1
|
Etingov I, Pintel DJ. Inactivation of checkpoint kinase 1 (Chk1) during parvovirus minute virus of mice (MVM) infection inhibits cellular homologous recombination repair and facilitates viral genome replication. J Virol 2024; 98:e0088924. [PMID: 39565136 DOI: 10.1128/jvi.00889-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
During infection, the autonomous parvovirus minute virus of mice (MVM) induces cellular DNA breaks and localizes to such sites, which presumably affords an environment beneficial for genome replication. MVM replication also benefits from the DNA damage response (DDR) mediated by the ataxia-telangiectasia mutated (ATM) kinase, while the ataxia telangiectasia and Rad-3 related (ATR) arm of the DDR is disabled, which prevents activation of its primary target, checkpoint kinase 1 (Chk1). We find here that Chk1 inactivation strongly correlates with dephosphorylation of one of its targets, RAD51, known to play a pivotal role in homologous recombination repair (HRR), thus leading to substantial inhibition of DNA repair in infected cells. We demonstrate colocalization of replicating MVM DNA with cellular double-strand breaks (DSBs) during infection, and show that an agent that exogenously induces cellular DSBs significantly increases viral DNA replication levels, establishing a role for cellular genome damage in facilitating virus DNA replication. Additionally, overexpression of active Chk1 during MVM infection was found to re-establish the activating phosphorylation of RAD51 Thr 309, significantly suppress infection-induced reduction of HRR efficiency with a concomitant increase in cellular genome DSBs, and reduce viral DNA replication levels. Thus, we conclude that during infection, MVM inhibition of Chk1 activation enhances viral replication, at least in part, by inhibiting cellular HRR.IMPORTANCEThe autonomous parvovirus minute virus of mice (MVM) has a compact DNA genome encoding a minimum number of proteins. During infection, it induces cellular DNA damage and both utilizes and modifies the subsequent cellular DNA damage response (DDR) in various ways to facilitate its replication. One of MVM's activities in this regard is to inhibit one of the primary arms of the DDR, the ataxia telangiectasia and Rad-3 related (ATR) pathway, which prevents activation of checkpoint kinase 1 (Chk1), a key protein involved in controlling the cellular DDR and preserving genome integrity. We show that prevention by MVM of Chk1 activation leads to inhibition of homologous recombination repair (HRR) of cellular DNA, which helps sustain viral replication. This work illuminates another way in which autonomous parvoviruses adjust the cellular environment for their replicative advantage.
Collapse
Affiliation(s)
- Igor Etingov
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA
| |
Collapse
|
2
|
Lim HE, Lim HJ, Yoo HY. Interaction of DDB1 with NBS1 in a DNA Damage Checkpoint Pathway. Int J Mol Sci 2024; 25:13097. [PMID: 39684807 DOI: 10.3390/ijms252313097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Various DNA damage checkpoint control mechanisms in eukaryotic cells help maintain genomic integrity. Among these, NBS1, a key component of the MRE11-RAD50-NBS1 (MRN) complex, is an essential protein involved in the DNA damage response (DDR). In this study, we discovered that DNA damage-binding protein 1 (DDB1) interacts with NBS1. DDB1 is a DDR sensor protein found in UV-induced DNA replication blocks. Through pull-down and immunoprecipitation assays conducted in Xenopus egg extracts and human cell lines, we demonstrated a specific interaction between NBS1 and DDB1. DDB1 was also found to associate with several proteins that interact with NBS1, including DNA topoisomerase 2-binding protein 1 (TopBP1) and Mediator of DNA damage checkpoint protein 1 (MDC1). Notably, the interaction between DDB1 and NBS1 is disrupted in MDC1-depleted egg extracts, indicating that MDC1 is necessary for this interaction. Furthermore, the depletion of DDB1 leads to increased Chk1 activation upon DNA damage. These novel findings regarding the interaction between NBS1 and DDB1 provide new insights into how DDB1 regulates DNA damage pathways.
