because of the chemoresistance. Valproic acid (VPA), an antiepileptic agent with histone deacetylase inhibitor activity, has been shown to have synergistic effects with TMZ against GBM. The mechanism of action of VPA on TMZ combination therapy is still unclear. Accumulating evidence has shown that secreted proteins are responsible for the cross talking among cells in the tumor microenvironment, which may play a critical role in the regulation of drug responses. METHODS To understand the effect of VPA on secreted proteins in GBM cells, we first used the antibody array to analyze the cell culture supernatant from VPA-treated and untreated GBM cells. The results were further confirmed by lentivirus-mediated knockdown and exogenous recombinant administration. RESULTS Our results showed that amphiregulin (AR) was highly secreted in VPA-treated cells. Knockdown of AR can sensitize GBM cells to TMZ. Furthermore, pretreatment of exogenous recombinant AR significantly increased EGFR activation and conferred resistance to TMZ. To further verify the effect of AR on TMZ resistance, cells pre-treated with AR neutralizing antibody markedly increased sensitivity to TMZ. In addition, we also observed that the expression of AR was positively correlated with the resistance of TMZ in different GBM cell lines. CONCLUSIONS The present study aimed to identify the secreted proteins that contribute to the modulation of drug response. Understanding the full set of secreted proteins present in glial cells might help reveal potential therapeutic opportunities. The results indicated that AR may potentially serve as biomarker and therapeutic approach for chemotherapy regimens in GBM.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City, 60004 Taiwan
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| | - Yu-Ping Wu
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
- College of Medicine, Chang Gung University, Tao-Yuan, 33302 Taiwan
| |
Collapse
|
16
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
17
|
Triiodothyronine Promotes Cell Proliferation of Breast Cancer via Modulating miR-204/Amphiregulin. Pathol Oncol Res 2018; 25:653-658. [PMID: 30406874 DOI: 10.1007/s12253-018-0525-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) severely threatens women's life, and Triiodothyronine (T3) shows a positive role on BC cell proliferation, while the potential mechanism underlying it is still unclear. T3 was used to stimulate BC cell lines MCF-7 and T47-D. Real-time PCR was performed to determine the expression of miRNAs, while western blot was used to measure protein expression of Amphiregulin (AREG), AKT and p-AKT. The interaction between miR-204 and AREG was determined using luciferase reporter assay. MTT was performed to detect cell viability. The expression of miR-204 was decreased, while AREG and p-AKT was increased in T3 stimulated BC cell lines. T3 stimulation promoted cell viability. miR-204 targets AREG to regulate its expression. T3 promoted expression of AREG and p-AKT, while miR-204 overexpression reversed the effect of T3, however, pcDNA-AREG transfection abolished the effect of miR-204 mimic. T3 promoted cell viability of BC cells via modulating the AKT signaling pathway. The detailed mechanism was that the down-regulated miR-204 that induced by T3 stimulation promoted the expression of AREG, the up-regulated AREG activated AKT signaling pathway, while the activated AKT signaling promoted cell proliferation.
Collapse
|
18
|
Chen JC, Huang C, Lee IN, Wu YP, Tang CH. Amphiregulin enhances cell migration and resistance to doxorubicin in chondrosarcoma cells through the MAPK pathway. Mol Carcinog 2018; 57:1816-1824. [DOI: 10.1002/mc.22899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi City Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Earth and Life Sciences; University of Taipei; Taipei Taiwan
| | - I-Neng Lee
- Department of Medical Research; Chang Gung Memorial Hospital; Chiayi Taiwan
| | - Yu-Ping Wu
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi City Taiwan
- Department of Medical Research; Chang Gung Memorial Hospital; Chiayi Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology; School of Medicine; China Medical University; Taichung Taiwan
- Chinese Medicine Research Center; China Medical University; Taichung Taiwan
- Department of Biotechnology; College of Medical and Health Science; Asia University; Taichung Taiwan
| |
Collapse
|
19
|
Augusto TV, Correia-da-Silva G, Rodrigues CMP, Teixeira N, Amaral C. Acquired resistance to aromatase inhibitors: where we stand! Endocr Relat Cancer 2018. [PMID: 29530940 DOI: 10.1530/erc-17-0425] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aromatase inhibitors (AIs) are one of the principal therapeutic approaches for estrogen receptor-positive (ER+) breast cancer in postmenopausal women. They block estrogen biosynthesis through aromatase inhibition, thus preventing tumour progression. Besides the therapeutic success of the third-generation AIs, acquired resistance may develop, leading to tumour relapse. This resistance is thought to be the result of a change in the behaviour of ER in these breast cancer cells, presumably by PI3K/AKT pathway enhancement along with alterations in other signalling pathways. Nevertheless, biological mechanisms, such as apoptosis, autophagy, cell cycle modulation and activation of androgen receptor (AR), are also implicated in acquired resistance. Moreover, clinical evidence demonstrated that there is a lack of cross-resistance among AIs, although the reason is not fully understood. Thus, there is a demand to understand the mechanisms involved in endocrine resistance to each AI, since the search for new strategies to surpass breast cancer acquired resistance is of major concern.
