1
|
Shakori Poshteh S, Alipour S, Varamini P. Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis. DISCOVER NANO 2024; 19:177. [PMID: 39527354 PMCID: PMC11554965 DOI: 10.1186/s11671-024-04126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC) bone metastasis poses a significant clinical challenge due to its impact on patient prognosis and quality of life. Curcumin (CUR), a natural polyphenol compound found in turmeric, has shown potential in cancer therapy due to its anti-inflammatory, antioxidant, and anticancer properties. However, its metabolic instability and hydrophobicity have hindered its clinical applications, leading to a short plasma half-life, poor absorption, and low bioavailability. To enhance the drug-like properties of CUR, nanotechnology-based delivery strategies have been employed, utilizing polymeric, lipidic, and inorganic nanoparticles (NPs). These approaches have effectively overcome CUR's inherent limitations by enhancing its stability and cellular bioavailability both in vitro and in vivo. Moreover, targeting molecules with high selectivity towards bone metastasized breast cancer cells can be used for site specific delivery of curcumin. Alendronate (ALN), a bone-seeking bisphosphonate, is one such moiety with high selectivity towards bone and thus can be effectively used for targeted delivery of curcumin loaded nanocarriers. This review will detail the process of bone metastasis in BC, elucidate the mechanism of action of CUR, and assess the efficacy of nanotechnology-based strategies for CUR delivery. Specifically, it will focus on how these strategies enhance CUR's stability and improve targeted delivery approaches in the treatment of BC bone metastasis.
Collapse
Affiliation(s)
- Shiva Shakori Poshteh
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Shohreh Alipour
- Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Drug and Food Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Khan MI, Bouyahya A, Hachlafi NEL, Menyiy NE, Akram M, Sultana S, Zengin G, Ponomareva L, Shariati MA, Ojo OA, Dall'Acqua S, Elebiyo TC. Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24411-24444. [PMID: 35064485 DOI: 10.1007/s11356-021-17795-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 05/05/2023]
Abstract
Breast cancer (BC) is one of the most common and recurring diseases and the second leading cause of death in women. Despite prevention, diagnostics, and therapeutic options such as radiation therapy and chemotherapy, the number of occurrences increases every year. Therefore, novel therapeutic drugs targeting specifically different checkpoints should be developed against breast cancer. Among drugs that can be developed to treat breast cancer, natural products, such as plant-derived compounds, showed significant anti-breast cancer properties. These substances belong to different chemical classes such as flavonoids, terpenoids, phenolic acids, and alkaloids. They exert their in vitro and in vivo cytotoxic activities against breast cancer cell lines via different mechanisms, including the inhibition of extrinsic and intrinsic apoptotic pathways, the arrest of the cell cycle, and the activation of autophagy. Moreover, they also exhibit anti-angiogenesis and antimetastatic action. Moreover, chemoprevention effects of these bioactive compounds were signaled only for certain drugs. Therefore, the aim of this review is to highlight the pharmacological actions of medicinal plants and their bioactive compounds on breast cancer. Moreover, the role of these substances in breast cancer chemoprevention was also discussed.
Collapse
Affiliation(s)
- Muhammad Idrees Khan
- Department of Eastern Medicine, Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Naoufal E L Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box-2002, Fez, Morocco
| | - Naoual El Menyiy
- Laboratory of Physiology, Faculty of Science, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Pharmacology & Environmental Health, Fez, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sabira Sultana
- Department of Eastern Medicine, Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Gokhan Zengin
- Biochemistry and Physiology Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Lilya Ponomareva
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | | |
Collapse
|
3
|
Liu Y, Huang P, Hou X, Yan F, Jiang Z, Shi J, Xie X, Shen J, Fan Q, Wang Z, Feng N. Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. Int J Nanomedicine 2019; 14:3311-3330. [PMID: 31190795 PMCID: PMC6511632 DOI: 10.2147/ijn.s200847] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Oral route of administration is preferred for treating breast cancer, especially when continued disease management with good tolerability is required; however, orally administered chemotherapeutics combined with near-infrared (NIR) dyes are hindered by the low bioavailability, insufficient for the desired therapeutic efficacy. In this study, we developed a hybrid self-microemulsifying drug delivery system for co-loading curcumin–phospholipid complex and NIR dye IR780 (CUR/IR780@SMEDDS), to achieve combined phototherapeutic and chemotherapeutic effects against lung metastasis of breast cancer. Methods: CUR/IR780@SMEDDS were characterized. The efficacy against breast cancer metastasis was evaluated by photothermal and photodynamic assessment, cytotoxicity, invasion, and migration in metastatic 4T1 breast cancer cells in vitro, and in vivo oral bioavailability study in rats and pharmacodynamics studies in tumor-bearing nude mice. Results: CUR/IR780@SMEDDS improved oral bioavailability of curcumin and IR780 in rats compared with curcumin and IR780 suspensions. CUR/IR780@SMEDDS exhibited remarkable photothermal and photodynamic effects in vitro. In metastatic 4T1 breast cancer cells, CUR/IR780@SMEDDS combined with localized NIR laser irradiation induced significant cytotoxicity and inhibited invasion and migration of 4T1 cells, an outcome attributable to cumulative effects of IR780-induced hyperthermia and pharmacological effects of curcumin. In orthotopic 4T1 tumor-bearing nude mice, combination of oral administration of CUR/IR780@SMEDDS with local NIR laser irradiation inhibited tumor progression and suppressed lung metastasis.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Peiwen Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Fei Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Zifei Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Jiangpei Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xingmei Xie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Junyi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Qiangyuan Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Zhi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| |
Collapse
|
4
|
Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 2018; 17:48. [PMID: 29455673 PMCID: PMC5817855 DOI: 10.1186/s12943-018-0804-2] [Citation(s) in RCA: 773] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Naiara Orrego Lagarón
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Science, University of Technology, New South Wales, Australia
| | - Indu Parmar
- Division of Product Development, Radient Technologies, Edmonton, AB, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Basil P Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Hasanpourghadi M, Pandurangan AK, Mustafa MR. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol Res 2017; 128:376-388. [PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
Abstract
Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
Collapse
Affiliation(s)
- Mohadeseh Hasanpourghadi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Pires BRB, Mencalha AL, Ferreira GM, de Souza WF, Morgado-Díaz JA, Maia AM, Corrêa S, Abdelhay ESFW. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells. PLoS One 2017; 12:e0169622. [PMID: 28107418 PMCID: PMC5249109 DOI: 10.1371/journal.pone.0169622] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Bruno R. B. Pires
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
- * E-mail:
| | - Andre L. Mencalha
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gerson M. Ferreira
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| | - Waldemir F. de Souza
- Grupo de Biologia Estrutural, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
| | - José A. Morgado-Díaz
- Grupo de Biologia Estrutural, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
| | - Amanda M. Maia
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| | - Stephany Corrêa
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| | - Eliana S. F. W. Abdelhay
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Kang Y, Hu W, Bai E, Zheng H, Liu Z, Wu J, Jin R, Zhao C, Liang G. Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFκB survival-signaling pathway. Onco Targets Ther 2016; 9:7373-7384. [PMID: 27980427 PMCID: PMC5147405 DOI: 10.2147/ott.s118272] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorouracil (5-FU) is the most commonly used chemotherapeutic agent for gastric cancer (GC). However, the occurrence of resistance to 5-FU treatment poses a major problem for its clinical efficacy. In this study, we found that the NFκB-signaling pathway can mediate 5-FU resistance in GC cells. We developed a 5-FU-resistant GC cell line named SGCR/5-FU and found that the 5-FU-induced resistance increased cytosolic IκBα degradation and promoted NFκB nuclear translocation in GC cells. These findings were further confirmed by the activation of the NFκB survival-signaling pathway in clinical specimens. Curcumin, a natural compound, can reverse 5-FU resistance and inhibits proliferation in GC cells by downregulating the NFκB-signaling pathway. Moreover, it can also decrease the expression level of TNFα messenger RNA. Flow cytometry and Western blot analysis results showed that the combination of curcumin and 5-FU caused synergistic inhibition of growth and induction of potent apoptosis in the resistant cancer cell lines in vitro. In conclusion, our results demonstrate that the combination of 5-FU and curcumin could be further developed as a potential therapy for human GC.
Collapse
Affiliation(s)
- Yanting Kang
- Chemical Biology Research Center, School of Pharmaceutical Sciences
- Department of Epidemiology, First Affiliated Hospital
| | - Wanle Hu
- Department of Coloproctology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Encheng Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences
- Department of Epidemiology, First Affiliated Hospital
| | - Hailun Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Rong Jin
- Department of Epidemiology, First Affiliated Hospital
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| |
Collapse
|
8
|
Pavan AR, Silva GDBD, Jornada DH, Chiba DE, Fernandes GFDS, Man Chin C, Dos Santos JL. Unraveling the Anticancer Effect of Curcumin and Resveratrol. Nutrients 2016; 8:nu8110628. [PMID: 27834913 PMCID: PMC5133053 DOI: 10.3390/nu8110628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | | | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| |
Collapse
|
9
|
Wang Y, Yu J, Cui R, Lin J, Ding X. Curcumin in Treating Breast Cancer: A Review. ACTA ACUST UNITED AC 2016; 21:723-731. [PMID: 27325106 DOI: 10.1177/2211068216655524] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 11/16/2022]
Abstract
Breast cancer is among the most common malignant tumors. It is the second leading cause of cancer mortality among women in the United States. Curcumin, an active derivative from turmeric, has been reported to have anticancer and chemoprevention effects on breast cancer. Curcumin exerts its anticancer effect through a complicated molecular signaling network, involving proliferation, estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2) pathways. Experimental evidence has shown that curcumin also regulates apoptosis and cell phase-related genes and microRNA in breast cancer cells. Herein, we review the recent research efforts in understanding the molecular targets and anticancer mechanisms of curcumin in breast cancer.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Yu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Cui
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Lin
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:878134. [PMID: 25879038 PMCID: PMC4386568 DOI: 10.1155/2015/878134] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
Breast cancer is considered the most common cancer for women worldwide and it is now the second leading cause of cancer-related deaths among females in the world. Since breast cancer is highly resistant to chemotherapy, alternative anticancer strategies have been developed. In particular, many studies have demonstrated that curcumin, a derivative of turmeric, can be used as natural agent in treatment of some types of cancer by playing antiproliferative and antioxidant effects. In our study, we assessed the antitumor activities of curcumin in ER-negative human breast cancer cell line resistant to chemotherapy, MDA.MB231 by in vitro and in vivo experiments. In vitro data allowed us to demonstrate that curcumin played a role in regulation of proliferation and apoptosis in MDA.MB231 cells. In vivo, by generation of mouse model of breast cancer, we showed that treatment of curcumin inhibited tumor growth and angiogenesis. Specifically, we showed that curcumin is able to deregulate the expression of cyclin D1, PECAM-1, and p65, which are regulated by NF-κB. Our data demonstrated that curcumin could be used as an adjuvant agent to chemotherapy in treatment of triple negative breast cancer.