Collapse
Affiliation(s)
- Hoe Eun Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hee Jung Lim
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
3
|
Hernández-Carralero E, Quinet G, Freire R. ATXN3: a multifunctional protein involved in the polyglutamine disease spinocerebellar ataxia type 3. Expert Rev Mol Med 2024; 26:e19. [PMID: 39320846 PMCID: PMC11440613 DOI: 10.1017/erm.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 09/26/2024]
Abstract
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Grégoire Quinet
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Kim HS, Park JE, Lee WH, Kwon YB, Seu YB, Kim KS. Novel Amidine Derivative K1586 Sensitizes Colorectal Cancer Cells to Ionizing Radiation by Inducing Chk1 Instability. Int J Mol Sci 2024; 25:4396. [PMID: 38673980 PMCID: PMC11049894 DOI: 10.3390/ijms25084396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Checkpoint kinase 1 (Chk1) is a key mediator of the DNA damage response that regulates cell cycle progression, DNA damage repair, and DNA replication. Small-molecule Chk1 inhibitors sensitize cancer cells to genotoxic agents and have shown preclinical activity as single agents in cancers characterized by high levels of replication stress. However, the underlying genetic determinants of Chk1-inhibitor sensitivity remain unclear. Although treatment options for advanced colorectal cancer are limited, radiotherapy is effective. Here, we report that exposure to a novel amidine derivative, K1586, leads to an initial reduction in the proliferative potential of colorectal cancer cells. Cell cycle analysis revealed that the length of the G2/M phase increased with K1586 exposure as a result of Chk1 instability. Exposure to K1586 enhanced the degradation of Chk1 in a time- and dose-dependent manner, increasing replication stress and sensitizing colorectal cancer cells to radiation. Taken together, the results suggest that a novel amidine derivative may have potential as a radiotherapy-sensitization agent that targets Chk1.
Collapse
Affiliation(s)
- Hang Soo Kim
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ji-Eun Park
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- School of Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Won Hyung Lee
- R&D Center, Chemical Business Unit, Pharmicell Co., Ltd., Ulsan 45009, Republic of Korea;
| | - Young Bin Kwon
- Central Research Institute, Kyung Nong Co., Ltd., Gyeongju 38175, Republic of Korea;
| | - Young-Bae Seu
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Kwang Seok Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- School of Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Peng Q, Shi X, Li D, Guo J, Zhang X, Zhang X, Chen Q. SCML2 contributes to tumor cell resistance to DNA damage through regulating p53 and CHK1 stability. Cell Death Differ 2023; 30:1849-1867. [PMID: 37353627 PMCID: PMC10307790 DOI: 10.1038/s41418-023-01184-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/20/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
SCML2 has been found to be highly expressed in various tumors. However, the extent to which SCML2 is involved in tumorigenesis and cancer therapy is yet to be fully understood. In this study, we aimed to investigate the relationship between SCML2 and DNA damage response (DDR). Firstly, DNA damage stabilizes SCML2 through CHK1-mediated phosphorylation at Ser570. Functionally, this increased stability of SCML2 enhances resistance to DNA damage agents in p53-positive, p53-mutant, and p53-negative cells. Notably, SCML2 promotes chemoresistance through distinct mechanisms in p53-positive and p53-negative cancer cells. SCML2 binds to the TRAF domain of USP7, and Ser441 is a critical residue for their interaction. In p53-positive cancer cells, SCML2 competes with p53 for USP7 binding and destabilizes p53, which prevents DNA damage-induced p53 overactivation and increases chemoresistance. In p53-mutant or p53-negative cancer cells, SCML2 promotes CHK1 and p21 stability by inhibiting their ubiquitination, thereby enhancing the resistance to DNA damage agents. Interestingly, we found that SCML2A primarily stabilizes CHK1, while SCML2B regulates the stability of p21. Therefore, we have identified SCML2 as a novel regulator of chemotherapy resistance and uncovered a positive feedback loop between SCML2 and CHK1 after DNA damage, which serves to promote the chemoresistance to DNA damage agents.