Collapse
Affiliation(s)
- Tiago Vieira Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Sobral AF, Amaral C, Correia-da-Silva G, Teixeira N. Unravelling exemestane: From biology to clinical prospects. J Steroid Biochem Mol Biol 2016; 163:1-11. [PMID: 26992705 DOI: 10.1016/j.jsbmb.2016.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/29/2016] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
Aromatase inhibitors (AIs) are anti-tumor agents used in clinic to treat hormone-dependent breast cancer. AIs block estrogens biosynthesis by inhibiting the enzyme aromatase, preventing tumor progression. Exemestane, a third-generation steroidal AI, belongs to this class of drugs and is currently used in clinic to treat postmenopausal women, due to its high efficacy and good tolerability. Here, its pharmacological and biological aspects as well as its clinical applications and comparison to other endocrine therapeutic agents, are reviewed. It is also focused the benefits and risks of exemestane, drawbacks to be overcome and aspects to be explored.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas 3000-456 Coimbra, Portugal; UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Georgina Correia-da-Silva
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
21
|
Exemestane metabolites suppress growth of estrogen receptor-positive breast cancer cells by inducing apoptosis and autophagy: A comparative study with Exemestane. Int J Biochem Cell Biol 2015; 69:183-95. [DOI: 10.1016/j.biocel.2015.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/18/2015] [Accepted: 10/23/2015] [Indexed: 02/04/2023]
|
22
|
Peterson EA, Jenkins EC, Lofgren KA, Chandiramani N, Liu H, Aranda E, Barnett M, Kenny PA. Amphiregulin Is a Critical Downstream Effector of Estrogen Signaling in ERα-Positive Breast Cancer. Cancer Res 2015; 75:4830-8. [PMID: 26527289 DOI: 10.1158/0008-5472.can-15-0709] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/31/2015] [Indexed: 02/01/2023]
Abstract
Estrogen stimulation promotes epithelial cell proliferation in estrogen receptor (ERα)-positive breast cancer. Many ERα target genes have been enumerated, but the identities of the key effectors mediating the estrogen signal remain obscure. During mouse mammary gland development, the estrogen growth factor receptor (EGFR) ligand amphiregulin acts as an important stage-specific effector of estrogen signaling. In this study, we investigated the role of amphiregulin in breast cancer cell proliferation using human tissue samples and tumor xenografts in mice. Amphiregulin was enriched in ERα-positive human breast tumor cells and required for estrogen-dependent growth of MCF7 tumor xenografts. Furthermore, amphiregulin levels were suppressed in patients treated with endocrine therapy. Suppression of EGF receptor signaling appeared necessary for the therapeutic response in this setting. Our findings implicate amphiregulin as a critical mediator of the estrogen response in ERα-positive breast cancer, emphasizing the importance of EGF receptor signaling in breast tumor pathogenesis and therapeutic response.
Collapse
Affiliation(s)
- Esther A Peterson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Edmund C Jenkins
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Kristopher A Lofgren
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York. Oncology Research Laboratory, Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin
| | - Natasha Chandiramani
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Hui Liu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Evelyn Aranda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Maryia Barnett
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paraic A Kenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York. Oncology Research Laboratory, Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin.
| |
Collapse
|
23
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
24
|
Vilquin P, Donini CF, Villedieu M, Grisard E, Corbo L, Bachelot T, Vendrell JA, Cohen PA. MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Res 2015; 17:13. [PMID: 25633049 PMCID: PMC4342894 DOI: 10.1186/s13058-015-0515-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Increasing evidence indicates that microRNAs (miRNAs) are important players in oncogenesis. Considering the widespread use of aromatase inhibitors (AIs) in endocrine therapy as a first-line treatment for postmenopausal estrogen receptor α–positive breast cancer patients, identifying deregulated expression levels of miRNAs in association with AI resistance is of utmost importance. Methods To gain further insight into the molecular mechanisms underlying the AI resistance, we performed miRNA microarray experiments using a new model of acquired resistance to letrozole (Res-Let cells), obtained by long-term exposure of aromatase-overexpressing MCF-7 cells (MCF-7aro cells) to letrozole, and a model of acquired anastrozole resistance (Res-Ana cells). Three miRNAs (miR-125b, miR-205 and miR-424) similarly deregulated in both AI-resistant cell lines were then investigated in terms of their functional role in AI resistance development and breast cancer cell aggressiveness and their clinical relevance using a cohort of 65 primary breast tumor samples. Results We identified the deregulated expression of 33 miRNAs in Res-Let cells and of 18 miRNAs in Res-Ana cells compared with the sensitive MCF-7aro cell line. The top-ranked Kyoto Encyclopedia of Genes and Genomes pathways delineated by both miRNA signatures converged on the AKT/mTOR pathway, which was found to be constitutively activated in both AI-resistant cell lines. We report for the first time, to our knowledge, that ectopic overexpression of either miR-125b or miR-205, or the silencing of miR-424 expression, in the sensitive MCF-7aro cell line was sufficient to confer resistance to letrozole and anastrozole, to target and activate the AKT/mTOR pathway and to increase the formation capacity of stem-like and tumor-initiating cells possessing self-renewing properties. Increasing miR-125b expression levels was also sufficient to confer estrogen-independent growth properties to the sensitive MCF-7aro cell line. We also found that elevated miR-125b expression levels were a novel marker for poor prognosis in breast cancer and that targeting miR-125b in Res-Let cells overcame letrozole resistance. Conclusion This study highlights that acquisition of specific deregulated miRNAs is a newly discovered alternative mechanism developed by AI-resistant breast cancer cells to achieve constitutive activation of the AKT/mTOR pathway and to develop AI resistance. It also highlights that miR-125b is a new biomarker of poor prognosis and a candidate therapeutic target in AI-resistant breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0515-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Vilquin
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Caterina F Donini
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France. .,Unité Cancer et Environnement, Centre Léon Bérard-Université Lyon 1, 28 Rue Laennec, 69008, Lyon, France.
| | - Marie Villedieu
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Evelyne Grisard
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Laura Corbo
- Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | | | - Julie A Vendrell
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Pascale A Cohen
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France. .,Unité Cancer et Environnement, Centre Léon Bérard-Université Lyon 1, 28 Rue Laennec, 69008, Lyon, France. .,ProfileXpert, SFR Lyon-Est, 69008, Lyon, France. .,ISPBL-Faculté de Pharmacie de Lyon, 8 Avenue Rockefeller, 69373, Lyon, Cedex 08, France.