Collapse
|
11
|
Xia Y, Lian S, Khoi PN, Yoon HJ, Han JY, Chay KO, Kim KK, Jung YD. Chrysin inhibits cell invasion by inhibition of Recepteur d'origine Nantais via suppressing early growth response-1 and NF-κB transcription factor activities in gastric cancer cells. Int J Oncol 2015; 46:1835-43. [PMID: 25625479 DOI: 10.3892/ijo.2015.2847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/23/2014] [Indexed: 11/05/2022] Open
Abstract
Cell invasion is one of crucial reasons for cancer metastasis and malignancy. Recepteur d'origine Nantais (RON) has been reported to play an important role in the cancer cell invasion process. High accumulation and activation of RON has been implicated in gastric adenocarcinoma AGS cells. Chrysin is a naturally occurring phytochemical, a type of flavonoid, which has been reported to suppress tumor metastasis. However, the effects of chrysin on RON expression in gastric cancer are not well studied. In the present study, we examined whether chrysin affects RON expression in gastric cancer, and if so, its underlying mechanism. We examined the effect of chrysin on RON expression and activity, via RT-PCR, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin significantly inhibited endogenous and inducible RON expression in a dose-dependent manner. After demonstrating that Egr-1 and NF-κB are the critically required transcription factors for RON expression, we discovered that chrysin suppressed Egr-1 and NF-κB transcription factor activities. Additionally, the phorbol-12-myristate-13-acetate- (PMA) induced cell invasion was partially abrogated by chrysin and an RON antibody. Our results suggest that chrysin has anticancer effects at least by suppressing RON expression through blocking Egr-1 and NF-κB in gastric cancer AGS cells.
Collapse
Affiliation(s)
- Yong Xia
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Sen Lian
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyun Joong Yoon
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Jae Young Han
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kee Oh Chay
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kyung Keun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| |
Collapse
|
12
|
Thulasiraman P, McAndrews DJ, Mohiudddin IQ. Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells. BMC Cancer 2014; 14:724. [PMID: 25260874 PMCID: PMC4192446 DOI: 10.1186/1471-2407-14-724] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022] Open
Abstract
Background A major obstacle in the use of retinoid therapy in cancer is the resistance to this agent in tumors. Retinoic acid facilitates the growth of mammary carcinoma cells which express high levels of fatty acid-binding protein 5 (FABP5). This protein delivers retinoic acid to peroxisome proliferator-activated receptor β/δ (PPARβ/δ) that targets genes involved in cell proliferation and survival. One approach to overcome resistance of mammary carcinoma cells to retinoic acid is to target and suppress the FABP5/ PPARβ/δ pathway. The objective of this research was to investigate the effect of curcumin, a polyphenol extract from the plant Curcuma longa, on the FABP5/ PPARβ/δ pathway in retinoic acid resistant triple negative breast cancer cells. Methods Cell viability and proliferation of triple negative breast cancer cell lines (MDA-MB-231 and MD-MB-468) treated with curcumin and/or retinoic was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2’-deoxyuridine (BrdU). Expression level of FABP5 and PPARβ/δ in these cells treated with curcumin was examined by Western Blotting analysis and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Effect of curcumin and retinoic acid on PPARβ/δ target genes, PDK1and VEGF-A were also examined using qRT-PCR. Western Blotting was utilized to examine the protein expression level of the p65 subunit of NF-κB. Results Treatment of retinoic acid resistant triple negative breast cancer cells with curcumin sensitized these cells to retinoic acid mediated growth suppression, as well as suppressed incorporation of BrdU. Further studies demonstrated that curcumin showed a marked reduction in the expression level of FABP5 and PPARβ/δ. We provide evidence that curcumin suppresses p65, a transcription factor known to regulate FABP5. The combination of curcumin with retinoic acid suppressed PPARβ/δ target genes, VEGF-A and PDK1. Conclusions Curcumin suppresses the expression level of FABP5 and PPARβ/δ in triple negative mammary carcinoma cells. By targeting the FABP5/PPARβ/δ pathway, curcumin prevents the delivery of retinoic acid to PPARβ/δ and suppresses retinoic acid-induced PPARβ/δ target gene, VEGF-A. Our data demonstrates that suppression of the FABP5/ PPARβ/δ pathway by curcumin sensitizes retinoic acid resistant triple negative breast cancer cells to retinoic acid mediated growth suppression.