Collapse
Affiliation(s)
- Qianqian Peng
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Xin Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Dingwei Li
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Jing Guo
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Xiaqing Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, PR China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Qiang Chen
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China.
| |
Collapse
|
6
|
Guo L, Dong Z, Zhang X, Yang Y, Hu X, Ji Y, Li C, Wan S, Xu J, Liu C, Zhang Y, Liu L, Shi Y, Wu Z, Liu Y, Cui H. Morusinol extracted from Morus alba induces cell cycle arrest and apoptosis via inhibition of DNA damage response in melanoma by CHK1 degradation through the ubiquitin-proteasome pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154765. [PMID: 37004403 DOI: 10.1016/j.phymed.2023.154765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUD Flavonoids have a variety of biological activities, such as anti-inflammation, anti-tumor, anti-thrombosis and so on. Morusinol, as a novel isoprene flavonoid extracted from Morus alba root barks, has the effects of anti-arterial thrombosis and anti-inflammatory in previous studies. However, the anti-cancer mechanism of morusinol remains unclear. PURPOSE In present study, we mainly studied the anti-tumor effect of morusinol and its mode of action in melanoma. METHODS The anti-cancer effect of morusinol on melanoma were evaluated by using the MTT, EdU, plate clone formation and soft agar assay. Flow cytometry was used for detecting cell cycle and apoptosis. The ɣ-H2AX immunofluorescence and the alkaline comet assay were used to detect DNA damage and the Western blotting analysis was used to investigate the expressions of DNA-damage related proteins. Ubiquitination and turnover of CHK1 were also detected by using the immunoprecipitation assay. The cell line-derived xenograft (CDX) mouse models were used in vivo to evaluate the effect of morusinol on tumorigenicity. RESULTS We demonstrated that morusinol not only had the ability to inhibit cell proliferation, but also induced cell cycle arrest at G0/G1 phase, caspase-dependent apoptosis and DNA damage in human melanoma cells. In addition, morusinol effectively inhibited the growth of melanoma xenografts in vivo. More strikingly, CHK1, which played an important role in maintaining the integrity of cell cycle, genomic stability and cell viability, was down-regulated in a dose- and time-dependent manner after morusinol treatment. Further research showed that CHK1 was degraded by the ubiquitin-proteasome pathway. Whereafter, morusinol-induced cell cycle arrest, apoptosis and DNA damage were partially salvaged by overexpressing CHK1 in melanoma cell lines. Herein, further experiments demonstrated that morusinol increased the sensitivity of dacarbazine (DTIC) to chemotherapy for melanoma in vitro and in vivo. CONCLUSION Morusinol induces CHK1 degradation through the ubiquitin-proteasome pathway, thereby inducing cell cycle arrest, apoptosis and DNA damage response in melanoma. Our study firstly provided a theoretical basis for morusinol to be a candidate drug for clinical treatment of cancer, such as melanoma, alone or combinated with dacarbazine.
Collapse
Affiliation(s)
- Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China; State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Zhen Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China; Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Xiaolin Zhang
- Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yuanmiao Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Sicheng Wan
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Jie Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Yaqiong Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Zonghui Wu
- Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China; Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
7
|
Shao Y, Zhang W, Du D, Yu Y, Li Q, Peng X. Ubiquitin-like protein FAT10 promotes renal fibrosis by stabilizing USP7 to prolong CHK1-mediated G2/M arrest in renal tubular epithelial cells. Aging (Albany NY) 2022; 14:7527-7546. [PMID: 36152057 PMCID: PMC9550257 DOI: 10.18632/aging.204301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