| |
Collapse
|
25
|
Hole S, Pedersen AM, Hansen SK, Lundqvist J, Yde CW, Lykkesfeldt AE. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol 2015; 46:1481-90. [PMID: 25625755 PMCID: PMC4356498 DOI: 10.3892/ijo.2015.2850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/12/2014] [Indexed: 01/13/2023] Open
Abstract
Aromatase inhibitor (AI) treatment is first-line systemic treatment for the majority of postmenopausal breast cancer patients with estrogen receptor (ER)-positive primary tumor. Although many patients benefit from treatment, some will develop resistance, and models mimicking acquired resistance will be valuable tools to unravel the resistance mechanisms and to find new treatments and biomarkers. Cell culture models for acquired resistance to the three clinically relevant AIs letrozole, anastrozole and exemestane were developed by selection and expansion of colonies of MCF-7 breast cancer cells surviving long-term AI treatment under conditions where endogenous aromatase-mediated conversion of androgen to estrogen was required for growth. Four cell lines resistant to each of the AIs were established and characterized. Maintenance of ER expression and function was a general finding, but ER loss was seen in one of twelve cell lines. HER receptor expression was increased, in particular EGFR expression in letrozole-resistant cell lines. The AI-resistant cell lines had acquired ability to grow without aromatase-mediated conversion of testosterone to estradiol, but upon withdrawal of AI treatment, testosterone induced minor growth stimulation. Letrozole, exemestane and tamoxifen were able to abrogate the testosterone stimulation but could not reduce growth to below the level in standard growth medium with AI, demonstrating cross-resistance between letrozole, exemestane and tamoxifen. In contrast, fulvestrant totally blocked growth of the AI resistant cell lines both after withdrawal of AI and with AI treatment. These data show that ER is the main driver of growth of the AI-resistant cell lines and indicate ligand-independent activation of ER. Fulvestrant is an efficient treatment option for these AI-resistant breast cancer cells, and the cell lines will be useful tools to disclose the underlying molecular mechanism for resistance to the different AIs.
Collapse
Affiliation(s)
- Stine Hole
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Astrid M Pedersen
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Susanne K Hansen
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Christina W Yde
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
26
|
The effects of amphiregulin induced MMP-13 production in human osteoarthritis synovial fibroblast. Mediators Inflamm 2014; 2014:759028. [PMID: 25147440 PMCID: PMC4131469 DOI: 10.1155/2014/759028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) belongs to a group of degenerative diseases. Synovial inflammation, cartilage abrasion, and subchondral sclerosis are characteristics of OA. Researchers do not fully understand the exact etiology of OA. However, matrix metalloproteinases (MMPs), which are responsible for cartilage matrix degradation, play a pivotal role in the progression of OA. Amphiregulin (AREG) binds to the EGF receptor (EGFR) and activates downstream proteins. AREG is involved in a variety of pathological processes, such as the development of tumors, inflammatory diseases, and rheumatoid arthritis. However, the relationship between AREG and MMP-13 in OA synovial fibroblasts (SFs) remains unclear. We investigated the signaling pathway involved in AREG-induced MMP-13 production in SFs. AREG caused MMP-13 production in a concentration- and time-dependent manner. The results of using pharmacological inhibitors and EGFR siRNA to block EGFR revealed that the EGFR receptor was involved in the AREG-mediated upregulation of MMP-13. AREG-mediated MMP-13 production was attenuated by PI3K and Akt inhibitors. The stimulation of cells by using AREG activated p65 phosphorylation and p65 translocation from the cytosol to the nucleus. Our results provide evidence that AREG acts through the EGFR and activates PI3K, Akt, and finally NF-kappaB on the MMP-13 promoter, thus contributing to cartilage destruction during osteoarthritis.
Collapse
|
27
|
Edgar KA, Crocker L, Cheng E, Wagle MC, Wongchenko M, Yan Y, Wilson TR, Dompe N, Neve RM, Belvin M, Sampath D, Friedman LS, Wallin JJ. Amphiregulin and PTEN evoke a multimodal mechanism of acquired resistance to PI3K inhibition. Genes Cancer 2014; 5:113-26. [PMID: 25053989 PMCID: PMC4091530 DOI: 10.18632/genesandcancer.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/16/2014] [Indexed: 01/04/2023] Open
Abstract
Phosphoinositide-3 kinase (PI3K) signaling pathway alterations occur broadly in cancer and PI3K is a promising therapeutic target. Here, we investigated acquired resistance to GDC-0941, a PI3K inhibitor in clinical trials. Colorectal cancer (CRC) cells made to be resistant to GDC-0941 were discovered to secrete amphiregulin, which resulted in increased EGFR/MAPK signaling. Moreover, prolonged PI3K pathway inhibition in cultured cells over a period of months led to a secondary loss of PTEN in 40% of the CRC lines with acquired resistance to PI3K inhibition. In the absence of PI3K inhibitor, these PTEN-null PI3K inhibitor-resistant clones had elevated PI3K pathway signaling and decreased sensitivity to MAPK pathway inhibitors. Importantly, PTEN loss was not able to induce resistance to PI3K inhibitors in the absence of amphiregulin, indicating a multimodal mechanism of acquired resistance. The combination of PI3K and MAPK pathway inhibitors overcame acquired resistance in vitro and in vivo.
