1
|
Li J, Han Y, Zhao N, Lv L, Ma P, Zhang Y, Li M, Sun H, Deng J, Zhang Y. Identification of immune- and oxidative stress-related signature genes as potential targets for mRNA vaccines for pancreatic cancer patients. Medicine (Baltimore) 2024; 103:e38666. [PMID: 38968513 PMCID: PMC11224846 DOI: 10.1097/md.0000000000038666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Adenocarcinoma of the pancreas (PAAD) is one of the deadliest malignant tumors, and messenger ribonucleic acid vaccines, which constitute the latest generation of vaccine technology, are expected to lead to new ideas for the treatment of pancreatic cancer. The Cancer Genome Atlas-PAAD and Genotype-Tissue Expression data were merged and analyzed. Weighted gene coexpression network analysis was used to identify gene modules associated with tumor mutational burden among the genes related to both immunity and oxidative stress. Differentially expressed immune-related oxidative stress genes were screened via univariate Cox regression analysis, and these genes were analyzed via nonnegative matrix factorization. After immune infiltration analysis, least absolute shrinkage and selection operator regression combined with Cox regression was used to construct the model, and the usefulness of the model was predicted based on the receiver operating characteristic curve and decision curve analysis curves after model construction. Finally, metabolic pathway enrichment was analyzed using gene set enrichment analysis combined with Kyoto Encyclopedia of Genes and Genomes and gene ontology biological process analyses. This model consisting of the ERAP2, mesenchymal-epithelial transition factor (MET), CXCL9, and angiotensinogen (AGT) genes can be used to help predict the prognosis of pancreatic cancer patients more accurately than existing models. ERAP2 is involved in immune activation and is important in cancer immune evasion. MET binds to hepatocyte growth factor, leading to the dimerization and phosphorylation of c-MET. This activates various signaling pathways, including MAPK and PI3K, to regulate the proliferation, invasion, and migration of cancer cells. CXCL9 overexpression is associated with a poor patient prognosis and reduces the number of CD8 + cytotoxic T lymphocytes in the PAAD tumor microenvironment. AGT is cleaved by the renin enzyme to produce angiotensin 1, and AGT-converting enzyme cleaves angiotensin 1 to produce angiotensin 2. Exposure to AGT-converting enzyme inhibitors after pancreatic cancer diagnosis is associated with improved survival. The 4 genes identified in the present study - ERAP2, MET, CXCL9, and AGT - are expected to serve as targets for messenger ribonucleic acid vaccine development and need to be further investigated in depth.
Collapse
Affiliation(s)
- Jiaxu Li
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Yongjiao Han
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Ning Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Mingyuan Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Hua Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| |
Collapse
|
2
|
Wezynfeld NE, Sudzik D, Tobolska A, Makarova K, Stefaniak E, Frączyk T, Wawrzyniak UE, Bal W. The Angiotensin Metabolite His-Leu Is a Strong Copper Chelator Forming Highly Redox Active Species. Inorg Chem 2024; 63:12268-12280. [PMID: 38877980 PMCID: PMC11220758 DOI: 10.1021/acs.inorgchem.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
His-Leu is a hydrolytic byproduct of angiotensin metabolism, whose concentration in the bloodstream could be at least micromolar. This encouraged us to investigate its Cu(II) binding properties and the concomitant redox reactivity. The Cu(II) binding constants were derived from isothermal titration calorimetry and potentiometry, while identities and structures of complexes were obtained from ultraviolet-visible, circular dichroism, and room-temperature electronic paramagnetic resonance spectroscopies. Four types of Cu(II)/His-Leu complexes were detected. The histamine-like complexes prevail at low pH. At neutral and mildly alkaline pH and low Cu(II):His-Leu ratios, they are superseded by diglycine-like complexes involving the deprotonated peptide nitrogen. At His-Leu:Cu(II) ratios of ≥2, bis-complexes are formed instead. Above pH 10.5, a diglycine-like complex containing the equatorially coordinated hydroxyl group predominates at all ratios tested. Cu(II)/His-Leu complexes are also strongly redox active, as demonstrated by voltammetric studies and the ascorbate oxidation assay. Finally, numeric competition simulations with human serum albumin, glycyl-histydyl-lysine, and histidine revealed that His-Leu might be a part of the low-molecular weight Cu(II) pool in blood if its abundance is >10 μM. These results yield further questions, such as the biological relevance of ternary complexes containing His-Leu.
Collapse
Affiliation(s)
- Nina E. Wezynfeld
- Chair of
Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dobromiła Sudzik
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Aleksandra Tobolska
- Chair of
Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katerina Makarova
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Department
of Organic and Physical Chemistry, Faculty
of Pharmacy, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Ewelina Stefaniak
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences
Research Hub, London W12
0BZ, United Kingdom
| | - Tomasz Frączyk
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Urszula E. Wawrzyniak
- Chair of
Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Wojciech Bal
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Yang M, Wu X, He Y, Li X, Yang L, Song T, Wang F, Yang CS, Zhang J. EGCG oxidation-derived polymers induce apoptosis in digestive tract cancer cells via regulating the renin-angiotensin system. Food Funct 2024; 15:2052-2063. [PMID: 38293823 DOI: 10.1039/d3fo03795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) has been well studied for its biological activities in the prevention of chronic diseases. However, the biological activities of EGCG oxidation-derived polymers remain unclear. Previously, we found that these polymers accumulated in intraperitoneal tissues after intraperitoneal injection and gained an advantage over native EGCG in increasing insulin sensitivity via regulating the renin-angiotensin system (RAS) in type 2 diabetic mice. The present study determined the pro-apoptosis activities and anticancer mechanisms of the EGCG oxidation-derived polymer preparation (the >10 kDa EGCG polymers) in digestive tract cancer cells. Upon incubation of the >10 kDa EGCG polymers with CaCo2 colon cancer cells, these polymers coated the cell surface and regulated multiple components of the RAS in favor of cancer inhibition, including the downregulation of angiotensin-converting enzyme (ACE), angiotensin-II (AngII) and AngII receptor type 1 (AT1R) in the pro-tumor axis, as well as the upregulation of angiotensin-converting enzyme 2 (ACE2) and angiotensin1-7 (Ang(1-7)) in the anti-tumor axis. The treatment also markedly increased angiotensinogen (AGT), which is the precursor of the angiotensin peptides. The regulation of these RAS components occurred prior to apoptosis. Similar pro-apoptotic mechanisms of the >10 kDa EGCG polymers, were also observed in TCA8113 oral cancer cells. The >10 kDa EGCG polymers exhibited compromised activities in scavenging or initiating reactive oxygen species compared to EGCG, but gained a higher reactivity toward sulfhydryl groups, including protein cysteine thiols. We propose that the polymers bind onto the cell surface and regulate multiple RAS components by reacting with the sulfhydryl groups on the ectodomains of transmembrane proteins.
Collapse
Affiliation(s)
- Mingchuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Ximing Wu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Xiuli Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Lumin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Tingting Song
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Fuming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA.
- Joint International Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
- Joint International Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
4
|
Yang X, Li P, Zhuang J, Wu Y, Qu Z, Wu W, Wei Q. Identification of Molecular Targets of Bile Acids Acting on Colorectal Cancer and Their Correlation with Immunity. Dig Dis Sci 2024; 69:123-134. [PMID: 37917212 DOI: 10.1007/s10620-023-08032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Bile acids (BAs) are closely related to the occurrence and development of colorectal cancer (CRC), but the specific mechanism is still unclear. AIMS To identify potential targets related to BAs in CRC and analyze the correlation with immunity. METHODS The expression of BAs and CRC-related genes in TCGA was studied and screened using KEGG. GSE71187 was used for external validation of differentially expressed genes. Immunofluorescence, immunohistochemistry, and enzymatic cycling assays were used to detect the expression levels of the differentially expressed genes ki67 and BAs. Weighted gene coexpression network analysis (WGCNA) was used to identify genes associated with differential gene expression and immunity. The Cibersort algorithm was used to detect the infiltration of 22 kinds of immune cells in cancer tissues. The PPI network and ceRNA network were constructed to reveal the possible molecular mechanisms behind tumorigenesis. RESULTS The BA-related gene UGT2A3 is positively correlated with good prognoses in CRC. The expression level of UGT2A3 was negatively related to the BA level and positively related to the Ki67 proliferation index. The expression level of UGT2A3 was higher in the moderately differentiation and advanced stage (stage IV) of CRC. In addition, the expression level of UGT2A3 is correlated with CD8+ T cells. A PPI network related to UGT2A3 and T-cell immune-related genes was constructed. A ceRNA network containing 32 miRNA‒mRNA and 40 miRNA‒lncRNA regulatory pairs was constructed. CONCLUSION UGT2A3 is a potential molecular target of bile acids in the regulation of CRC and is related to T-cell immunity.
Collapse
Affiliation(s)
- Xi Yang
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Li
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Wu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qichun Wei
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China.
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
System Analysis Based on Lipid-Metabolism-Related Genes Identifies AGT as a Novel Therapy Target for Gastric Cancer with Neoadjuvant Chemotherapy. Pharmaceutics 2023; 15:pharmaceutics15030810. [PMID: 36986671 PMCID: PMC10051152 DOI: 10.3390/pharmaceutics15030810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer-related deaths worldwide, and chemotherapy is still a standard strategy for treating patients with advanced GC. Lipid metabolism has been reported to play an important role in the carcinogenesis and development of GC. However, the potential values of lipid-metabolism-related genes (LMRGs) concerning prognostic value and the prediction of chemotherapy responsiveness in GC remains unclear. A total of 714 stomach adenocarcinoma patients were enrolled from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Using univariate Cox and LASSO regression analyses, we developed a risk signature based on LMRGs that can distinguish high-GC-risk patients from low-risk patients with significant differences in overall survival. We further validated this signature prognostic value using the GEO database. The R package “pRRophetic” was applied to calculate the sensitivity of each sample from high- and low-risk groups to chemotherapy drugs. The expression of two LMRGs, AGT and ENPP7, can predict the prognosis and response to chemotherapy in GC. Furthermore, AGT significantly promoted GC growth and migration, and the downregulation of AGT enhanced the chemotherapy response of GC both in vitro and in vivo. Mechanistically, AGT induced significant levels of epithelial–mesenchymal transition (EMT) through the PI3K/AKT pathway. The PI3K/AKT pathway agonist 740 Y-P can restore the EMT of GC cells impaired by AGT knockdown and treatment with 5-fluorouracil. Our findings suggest that AGT plays a key role in the development of GC, and targeting AGT may help to improve the chemotherapy response of GC patients.