Renal fibrosis is the pathological hallmark of chronic kidney disease that is influenced by numerous factors. Arrest of renal tubular epithelial cells (RTECs) in G2/M phase is closely correlated with the progression of renal fibrosis; however, the mechanisms mediating these responses remain poorly defined. In this study, we observed that human leukocyte antigen-F adjacent transcript 10 (FAT10) deficiency abolished hypoxia-induced upregulation of checkpoint kinase 1 (CHK1) expression in RTECs derived from FAT10+/+ and FAT10−/− mice. Further investigations revealed that FAT10 contributes to CHK1-mediated G2/M arrest and production of pro-fibrotic cytokines in RTECs exposed to hypoxia. Mechanistically, FAT10 directly interacted with and stabilized the deubiquitylating enzyme ubiquitin specific protease 7 (USP7) to mediate CHK1 upregulation, thereby promoting CHK1-mediated G2/M arrest in RTECs. In animal model, FAT10 expression was upregulated in the obstructed kidneys of mice induced by unilateral ureteric obstruction injury, and FAT10−/− mice exhibited reduced unilateral ureteric obstruction injury induced-renal fibrosis compared with FAT10+/+ mice. Furthermore, in a cohort of patients with calculi-related chronic kidney disease, upregulated FAT10 expression was positively correlated with renal fibrosis and the USP7/CHK1 axis. These novel findings indicate that FAT10 prolongs CHK1-mediated G2/M arrest via USP7 to promote renal fibrosis, and inhibition of the FAT10/USP7/CHK1 axis might be a plausible therapeutic approach to alleviate renal fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Ying Shao
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang 330006, Jiangxi Province, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dongnian Du
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qing Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
8
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
9
|
Yang L, Chen W, Li L, Xiao Y, Fan S, Zhang Q, Xia T, Li M, Hong Y, Zhao T, Li Q, Liu WH, Xiao N. Ddb1 Is Essential for the Expansion of CD4 + Helper T Cells by Regulating Cell Cycle Progression and Cell Death. Front Immunol 2021; 12:722273. [PMID: 34526995 PMCID: PMC8435776 DOI: 10.3389/fimmu.2021.722273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Follicular helper T (TFH) cells are specialized CD4+ helper T cells that provide help to B cells in humoral immunity. However, the molecular mechanism underlying generation of TFH cells is incompletely understood. Here, we reported that Damage-specific DNA binding protein 1 (Ddb1) was required for expansion of CD4+ helper T cells including TFH and Th1 cells, germinal center response, and antibody response to acute viral infection. Ddb1 deficiency in activated CD4+ T cells resulted in cell cycle arrest at G2-M phase and increased cell death, due to accumulation of DNA damage and hyperactivation of ATM/ATR-Chk1 signaling. Moreover, mice with deletion of both Cul4a and Cul4b in activated CD4+ T cells phenocopied Ddb1-deficient mice, suggesting that E3 ligase-dependent function of Ddb1 was crucial for genome maintenance and helper T-cell generation. Therefore, our results indicate that Ddb1 is an essential positive regulator in the expansion of CD4+ helper T cells.
Collapse
Affiliation(s)
- Lingtao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yueyue Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shilin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Quan Zhang
- School of Medicine, Xiamen University, Xiamen, China
| | - Tian Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mengjie Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tongjin Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
11
|
A catalytic-independent function of human DNA polymerase Kappa controls the stability and abundance of the Checkpoint Kinase 1. Mol Cell Biol 2021; 41:e0009021. [PMID: 34398682 DOI: 10.1128/mcb.00090-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase kappa (Pol κ) has been well documented thus far for its specialized DNA synthesis activity during translesion replication, progression of replication forks through regions difficult to replicate, restart of stalled forks and replication checkpoint efficiency. Pol κ is also required for the stabilization of stalled forks although the mechanisms are poorly understood. Here we unveiled an unexpected role for Pol κ in controlling the stability and abundance of Chk1, an important actor for the replication checkpoint and fork stabilization. We found that loss of Pol κ decreased the Chk1 protein level in the nucleus of four human cell lines. Pol κ and not the other Y-family polymerase members is required to maintain the Chk1 protein pool all along the cell cycle. We showed that Pol κ depletion affected the protein stability of Chk1 and protected it from proteasome degradation. Importantly, we also observed that the fork restart defects observed in Pol κ-depleted cells could be overcome by the re-expression of Chk1. Strikingly, this new function of Pol κ does not require its catalytic activity. We propose that Pol κ could contribute to the protection of stalled forks through Chk1 stability.