Collapse
Affiliation(s)
- Kyle A Edgar
- Departments of Translational Oncology, South San Francisco, CA, USA
| | - Lisa Crocker
- Departments of Translational Oncology, South San Francisco, CA, USA
| | - Eric Cheng
- Departments of Translational Oncology, South San Francisco, CA, USA
| | | | | | - Yibing Yan
- Department of Oncology Biomarkers, South San Francisco, CA, USA
| | | | - Nicholas Dompe
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Richard M Neve
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Marcia Belvin
- Departments of Translational Oncology, South San Francisco, CA, USA
| | - Deepak Sampath
- Departments of Translational Oncology, South San Francisco, CA, USA
| | - Lori S Friedman
- Departments of Translational Oncology, South San Francisco, CA, USA
| | - Jeffrey J Wallin
- Departments of Translational Oncology, South San Francisco, CA, USA
| |
Collapse
|
28
|
Vilquin P, Villedieu M, Grisard E, Larbi SB, Ghayad SE, Heudel PE, Bachelot T, Corbo L, Treilleux I, Vendrell JA, Cohen PA. Molecular characterization of anastrozole resistance in breast cancer: Pivotal role of the Akt/mTOR pathway in the emergence ofde novoor acquired resistance and importance of combining the allosteric Akt inhibitor MK-2206 with an aromatase inhibitor. Int J Cancer 2013; 133:1589-602. [DOI: 10.1002/ijc.28182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 03/07/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | - Sandra E. Ghayad
- INSERM U1052; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon; Lyon; France
| | | | | | - Laura Corbo
- INSERM U1052; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon; Lyon; France
| | | | | | | |
Collapse
|
29
|
Abstract
Adjuvant therapy with antiestrogens targeting estrogen receptor α (ER) signaling prevents disease recurrence in many patients with early-stage ER+ breast cancer. However, a significant number of cases exhibit de novo or acquired endocrine resistance. While other clinical subtypes of breast cancer (HER2+, triple-negative) have disproportionately higher rates of mortality, ER+ breast cancer is responsible for at least as many deaths because it is the most common subtype. Therefore, identifying mechanisms that drive endocrine resistance is a high clinical priority. A large body of experimental evidence indicates that oncogenic signaling pathways underlie endocrine resistance, including growth factor receptor tyrosine kinases (HER2, epidermal growth factor receptor [EGFR], fibroblast growth factor receptor 1/2 [FGFR], insulin-like growth factor-1 receptor [IGF-1R]/ insulin receptor [InsR]), PI3K/AKT/ mTOR, MAPK/ERK, Src, CDK4/CDK6, and ER itself. Combined targeting of ER and such pathways may be the most effective means to combat antiestrogen resistance, and clinical trials testing such strategies show promising results. Herein, we discuss pathways associated with endocrine resistance, biomarkers that may be useful to predict response to targeted agents, and avenues for further exploration to identify strategies for the treatment of patients with endocrine-resistant disease.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Aromatase Inhibitors/pharmacology
- Aromatase Inhibitors/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/physiopathology
- Cell Cycle/drug effects
- Cyclin-Dependent Kinases/physiology
- Drug Resistance, Neoplasm/physiology
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor Modulators/therapeutic use
- Estrogens
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Intercellular Signaling Peptides and Proteins/physiology
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/physiology
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/physiopathology
- Progesterone
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptor, ErbB-2/physiology
- Receptors, Estrogen/drug effects
- Receptors, Growth Factor/drug effects
- Receptors, Growth Factor/physiology
- Receptors, Progesterone/drug effects
- Selective Estrogen Receptor Modulators/pharmacology
- Selective Estrogen Receptor Modulators/therapeutic use
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Todd W Miller
- From the Department of Pharmacology and Toxicology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
30
|
Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 2012; 14:108-45. [PMID: 23344024 PMCID: PMC3565254 DOI: 10.3390/ijms14010108] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients.
Collapse
|
31
|
Yoshida M, Shimura T, Fukuda S, Mizoshita T, Tanida S, Kataoka H, Kamiya T, Nakazawa T, Higashiyama S, Joh T. Nuclear translocation of pro-amphiregulin induces chemoresistance in gastric cancer. Cancer Sci 2012; 103:708-15. [PMID: 22320154 DOI: 10.1111/j.1349-7006.2012.02204.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/20/2023] Open
Abstract
Amphiregulin (AR) is derived from a membrane-anchored form (proAR) by ectodomain shedding, and is a ligand that activates epidermal growth factor receptor (EGFR). We have recently shown that proAR translocates from the plasma membrane to the nucleus after truncation of 11 amino acids at the C-terminus, which is independent of the conventional EGFR signaling pathway. Although proAR immunoreactivity has reportedly been detected in the nucleus of cancer cells, its biological meaning has never been investigated. This study was performed to investigate the roles of proAR nuclear translocation in human gastric cancer. We constructed proAR truncated 11 amino acids at the C-terminus (proARΔC11) that spontaneously translocates to the nucleus, and established proARΔC11-expression regulatable gastric cancer cells (MKN45, MKN28) using the tet-off system. Using these cells, we found that proAR nuclear translocation significantly induced chemoresistance in vitro and in vivo. Analyzing the relationship between immunoreactive localization of proAR and the clinical outcome for 46 advanced gastric cancer cases treated with chemotherapy, median survival time was 311 days in 16 patients with AR-positive staining in the nucleus and 387 days in 30 patients with AR-negative staining (P < 0.05). The present study demonstrates that proAR nuclear translocation increases resistance to anti-cancer drugs, which might be associated with poor prognosis in human gastric cancer.
Collapse
Affiliation(s)
- Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol 2011; 29:4452-61. [PMID: 22010023 PMCID: PMC3221526 DOI: 10.1200/jco.2010.34.4879] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/04/2011] [Indexed: 12/17/2022] Open
Abstract
Although antiestrogen therapies targeting estrogen receptor (ER) α signaling prevent disease recurrence in the majority of patients with hormone-dependent breast cancer, a significant fraction of patients exhibit de novo or acquired resistance. Currently, the only accepted mechanism linked with endocrine resistance is amplification or overexpression of the ERBB2 (human epidermal growth factor receptor 2 [HER2]) proto-oncogene. Experimental and clinical evidence suggests that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway, the most frequently mutated pathway in breast cancer, promotes antiestrogen resistance. PI3K is a major signaling hub downstream of HER2 and other receptor tyrosine kinases. PI3K activates several molecules involved in cell-cycle progression and survival, and in ER-positive breast cancer cells, it promotes estrogen-dependent and -independent ER transcriptional activity. Preclinical tumor models of antiestrogen-resistant breast cancer often remain sensitive to estrogens and PI3K inhibition, suggesting that simultaneous targeting of the PI3K and ER pathways may be most effective. Herein, we review alterations in the PI3K pathway associated with resistance to endocrine therapy, the state of clinical development of PI3K inhibitors, and strategies for the clinical investigation of such drugs in hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Todd W. Miller