Collapse
Affiliation(s)
- Padmamalini Thulasiraman
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, Mobile, Al, USA.
| | | | | |
Collapse
|
13
|
Abstract
Since the discovery of MSP (macrophage-stimulating protein; also known as MST1 and hepatocyte growth factor-like (HGFL)) as the ligand for the receptor tyrosine kinase RON (also known as MST1R) in the early 1990s, the roles of this signalling axis in cancer pathogenesis has been extensively studied in various model systems. Both in vitro and in vivo evidence has revealed that MSP-RON signalling is important for the invasive growth of different types of cancers. Currently, small-molecule inhibitors and antibodies blocking RON signalling are under investigation. Substantial responses have been achieved in human tumour xenograft models, laying the foundation for clinical validation. In this Review, we discuss recent advances that demonstrate the importance of MSP-RON signalling in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hang-Ping Yao
- Viral Oncogenesis Section in State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | | | | | | |
Collapse
|
14
|
Liu D, Chen Z. The effect of curcumin on breast cancer cells. J Breast Cancer 2013; 16:133-7. [PMID: 23843843 PMCID: PMC3706856 DOI: 10.4048/jbc.2013.16.2.133] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/30/2013] [Indexed: 01/11/2023] Open
Abstract
Curcumin, which is extracted from the plant Curcuma longa, has been used in the therapeutic arsenal for clinical oncology. Curcumin has chemopreventive and antitumoral activities against some aggressive and recurrent cancers. The expressions and activities of various proteins, such as inflammatory cytokines and enzymes, transcription factors, and gene-products linked with cell survivals and proliferation, can be modified by curcumin. Moreover, curcumin decreases the toxic effect of mitomycin C. Though curcumin has shown highly cytotoxic to some cancer cell lines, curcumin is insoluble and instable in water. The solubility of curcumin could be enhanced by utilizing the solubilizing properties of rubusoside. In addition, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors may improve the chemopreventive and chemotherapeutic effects. The focus of this short review is to describe how curcumin participates in antitumor processes in breast cancer cells.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Life Sciences and Analysis and Testing Center, Shandong University of Technology, Zibo, China
| | | |
Collapse
|
15
|
Evani SJ, Prabhu RG, Gnanaruban V, Finol EA, Ramasubramanian AK. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J 2013; 27:3017-29. [PMID: 23616566 DOI: 10.1096/fj.12-224824] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA-MB-231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA-MB-231 on the endothelium. Using in vitro models of the dynamic shear environment of the vasculature, we show that TNF-α-activated THP1/primary human monocytes and MDA-MB-231 cells form stable aggregates, and that the monocytes in these aggregates mediate the adhesion of otherwise nonadherent MDA-MB-231 cells to inflamed endothelium under flow (55±2.4 vs. 1.7±0.82 at a shear stress of 0.5 dyn/cm(2), P<0.01). We also show that the hydrodynamic forces determine the size and orientation of aggregates adhered to the endothelium, and strongly favor the attachment of small aggregates with tumor cells downstream of flow (74-86% doublets at 0.5-2 dyn/cm(2), P<0.01). The 5-fold up-regulation of ICAM-1 on TNF-α-activated MDA-MB-231 cells through the Nf-κB pathway was found to be critical in MDA-MB-231-monocyte aggregation and endothelial adhesion. Our results demonstrate that, under inflammatory conditions, monocytes may serve to disseminate tumor cells through circulation, and the tumor-monocyte-endothelial axis may represent a new therapeutic target to reduce cancer metastasis.