Collapse
|
12
|
Chk1 and the Host Cell DNA Damage Response as a Potential Antiviral Target in BK Polyomavirus Infection. Viruses 2021; 13:v13071353. [PMID: 34372559 PMCID: PMC8310304 DOI: 10.3390/v13071353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
The human BK polyomavirus (BKPyV) is latent in the kidneys of most adults, but can be reactivated in immunosuppressed states, such as following renal transplantation. If left unchecked, BK polyomavirus nephropathy (PyVAN) and possible graft loss may result from viral destruction of tubular epithelial cells and interstitial fibrosis. When coupled with regular post-transplant screening, immunosuppression reduction has been effective in limiting BKPyV viremia and the development of PyVAN. Antiviral drugs that are safe and effective in combating BKPyV have not been identified but would be a benefit in complementing or replacing immunosuppression reduction. The present study explores inhibition of the host DNA damage response (DDR) as an antiviral strategy. Immunohistochemical and immunofluorescent analyses of PyVAN biopsies provide evidence for stimulation of a DDR in vivo. DDR pathways were also stimulated in vitro following BKPyV infection of low-passage human renal proximal tubule epithelial cells. The role of Chk1, a protein kinase known to be involved in the replication stress-induced DDR, was examined by inhibition with the small molecule LY2603618 and by siRNA-mediated knockdown. Inhibition of Chk1 resulted in decreased replication of BKPyV DNA and viral spread. Activation of mitotic pathways was associated with the reduction in BKPyV replication. Chk1 inhibitors that are found to be safe and effective in clinical trials for cancer should also be evaluated for antiviral activity against BKPyV.
Collapse
|
13
|
Zhou Z, Qiu R, Liu W, Yang T, Li G, Huang W, Teng X, Yang Y, Yu H, Yang Y, Wang Y. BCAS3 exhibits oncogenic properties by promoting CRL4A-mediated ubiquitination of p53 in breast cancer. Cell Prolif 2021; 54:e13088. [PMID: 34240781 PMCID: PMC8349660 DOI: 10.1111/cpr.13088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Breast cancer‐amplified sequence 3 (BCAS3) was initially found to be amplified in human breast cancer (BRCA); however, there has been little consensus on the functions of BCAS3 in breast tumours. Materials and methods We analysed BCAS3 expression in BRCA using bio‐information tools. Affinity purification and mass spectrometry were employed to identify BCAS3‐associated proteins. GST pull‐down and ubiquitination assays were performed to analyse the interaction mechanism between BCAS3/p53 and CUL4A‐RING E3 ubiquitin ligase (CRL4A) complex. BCAS3 was knocked down individually or in combination with p53 in MCF‐7 cells to further explore the biological functions of the BCAS3/p53 axis. The clinical values of BCAS3 for BRCA progression were evaluated via semiquantitative immunohistochemistry (IHC) analysis and Cox regression. Results We reported that the expression level of BCAS3 in BRCA was higher than that in adjacent normal tissues. High BCAS3 expression promoted growth, inhibited apoptosis and conferred chemoresistance in breast cancer cells. Mechanistically, BCAS3 overexpression fostered BRCA cell growth by interacting with the CRL4A complex and promoting ubiquitination and proteasomal degradation of p53. Furthermore, BCAS3 could regulate cell growth, apoptosis and chemoresistance through a p53‐mediated mechanism. Clinically, BCAS3 overexpression was significantly correlated with a malignant phenotype. Moreover, higher expression of BCAS3 correlates with shorter overall survival (OS) in BRCA. Conclusions The functional characterization of BCAS3 offers new insights into the oncogenic properties and chemotherapy resistance in breast cancer.