- All authors: Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
| | - Justin M. Balko
- All authors: Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
| | - Carlos L. Arteaga
- All authors: Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
33
|
Pei R, Chen H, Lu L, Zhu W, Beckebaum S, Cicinnati V, Lu M, Chen X. Hepatitis C virus infection induces the expression of amphiregulin, a factor related to the activation of cellular survival pathways and required for efficient viral assembly. J Gen Virol 2011; 92:2237-2248. [PMID: 21653755 DOI: 10.1099/vir.0.032581-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor (EGF) receptor and may play a role in the development of cirrhosis and hepatocellular carcinoma in patients infected with hepatitis C virus (HCV). AREG showed an enhanced expression in HCV-infected human hepatoma cells according to gene array analysis. Therefore, we addressed the question about the role of AREG in HCV infection. AREG expression level was elevated in hepatoma cells containing a subgenomic HCV replicon or infected by HCV. Using a reporter assay, AREG promoter activity was found to be upregulated upon HCV infection. The enhanced AREG expression in hepatoma cells was partly caused by dsRNAs, HCV NS3 protein and autocrine stimulation. AREG was able to activate cellular signalling pathways including ERK, Akt and p38, promote cell proliferation, and protect cells from HCV-induced cell death. Further, knockdown of AREG expression increased the efficiency of HCV entry, as proven by HCV pseudoparticles reporter assay. However, the formation and release of infectious HCV particles were reduced by AREG silencing with a concomitant accumulation of intracellular HCV RNA pool, indicating that the assembly and release of HCV progeny may require AREG expression. Blocking the MAPK-ERK pathway by U0126 in Huh7.5.1 cells had a similar effect on HCV replication. In conclusion, HCV infection leads to an increase in AREG expression in hepatocytes. AREG expression is essential for efficient HCV assembly and virion release. Due to the activation of the cellular survival pathways, AREG may counteract HCV-induced apoptosis of infected hepatocytes and facilitate the development of liver cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rongjuan Pei
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Institute of Virology, University Hospital of Essen, Essen, Germany.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Honghe Chen
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Lu Lu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wandi Zhu
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Susanne Beckebaum
- Department of Gastroenterology and Hepatology, University Hospital of Essen, Essen, Germany
| | - Vito Cicinnati
- Department of Gastroenterology and Hepatology, University Hospital of Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
34
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
35
|
Hurbin A, Wislez M, Busser B, Antoine M, Tenaud C, Rabbe N, Dufort S, de Fraipont F, Moro-Sibilot D, Cadranel J, Coll JL, Brambilla E. Insulin-like growth factor-1 receptor inhibition overcomes gefitinib resistance in mucinous lung adenocarcinoma. J Pathol 2011; 225:83-95. [PMID: 21598249 DOI: 10.1002/path.2897] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/25/2011] [Accepted: 03/09/2011] [Indexed: 01/10/2023]
Abstract
The appropriate selection of patients is a major challenge in the treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Prospective trials in adenocarcinoma demonstrated that the mucinous subtype presents a poorer outcome under EGFR-TKI treatment than the non-mucinous subtype. Our aim was to determine the molecular characteristics associated with resistance to EGFR-TKIs in mucinous and non-mucinous adenocarcinoma. Eighty adenocarcinoma samples, including 34 tumours from patients treated with gefitinib in a phase II clinical trial (IFCT0401), were classified as mucinous (n = 32) or non-mucinous (n = 48) adenocarcinoma. We demonstrated that four biological markers were differentially expressed between the two subtypes: mucinous tumours that overexpressed IGF1R (p < 0.0001) and amphiregulin (p = 0.004) with a tendency for more frequent KRAS mutations, in contrast to non-mucinous tumours that overexpressed EGFR (p < 0.0001) and TTF-1 (p < 0.0001) with more frequent EGFR mutations (p = 0.037). Higher IGF1R (p = 0.02) and lower TTF-1 (p = 0.02) expression was associated with disease progression under gefitinib treatment. We observed in vitro cross-talk between EGFR and IGF1R signalling pathways in gefitinib-resistant H358 mucinous cells. Anti-amphiregulin siRNAs and anti-IGF1R treatments sensitized the H358 cells to gefitinib-induced apoptosis with additive effects, suggesting that these treatments could overcome the resistance of mucinous tumours to EGFR-TKIs, including those with KRAS mutation. Our results highlighted that mucinous and non-mucinous adenocarcinoma subtypes are different entities with different therapeutic responses to EGFR-TKIs. These data will foster the development of therapeutic strategies for treating adenocarcinoma with mucinous component.
Collapse
|
36
|
Englert NA, Spink BC, Spink DC. Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2011; 123:140-50. [PMID: 21185374 DOI: 10.1016/j.jsbmb.2010.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/19/2022]
Abstract
Life-long estrogen exposure is recognized as a major risk factor for the development of breast cancer. While the initial events in the regulation of gene expression by estrogen have been described in detail, far less is known of the role of estrogen in the long-term regulation of gene expression. In this study, we investigated the effects of long-term exposure of MCF-7 breast cancer cells to 1nM 17β-estradiol on gene expression with the goal of distinguishing between gene expression that is continually reliant on estrogen receptor (ER) function as opposed to secondary and persistent effects that are downstream of ER. To assess the direct involvement of ER in the differential gene expression of long-term estrogen exposed (LTEE) cells in comparison with that of control cells, we exposed cultures to the selective estrogen receptor modulator raloxifene (RAL). cDNA microarray analysis showed that exposure to RAL inhibited expression of numerous characterized estrogen-regulated genes, including PGR, GREB1, and PDZK1. Genes that were increased in expression in LTEE cells yet were unaffected by RAL exposure included the aryl hydrocarbon receptor (AHR) and numerous other genes that were not previously reported to be regulated by estrogen. Epigenetic regulation was evident for the AHR gene; AhR transcript levels remained elevated for several cell passages after the removal of estrogen. Signal transducer and activator of transcription 1 (STAT1); STAT1-regulated genes including ISG15, IFI27, and IFIT1; and MHC class I genes were also up-regulated in LTEE cells and were unaffected by RAL exposure. STAT1 is commonly overexpressed in breast and other cancers, and is associated with increased resistance to radiation and chemotherapy. This is the first study to relate estrogen exposure to increased STAT1 expression in breast cancer cells, an effect that may represent an additional role of estrogen in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Neal A Englert