Collapse
Affiliation(s)
- Shankar J Evani
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
16
|
Chou YC, Chen CL, Yeh TH, Lin SJ, Chen MR, Doong SL, Lu J, Tsai CH. Involvement of recepteur d'origine nantais receptor tyrosine kinase in Epstein-Barr virus-associated nasopharyngeal carcinoma and its metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1773-81. [PMID: 22974584 DOI: 10.1016/j.ajpath.2012.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/05/2012] [Accepted: 07/18/2012] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is characteristic for its strong association with Epstein-Barr virus (EBV) and high metastatic rate. Recently, overexpressed recepteur d'origine nantais (RON) (MST1R), receptor tyrosine kinase has been reported in human cancers and tumor metastasis. Therefore, the role of RON in EBV-associated NPC and its metastasis was investigated. Here we show that RON was found in NPC but not in control tissues. A significant correlation of latent membrane protein 1 (LMP1) and RON expression was found in NPC (Pearson's χ(2) test; P = 0.0023). At the molecular level, LMP1 stimulates nuclear factor-κB binding to the RON promoter through its carboxyl-terminal activation region 1 to induce expression of RON. Knockdown of RON in cells expressing LMP1 significantly reverses LMP1-induced epithelial-mesenchymal transition and suppresses LMP1-induced cell migration and invasion. These results suggest an important role of RON in the tumorigenesis and metastasis of NPC and RON may be a novel therapeutic target for EBV-associated NPC.
Collapse
Affiliation(s)
- Ya-Ching Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim SR, Park HJ, Bae YH, Ahn SC, Wee HJ, Yun I, Jang HO, Bae MK, Bae SK. Curcumin down-regulates visfatin expression and inhibits breast cancer cell invasion. Endocrinology 2012; 153:554-63. [PMID: 22186408 DOI: 10.1210/en.2011-1413] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity is frequently associated with breast cancer. Such associations are possibly mediated by adipokines. Visfatin, an adipokine, has recently been shown to be related to the development and progression of breast cancer. Therefore, the down-regulation of visfatin may be a novel strategy for breast cancer therapy. Curcumin has anticancer activities by modulating multiple signaling pathways and genes. The purpose of this study was to investigate whether visfatin gene expression is affected by curcumin in human breast cancer cells and to characterize the functional role of visfatin in breast cancer. We found that the mRNA and protein levels of visfatin were down-regulated by curcumin in MDA-MB-231, MDA-MB-468, and MCF-7 breast cancer cells, along with decreased activity of constitutive nuclear factor (NF)-κB. We confirmed the repressive effect of curcumin on visfatin transcription by performing a visfatin promoter-driven reporter assay and identified two putative NF-κB-binding sites on visfatin promoter that are important for this effect. EMSA and chromatin immunoprecipitation analysis indicated the binding of p65 to the visfatin promoter, which was effectively blocked by curcumin. Enforced expression of p65 protein increased visfatin promoter activity, whereas blocking NF-κB signaling suppressed visfatin gene expression. Visfatin could enhance the invasion of MDA-MB-231 cells and also attenuate curcumin-induced inhibition of cell invasion; on the other hand, visfatin knockdown by small interfering RNA led to the reduction of cell invasion. Our data demonstrate, for the first time, that curcumin down-regulates visfatin gene expression in human breast cancer cells by a mechanism that is, at least in part, NF-κB dependent and suggest that visfatin may contribute to breast cancer cell invasion and link obesity to breast cancer development and progression.
Collapse
Affiliation(s)
- Su-Ryun Kim
- School of Dentistry, Yangsan Campus of Pusan National University, Yangsan, 626-870, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 2012; 38:76-87. [DOI: 10.1016/j.ctrv.2011.03.001] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 03/03/2011] [Accepted: 03/13/2011] [Indexed: 02/07/2023]
|
19
|
Requirement for LMP1-induced RON receptor tyrosine kinase in Epstein-Barr virus-mediated B-cell proliferation. Blood 2011; 118:1340-9. [PMID: 21659546 DOI: 10.1182/blood-2011-02-335448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EBV, an oncogenic human herpesvirus, can transform primary B lymphocytes into immortalized lymphoblastoid cell lines (LCLs) through multiple regulatory mechanisms. However, the involvement of protein tyrosine kinases in the infinite proliferation of B cells is not clear. In this study, we performed kinase display assays to investigate this subject and identified a specific cellular target, Recepteur d'Origine Nantais (RON) tyrosine kinase, expressed in LCLs but not in primary B cells. Furthermore, we found that latent membrane protein 1 (LMP1), an important EBV oncogenic protein, enhanced RON expression through its C-terminal activation region-1 (CTAR1) by promoting NF-κB binding to the RON promoter. RON knockdown decreased the proliferation of LCLs, and transfection with RON compensated for the growth inhibition caused by knockdown of LMP1. Immunohistochemical analysis revealed a correlation between LMP1 and RON expression in biopsies from posttransplantation lymphoproliferative disorder (PTLD), suggesting that LMP1-induced RON expression not only is essential for the growth of LCLs but also may contribute to the pathogenesis of EBV-associated PTLD. Our study is the first to reveal the impact of RON on the proliferation of transformed B cells and to suggest that RON may be a novel therapeutic target for EBV-associated lymphoproliferative diseases.