Collapse
Affiliation(s)
- Zhe Zhou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, China
| | - Wei Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianshu Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Gen Li
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hefen Yu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Fukumoto Y, Ikeuchi M, Qu L, Hoshino T, Yamaguchi N, Nakayama Y, Ogra Y. Nuclear translocation promotes proteasomal degradation of human Rad17 protein through the N-terminal destruction boxes. J Biol Chem 2021; 297:100831. [PMID: 34174284 PMCID: PMC8318897 DOI: 10.1016/j.jbc.2021.100831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
The ATR pathway is one of the major DNA damage checkpoints, and Rad17 is a DNA-binding protein that is phosphorylated upon DNA damage by ATR kinase. Rad17 recruits the 9-1-1 complex that mediates the checkpoint activation, and proteasomal degradation of Rad17 is important for recovery from the ATR pathway. Here, we identified several Rad17 mutants deficient in nuclear localization and resistant to proteasomal degradation. The nuclear localization signal was identified in the central basic domain of Rad17. Rad17 Δ230–270 and R240A/L243A mutants that were previously postulated to lack the destruction box, a sequence that is recognized by the ubiquitin ligase/anaphase-promoting complex that mediates degradation of Rad17, also showed cytoplasmic localization. Our data indicate that the nuclear translocation of Rad17 is functionally linked to the proteasomal degradation. The ATP-binding activity of Rad17, but not hydrolysis, is essential for the nuclear translocation, and the ATPase domain orchestrates the nuclear translocation, the proteasomal degradation, as well as the interaction with the 9-1-1 complex. The Rad17 mutant that lacked a nuclear localization signal was proficient in the interaction with the 9-1-1 complex, suggesting cytosolic association of Rad17 and the 9-1-1 complex. Finally, we identified two tandem canonical and noncanonical destruction boxes in the N-terminus of Rad17 as the bona fide destruction box, supporting the role of anaphase-promoting complex in the degradation of Rad17. We propose a model in which Rad17 is activated in the cytoplasm for translocation into the nucleus and continuously degraded in the nucleus even in the absence of exogenous DNA damage.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Liang Qu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoto Yamaguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Wenmaekers S, Viergever BJ, Kumar G, Kranenburg O, Black PC, Daugaard M, Meijer RP. A Potential Role for HUWE1 in Modulating Cisplatin Sensitivity. Cells 2021; 10:cells10051262. [PMID: 34065298 PMCID: PMC8160634 DOI: 10.3390/cells10051262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is a widely used antineoplastic agent, whose efficacy is limited by primary and acquired therapeutic resistance. Recently, a bladder cancer genome-wide CRISPR/Cas9 knock-out screen correlated cisplatin sensitivity to multiple genetic biomarkers. Among the screen’s top hits was the HECT domain-containing ubiquitin E3 ligase (HUWE1). In this review, HUWE1 is postulated as a therapeutic response modulator, affecting the collision between platinum-DNA adducts and the replication fork, the primary cytotoxic action of platins. HUWE1 can alter the cytotoxic response to platins by targeting essential components of the DNA damage response including BRCA1, p53, and Mcl-1. Deficiency of HUWE1 could lead to enhanced DNA damage repair and a dysfunctional apoptotic apparatus, thereby inducing resistance to platins. Future research on the relationship between HUWE1 and platins could generate new mechanistic insights into therapy resistance. Ultimately, HUWE1 might serve as a clinical biomarker to tailor cancer treatment strategies, thereby improving cancer care and patient outcomes.
Collapse
Affiliation(s)
- Stijn Wenmaekers
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Bastiaan J. Viergever
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Gunjan Kumar
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
| | - Peter C. Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Correspondence: (M.D.); (R.P.M.)
| | - Richard P. Meijer
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- Correspondence: (M.D.); (R.P.M.)
| |
Collapse
|
16
|
Mirsanaye AS, Typas D, Mailand N. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions. Trends Cell Biol 2021; 31:584-597. [PMID: 33612353 DOI: 10.1016/j.tcb.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Accurate duplication of chromosomal DNA is vital for faithful transmission of the genome during cell division. However, DNA replication integrity is frequently challenged by genotoxic insults that compromise the progression and stability of replication forks, posing a threat to genome stability. It is becoming clear that the organization of the replisome displays remarkable flexibility in responding to and overcoming a wide spectrum of fork-stalling insults, and that these transactions are dynamically orchestrated and regulated by protein post-translational modifications (PTMs) including ubiquitylation. In this review, we highlight and discuss important recent advances on how ubiquitin-mediated signaling at the replication fork plays a crucial multifaceted role in regulating replisome composition and remodeling its configuration upon replication stress, thereby ensuring high-fidelity duplication of the genome.