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | |
Collapse
|
37
|
Masri S, Phung S, Wang X, Chen S. Molecular characterization of aromatase inhibitor-resistant, tamoxifen-resistant and LTEDaro cell lines. J Steroid Biochem Mol Biol 2010; 118:277-82. [PMID: 19897035 PMCID: PMC2836255 DOI: 10.1016/j.jsbmb.2009.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/27/2009] [Indexed: 01/07/2023]
Abstract
To determine potential genes involved in mediating resistance to aromatase inhibitors (AIs), a microarray study was performed using MCF-7aro (aromatase overexpressing) cells that are resistant to letrozole (T+LET R), anastrozole (T+ANA R) and exemestane (T+EXE R), as well as LTEDaro and tamoxifen-resistant (T+TAM R) lines for comparison. Based on hierarchical clustering, estrogen-responsive genes were found to be differentially expressed in AI-resistant lines versus LTEDaro and T+TAM R. Additional genome-wide analysis showed that gene expression profiles of the non-steroidal AI-resistant lines were most closely correlated and that T+EXE R lines exhibit differing profiles. Also, LTEDaro and T+TAM R lines are inherently different from expression profiles of AI-resistant lines. Further characterization of these resistant lines revealed that T+LET R, T+ANA R and LTEDaro cells contain a constitutively active estrogen receptor alpha (ERalpha) that does not require the ligand estrogen for activation. Ligand-independent activation of ERalpha does not activate identical estrogen-responsive gene profiles in AI-resistant lines as in LTEDaro lines, thereby establishing differing mechanisms of resistance. This ligand-independent activation of ER was not observed in the parental cell lines MCF-7aro, T+EXE R or T+TAM R cells. Based on the steroidal structure of EXE, our laboratory has shown that this AI has weak estrogen-like properties, and that EXE resistance involves an ER-dependent crosstalk with EGFR growth factor signaling. Recent studies in our laboratory pertaining to pre-clinical models of AI treatment revealed that intermittent use of EXE delays the onset of acquired resistance in comparison to continuous treatment. Specific molecular mechanisms involved in intermittent use of EXE are currently being explored, based on microarray gene expression profiling. Lastly, our laboratory has initiated a study of microRNAs and their potential role in regulating target genes involved in AI-resistance. Overall, we propose a model of acquired resistance that progresses from hormone-dependence (T+TAM R and T+EXE R) to hormone-independence (T+LET R and T+ANA R), eventually resulting in hormone-independence that does not rely on conventional ER signaling (LTEDaro).
Collapse
Affiliation(s)
- Selma Masri
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | |
Collapse
|
38
|
Ghayad SE, Vendrell JA, Ben Larbi S, Dumontet C, Bieche I, Cohen PA. Endocrine resistance associated with activated ErbB system in breast cancer cells is reversed by inhibiting MAPK or PI3K/Akt signaling pathways. Int J Cancer 2010; 126:545-62. [PMID: 19609946 DOI: 10.1002/ijc.24750] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endocrine therapy resistance is one of the main challenges in the treatment of estrogen receptor positive (ER+) breast cancer patients. This study showed that two ER+ human breast carcinoma cell lines derived from MCF-7 (MVLN cells) that have acquired under OH-Tamoxifen selection two distinct phenotypes of endocrine resistance both displayed constitutive activation of the PI3K/Akt and MAPK pathways. Aberrant expression and activation of the ErbB system (phospho-EGFR, phospho-ErbB2, phospho-ErbB3, over-expression of ErbB4 and over-expression of several ErbB ligands) were also observed in the two resistant cell lines, suggesting the existence of an autocrine loop leading to constitutive activation of MAPK and PI3K/Akt survival pathways. The recent clinical use of specific signal transduction inhibitors is one of the most promising therapeutic approaches in breast cancers. The MEK inhibitor PD98059 and the PI3K inhibitor LY294002 were both able to enhance the cytostatic effect of OH-Tamoxifen or fulvestrant on MVLN sensitive cells. In the two resistant cell lines, inhibition of the MAPK or the PI3K/Akt pathways associated with endocrine therapy was sufficient to reverse OH-Tamoxifen or fulvestrant resistance. Investigating the effect of a combination of both inhibitors on the reversion of OH-Tamoxifen and fulvestrant resistance in the two resistant cell lines suggested that, in clinical practice, a strategy combining the two inhibitors would be the best approach to target the different endocrine resistance phenotypes possibly present in a tumor. In conclusion, the combination of MAPK and PI3K inhibitors represents a promising strategy to overcome endocrine therapy resistance in ER+ breast cancer patients.
Collapse
|
39
|
Koutras A, Giannopoulou E, Kritikou I, Antonacopoulou A, Evans TRJ, Papavassiliou AG, Kalofonos H. Antiproliferative effect of exemestane in lung cancer cells. Mol Cancer 2009; 8:109. [PMID: 19930708 PMCID: PMC2789046 DOI: 10.1186/1476-4598-8-109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 11/24/2009] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549. RESULTS Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR) localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells. CONCLUSION Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC.
Collapse
Affiliation(s)
- Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital of Patras, Rion 26504, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - Ismini Kritikou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - Anna Antonacopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - TR Jeffry Evans
- University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, University Hospital of Patras, Rion 26504, Greece
| |
Collapse
|
40
|
Amphiregulin promotes BAX inhibition and resistance to gefitinib in non-small-cell lung cancers. Mol Ther 2009; 18:528-35. [PMID: 19826406 DOI: 10.1038/mt.2009.226] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular resistance mechanisms affecting the efficiency of receptor tyrosine kinase inhibitors such as gefitinib in non-small-cell lung cancer (NSCLC) cells are not fully understood. Amphiregulin (Areg) overexpression has been proposed to predict NSCLC resistance to gefitinib and we have established that Areg-overexpressing H358 NSCLC cells resist apoptosis. Here, we demonstrate that Areg prevents gefitinib-induced apoptosis in NSCLC cells. We show that H358 cells are resistant to gefitinib in contrast to H322 cells, which do not overexpress Areg. Inhibition of Areg expression by small-interfering RNAs (siRNAs) restores gefitinib sensitivity in H358 cells, whereas addition of recombinant Areg confers resistance in H322 cells. Areg knockdown overcomes resistance to gefitinib and induced apoptosis in NSCLC H358 cells in vitro and in vivo. Under gefitinib treatment, Areg decreases the expression of the proapoptotic protein BAX, inhibits its conformational change and its mitochondrial translocation. Thus, in the presence of Areg, gefitinib-mediated apoptosis is reduced because BAX is sequestered in the cytoplasm. This suggests that treatments using epidermal growth factor receptor (EGFR) inhibitors may be poorly efficient in patients with elevated levels of Areg. These findings indicate the need for inhibition of Areg to enhance the efficiency of the EGFR inhibitors in patients suffering NSCLC.