Collapse
|
6
|
Ferrario CM, Saha A, VonCannon JL, Meredith WJ, Ahmad S. Does the Naked Emperor Parable Apply to Current Perceptions of the Contribution of Renin Angiotensin System Inhibition in Hypertension? Curr Hypertens Rep 2022; 24:709-721. [PMID: 36272015 DOI: 10.1007/s11906-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To address contemporary hypertension challenges, a critical reexamination of therapeutic accomplishments using angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, and a greater appreciation of evidence-based shortcomings from randomized clinical trials are fundamental in accelerating future progress. RECENT FINDINGS Medications targeting angiotensin II mechanism of action are essential for managing primary hypertension, type 2 diabetes, heart failure, and chronic kidney disease. While the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to control blood pressure is undisputed, practitioners, hypertension specialists, and researchers hold low awareness of these drugs' limitations in preventing or reducing the risk of cardiovascular events. Biases in interpreting gained knowledge from data obtained in randomized clinical trials include a pervasive emphasis on using relative risk reduction over absolute risk reduction. Furthermore, recommendations for clinical practice in international hypertension guidelines fail to address the significance of a residual risk several orders of magnitude greater than the benefits. We analyze the limitations of the clinical trials that have led to current recommended treatment guidelines. We define and quantify the magnitude of the residual risk in published hypertension trials and explore how activation of alternate compensatory bioprocessing components within the renin angiotensin system bypass the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to achieve a significant reduction in total and cardiovascular deaths. We complete this presentation by outlining the current incipient but promising potential of immunotherapy to block angiotensin II pathology alone or possibly in combination with other antihypertensive drugs. A full appreciation of the magnitude of the residual risk associated with current renin angiotensin system-based therapies constitutes a vital underpinning for seeking new molecular approaches to halt or even reverse the cardiovascular complications of primary hypertension and encourage investigating a new generation of ACE inhibitors and ARBs with increased capacity to reach the intracellular compartments at which Ang II can be generated.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA.
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Jessica L VonCannon
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Wayne J Meredith
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| |
Collapse
|
7
|
Pulgar VM, Cruz-Diaz N, Westwood BM, Chappell MC. Angiotensinogen uptake and stimulation of oxidative stress in human pigment retinal epithelial cells. Peptides 2022; 152:170770. [PMID: 35183655 DOI: 10.1016/j.peptides.2022.170770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022]
Abstract
We previously reported that isolated proximal tubules (PT) internalize the precursor protein angiotensinogen and that the 125Iodine-labeled protein accumulated in the nuclear and mitochondrial fractions of the PT cells; however, whether internalization of angiotensinogen occurs in non-renal epithelial cells is unknown. Therefore, the present study assessed the cellular uptake of 125I-angiotensinogen in human retinal pigment ARPE-19 epithelial cells, a widely utilized cell model for the assessment of retinal injury, inflammation and oxidative stress. ARPE-19 cells, maintained in serum-free media to remove extracellular sources of bovine serum angiotensinogen and renin, were incubated with 125Iodine-angiotensinogen at 37 °C and revealed the time-dependent uptake of angiotensinogen over 24 h. In contrast, incubation with labelled Ang II, Ang-(1-7) or Ang I revealed minimal cellular uptake. Subcellular fractionation following a 4-hour uptake of 125I-angiotensinogen revealed that the majority of the labeled protein localized to the nuclear fraction with lower accumulation in the mitochondrial and cytosolic fractions. Finally, we show that addition of angiotensinogen (2 nM) to the ARPE-19 cells increased oxidative stress as assessed by DCF fluorescence that was blocked by pretreatment of the cells with either the NADPH oxidase 1/4 inhibitor GKT137831, apocynin or atorvastatin, but not the AT1 receptor antagonist losartan. In contrast, treatment of the cells with Angiotensin II at an equivalent dose to angiotensinogen failed to stimulate oxidative stress. We conclude that human retinal pigment cells internalize angiotensinogen to elicit an increase in oxidative stress through a pathway that appears distinct from the Ang II-AT1 receptor axis.
Collapse
Affiliation(s)
- Victor M Pulgar
- Department of Pharmaceutical Sciences, Campbell University, Buies-Creek, NC, United States; Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States
| | - Nildris Cruz-Diaz
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States
| | - Brian M Westwood
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States
| | - Mark C Chappell
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States.
| |
Collapse
|
8
|
Ferrario CM, Groban L, Wang H, Sun X, VonCannon JL, Wright KN, Ahmad S. The renin–angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney Int Suppl (2011) 2022; 12:36-47. [DOI: 10.1016/j.kisu.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
|
9
|
Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021; 11:biom11121870. [PMID: 34944514 PMCID: PMC8699739 DOI: 10.3390/biom11121870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with an extremely poor prognosis. There is a dire need to develop effective therapeutics to overcome the intrinsic and acquired resistance of GBM to current therapies. The process of developing novel anti-neoplastic drugs from bench to bedside can incur significant time and cost implications. Drug repurposing may help overcome that obstacle. A wide range of drugs that are already approved for clinical use for the treatment of other diseases have been found to target GBM-associated signaling pathways and are being repurposed for the treatment of GBM. While many of these drugs are undergoing pre-clinical testing, others are in the clinical trial phase. Since GBM stem cells (GSCs) have been found to be a main source of tumor recurrence after surgery, recent studies have also investigated whether repurposed drugs that target these pathways can be used to counteract tumor recurrence. While several repurposed drugs have shown significant efficacy against GBM cell lines, the blood–brain barrier (BBB) can limit the ability of many of these drugs to reach intratumoral therapeutic concentrations. Localized intracranial delivery may help to achieve therapeutic drug concentration at the site of tumor resection while simultaneously minimizing toxicity and side effects. These strategies can be considered while repurposing drugs for GBM.
Collapse
|
10
|
Chen W, Chen Y, Zhang K, Yang W, Li X, Zhao J, Liu K, Dong Z, Lu J. AGT serves as a potential biomarker and drives tumor progression in colorectal carcinoma. Int Immunopharmacol 2021; 101:108225. [PMID: 34655849 DOI: 10.1016/j.intimp.2021.108225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is one of the most common aggressive tumors worldwide, and it is necessary to identify candidate biomarkers and therapeutic targets in CRC to improve patient outcomes. METHODS The differentially expressed genes (DEGs) were obtained from CRC microarray. Functional enrichment was performed to explore the function of DEGs, and core genes were identified by Cytoscape. Then, the diagnosis and prognosis markers were identified by ROC curve and survival analyses. More importantly, a series of in vitro studies were conducted in CRC cells to explore the function of the selected biomarker. Further, the drug response was performed by Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapy Response Portal (CTRP). In addition, the effect of drug on CRC cells was evaluated by functional experiments. RESULTS The identified DEGs were mainly associated with the processes relating to tumorigenesis. 25 core genes were selected and angiotensinogen (AGT) was filtered out as a diagnosis and prognosis biomarker. Comprehensive in vitro experiments showed that AGT attributed to the proliferation, migration, and invasion of CRC cells, as well as angiogenesis of HUVECs induced by CRC conditional medium. Furthermore, drug response analysis implied that AGT expression was associated with isoliquiritigenins (ISL). Additionally, ISL could suppress the progression of CRC cells. CONCLUSIONS AGT is identified as diagnosis and prognosis prediction of CRC. Moreover, AGT attributes to the progression of CRC. Additionally, AGT exhibits fine drug response to ISL, and ISL is also evaluated as potential therapy drug in CRC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital, Changzhi, Shanxi 046000, PR China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
11
|
Barral M, El-Sanharawi I, Dohan A, Sebuhyan M, Guedon A, Delarue A, Boutigny A, Mohamedi N, Magnan B, Kemel S, Ketfi C, Kubis N, Bisdorff-Bresson A, Pocard M, Bonnin P. Blood Flow and Shear Stress Allow Monitoring of Progression and Prognosis of Tumor Diseases. Front Physiol 2021; 12:693052. [PMID: 34413786 PMCID: PMC8369886 DOI: 10.3389/fphys.2021.693052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
In the presence of tumor angiogenesis, blood flow must increase, leading to an elevation of blood flow velocities (BFVels) and wall shear stress (WSS) in upstream native arteries. An adaptive arterial remodeling is stimulated, whose purpose lies in the enlargement of the arterial inner diameter, aiming for normalization of BFVels and WSS. Remodeling engages delayed processes that are efficient only several weeks/months after initiation, independent from those governing expansion of the neovascular network. Therefore, during tumor expansion, there is a time interval during which elevation of BFVels and WSS could reflect disease progression. Conversely, during the period of stability, BFVels and WSS drop back to normal values due to the achievement of remodeling processes. Ovarian peritoneal carcinomatosis (OPC), pseudomyxoma peritonei (PMP), and superficial arteriovenous malformations (AVMs) are diseases characterized by the development of abnormal vascular networks developed on native ones. In OPC and PMP, preoperative blood flow in the superior mesenteric artery (SMA) correlated with the per-operative peritoneal carcinomatosis index (OPC: n = 21, R = 0.79, p < 0.0001, PMP: n = 66, R = 0.63, p < 0.0001). Moreover, 1 year after surgery, WSS in the SMA helped in distinguishing patients with PMP from those without disease progression [ROC-curve analysis, AUC = 0.978 (0.902-0.999), p < 0.0001, sensitivity: 100.0%, specificity: 93.5%, cutoff: 12.1 dynes/cm2]. Similarly, WSS in the ipsilateral afferent arteries close to the lesion distinguished stable from progressive AVM [ROC-curve analysis, AUC: 0.988, (0.919-1.000), p < 0.0001, sensitivity: 93.5%, specificity: 95.7%; cutoff: 26.5 dynes/cm2]. Blood flow volume is indicative of the tumor burden in OPC and PMP, and WSS represents an early sensitive and specific vascular marker of disease progression in PMP and AVM.