Collapse
|
20
|
Ma Q, Guin S, Padhye SS, Zhou YQ, Zhang RW, Wang MH. Ribosomal protein S6 kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein. Mol Cancer 2011; 10:66. [PMID: 21619683 PMCID: PMC3117816 DOI: 10.1186/1476-4598-10-66] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/28/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial to mesenchymal transition (EMT) occurs during cancer cell invasion and malignant metastasis. Features of EMT include spindle-like cell morphology, loss of epithelial cellular markers and gain of mesenchymal phenotype. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein (MSP) has been implicated in cellular EMT program; however, the major signaling determinant(s) responsible for MSP-induced EMT is unknown. RESULTS The study presented here demonstrates that RSK2, a downstream signaling protein of the Ras-Erk1/2 pathway, is the principal molecule that links MSP-activated RON signaling to complete EMT. Using MDCK cells expressing RON as a model, a spindle-shape based screen was conducted, which identifies RSK2 among various intracellular proteins as a potential signaling molecule responsible for MSP-induced EMT. MSP stimulation dissociated RSK2 with Erk1/2 and promoted RSK2 nuclear translocation. MSP strongly induced RSK2 phosphorylation in a dose-dependent manner. These effects relied on RON and Erk1/2 phosphorylation, which is significantly potentiated by transforming growth factor (TGF)-β1, an EMT-inducing cytokine. Specific RSK inhibitor SL0101 completely prevented MSP-induced RSK phosphorylation, which results in inhibition of MSP-induced spindle-like morphology and suppression of cell migration associated with EMT. In HT-29 cancer cells that barely express RSK2, forced RSK2 expression results in EMT-like phenotype upon MSP stimulation. Moreover, specific siRNA-mediated silencing of RSK2 but not RSK1 in L3.6pl pancreatic cancer cells significantly inhibited MSP-induced EMT-like phenotype and cell migration. CONCLUSIONS MSP-induced RSK2 activation is a critical determinant linking RON signaling to cellular EMT program. Inhibition of RSK2 activity may provide a therapeutic opportunity for blocking RON-mediated cancer cell migration and subsequent invasion.
Collapse
Affiliation(s)
- Qi Ma
- Division of Cancer Biology at State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
21
|
Ray M, Yu S, Sharda DR, Wilson CB, Liu Q, Kaushal N, Prabhu KS, Hankey PA. Inhibition of TLR4-induced IκB kinase activity by the RON receptor tyrosine kinase and its ligand, macrophage-stimulating protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7309-16. [PMID: 21078906 PMCID: PMC4815273 DOI: 10.4049/jimmunol.1000095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The RON receptor tyrosine kinase regulates the balance between classical (M1) and alternative (M2) macrophage activation. In primary macrophages, the ligand for Ron, macrophage-stimulating protein (MSP), inhibits the expression of inducible NO synthase, a marker of classically activated macrophages, whereas promoting the expression of arginase I, a marker of alternative activation. Ron(-/-) mice express increased levels of IL-12, a product of classically activated macrophages, after endotoxin administration, resulting in increased serum IFN-γ levels and enhanced susceptibility to septic shock. In this study, we demonstrate that MSP inhibits LPS-induced IL-12p40 expression, and this inhibition is dependent on the docking site tyrosines in Ron. To further define this inhibition, we examined the effect of Ron on signaling pathways downstream of Ron. We found that MSP does not inhibit the MyD88-independent activation of IFN regulatory factor 3 and production of IFN-β in response to LPS, nor does it inhibit MyD88-dependent TGF-β-activated kinase phosphorylation or MAPK activation in primary macrophages. However, the induction of IκB kinase activity, IκB degradation, and DNA binding of NF-κB after LPS stimulation is delayed in the presence of MSP. In addition, Ron inhibits serine phosphorylation of p65 and NF-κB transcriptional activity induced by LPS stimulation of TLR4. Finally, MSP inhibits the NF-κB-dependent upregulation of the nuclear IκB family member, IκBζ, a positive regulator of secondary response genes including IL-12p40. LPS also induces expression of Ron and an N-terminally truncated form of Ron, Sf-Ron, in primary macrophages, suggesting that the upregulation of Ron by LPS could provide classical feedback regulation of TLR signaling.