Collapse
|
41
|
Shigeishi H, Yamaguchi S, Mizuta K, Nakakuki K, Fujimoto S, Amagasa T, Kamata N. Amphiregulin induces proliferative activities in osseous dysplasia. J Dent Res 2009; 88:563-8. [PMID: 19587163 DOI: 10.1177/0022034509338253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human osseous dysplasia (OD) is a benign fibro-osseous neoplasm of periodontal ligament origin in which normal bone is replaced with fibrous connective tissue containing abnormal bone or cementum. However, cellular differentiation and proliferation in OD have not been fully elucidated. In vitro culture systems have distinct advantages for analytical studies. Therefore, we established immortalized cell lines (OD-1) from OD lesions of the jaw from an individual with gnathodiaphyseal dysplasia (GDD). We hypothesized that OD-1 had a characteristic growth mechanism different from that of mineralized-associated cells such as osteoblasts. To clarify the difference of gene expression patterns between OD-1 and osteoblasts, we compared the profiles of genes expressed in the 2 cell types by microarray analysis. We identified amphiregulin to be highly expressed in OD-1 compared with osteoblasts and gingival fibroblasts. OD-1 showed proliferative activities regulated in an autocrine manner by amphiregulin, and amphiregulin may play a significant role in the proliferation of OD.
Collapse
Affiliation(s)
- H Shigeishi
- Department of Oral and Maxillofacial Surgery, Division of Cervico-Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hiscox S, Davies EL, Barrett-Lee P. Aromatase inhibitors in breast cancer. Maturitas 2009; 63:275-9. [PMID: 19577386 DOI: 10.1016/j.maturitas.2009.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/26/2009] [Indexed: 12/01/2022]
Abstract
Estrogens play important roles in breast cancer development and progression. In postmenopausal women, traditional endocrine therapies such as tamoxifen have sought to inhibit estrogen action by targeting the estrogen receptor itself. However, newer treatments are evolving that target estrogen production in postmenopausal tissues through inhibition of the aromatase enzyme. Clinical data demonstrate that these aromatase inhibitors are superior to tamoxifen as adjuvant therapy for breast cancer and have now replaced tamoxifen as first line therapy in a number of treatment regimens for postmenopausal breast cancer patients.
Collapse
Affiliation(s)
- Stephen Hiscox
- Welsh School of Pharmacy, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
43
|
Molecular characterization of lung dysplasia induced by c-Raf-1. PLoS One 2009; 4:e5637. [PMID: 19529782 PMCID: PMC2681412 DOI: 10.1371/journal.pone.0005637] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/14/2009] [Indexed: 11/19/2022] Open
Abstract
Background Lung cancer is a multistage process with poor prognosis and high morbidity. Importantly, the genetics of dysplasia, a facultative cancer, at the edge of malignant transformation is unknown. Methodology/Principal Findings We employed laser microdissection to harvest c-Raf1- induced dysplastic as opposed to transgenic but otherwise morphologically unaltered epithelium and compared findings to non-transgenic lung. We then employed microarrays to search genome wide for gene regulatory networks. A total of 120 and 287 genes were significantly regulated, respectively. Dysplasia was exclusive associated with up-regulation of genes coding for cell growth and proliferation, cell-to-cell signalling and interaction, lipid metabolism, development, and cancer. Likewise, when dysplasia was compared with non-transgenic cells up-regulation of cancer associated genes, tight junction proteins, xenobiotic defence and developmental regulators was observed. Further, in a comparison of the data sets of dysplasia vs transgenic and dysplasia vs non-transgenic 114 genes were regulated in common. We additionally confirmed regulation of some genes by immunohistochemistry and therefore demonstrate good concordance between gene regulation and coded protein. Conclusion Our study identified transcriptional networks at successive stages of tumor-development, i.e. from histological unaltered but transgenic lungs to nuclear atypia. Our SP-C/c-raf transgenic mouse model revealed interesting and novel candidate genes and pathways that provide clues on the mechanism forcing respiratory epithelium into dysplasia and subsequently cancer, some of which might also be useful in the molecular imaging and flagging of early stages of disease.
Collapse
|
44
|
Lack of complete cross-resistance between different aromatase inhibitors; a real finding in search for an explanation? Eur J Cancer 2008; 45:527-35. [PMID: 19062270 DOI: 10.1016/j.ejca.2008.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/23/2008] [Accepted: 10/16/2008] [Indexed: 11/21/2022]
Abstract
While third-generation aromatase inhibitors (anastrozole, letrozole and exemestane) are successfully implemented as adjuvant and first-line therapy for hormone-sensitive breast cancer in postmenopausal women, important questions remain to be addressed. An issue of particular interest is the question about lack of complete cross-resistance between steroidal and non-steroidal compounds. Although the studies reporting this phenomenon in general contain a small number of patients, the findings across the different reports seem consistent. While several potential mechanisms have been suggested, so far we lack scientific proof what mechanisms may be responsible for this finding. Finally, we do not know whether lack of cross-resistance actually signals an improved efficacy for certain compounds or may be due to alternative mechanisms of action. Neither do we know whether some tumours are more sensitive to particular drugs. This paper summarizes clinical findings up to now with respect to lack of cross-resistance and discuss potential mechanisms involved.