Collapse
Affiliation(s)
- Ann Schirin Mirsanaye
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dimitris Typas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
17
|
Chen Y, Shao X, Cao J, Zhu H, Yang B, He Q, Ying M. Phosphorylation regulates cullin-based ubiquitination in tumorigenesis. Acta Pharm Sin B 2021; 11:309-321. [PMID: 33643814 PMCID: PMC7893081 DOI: 10.1016/j.apsb.2020.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.
Collapse
Key Words
- AIRE, autoimmune regulator
- AKT, AKT serine/threonine kinase
- ATR, ataxia telangiectasia-mutated and Rad3-related
- BCL2, BCL2 apoptosis regulator
- BMAL1, aryl hydrocarbon receptor nuclear translocator like
- CDK2/4, cyclin dependent kinase 2/4
- CDT2, denticleless E3 ubiquitin protein ligase homolog
- CHK1, checkpoint kinase 1
- CK1/2, casein kinase I/II
- CLOCK, clock circadian regulator
- COMMD1, copper metabolism domain containing 1
- CRL, cullin-RING ligase
- CRY1, cryptochrome circadian regulator 1
- CSN, COP9 signalosome
- Ci, cubitus interruptus
- Crosstalk
- Cullin-RING ligases
- DDB1, damage specific DNA binding protein 1
- DYRK1A/B, dual-specificity tyrosine-phosphorylation-regulated kinases 1A/B
- Degradation
- EMT, epithelial–mesenchymal transition
- ERG, ETS transcription factor ERG
- ERK, mitogen-activated protein kinase 1
- EXO1, exonuclease 1
- FBW7, F-box and WD repeat domain containing 7
- FBXL3, F-box and leucine rich repeat protein
- FBXO3/31, F-box protein 3/31
- FZR1, fizzy and cell division cycle 20 related 1
- HCC, hepatocellular carcinomas
- HIB, Hedghog-induced MATH and BTB domain-containing protein
- HIF1α, NF-κB and hypoxia inducible factor 1 subunit alpha
- ID2, inhibitor of DNA binding 2
- JAB1, c-Jun activation domain binding protein-1
- KBTBD8, kelch repeat and BTB domain containing 8
- KDM2B, lysine demethylase 2B
- KEAP1, kelch like ECH associated protein 1
- KLHL3, kelch like family member 3
- KRAS, KRAS proto-oncogene, GTPase
- Kinases
- MYC, MYC proto-oncogene, bHLH transcription factor
- NEDD8, NEDD8 ubiquitin like modifier
- NOLC1, nucleolar and coiled-body phosphoprotein 1
- NRF2, nuclear factor, erythroid 2 like 2
- P-TEFb, positive transcription elongation factor b
- PDL1, programmed death ligand 1
- PKC, protein kinase C
- PKM2, pyruvate kinase M2 isoform
- PYGO2, pygopus 2
- Phosphorylation
- RA, retinoic acid
- RARα, RA receptor α
- RRM2, ribonucleotide reductase regulatory subunit M2
- SNAIL1, snail family transcriptional repressor 1
- SOCS6, suppressor of cytokine signaling 6
- SPOP, speckle-type POZ protein
- SRC-3, nuclear receptor coactivator 3
- TCN, triciribine hydrate
- TCOF1, treacle ribosome biogenesis factor 1
- TRF1, telomeric repeat binding factor 1
- Targeted therapy
- Tumorigenesis
- USP37, ubiquitin specific peptidase 37
- Ubiquitination
- VHL, von Hippel-Lindau tumor suppressor
- Vps34, phosphatidylinositol 3-kinase catalytic subunit type 3
- XBP1, X-box binding protein 1
- ZBTB16, zinc finger and BTB domain containing 16
- c-Fos, Fos proto-oncogene, AP-1 transcription factor subunit
- p130Cas, BCAR1 scaffold protein, Cas family member
Collapse
|
18
|
CRL4A DTL degrades DNA-PKcs to modulate NHEJ repair and induce genomic instability and subsequent malignant transformation. Oncogene 2021; 40:2096-2111. [PMID: 33627782 PMCID: PMC7979543 DOI: 10.1038/s41388-021-01690-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
Abstract