Collapse
Affiliation(s)
- Matthias Barral
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Imane El-Sanharawi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Anthony Dohan
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Maxime Sebuhyan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexis Guedon
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Audrey Delarue
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexandre Boutigny
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Nassim Mohamedi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Benjamin Magnan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Salim Kemel
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Chahinez Ketfi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Nathalie Kubis
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Annouk Bisdorff-Bresson
- AP-HP, Université de Paris, Hôpital Lariboisière, Neuroradiologie, Centre Constitutif des Malformations Artério Veineuses Superficielles de l'Enfant et de l'Adulte, Paris, France
| | - Marc Pocard
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France.,AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Chirurgie Digestive et Cancérologique, Paris, France
| | - Philippe Bonnin
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| |
Collapse
|
12
|
Carlos-Escalante JA, Gómez-Flores-Ramos L, Bian X, Perdomo-Pantoja A, de Andrade KC, Mejía-Pérez SI, Cacho-Díaz B, González-Barrios R, Reynoso-Noverón N, Soto-Reyes E, Sánchez-Correa TE, Guerra-Calderas L, Yan C, Chen Q, Castro-Hernández C, Vidal-Millán S, Taja-Chayeb L, Gutiérrez O, Álvarez-Gómez RM, Gómez-Amador JL, Ostrosky-Wegman P, Mohar-Betancourt A, Herrera-Montalvo LA, Corona T, Meerzaman D, Wegman-Ostrosky T. Landscape of Germline Genetic Variants in AGT, MGMT, and TP53 in Mexican Adult Patients with Astrocytoma. Cell Mol Neurobiol 2021; 41:1285-1297. [PMID: 32535722 DOI: 10.1007/s10571-020-00901-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
Astrocytoma is the most common type of primary brain tumor. The risk factors for astrocytoma are poorly understood; however, germline genetic variants account for 25% of the risk of developing gliomas. In this study, we assessed the risk of astrocytoma associated with variants in AGT, known by its role in angiogenesis, TP53, a well-known tumor suppressor and the DNA repair gene MGMT in a Mexican population. A case-control study was performed in 49 adult Mexican patients with grade II-IV astrocytoma. Sequencing of exons and untranslated regions of AGT, MGMT, and TP53 from was carried in an Ion Torrent platform. Individuals with Mexican Ancestry from the 1000 Genomes Project were used as controls. Variants found in our cohort were then assessed in a The Cancer Genome Atlas astrocytoma pan-ethnic validation cohort. Variants rs1926723 located in AGT (OR 2.74, 1.40-5.36 95% CI), rs7896488 in MGMT (OR 3.43, 1.17-10.10 95% CI), and rs4968187 in TP53 (OR 2.48, 1.26-4.88 95% CI) were significantly associated with the risk of astrocytoma after multiple-testing correction. This is the first study where the AGT rs1926723 variant, TP53 rs4968187, and MGMT rs7896488 were found to be associated with the risk of developing an astrocytoma.
Collapse
Affiliation(s)
| | | | - Xiaopeng Bian
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | | | - Kelvin César de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Sonia Iliana Mejía-Pérez
- Departamento de Enseñanza, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 13269, Mexico City, Mexico
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Bernardo Cacho-Díaz
- Unidad de Neurociencia, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | | | - Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Thalía Estefanía Sánchez-Correa
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Lissania Guerra-Calderas
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Chunhua Yan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Clementina Castro-Hernández
- Unidad de Epidemiología E Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
| | - Silvia Vidal-Millán
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Lucía Taja-Chayeb
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Olga Gutiérrez
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | | | - Juan Luis Gómez-Amador
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Mohar-Betancourt
- Unidad de Epidemiología E Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
| | - Luis Alonso Herrera-Montalvo
- Unidad de Epidemiología E Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
- Dirección General, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez", 14269, Mexico City, Mexico
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Talia Wegman-Ostrosky
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico.
| |
Collapse
|
13
|
Letter to the Editor: Brain renin-angiotensin system and liver-directed siRNA targeted to angiotensinogen. Clin Sci (Lond) 2021; 135:907-910. [PMID: 33835151 DOI: 10.1042/cs20210163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
|
14
|
Li S, Liu F, Pei Y, Dong Y, Shang Y. Parathyroid hormone type 1 receptor regulates osteosarcoma K7M2 Cell growth by interacting with angiotensinogen. J Cell Mol Med 2021; 25:2841-2850. [PMID: 33511766 PMCID: PMC7957183 DOI: 10.1111/jcmm.16314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to determine the interactions between parathyroid hormone type 1 receptor (PTHR1) and angiotensinogen (AGT) and the effects of these agents on osteosarcoma (OS). We constructed a stably transfected mouse OS K7M2 cell line (shPTHR1- K7M2) using shRNA and knocked down AGT in these cells using siRNA-AGT. The transfection efficiency and expression of AGT, chemokine C-C motif receptor 3 (CCR3), and chemokine (C-C motif) ligand 9 (CCL9) were determined using real-time quantitative PCR. Cell viability and colony formation were assessed using Cell Counting Kit-8 and crystal violet staining, respectively. Cell apoptosis and cycle phases were assessed by flow cytometry, and cell migration and invasion were evaluated using Transwell assays. Interference with PTHR1 upregulated the expression of AGT and CCR3, and downregulated that of CCL9, which was further downregulated by AGT knockdown. Cell viability, migration, invasion and colony formation were significantly decreased, while cell apoptosis was significantly increased in shPTHR1-K7M2, compared with those in K7M2 cells (P < .05 for all). However, AGT knockdown further inhibited cell viability after 72 h of culture but promoted cell migration and invasion. PTHR1 interference decreased and increased the numbers of cells in the G0/G1 and G2/M phases, respectively, compared with those in K7M2 cells. Angiotensinogen knockdown increased the number of cells in the G0/G1 phase compared with that in the shPTHR1-K7M2 cells. Therefore, PTHR1 affects cell viability, apoptosis, migration, invasion and colony formation, possibly by regulating AGT/CCL9 in OS cells.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Yujin Dong
- Department of Hand and Foot SurgeryDalian Municipal Center Hospital Affiliated of Dalian Medical UniversityDalianChina
| | - Yaohua Shang
- Department of Hand and Foot SurgeryDalian Municipal Center Hospital Affiliated of Dalian Medical UniversityDalianChina
| |
Collapse
|
15
|
Barral M, Pimpie C, Kaci R, Al-Dybiat I, Mirshahi M, Pocard M, Bonnin P. Assessment of Tumor Response in Mice with Ovarian Peritoneal Carcinomatosis using Doppler Ultrasound of the Superior Mesenteric Artery and Celiac Trunk. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:759-768. [PMID: 33358050 DOI: 10.1016/j.ultrasmedbio.2020.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The goal of the work described here was to assess the performance of Doppler ultrasound (US) of the superior mesenteric artery (SMA) and celiac trunk (CT) in the evaluation of tumor response in female mice with ovarian peritoneal carcinomatosis treated either with bevacizumab or with carboplatin. Compared with untreated mice, carboplatin-treated mice had a lower weight (23.3 ± 2.0 vs. 27.9 ± 2.9 g, p < 0.001), peritoneal carcinomatosis index (PCI, 11 ± 3 vs. 28 ± 6, p < 0.001), Ki67-positive staining surfaces (p < 0.001), vascular density (p < 0.001), mean blood flow velocity (mBFVel) in the SMA (7.0 ± 1.4 vs. 10.9 ± 1.8 cm/s, p < 0.001) and CT (8.0 ± 1.8 vs. 14.3 ± 4.6 cm/s, p < 0.001) and no ascites. Weight and mBFVel were similar in bevacizumab-treated and untreated mice. The mBFVels in the SMA and CT correlated with the PCI used as an estimation of the tumor burden, R = 0.70 (p < 0.0001) and R = 0.65 (p < 0.0001), respectively. Doppler US allows non-invasive assessment of the effects of anticancer therapy in ovarian peritoneal carcinomatosis-induced mice.
Collapse
Affiliation(s)
- Matthias Barral
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Cynthia Pimpie
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Rachid Kaci
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France; Anatomopathologie, hôpital Lariboisière, Université de Paris, Paris, France
| | - Iman Al-Dybiat
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Massoud Mirshahi
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Marc Pocard
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France; Chirurgie Digestive et cancérologique, hôpital Lariboisière, Université de Paris, Paris, France
| | - Philippe Bonnin
- Physiologie Clinique-Explorations-Fonctionnelles, hopital Lariboisière, Université de Paris, Paris, France; INSERM U1148, LVTS, hôpital Bichat, Université de Paris, Paris, France.
| |
Collapse
|
16
|
Cancer Stem Cells in Metastatic Head and Neck Cutaneous Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System. Cells 2021; 10:cells10020243. [PMID: 33513805 PMCID: PMC7910940 DOI: 10.3390/cells10020243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
We investigated the expression of components of the renin-angiotensin system (RAS) by cancer stem cell (CSC) subpopulations in metastatic head and neck cutaneous squamous cell carcinoma (mHNcSCC). Immunohistochemical staining demonstrated expression of prorenin receptor (PRR), angiotensin-converting enzyme (ACE), and angiotensin II receptor 2 (AT2R) in all cases and angiotensinogen in 14 cases; however, renin and ACE2 were not detected in any of the 20 mHNcSCC tissue samples. Western blotting showed protein expression of angiotensinogen in all six mHNcSCC tissue samples, but in none of the four mHNcSCC-derived primary cell lines, while PRR was detected in the four cell lines only. RT-qPCR confirmed transcripts of angiotensinogen, PRR, ACE, and angiotensin II receptor 1 (AT1R), but not renin or AT2R in all four mHNcSCC tissue samples and all four mHNcSCC-derived primary cell lines, while ACE2 was expressed in the tissue samples only. Double immunohistochemical staining on two of the mHNcSCC tissue samples showed expression of angiotensinogen by the SOX2+ CSCs within the tumor nests (TNs), and immunofluorescence showed expression of PRR and AT2R by the SOX2+ CSCs within the TNs and the peritumoral stroma (PTS). ACE was expressed on the endothelium of the tumor microvessels within the PTS. We demonstrated expression of angiotensinogen by CSCs within the TNs, PRR, and AT2R by the CSCs within the TNs and the PTS, in addition to ACE on the endothelium of tumor microvessels in mHNcSCC.