Collapse
|
45
|
Zilli M, Grassadonia A, Tinari N, Di Giacobbe A, Gildetti S, Giampietro J, Natoli C, Iacobelli S. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta Rev Cancer 2008; 1795:62-81. [PMID: 18804516 DOI: 10.1016/j.bbcan.2008.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 01/04/2023]
Abstract
The use of endocrine agents is a safe and effective treatment in the management of hormone-sensitive breast cancer. Unfortunately, sooner or later, tumor cells develop resistance to endocrine manipulation making useless this approach. During the last decade, new molecules and intracellular signaling pathways involved in endocrine resistance have been identified. Several studies have documented that estrogen receptor signaling may maintain a pivotal role in the tumor growth despite the failure of a previous hormonal treatment. In this review we will discuss the general principles for optimizing the choice of endocrine therapy based on an understanding of the molecular mechanisms responsible for resistance to the different anti-hormonal agents.
Collapse
Affiliation(s)
- Marinella Zilli
- Department of Oncology and Neurosciences, University G D'Annunzio Medical School, Via dei Vestini, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Masri S, Phung S, Wang X, Wu X, Yuan YC, Wagman L, Chen S. Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res 2008; 68:4910-8. [PMID: 18559539 DOI: 10.1158/0008-5472.can-08-0303] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acquired resistance to either tamoxifen or aromatase inhibitors (AI) develops after prolonged treatment in a majority of hormone-responsive breast cancers. In an attempt to further elucidate mechanisms of acquired resistance to AIs, MCF-7aro cells resistant to letrozole (T+LET R), anastrozole (T+ANA R), and exemestane (T+EXE R), as well as long-term estrogen deprived (LTEDaro) and tamoxifen-resistant (T+TAM R) lines were generated. This is the first complete panel of endocrine therapy-resistant cell lines, which were generated as multiple independent biological replicates for unbiased genome-wide analysis using affymetrix microarrays. Although similarities are apparent, microarray results clearly show gene signatures unique to AI-resistance were inherently different from LTEDaro and T+TAM R gene expression profiles. Based on hierarchical clustering, unique estrogen-responsive gene signatures vary depending on cell line, with some genes up-regulated in all lines versus other genes up-regulated only in the AI-resistant lines. Characterization of these resistant lines showed that LTEDaro, T+LET R, and T+ANA R cells contained a constitutively active estrogen receptor (ER)alpha that does not require estrogen for activation. This ligand-independent activation of ER was not observed in the parental cells, as well as T+EXE R and T+TAM R cells. Further characterization of these resistant lines was performed using cell cycle analysis, immunofluorescence experiments to visualize ER subcellular localization, as well as cross-resistance studies to determine second-line inhibitor response. Using this well-defined model system, our studies provide important information regarding differences in resistance mechanisms to AIs, TAM, and LTEDaro, which are critical in overcoming resistance when treating hormone-responsive breast cancers.
Collapse
Affiliation(s)
- Selma Masri
- Department of Surgical Research, Division of Information Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Characterization of the weak estrogen receptor alpha agonistic activity of exemestane. Breast Cancer Res Treat 2008; 116:461-70. [PMID: 18677558 DOI: 10.1007/s10549-008-0151-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Third generation aromatase inhibitors (AI) have shown good clinical efficacy in comparison to the anti-estrogen tamoxifen. The steroidal AI, exemestane (EXE) has previously been shown to act as an androgen, but this report demonstrates the estrogen-like activity of EXE. Based on genome-wide microarray analysis, high correlation was seen between EXE-Only (EXE O, hormone-free) and hormone-containing AI-resistant lines. In addition, the top regulated genes in the EXE O lines were mostly estrogen-responsive genes. This estrogen-like activity of EXE was further validated using estrogen receptor (ER) activity assays, where in comparison to 17beta-estradiol (E2), EXE was able to induce ER activity, though at a higher concentration. Also, this EXE-mediated ER activity was blocked by the ER antagonist ICI as well as the ERalpha-specific antagonist methyl-piperidino-pyrazole (MPP). Similarly, EXE was able to induce proliferation of breast cancer cell lines, MCF-7 and MCF-7aro, as well as activate transcription of known estrogen-responsive genes, i.e., PGR, pS2 and AREG. These results suggest that EXE does have weak estrogen-like activity.
Collapse
|
48
|
Lui K, Tamura T, Mori T, Zhou D, Chen S. MCF-7aro/ERE, a novel cell line for rapid screening of aromatase inhibitors, ERalpha ligands and ERRalpha ligands. Biochem Pharmacol 2008; 76:208-15. [PMID: 18550029 PMCID: PMC2587126 DOI: 10.1016/j.bcp.2008.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
We have previously generated a breast cancer cell line, MCF-7aro, which over-expresses aromatase and is also ER positive. Recently, this MCF-7aro cell line was stably transfected with a promoter reporter plasmid, pGL3-Luc, containing three repeats of estrogen responsive element (ERE). Experiments using MCF-7aro/ERE have demonstrated that it is a novel, non-radioactive screening system for aromatase inhibitors (AIs), ERalpha ligands and ERRalpha ligands. The screening is carried out in a 96-well plate format. To evaluate this system, the cells were cultured overnight in charcoal-dextran stripped FBS medium supplemented with 0.1 nM testosterone or 17beta-estradiol, and various concentrations of antiestrogens or AIs. We found that the luciferase activity was induced when the cells were cultured either in the presence of testosterone or 17beta-estradiol. Furthermore, a 50% decrease in luciferase activity could be achieved when the cells were cultured in the presence of testosterone together with letrozole, anastrozole, tamoxifen or fulvestrant (concentrations being 75 nM, 290 nM, 100 nM, and 5 nM, respectively), compared to the testosterone-only cultured cells. Using this assay system, we confirmed that 3(2'-chlorophenyl)-7-methoxy-4-phenylcoumarin is an agonist of ER. Furthermore, genestein has been shown to be a ligand of ERRalpha because its binding could be blocked by an ERRalpha inverse agonist, XCT790. These results indicate that MCF-7aro/ERE is a novel cell line for rapid screening of AIs, ERalpha ligands and ERRalpha ligands.
Collapse
Affiliation(s)
- Ki Lui
- Department of Surgical Research, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Takaya Tamura
- Department of Surgical Research, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Taisuke Mori
- Department of Surgical Research, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Dujin Zhou
- Department of Surgical Research, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Shiuan Chen
- Department of Surgical Research, Beckman Research Institute of the City of Hope, Duarte, California 91010
| |
Collapse
|