Collapse
Affiliation(s)
- Manujendra Ray
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802
| | - Shan Yu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Physiology, The Pennsylvania State University, University Park, PA 16802
| | - Daniel R. Sharda
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| | - Caleph B. Wilson
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| | - QingPing Liu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
| | - Naveen Kaushal
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| | - Pamela A. Hankey
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Physiology, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
22
|
Park JS, Park JH, Khoi PN, Joo YE, Jung YD. MSP-induced RON activation upregulates uPAR expression and cell invasiveness via MAPK, AP-1 and NF-κB signals in gastric cancer cells. Carcinogenesis 2010; 32:175-81. [PMID: 21081472 DOI: 10.1093/carcin/bgq241] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overexpression of recepteur d'Origine nantais (RON) and urokinase plasminogen activator receptor (uPAR) have been observed in human gastric cancers. However, the interaction between RON and uPAR in gastric cancer is unclear. The present study investigated the effect of macrophage-stimulating protein (MSP, the RON ligand) on uPAR expression and the underlying signal pathways in human gastric cancer AGS cells. uPAR messenger RNA expression was induced by MSP in a time- and concentration-dependent manner. MSP also induced uPAR promoter activity. The introduction of RON-specific small interfering RNA (siRNA) significantly affected the MSP-induced uPAR transcription. Deleted and site-directed mutagenesis studies demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the MSP-induced uPAR expression. Studies with expression vectors encoding mutated-type NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the MSP-induced uPAR expression. In addition, MSP induced the activation of extracellular signal-regulated kinase-1/2 (Erk-1/2), c-Jun amino terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Dominant-negative mutants (K97M and TAM67) and specific inhibitors of Erk-1/2 and JNK were able to suppress the MSP-induced uPAR expression. AGS cells pretreated with MSP showed a remarkably enhanced invasiveness, which was partially abrogated by siRNA-targeted RON and uPAR-neutralizing antibodies. The above results suggest that MSP induces uPAR expression via MAPK, AP-1 and NF-κB signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Research Institute of Medical Sciences, Chonnam National University Medical School, Kwangju 501-190, Korea
| | | | | | | | | |
Collapse
|
23
|
Correction: Curcumin Blocks RON Tyrosine Kinase–Mediated Invasion of Breast Carcinoma Cells. Cancer Res 2010. [DOI: 10.1158/0008-5472.can-10-3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Tang H, Murphy CJ, Zhang B, Shen Y, Sui M, Van Kirk EA, Feng X, Murdoch WJ. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. Nanomedicine (Lond) 2010; 5:855-65. [DOI: 10.2217/nnm.10.67] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Curcumin has been shown to have high cytotoxicity towards various cancer cell lines, but its water insolubility and instability make its bioavailability exceedingly low and, thus, it is generally inactive in in vivo anticancer tests. Here, we report an intracellular-labile amphiphilic surfactant-like curcumin prodrug – curcumin conjugated with two short oligo(ethylene glycol) (Curc-OEG) chains via β-thioester bonds that are labile in the presence of intracellular glutathione and esterase. Curc-OEG formed stable nanoparticles in aqueous conditions and served two roles – as an anticancer prodrug and a drug carrier. As an anticancer prodrug, the formed nanoparticles had a high and fixed curcumin-loading content of 25.3 wt%, and released active curcumin in the intracellular environment. Curc-OEG had high inhibition ability to several cancer cell lines due to apoptosis. Intravenously injected Curc-OEG significantly reduced the tumor weights and tumor numbers in the athymic mice xenografted with intraperitoneal SKOV-3 tumors and subcutaneous (mammary fat pad) MDA-MB-468 tumors. Preliminary systemic toxicity studies found that Curc-OEG did not cause acute and subchronic toxicities to mouse visceral organs at high doses. As drug carriers, Curc-OEG nanoparticles could carry other anticancer drugs, such as doxorubicin and camptothecin, and ship them into drug-resistant cells, greatly enhancing the cytotoxicity of the loaded drug. Thus, Curc-OEG is a promising prototype that merits further study for cancer therapy.
Collapse
Affiliation(s)
- Huadong Tang
- Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Caitlin J Murphy
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Bo Zhang
- Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | | | - Meihua Sui
- Center for Bionanoengineering & the State Key Laboratory for Chemical Engineering, Department of Chemical & Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Xiaowen Feng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - William J Murdoch
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
25
|
Hsin IL, Sheu GT, Chen HH, Chiu LY, Wang HD, Chan HW, Hsu CP, Ko JL. N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells. Mutat Res 2010; 688:72-77. [PMID: 20363232 DOI: 10.1016/j.mrfmmm.2010.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
Curcumin is a natural compound that has been extensively observed due to its potential as an anticancer drug. Curcumin restrains cancer cell progression via telomerase activity suppression. However, the exact mechanism is still unknown. In this study, we demonstrate that the effects of curcumin on cell viability and telomerase activity can be blunted by reactive oxygen species (ROS) inhibitor N-acetyl cysteine (NAC). The ROS induced by curcumin in A549 cells was detected by flow cytometry. Using Western blot and RT-PCR, human telomerase reverse transcriptase (hTERT) decreased in the presence of curcumin. Sp1 is one of the important transcription factors in hTERT expression. Our data showed that curcumin decreases the expression of Sp1 through proteasome pathway. In addition, NAC blunted the Sp1 reduction and hTERT downregulation by curcumin. Further, reporter assay and DNA affinity precipitation assay confirmed the influence of curcumin on Sp1 in hTERT regulation. This is the first study to demonstrate that curcumin induces ROS production resulting in Sp1 binding activity inhibition and hTERT downregulation.