Collapse
|
17
|
Volovat SR, Volovat C, Miron I, Kanbay M, Goldsmith D, Lungulescu C, Badarau SC, Covic A. Oncogenic mechanisms in renal insufficiency. Clin Kidney J 2020; 14:507-515. [PMID: 33623673 PMCID: PMC7886561 DOI: 10.1093/ckj/sfaa122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
The prevalence of both cancer and end-stage renal disease is increasing. In addition, medical advances have meant increased survival rates for both diseases. Many chemotherapeutics are renally excreted, and conversely, renal insufficiency promotes a pro-neoplastic state, including genitourinary and other cancers. Dialysis prolongs life while increasing cancer risk. Proposed oncogenic mechanisms include immune dysfunction, chronic inflammation, changes in gut microbiota and stimulation of the renin-angiotensin system. This review summarizes current concepts in the relationship between cancer and renal insufficiency.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy 'Grigore T Popa', Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy 'Grigore T Popa', Iasi, Romania
| | - Ingrith Miron
- Department of Medical Oncology, University of Medicine and Pharmacy 'Grigore T Popa', Iasi, Romania
| | - Mehmet Kanbay
- Department of Nephrology, Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - David Goldsmith
- Department of Nephrology, St George's University Hospital, London, UK
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Silvia Corina Badarau
- Department of Medical Oncology, University of Medicine and Pharmacy 'Grigore T Popa', Iasi, Romania
| | - Adrian Covic
- Department of Medical Oncology, University of Medicine and Pharmacy 'Grigore T Popa', Iasi, Romania
| |
Collapse
|
18
|
Yeo I, Kim GA, Kim H, Lee JH, Sohn A, Gwak GY, Lee JH, Lim YS, Kim Y. Proteome Multimarker Panel With Multiple Reaction Monitoring-Mass Spectrometry for Early Detection of Hepatocellular Carcinoma. Hepatol Commun 2020; 4:753-768. [PMID: 32363324 PMCID: PMC7193127 DOI: 10.1002/hep4.1500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
There is an urgent need for new biomarkers that address the shortcomings of current screening methods which fail to detect a large proportion of cases with hepatocellular carcinoma (HCC) at early stage. To develop a robust, multiple-biomarker panel based on multiple reaction monitoring-mass spectrometry with high performance in detecting early-stage HCC within at-risk populations. In the discovery set, 150 samples were analyzed to identify candidate biomarkers. The resulting list of candidates was tested in the training set (713 samples) to establish a multimarker panel, which was evaluated in the validation set (305 samples). We identified 385 serum HCC biomarker candidates in the discovery set and developed a multimarker panel consisting of 28 peptides that best differentiated HCC from controls. The area under the receiver operating characteristic curve of multimarker panel was significantly higher than alpha-fetoprotein (AFP) in the training (0.976 vs. 0.804; P < 0.001) and validation (0.898 vs. 0.778; P < 0.001) sets. In the validation set, this multimarker panel, compared with AFP, showed significantly greater sensitivity (81.1% vs. 26.8%; P < 0.001) and lower specificity (84.8% vs. 98.8%; P < 0.001) in detecting HCC cases. Combining AFP with the multimarker panel did not significantly improve the area under the receiver operating characteristic curve compared with the panel alone in the training (0.981 vs. 0.976; P = 0.37) and validation set (0.906 vs. 0.898; P = 0.75). Conclusion: The multiple reaction monitoring-mass spectrometry multimarker panel consisting of 28 peptides discriminates HCC cases from at-risk controls with high performance and may have potential for clinical application in HCC surveillance.
Collapse
Affiliation(s)
- Injoon Yeo
- Interdisciplinary Program in Bioengineering College of Engineering Seoul National University Seoul Korea
| | - Gi-Ae Kim
- Department of Internal Medicine Kyung Hee University School of Medicine Seoul Korea
| | - Hyunsoo Kim
- Departments of Biomedical Sciences Seoul National University College of Medicine Seoul Korea.,Biomedical Engineering Seoul National University College of Medicine Seoul Korea.,Institute of Medical and Biological Engineering MRC Seoul National University College of Medicine Seoul Korea
| | - Ji Hyeon Lee
- Departments of Biomedical Sciences Seoul National University College of Medicine Seoul Korea
| | - Areum Sohn
- Biomedical Engineering Seoul National University College of Medicine Seoul Korea
| | - Geum-Youn Gwak
- Department of Medicine Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute Seoul National University College of Medicine Seoul Korea
| | - Young-Suk Lim
- Department of Gastroenterology Liver Center Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Youngsoo Kim
- Interdisciplinary Program in Bioengineering College of Engineering Seoul National University Seoul Korea.,Departments of Biomedical Sciences Seoul National University College of Medicine Seoul Korea.,Biomedical Engineering Seoul National University College of Medicine Seoul Korea.,Institute of Medical and Biological Engineering MRC Seoul National University College of Medicine Seoul Korea
| |
Collapse
|
19
|
Sun S, Sun Y, Rong X, Bai L. High glucose promotes breast cancer proliferation and metastasis by impairing angiotensinogen expression. Biosci Rep 2019; 39:BSR20190436. [PMID: 31142626 PMCID: PMC6567675 DOI: 10.1042/bsr20190436] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
A number of investigations have addressed the importance of high glucose in breast cancer, however, the involvement of angiotensinogen (AGT) in this scenario is yet to be defined. Here we set out to analyze the potential pro-tumor effects of high glucose in breast cancer, and understand the underlying molecular mechanism. We demonstrated that high glucose promoted cell proliferation, viability, and anchorage-independent growth of breast cancer cells. In addition, the migrative and invasive capacities were significantly enhanced by high glucose medium. Mechanistically, AGT expression was inhibited by high glucose at both transcriptional and translational levels. High AGT remarkably suppressed proliferation, inhibited viability, and compromised migration/invasion of breast cancer cells. Most importantly, ectopic introduction of AGT almost completely abrogated pro-tumor effects of high glucose. Our study has characterized the pro-tumor properties of high glucose in breast cancer cells, which is predominantly attributed to the suppression of AGT.
Collapse
Affiliation(s)
- Shichao Sun
- Department of Neurology, the Second Hospital, Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang 050000, Hebei, China
| | - Yao Sun
- Department of Medical Image, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Xiaoping Rong
- Department of Pediatrics, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Lei Bai
- Department of Endocrinology, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
20
|
Kunanopparat A, Issara-Amphorn J, Leelahavanichkul A, Sanpavat A, Patumraj S, Tangkijvanich P, Palaga T, Hirankarn N. Delta-like ligand 4 in hepatocellular carcinoma intrinsically promotes tumour growth and suppresses hepatitis B virus replication. World J Gastroenterol 2018; 24:3861-3870. [PMID: 30228780 PMCID: PMC6141339 DOI: 10.3748/wjg.v24.i34.3861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of Delta-like ligand 4 (DLL4) on tumour growth in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) in vivo.
METHODS We suppressed DLL4 expression in an HBV expressing HCC cell line, HepG2.2.15 and analysed the growth ability of cells as subcutaneous tumours in nude mice. The expression of tumour angiogenesis regulators, VEGF-A and VEGF-R2 in tumour xenografts were examined by western blotting. The tumour proliferation and neovasculature were examined by immunohistochemistry. The viral replication and viral protein expression were measured by quantitative PCR and western blotting, respectively.
RESULTS Eighteen days after implantation, tumour volume in mice implanted with shDLL4 HepG2.2.15 was significantly smaller than in mice implanted with control HepG2.2.15 (P < 0.0001). The levels of angiogenesis regulators, VEGF-A and VEGF-R2 were significantly decreased in implanted tumours with suppressed DLL4 compared with the control group (P < 0.001 and P < 0.05, respectively). Furthermore, the suppression of DLL4 expression in tumour cells reduced cell proliferation and the formation of new blood vessels in tumours. Unexpectedly, increased viral replication was observed after suppression of DLL4 in the tumours.
CONCLUSION This study demonstrates that DLL4 is important in regulating the tumour growth of HBV-associated HCC as well as the neovascularization and suppression of HBV replication.
Collapse
Affiliation(s)
- Areerat Kunanopparat
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suthiluk Patumraj
- Center of Excellence for Microcirculation, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Research Unit of Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in chemoprevention of hepatocellular carcinoma: a nationwide high-risk cohort study. BMC Cancer 2018; 18:401. [PMID: 29631561 PMCID: PMC5891974 DOI: 10.1186/s12885-018-4292-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 03/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background Research has revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) may prevent cancers such as hepatocellular carcinoma (HCC). The comparative chemopreventive effects of ACEIs and ARBs in high-risk populations with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection have yet to be investigated. Methods From 2005 to 2014, high-risk HBV and HCV cohorts of hypertensive patients without HCC history were recruited from three linked national databases of Taiwan, and were classified into two groups based on the ACEI or ARB exposure within the initial six months after initiating antiviral agent. Intergroup differences in clinical characteristics and duration of drug exposure within study period were evaluated. HCC-free survival was compared using the log-rank test. Multivariate Cox regression including time-dependent variables for the use of ACEIs or ARBs and other medications was applied to adjust for confounders. Results Among the 7724 patients with HBV and 7873 with HCV, 46.3% and 42.5%, respectively, had an initial exposure to ACEIs or ARBs. The median durations of exposure were 36.4 and 38.9 months for the HBV and HCV cohorts, respectively. The median durations of ACEI or ARB use during study period between initial exposure and nonexposure groups were 41.8 vs. 18.3 months and 46.4 vs. 22.7 months for the HBV and HCV cohorts, respectively. No significant difference was observed in HCC risk within 7 years between the initial exposure and non-exposure groups. After adjustment for comorbidities, namely liver cirrhosis, diabetes mellitus (DM), and hyperlipidemia, and medications, namely aspirin, metformin, and statins, the hazard ratios (HRs) for ACEI or ARB exposure for HCC risk were 0.97 (95% confidence interval [CI]: 0.81–1.16) and 0.96 (0.80–1.16) in the HBV and HCV cohorts, respectively. In the HCV cohort, the increased HCC risk was associated with ACEI or ARB use in patients without cirrhosis, DM, and hyperlipidemia (HR: 4.53, 95% CI: 1.46–14.1). Conclusion Compared with other significant risk and protective factors for HCC, ACEI or ARB use in the HBV and HCV cohorts was not associated with adequate protective effectiveness under standard dosages and may not be completely safe. Electronic supplementary material The online version of this article (10.1186/s12885-018-4292-y) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Renin angiotensin system and its role in biomarkers and treatment in gliomas. J Neurooncol 2018; 138:1-15. [PMID: 29450812 DOI: 10.1007/s11060-018-2789-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary intrinsic tumor in the brain and are classified as low- or high-grade according to the World Health Organization (WHO). Patients with high-grade gliomas (HGG) who undergo surgical resection with adjuvant therapy have a mean overall survival of 15 months and 100% recurrence. The renin-angiotensin system (RAS), the primary regulator of cardiovascular circulation, exhibits local action and works as a paracrine system. In the context of this local regulation, the expression of RAS peptides and receptors has been detected in different kinds of tumors, including gliomas. The dysregulation of RAS components plays a significant role in the proliferation, angiogenesis, and invasion of these tumors, and therefore in their outcomes. The study and potential application of RAS peptides and receptors as biomarkers in gliomas could bring advantages against the limitations of current tumoral markers and should be considered in the future. The targeting of RAS components by RAS blockers has shown potential of being protective against cancer and improving immunotherapy. In gliomas, RAS blockers have shown a broad spectrum for beneficial effects and are being considered for use in treatment protocols. This review aims to summarize the background behind how RAS plays a role in gliomagenesis and explore the evidence that could lead to their use as biomarkers and treatment adjuvants.
Collapse
|
23
|
Lo Dico R, Tijeras-Raballand A, Bonnin P, Launay JM, Kaci R, Pimpie C, Malgras B, Dohan A, Lo Dico GM, Pocard M. Hepatectomy increases metastatic graft and growth in an immunocompetent murine model of peritoneal metastases. Eur J Surg Oncol 2018. [PMID: 29525466 DOI: 10.1016/j.ejso.2018.01.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Curative surgery of synchronous peritoneal metastases (PM) and colorectal liver metastases (LM) has been recently investigated as feasible option. When synchronous peritoneal and liver resection is not achievable, the sequence of the surgery remains unknown. Our hypothesis was that liver resection (LR) promotes peritoneal growth resulting in a non-resectable PM. We sought to analyse the effects of major LR and liver regeneration after hepatectomy in a murine model of PM and the associated angiogenesis. METHODS Murine model of colorectal PM in Balb/C mice was developed by intraperitoneal injection of different CT-26 tumour cell concentrations. Five days after the injection, mice were randomized into three groups: 68% hepatectomy group, sham laparotomy and control group without surgery. On post-operative days 1, 5 and 20, PM was evaluated macroscopically, tumour growth and liver regeneration by immunohistochemistry, and angiogenesis by immunofluorescence. Circulating progenitor cells, plasmatic cytokines and digestive arterial blood flow velocity measurements were also analysed. RESULTS Reproducible murine model of limited colorectal PM was obtained. Surgery induced PM increases and promoted neo-angiogenesis. Major hepatectomy influence the tumour growth in the late phase after surgery, the extent of extra-peritoneal metastasis and the increase of Ki-67 expression in the remnant liver. CONCLUSIONS This animal model confirms the pro-tumoural and pro-angiogenic role of surgery, laparotomy and major LR, which promotes the increase of angiogenic factors and their participation in PM growth. These results suggest that peritoneal resection should be first step in the case of two-step liver and peritoneal surgery for patients with colorectal PM and LM.
Collapse
Affiliation(s)
- Rea Lo Dico
- Inserm U965, Carcinomatosis, Angiogenesis and Translational Research (CART), Paris 7-Diderot University, Sorbonne Paris Cité, France; Department of Digestive and Oncological Surgery, Lariboisière Hospital, AP-HP, Paris 7-Diderot University, Sorbonne Paris Cité, France.
| | | | - Philippe Bonnin
- Inserm U965, Carcinomatosis, Angiogenesis and Translational Research (CART), Paris 7-Diderot University, Sorbonne Paris Cité, France; Department of Functional Exploration, Lariboisière Hospital, AP-HP, Paris 7-Diderot University, France
| | - Jean Marie Launay
- Department of Biochemistry, Lariboisière Hospital, AP-HP, Paris 7-Diderot University, France
| | - Rachid Kaci
- Inserm U965, Carcinomatosis, Angiogenesis and Translational Research (CART), Paris 7-Diderot University, Sorbonne Paris Cité, France; Department of Pathology, Lariboisière Hospital, AP-HP, Paris 7-Diderot University, France
| | - Cynthia Pimpie
- Inserm U965, Carcinomatosis, Angiogenesis and Translational Research (CART), Paris 7-Diderot University, Sorbonne Paris Cité, France
| | - Brice Malgras
- Inserm U965, Carcinomatosis, Angiogenesis and Translational Research (CART), Paris 7-Diderot University, Sorbonne Paris Cité, France; Department of Digestive and Oncological Surgery, Lariboisière Hospital, AP-HP, Paris 7-Diderot University, Sorbonne Paris Cité, France
| | - Anthony Dohan
- Inserm U965, Carcinomatosis, Angiogenesis and Translational Research (CART), Paris 7-Diderot University, Sorbonne Paris Cité, France; Department of Radiology, Cochin Hospital, AP-HP, Paris-Descartes University, France
| | | | - Marc Pocard
- Inserm U965, Carcinomatosis, Angiogenesis and Translational Research (CART), Paris 7-Diderot University, Sorbonne Paris Cité, France; Department of Digestive and Oncological Surgery, Lariboisière Hospital, AP-HP, Paris 7-Diderot University, Sorbonne Paris Cité, France
| |
Collapse
|
24
|
Zhang H, Liu J, Fu X, Yang A. Identification of Key Genes and Pathways in Tongue Squamous Cell Carcinoma Using Bioinformatics Analysis. Med Sci Monit 2017; 23:5924-5932. [PMID: 29240723 PMCID: PMC5738838 DOI: 10.12659/msm.905035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is a major type of oral cancers and has remained an intractable cancer over the past decades. The aim of this study was to identify differentially expressed genes (DEGs) during TSCC and reveal their potential mechanisms. MATERIAL AND METHODS The gene expression profiles of GSE13601 were downloaded from the GEO database. The GSE13601 dataset contains 57 samples, including 31 tongue SCC samples and 26 matched normal mucosa samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; Cytoscape software was used for the protein-protein interaction (PPI) network and module analysis of the DEGs. RESULTS We identified a total of 1,050 upregulated DEGs (uDEGs) and 702 downregulated DEGs (dDEGs) of TSCC. The GO analysis results showed that uDEGs were significantly enriched in the following biological processes (BP): signal transduction, positive or negative regulation of cell proliferation, and negative regulation of cell proliferation. The dDEGs were significantly enriched in the following biological processes: signal transduction, cell adhesion, and apoptotic process. The KEGG pathway analysis showed that uDEGs were enriched in metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway, while the dDEGs were enriched in focal adhesion and ECM-receptor interaction. The top centrality hub genes RAC1, APP, EGFR, KNG1, AGT, and HRAS were identified from the PPI network. Module analysis revealed that TSCC was associated with significant pathways, including neuroactive ligand-receptor interaction, calcium signaling pathway, and chemokine signaling pathway. CONCLUSIONS The present study identified key genes and signal pathways, which deepen our understanding of the molecular mechanisms of carcinogenesis and development of the disease, and might be used as diagnostic and therapeutic molecular biomarkers for TSCC.
Collapse
Affiliation(s)
- Huayong Zhang
- Department of Head and Neck Surgery, Sun Yan-sen University Cancer Centre, Guangzhou, Guangdong, China (mainland).,Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Sun Yan-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jianmin Liu
- Department of Otorhinolaryngology and Head and Neck Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China (mainland)
| | - Xiaoyan Fu
- Department of Head and Neck Surgery, Sun Yan-sen University Cancer Centre, Guangzhou, Guangdong, China (mainland)
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yan-sen University Cancer Centre, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
25
|
Li S, Dong Y, Wang K, Wang Z, Zhang X. Transcriptomic analyses reveal the underlying pro-malignant functions of PTHR1 for osteosarcoma via activation of Wnt and angiogenesis pathways. J Orthop Surg Res 2017; 12:168. [PMID: 29121993 PMCID: PMC5679487 DOI: 10.1186/s13018-017-0664-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Increasing evidence has indicated parathyroid hormone type 1 receptor (PTHR1) plays important roles for the development and progression of osteosarcoma (OS). However, its function mechanisms remain unclear. The goal of this study was to further illuminate the roles of PTHR1 in OS using microarray data. METHODS Microarray data were available from the Gene Expression Omnibus database under the accession number GSE46861, including six tumors from mice with PTHR1 knockdown (PTHR1.358) and six tumors from mice with control knockdown (Ren.1309). Differentially expressed genes (DEGs) between PTHR1.358 and Ren.1309 were identified using the LIMMA method, and then, protein-protein interaction (PPI) network was constructed using data from STRING database to screen crucial genes associated with PTHR1. KEGG pathway enrichment analysis was performed to investigate the underlying functions of DEGs using DAVID tool. RESULTS A total of 1163 genes were identified as DEGs, including 617 downregulated (Lef1, lymphoid enhancer-binding factor 1) and 546 upregulated genes (Dkk1, Dickkopf-related protein 1). KEGG enrichment analysis indicated upregulated DEGs were involved in Renin-angiotensin system (e.g., Agt, angiotensinogen) and Wnt signaling pathway (e.g., Dkk1), while downregulated DEGs participated in Basal cell carcinoma (e.g., Lef1). A PPI network (534 nodes and 2830 edges) was constructed, in which Agt gene was demonstrated to be the hub gene and its interactive genes (e.g., CCR3, CC chemokine receptor 3; and CCL9, chemokine CC chemokine ligand 9) were inflammation related. CONCLUSIONS Our present study preliminarily reveals the pro-malignant effects of PTHR1 in OS cells may be mediated by activating Wnt, angiogenesis, and inflammation pathways via changing the expressions of the crucial enriched genes (Dkk1, Lef1, Agt-CCR3, and Agt-CCL9).