Collapse
Affiliation(s)
- I-Lun Hsin
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim DK, Kim SJ, Kang SS, Jin EJ. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells. Exp Mol Med 2010; 41:656-64. [PMID: 19478554 DOI: 10.3858/emm.2009.41.9.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.
Collapse
Affiliation(s)
- Dong Kyun Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea
| | | | | | | |
Collapse
|
27
|
Rowe DL, Ozbay T, O'Regan RM, Nahta R. Modulation of the BRCA1 Protein and Induction of Apoptosis in Triple Negative Breast Cancer Cell Lines by the Polyphenolic Compound Curcumin. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2009; 3:61-75. [PMID: 19809577 PMCID: PMC2756684 DOI: 10.4137/bcbcr.s3067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the current study, we sought to examine the effects of curcumin in a specific type of breast cancer called triple negative breast cancer. These cancers lack expression of the estrogen and progesterone receptors and do not over-express HER2. Current treatment for triple negative breast cancers is limited to cytotoxic chemotherapy, and upon relapse, there are not any therapies currently available. We demonstrate here that the bioactive food compound curcumin induces DNA damage in triple negative breast cancer cells in association with phosphorylation, increased expression, and cytoplasmic retention of the BRCA1 protein. In addition, curcumin promotes apoptosis and prevents anchorage-independent growth and migration of triple negative breast cancer cells. Apoptosis and BRCA1 modulation were not observed in non-transformed mammary epithelial cells, suggesting curcumin may have limited non-specific toxicity. This study suggests that curcumin and potentially curcumin analogues should be tested further in the context of triple negative breast cancer. These results are novel, having never been previously reported, and suggest that curcumin could provide a novel, non-toxic therapy, which could lead to improved survival for patients with triple negative breast cancer. Curcumin should be studied further in this subset of breast cancer patients, for whom treatment options are severely limited.
Collapse
|
28
|
Thangasamy A, Rogge J, Ammanamanchi S. Recepteur d'origine nantais tyrosine kinase is a direct target of hypoxia-inducible factor-1alpha-mediated invasion of breast carcinoma cells. J Biol Chem 2009; 284:14001-10. [PMID: 19307182 DOI: 10.1074/jbc.m809320200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) overexpression was shown to be associated with invasion and metastasis of tumors and tumor cell lines. The identification of molecular targets that contribute to HIF-1alpha-mediated invasion is under intensive investigation. We have analyzed the role of recepteur d'origine nantais (RON), a tyrosine kinase receptor for macrophage-stimulating protein (MSP) that plays a role in breast cancer cell invasion as one of the molecular targets of HIF-1alpha. Analysis of a panel of breast cancer cell lines indicated a correlation between HIF-1alpha and RON expression. Treatment of HIF-1alpha- and RON-positive breast cancer cells with HIF-1alpha inhibitor, echinomycin, led to the inhibition of HIF-1alpha activity and RON expression. We have identified HIF-1alpha binding site on the RON promoter. Chromatin immunoprecipitation analysis and site-directed mutagenesis of the RON promoter confirmed the binding of HIF-1alpha to RON promoter. HIF-1alpha inhibitor-, echinomycin-, or short hairpin RNA-mediated selective knockdown of HIF-1alpha or HIF-1alpha target RON tyrosine kinase abrogated RON gene expression, and the RON ligand macrophage-stimulating protein mediated invasion of breast cancer cells. Consequently, the data presented herein demonstrated RON as a novel molecular target of HIF-1alpha and suggest a potential therapeutic role for HIF-1alpha or RON tyrosine kinase inhibitors in the blockade of RON tyrosine kinase-mediated invasion of carcinoma cells.
Collapse
Affiliation(s)
- Amalraj Thangasamy
- Department of Medicine, Division of Hematology and Medical Oncology, and Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, Texas 78229
| | | | | |
Collapse
|
29
|
Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2008; 30:85-94. [PMID: 19110321 DOI: 10.1016/j.tips.2008.11.002] [Citation(s) in RCA: 735] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/01/2008] [Accepted: 11/05/2008] [Indexed: 12/14/2022]
Abstract
Curcumin (diferuloylmethane), a yellow pigment in the spice turmeric (also called curry powder), has been used for centuries as a treatment for inflammatory diseases. Extensive research within the past two decades has shown that curcumin mediates its anti-inflammatory effects through the downregulation of inflammatory transcription factors (such as nuclear factor kappaB), enzymes (such as cyclooxygenase 2 and 5 lipoxygenase) and cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6). Because of the crucial role of inflammation in most chronic diseases, the potential of curcumin has been examined in neoplastic, neurological, cardiovascular, pulmonary and metabolic diseases. The pharmacodynamics and pharmacokinetics of curcumin have been examined in animals and in humans. Various pharmacological aspects of curcumin in vitro and in vivo are discussed in detail here.
Collapse
|