Collapse
MESH Headings
- Animals
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Gene Expression Profiling/methods
- Gene Regulatory Networks/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Receptor, Parathyroid Hormone, Type 1/biosynthesis
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Wnt Signaling Pathway/physiology
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China
| | - Yujin Dong
- Department of Hand and Foot Surgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, 116033, China
| | - Ke Wang
- Molecular Pathology Testing Center, Foshan Chancheng Central Hospital, Foshan, Guangdong, 528031, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China.
| |
Collapse
|
26
|
Prediction of clinical outcome using blood flow volume in the superior mesenteric artery in patients with pseudomyxoma peritonei treated by cytoreductive surgery. Eur J Surg Oncol 2017; 43:1932-1938. [DOI: 10.1016/j.ejso.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Accepted: 05/11/2017] [Indexed: 01/13/2023] Open
|
27
|
Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System - Focus on Eye. Open Ophthalmol J 2017; 11:122-142. [PMID: 28761566 PMCID: PMC5510558 DOI: 10.2174/1874364101711010122] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
The renin-angiotensin system (RAS), that is known for its role in the regulation of blood pressure as well as in fluid and electrolyte homeostasis, comprises dozens of angiotensin peptides and peptidases and at least six receptors. Six central components constitute the two main axes of the RAS cascade. Angiotensin (1-7), an angiotensin converting enzyme 2 and Mas receptor axis (ACE2-Ang(1-7)-MasR) counterbalances the harmful effects of the angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor axis (ACE1-AngII-AT1R) Whereas systemic RAS is an important factor in blood pressure regulation, tissue-specific regulatory system, responsible for long term regional changes, that has been found in various organs. In other words, RAS is not only endocrine but also complicated autocrine system. The human eye has its own intraocular RAS that is present e.g. in the structures involved in aqueous humor dynamics. Local RAS may thus be a target in the development of new anti-glaucomatous drugs. In this review, we first describe the systemic RAS cascade and then the local ocular RAS especially in the anterior part of the eye.
Collapse
Affiliation(s)
- Mervi Holappa
- BioMediTech, University of Tampere, Tampere, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, 00014 Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland.,SILK, Department of Ophthalmology, School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
28
|
Wilson BA, Cruz-Diaz N, Su Y, Rose JC, Gwathmey TM, Chappell MC. Angiotensinogen import in isolated proximal tubules: evidence for mitochondrial trafficking and uptake. Am J Physiol Renal Physiol 2016; 312:F879-F886. [PMID: 27903492 PMCID: PMC5451555 DOI: 10.1152/ajprenal.00246.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
The renal proximal tubules are a key functional component of the kidney and express the angiotensin precursor angiotensinogen; however, it is unclear the extent that tubular angiotensinogen reflects local synthesis or internalization. Therefore, the current study established the extent to which angiotensinogen is internalized by proximal tubules and the intracellular distribution. Proximal tubules were isolated from the kidney cortex of male sheep by enzymatic digestion and a discontinuous Percoll gradient. Tubules were incubated with radiolabeled 125I-angiotensinogen for 2 h at 37°C in serum/phenol-free DMEM/F12 media. Approximately 10% of exogenous 125I-angiotensinogen was internalized by sheep tubules. Subcellular fractionation revealed that 21 ± 4% of the internalized 125I-angiotensinogen associated with the mitochondrial fraction with additional labeling evident in the nucleus (60 ± 7%), endoplasmic reticulum (4 ± 0.5%), and cytosol (15 ± 4%; n = 4). Subsequent studies determined whether mitochondria directly internalized 125I-angiotensinogen using isolated mitochondria from renal cortex and human HK-2 proximal tubule cells. Sheep cortical and HK-2 mitochondria internalized 125I-angiotensinogen at a comparable rate of (33 ± 9 vs. 21 ± 10 pmol·min-1·mg protein-1; n = 3). Lastly, unlabeled angiotensinogen (100 nM) competed for 125I-angiotensinogen uptake to a greater extent than human albumin in HK-2 mitochondria (60 ± 2 vs. 16 ± 13%; P < 0.05, n = 3). Collectively, our data demonstrate angiotensinogen import and subsequent trafficking to the mitochondria in proximal tubules. We conclude that this pathway may constitute a source of the angiotensinogen precursor for the mitochondrial expression of angiotensin peptides.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Nildris Cruz-Diaz
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Yixin Su
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James C Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - TanYa M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
29
|
Norton P, Comunale MA, Herrera H, Wang M, Houser J, Wimmerova M, Romano PR, Mehta A. Development and application of a novel recombinant Aleuria aurantia lectin with enhanced core fucose binding for identification of glycoprotein biomarkers of hepatocellular carcinoma. Proteomics 2016; 16:3126-3136. [PMID: 27650323 DOI: 10.1002/pmic.201600064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/27/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023]
Abstract
The Aleuria aurantia lectin (AAL) derived from orange peel fungus contains five fucose-binding sites that recognizes fucose bound in α-1,2, α-1,3, α-1,4, and α-1,6 linkages to N-acetylglucosamine and galactose. Recently, we have created several recombinant AAL (rAAL) proteins that had altered binding affinity to fucose linkages. In this report, we further characterize the binding specificity of one of the mutated lectins, N224Q lectin. This lectin was characterized by lectin Western blotting, surface plasmon resonance, and glycan microarray and shown to have increased binding to fucosylated glycan. Subsequently, we used this lectin to identify secreted fucosylated glycoproteins from a fetal hepatic cell line. Proteomic analysis revealed several glycoproteins secreted by the fetal cell line that were bound by N224Q lectin. These findings were confirmed by subsequent proteomic analysis of human serum from control patients or patients with hepatocellular carcinoma. These represent candidate oncofetal markers for liver cancer.
Collapse
Affiliation(s)
- Pamela Norton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mengjun Wang
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Anand Mehta
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Bolinger MT, Antonetti DA. Moving Past Anti-VEGF: Novel Therapies for Treating Diabetic Retinopathy. Int J Mol Sci 2016; 17:E1498. [PMID: 27618014 PMCID: PMC5037775 DOI: 10.3390/ijms17091498] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness in working age adults, and is projected to be a significant future health concern due to the rising incidence of diabetes. The recent advent of anti-vascular endothelial growth factor (VEGF) antibodies has revolutionized the treatment of diabetic retinopathy but a significant subset of patients fail to respond to treatment. Accumulating evidence indicates that inflammatory cytokines and chemokines other than VEGF may contribute to the disease process. The current review examines the presence of non-VEGF cytokines in the eyes of patients with diabetic retinopathy and highlights mechanistic pathways in relevant animal models. Finally, novel drug targets including components of the kinin-kallikrein system and emerging treatments such as anti-HPTP (human protein tyrosine phosphatase) β antibodies are discussed. Recognition of non-VEGF contributions to disease pathogenesis may lead to novel therapeutics to enhance existing treatments for patients who do not respond to anti-VEGF therapies.
Collapse
Affiliation(s)
- Mark T Bolinger
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| | - David A Antonetti
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
31
|
Lu J, Xia Y, Chen K, Zheng Y, Wang J, Lu W, Yin Q, Wang F, Zhou Y, Guo C. Oncogenic role of the Notch pathway in primary liver cancer. Oncol Lett 2016; 12:3-10. [PMID: 27347091 DOI: 10.3892/ol.2016.4609] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, which includes hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and fibrolamellar HCC, is one of the most common malignancies and the third leading cause of cancer-associated mortality, worldwide. Despite the development of novel therapies, the prognosis of liver cancer patients remains extremely poor. Thus, investigation of the genetic background and molecular mechanisms underlying the development and progression of this disease has gained significant attention. The Notch signaling pathway is a crucial determinant of cell fate during development and disease in several organs. In the liver, Notch signaling is involved in biliary tree development and tubulogenesis, and is also significant in the development of HCC and ICC. These findings suggest that the modulation of Notch pathway activity may have therapeutic relevance. The present review summarizes Notch signaling during HCC and ICC development and discusses the findings of recent studies regarding Notch expression, which reveal novel insights into its function in liver cancer progression.
Collapse
Affiliation(s)
- Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Department of Gastroenterology, The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Department of Gastroenterology, The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
32
|
Lu H, Cassis LA, Kooi CWV, Daugherty A. Structure and functions of angiotensinogen. Hypertens Res 2016; 39:492-500. [PMID: 26888118 PMCID: PMC4935807 DOI: 10.1038/hr.2016.17] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Angiotensinogen (AGT) is the sole precursor of all angiotensin peptides. Although AGT is generally considered as a passive substrate of the renin-angiotensin system, there is accumulating evidence that the regulation and functions of AGT are intricate. Understanding the diversity of AGT properties has been enhanced by protein structural analysis and animal studies. In addition to whole-body genetic deletion, AGT can be regulated in vivo by cell-specific procedures, adeno-associated viral approaches and antisense oligonucleotides. Indeed, the availability of these multiple manipulations of AGT in vivo has provided new insights into the multifaceted roles of AGT. In this review, the combination of structural and functional studies is highlighted to focus on the increasing recognition that AGT exerts effects beyond being a sole provider of angiotensin peptides.
Collapse
Affiliation(s)
- Hong Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
33
|
Barral M, Raballand A, Dohan A, Soyer P, Pocard M, Bonnin P. Preclinical Assessment of the Efficacy of Anti-Angiogenic Therapies in Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:438-446. [PMID: 26626491 DOI: 10.1016/j.ultrasmedbio.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/11/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Diffuse hepatocellular carcinoma (HCC) is a complex affliction in which comorbidities can bias global outcome of cancer therapy. Better methods are thus warranted to directly assess effects of therapy on tumor angiogenesis and growth. As tumor angiogenesis is invariably associated with changes in local blood flow, we assessed the utility of ultrasound imaging in evaluation of the efficacy of anti-angiogenic therapy in a spontaneous transgenic mouse model of HCC. Blood flow velocities were measured monthly in the celiac trunk before and after administration of sorafenib or bevacizumab at doses corresponding to those currently used in clinical practice. Concordant with clinical experience, sorafenib, but not bevacizumab, reduced microvascular density and suppressed tumor growth relative to controls. Evolution of blood flow velocities correlated with microvascular density and with the evolution of tumor size. Ultrasound imaging thus provides a useful non-invasive tool for preclinical evaluation of new anti-angiogenic therapies for HCC.
Collapse
Affiliation(s)
- Matthias Barral
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Annemilaï Raballand
- Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Beaujon Hospital, INSERM U728, Clichy, France
| | - Anthony Dohan
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Philippe Soyer
- Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Marc Pocard
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Digestive and Cancer Surgery, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Philippe Bonnin
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Clinical Physiology- Functional Investigations, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France.
| |
Collapse
|
34
|
Luna-Vital DA, Liang K, González de Mejía E, Loarca-Piña G. Dietary peptides from the non-digestible fraction of Phaseolus vulgaris L. decrease angiotensin II-dependent proliferation in HCT116 human colorectal cancer cells through the blockade of the renin–angiotensin system. Food Funct 2016; 7:2409-19. [DOI: 10.1039/c6fo00093b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptides in common beans reduced angiotensin II-dependent proliferation in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Diego A. Luna-Vital
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC)
- Research and Graduate Studies in Food Science
- School of Chemistry
- Universidad Autónoma de Querétaro
- Querétaro
| | - Katie Liang
- School of Molecular and Cellular Biology
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Elvira González de Mejía
- Department of Food Science and Human Nutrition
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC)
- Research and Graduate Studies in Food Science
- School of Chemistry
- Universidad Autónoma de Querétaro
- Querétaro
| |
Collapse
|
35
|
Lu H, Wu C, Howatt DA, Balakrishnan A, Moorleghen JJ, Chen X, Zhao M, Graham MJ, Mullick AE, Crooke RM, Feldman DL, Cassis LA, Vander Kooi CW, Daugherty A. Angiotensinogen Exerts Effects Independent of Angiotensin II. Arterioscler Thromb Vasc Biol 2015; 36:256-65. [PMID: 26681751 DOI: 10.1161/atvbaha.115.306740] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/03/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE This study determined whether angiotensinogen (AGT) has angiotensin II-independent effects using multiple genetic and pharmacological manipulations. APPROACH AND RESULTS All study mice were in low-density lipoprotein receptor -/- background and fed a saturated fat-enriched diet. In mice with floxed alleles and a neomycin cassette in intron 2 of the AGT gene (hypoAGT mice), plasma AGT concentrations were >90% lower compared with their wild-type littermates. HypoAGT mice had lower systolic blood pressure, less atherosclerosis, and diminished body weight gain and liver steatosis. Low plasma AGT concentrations and all phenotypes were recapitulated in mice with hepatocyte-specific deficiency of AGT or pharmacological inhibition of AGT by antisense oligonucleotide administration. In contrast, inhibition of AGT cleavage by a renin inhibitor, aliskiren, failed to alter body weight gain and liver steatosis in low-density lipoprotein receptor -/- mice. In mice with established adiposity, administration of AGT antisense oligonucleotide versus aliskiren led to equivalent reductions of systolic blood pressure and atherosclerosis. AGT antisense oligonucleotide administration ceased body weight gain and further reduced body weight, whereas aliskiren did not affect body weight gain during continuous saturated fat-enriched diet feeding. Structural comparisons of AGT proteins in zebrafish, mouse, rat, and human revealed 4 highly conserved sequences within the des(angiotensin I)AGT domain. des(angiotensin I)AGT, through adeno-associated viral infection in hepatocyte-specific AGT-deficient mice, increased body weight gain and liver steatosis, but did not affect atherosclerosis. CONCLUSIONS AGT contributes to body weight gain and liver steatosis through functions of the des(angiotensin I)AGT domain, which are independent of angiotensin II production.
Collapse
Affiliation(s)
- Hong Lu
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Congqing Wu
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Deborah A Howatt
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Jessica J Moorleghen
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Xiaofeng Chen
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Mingming Zhao
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Mark J Graham
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Adam E Mullick
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Rosanne M Crooke
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - David L Feldman
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Lisa A Cassis
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Craig W Vander Kooi
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (H.L., C.W., D.A.H., A.B., J.J.M., X.C., M.Z., A.D.); Departments of Physiology (H.L., A.D.), Pharmacology and Nutritional Sciences (C.W., L.A.C., A.D.), and Molecular and Cellular Biochemistry (C.W.V.K.), University of Kentucky, Lexington; Isis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G., A.E.M., R.M.C.); and Novartis Pharmaceuticals Corporation, East Hanover, NJ (D.L.F.).
| |
Collapse
|
36
|
Defourny J, Mateo Sánchez S, Schoonaert L, Robberecht W, Davy A, Nguyen L, Malgrange B. Cochlear supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 signalling. Nat Commun 2015; 6:7017. [DOI: 10.1038/ncomms8017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/25/2015] [Indexed: 01/08/2023] Open
|
37
|
Martin P, Noonan S, Mullen MP, Scaife C, Tosetto M, Nolan B, Wynne K, Hyland J, Sheahan K, Elia G, O'Donoghue D, Fennelly D, O'Sullivan J. Predicting response to vascular endothelial growth factor inhibitor and chemotherapy in metastatic colorectal cancer. BMC Cancer 2014; 14:887. [PMID: 25428203 PMCID: PMC4289341 DOI: 10.1186/1471-2407-14-887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bevacizumab improves progression free survival (PFS) and overall survival (OS) in metastatic colorectal cancer patients however currently there are no biomarkers that predict response to this treatment. The aim of this study was to assess if differential protein expression can differentiate patients who respond to chemotherapy and bevacizumab, and to assess if select proteins correlate with patient survival. METHODS Pre-treatment serum from patients with metastatic colorectal cancer (mCRC) treated with chemotherapy and bevacizumab were divided into responders and nonresponders based on their progression free survival (PFS). Serum samples underwent immunoaffinity depletion and protein expression was analysed using two-dimensional difference gel electrophoresis (2D-DIGE), followed by LC-MS/MS for protein identification. Validation on selected proteins was performed on serum and tissue samples from a larger cohort of patients using ELISA and immunohistochemistry, respectively (n = 68 and n = 95, respectively). RESULTS 68 proteins were identified following LC-MS/MS analysis to be differentially expressed between the groups. Three proteins (apolipoprotein E (APOE), angiotensinogen (AGT) and vitamin D binding protein (DBP)) were selected for validation studies. Increasing APOE expression in the stroma was associated with shorter progression free survival (PFS) (p = 0.0001) and overall survival (OS) (p = 0.01), DBP expression (stroma) was associated with shorter OS (p = 0.037). Increasing APOE expression in the epithelium was associated with a longer PFS and OS, and AGT epithelial expression was associated with a longer PFS (all p < .05). Increasing serum AGT concentration was associated with shorter OS (p = 0.009). CONCLUSIONS APOE, DBP and AGT identified were associated with survival outcomes in mCRC patients treated with chemotherapy and bevacizumab.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jacintha O'Sullivan
- Department of Surgery, Trinity Centre for Health Sciences, Institute of Molecular Medicine, St, James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
38
|
Dohan A, Lousquy R, Eveno C, Goere D, Broqueres-You D, Kaci R, Lehmann-Che J, Launay JM, Soyer P, Bonnin P, Pocard M. Orthotopic Animal Model of Pseudomyxoma Peritonei. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1920-9. [DOI: 10.1016/j.ajpath.2014.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 01/19/2023]
|
39
|
Manley E, Waxman DJ. H460 non-small cell lung cancer stem-like holoclones yield tumors with increased vascularity. Cancer Lett 2014; 346:63-73. [PMID: 24334139 PMCID: PMC3947657 DOI: 10.1016/j.canlet.2013.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/24/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
Cancer stem-like cells were isolated from several human tumor cell lines by limiting dilution assays and holoclone morphology, followed by assessment of self-renewal capacity, tumor growth, vascularity, and blood perfusion. H460 holoclone-derived tumors grew slower than parental H460 tumors, but displayed significantly increased microvessel density and tumor blood perfusion. Microarray analysis identified 177 differentially regulated genes in the holoclone-derived tumors, of which 47 were associated with angiogenesis. The dysregulated genes include several small leucine-rich proteoglycans that may modulate angiogenesis and serve as novel therapeutic targets for inhibiting cancer stem cell-driven angiogenesis.
Collapse
Affiliation(s)
- Eugene Manley
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Abstract
Colorectal cancer (CRC) continues to rank as the third most common cancer in Western society and the second leading cause of cancer death in North America. There are at least three distinct, and relatively discreet, molecular pathways associated with this disease: chromosomal instability (CIN), microsatellite instability (MSI) and the cytosine polyguanine island methylator phenotype. Defects in the DNA mismatch repair system (MMR) account for the MSI phenotype and genotype of about 15 % of CRC. Although high frequency MSI tumors have better stage independent prognosis compared to those with CIN, MMR deficient CRC appears to be resistant to fluorouracil based treatment, but sensitive to other therapeutic regimens. This review summarises current literature on differential chemosensitivity of MMR-deficient CRC.
Collapse
|
41
|
Wegman-Ostrosky T, Soto-Reyes E, Vidal-Millán S, Sánchez-Corona J. The renin-angiotensin system meets the hallmarks of cancer. J Renin Angiotensin Aldosterone Syst 2013; 16:227-33. [PMID: 23934336 DOI: 10.1177/1470320313496858] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/14/2013] [Indexed: 11/15/2022] Open
Abstract
The hallmarks of cancer are described as the distinctive and complementary capacities that cells must acquire during the multistep development of becoming a cancer cell that allow them to survive, proliferate and disseminate. The renin-angiotensin system (RAS) was first discovered and extensively studied in the physiological regulation of systemic arterial pressure. RAS signalling increases cell proliferation in malignancy by directly affecting tumour and stromal cells and by indirectly modulating the growth of vascular cells during angiogenesis. We aim to describe and give a general view of how the RAS is involved in several hallmarks of cancer and how this could open a window to several interesting treatments.
Collapse
Affiliation(s)
- Talia Wegman-Ostrosky
- Instituto Nacional de Cancerología, División de Investigación, México Universidad de Guadalajara, Instituto de Génetica Humana, México
| | | | | | - José Sánchez-Corona
- Universidad de Guadalajara, Instituto de Génetica Humana, México Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, México
| |
Collapse
|
42
|
Eveno C, Le Henaff C, Audollent R, Soyer P, Rampanou A, Nemeth J, Brouland JP, Dupuy E, Pocard M, Bonnin P. Tumor and non-tumor liver angiogenesis is traced and evaluated by hepatic arterial ultrasound in murine models. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1195-1204. [PMID: 22542260 DOI: 10.1016/j.ultrasmedbio.2012.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/22/2012] [Accepted: 03/04/2012] [Indexed: 05/31/2023]
Abstract
We studied the relationships between hepatic and mesenteric mean blood-flow velocities (mBFVs) measured by ultrasound imaging and (1) downstream tumor angiogenesis during liver metastasis induced by spleen injection of LS174 human colon cells overexpressing the antiangiogenic Netrin4 (LS174-NT4) or not (LS174-WT) and (2) downstream normal angiogenesis during hepatic regeneration after 50% hepatectomy. Liver volume and mBFVs were measured before and after surgery, at day 30 in the first model and at days 2, 7 and 16 in the second model. LS174-NT-4 vs. LS174-WT mice presented fewer metastases (25% vs. 90%, p < 0.001) and decreased hepatic mBFVs (16.5 ± 0.8 vs. 21.8 ± 1.4 cm s(-1), p < 0.01), without difference in mesenteric mBFVs. After partial hepatectomy, hepatic and mesenteric mBFVs increased at day 7, from 12.4 ± 1.7 and 11.8 ± 2.6 to 19.1 ± 1.8 and 17.5 ± 2.4 cm s(-1), respectively, (p < 0.01) then returned to baseline as liver volume. Duplex Doppler ultrasonography reliably assesses normal or tumor angiogenesis and may provide follow-up functional evaluation.
Collapse
Affiliation(s)
- Clarisse Eveno
- Université Paris-Diderot, Sorbonne Paris Cité, INSERM, UMR-S 965, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
A Novel Cellular Model to Study Angiotensin II AT2 Receptor Function in Breast Cancer Cells. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2012:745027. [PMID: 22187571 PMCID: PMC3236472 DOI: 10.1155/2012/745027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/06/2011] [Accepted: 09/06/2011] [Indexed: 01/05/2023]
Abstract
Recent studies have highlighted the AT1 receptor as a potential therapeutic target in breast cancer, while the role of the AT2 subtype in this disease has remained largely neglected. The present study describes the generation and characterization of a new cellular model of human invasive breast cancer cells (D3H2LN-AT2) stably expressing high levels of Flag-tagged human AT2 receptor (Flag-hAT2). These cells exhibit high-affinity binding sites for AngII, and total binding can be displaced by the AT2-selective antagonist PD123319 but not by the AT1-selective antagonist losartan. Of interest, high levels of expression of luciferase and green fluorescent protein make these cells suitable for bioluminescence and fluorescence studies in vitro and in vivo. We provide here a novel tool to investigate the AT2 receptor functions in breast cancer cells, independently of AT1 receptor activation.
Collapse
|
44
|
Clemessy M, Janzer RC, Lhermitte B, Gasc JM, Juillerat-Jeanneret L. Expression of dual angiogenic/neurogenic growth factors in human primary brain tumors. J Neurooncol 2011; 107:29-36. [PMID: 21979892 DOI: 10.1007/s11060-011-0715-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 09/16/2011] [Indexed: 12/20/2022]
Abstract
Brain tumors, benign or malignant, are characterized by a very high degree of vascularization. Recent accumulating evidence suggests that during development the neuronal wiring follows the same routes as the vasculature and that these two systems may share some of the same factors for guidance. Thus, expression of dual angiogenic/neurogenic growth factors was evaluated by in situ hybridization in human primary brain tumors of three different types, i.e., astrocytomas, oligodendrogliomas, and ependymomas, of increasing grades, in relation with the grade and type of the tumor. For this evaluation we selected vascular endothelial growth factor (VEGF-A) and its receptors VEGF-R1 and VEGF-R2 and the neuropilins 1 and 2 (NRP-1 and NRP-2), which have proangiogenic properties, platelet-derived growth factor (PDGF) receptor-beta (PDGF-Rβ), which is required for the functional maturation of blood vessels, the ephrins and their Eph receptors, angiotensinogen (AGT) and thrombospondin-2 (TSP-2), which have potential antiangiogenic properties, and netrin-1 (Net-1), which regulates vascular architecture. We show that the expression of the VEGF-NRP system, PDGF-Rβ, TSP-2, AGT, and Net-1 are differentially regulated, either increased or decreased, in relation with the type and grade of the tumor, whereas regulation of the ephrinB system does not seem to be relevant in these human brain tumors.
Collapse
Affiliation(s)
- Maud Clemessy
- INSERM U833, Collège-de-France, 11 place Marcelin Berthelot, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Bonnin P, Leger PL, Deroide N, Fau S, Baud O, Pocard M, Charriaut-Marlangue C, Renolleau S. Impact of intracranial blood-flow redistribution on stroke size during ischemia–reperfusion in 7-day-old rats. J Neurosci Methods 2011; 198:103-9. [DOI: 10.1016/j.jneumeth.2011.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/18/2011] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
|
46
|
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver tumor, is notoriously resistant to systemic therapies, and often recurs even after aggressive local therapies. HCCs rely on the formation of new blood vessels for growth, and VEGF is critical in this process. A hallmark of new vessel formation in tumors is their structural and functional abnormality. This leads to an abnormal tumor microenvironment characterized by low oxygen tension. The liver is perfused by both arterial and venous blood and the resulting abnormal microenvironment selects for more-aggressive malignancies. Anti-VEGF therapy with sorafenib was the first systemic therapy to demonstrate improved survival in patients with advanced-stage HCC. This important development in the treatment of HCC raises hope as well as critical questions on the future development of targeted agents including other antiangiogenic agents, which hold promise to further increase survival in this aggressive disease.
Collapse
|
47
|
Wu C, Lu H, Cassis LA, Daugherty A. Molecular and Pathophysiological Features of Angiotensinogen: A Mini Review. ACTA ACUST UNITED AC 2011; 4:183-190. [PMID: 22389749 DOI: 10.7156/v4i4p183] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The renin-angiotensin system is an essential regulatory system for blood pressure and fluid homeostasis. Angiotensinogen is the only known precursor of all the peptides generated in this system. While many of the basic understandings of angiotensinogen have come from research efforts to define its role in blood pressure regulation, novel pathophysiological functions of angiotensinogen have been discovered in the last two decades including kidney developmental abnormalities, atherosclerosis, and obesity. Despite the impressive advance in the understanding of angiotensinogen gene structure and protein functions, some fundamental questions remain unanswered. In this short review, we provide contemporary insights into the molecular characteristics of angiotensinogen and its pathophysiological features. In light of the recent progress, we emphasize some newly recognized functional features of angiotensinogen other than its regulation on blood pressure.
Collapse
Affiliation(s)
- Congqing Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
48
|
Abstract
For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin-angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
49
|
Ovando BJ, Ellison CA, Vezina CM, Olson JR. Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands. BMC Genomics 2010; 11:583. [PMID: 20959002 PMCID: PMC3091730 DOI: 10.1186/1471-2164-11-583] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/19/2010] [Indexed: 02/10/2023] Open
Abstract
Background Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs) to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC's are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR). Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats. Results Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100 ng/kg/day) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) (1000 ng/kg/day) and the non-DLC 2,2',4,4',5,5',-hexachlorobiphenyl (PCB153) (1000 μg/kg/day). A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk) and chronic (52-wk) p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 μg/kg, po). Phenotypic anchoring was conducted which identified forty-six genes that were differently expressed both following chronic p.o. exposure to DLCs and in previously reported studies of cholangiocarcinoma or hepatocellular adenoma. Conclusions Together these analyses provide a comprehensive description of the genomic responses which occur in rat hepatic tissue with exposure to AhR ligands and will help to isolate those genomic responses which are contributing to the hepatotoxicity observed with exposure to DLCs. In addition, the time independent gene expression signature of the AhR ligands may assist in identifying other agents with the potential to elicit dioxin-like hepatotoxic responses.
Collapse
Affiliation(s)
- Bladimir J Ovando
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
50
|
Van der Auwera I, Yu W, Suo L, Van Neste L, van Dam P, Van Marck EA, Pauwels P, Vermeulen PB, Dirix LY, Van Laere SJ. Array-based DNA methylation profiling for breast cancer subtype discrimination. PLoS One 2010; 5:e12616. [PMID: 20830311 PMCID: PMC2935385 DOI: 10.1371/journal.pone.0012616] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022] Open
Abstract
Background Abnormal DNA methylation is well established for breast cancer and contributes to its progression by silencing tumor suppressor genes. DNA methylation profiling platforms might provide an alternative approach to expression microarrays for accurate breast tumor subtyping. We sought to determine whether the distinction of the inflammatory breast cancer (IBC) phenotype from the non-IBC phenotype by transcriptomics could be sustained by methylomics. Methodology/Principal Findings We performed methylation profiling on a cohort of IBC (N = 19) and non-IBC (N = 43) samples using the Illumina Infinium Methylation Assay. These results were correlated with gene expression profiles. Methylation values allowed separation of breast tumor samples into high and low methylation groups. This separation was significantly related to DNMT3B mRNA levels. The high methylation group was enriched for breast tumor samples from patients with distant metastasis and poor prognosis, as predicted by the 70-gene prognostic signature. Furthermore, this tumor group tended to be enriched for IBC samples (54% vs. 24%) and samples with a high genomic grade index (67% vs. 38%). A set of 16 CpG loci (14 genes) correctly classified 97% of samples into the low or high methylation group. Differentially methylated genes appeared to be mainly related to focal adhesion, cytokine-cytokine receptor interactions, Wnt signaling pathway, chemokine signaling pathways and metabolic processes. Comparison of IBC with non-IBC led to the identification of only four differentially methylated genes (TJP3, MOGAT2, NTSR2 and AGT). A significant correlation between methylation values and gene expression was shown for 4,981 of 6,605 (75%) genes. Conclusions/Significance A subset of clinical samples of breast cancer was characterized by high methylation levels, which coincided with increased DNMT3B expression. Furthermore, an association was observed with molecular signatures indicative of poor patient prognosis. The results of the current study also suggest that aberrant DNA methylation is not the main force driving the molecular biology of IBC.
Collapse
Affiliation(s)
- Ilse Van der Auwera
- Translational Cancer Research Group, Laboratory of Pathology, University of Antwerp/University Hospital Antwerp, Oncology Center, Sint-Augustinus, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|