Genomic instability induced by DNA damage and improper DNA damage repair is one of the main causes of malignant transformation and tumorigenesis. DNA double strand breaks (DSBs) are the most detrimental form of DNA damage, and nonhomologous end-joining (NHEJ) mechanisms play dominant and priority roles in initiating DSB repair. A well-studied oncogene, the ubiquitin ligase Cullin 4A (CUL4A), is reported to be recruited to DSB sites in genomic DNA, but whether it regulates NHEJ mechanisms of DSB repair is unclear. Here, we discovered that the CUL4A-DTL ligase complex targeted the DNA-PKcs protein in the NHEJ repair pathway for nuclear degradation. Overexpression of either CUL4A or DTL reduced NHEJ repair efficiency and subsequently increased the accumulation of DSBs. Moreover, we demonstrated that overexpression of either CUL4A or DTL in normal cells led to genomic instability and malignant proliferation. Consistent with the in vitro findings, in human precancerous lesions, CUL4A expression gradually increased with increasing malignant tendency and was negatively correlated with DNA-PKcs and positively correlated with γ-H2AX expression. Collectively, this study provided strong evidence that the CUL4A-DTL axis increases genomic instability and enhances the subsequent malignant transformation of normal cells by inhibiting NHEJ repair. These results also suggested that CUL4A may be a prognostic marker of precancerous lesions and a potential therapeutic target in cancer.
Collapse
|
19
|
Sun J, Zhu Z, Li W, Shen M, Cao C, Sun Q, Guo Z, Liu L, Wu D. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:222. [PMID: 33087136 PMCID: PMC7576867 DOI: 10.1186/s13046-020-01734-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Background Radioresistance is the major obstacle in radiation therapy (RT) for hepatocellular carcinoma (HCC). Dysregulation of DNA damage response (DDR), which includes DNA repair and cell cycle checkpoints activation, leads to radioresistance and limits radiotherapy efficacy in HCC patients. However, the underlying mechanism have not been clearly understood. Methods We obtained 7 pairs of HCC tissues and corresponding non-tumor tissues, and UBE2T was identified as one of the most upregulated genes. The radioresistant role of UBE2T was examined by colony formation assays in vitro and xenograft tumor models in vivo. Comet assay, cell cycle flow cytometry and γH2AX foci measurement were used to investigate the mechanism by which UBE2T mediating DDR. Chromatin fractionation and immunofluorescence staining were used to assess cell cycle checkpoint kinase 1(CHK1) activation. Finally, we analyzed clinical data from HCC patients to verify the function of UBE2T. Results Here, we found that ubiquitin-conjugating enzyme E2T (UBE2T) was upregulated in HCC tissues, and the HCC patients with higher UBE2T levels exhibited poorer outcomes. Functional studies indicated that UBE2T increased HCC radioresistance in vitro and in vivo. Mechanistically, UBE2T-RNF8, was identified as the E2-E3 pair, physically bonded with and monoubiquitinated histone variant H2AX/γH2AX upon radiation exposure. UBE2T-regulated H2AX/γH2AX monoubiquitination facilitated phosphorylation of CHK1 for activation and CHK1 release from the chromatin to cytosol for degradation. The interruption of UBE2T-mediated monoubiquitination on H2AX/γH2AX, including E2-enzyme-deficient mutation (C86A) of UBE2T and monoubiquitination-site-deficient mutation (K119/120R) of H2AX, cannot effectively activate CHK1. Moreover, genetical and pharmacological inhibition of CHK1 impaired the radioresistant role of UBE2T in HCC. Furthermore, clinical data suggested that the HCC patients with higher UBE2T levels exhibited worse response to radiotherapy. Conclusion Our results revealed a novel role of UBE2T-mediated H2AX/γH2AX monoubiquitination on facilitating cell cycle arrest activation to provide sufficient time for radiation-induced DNA repair, thus conferring HCC radioresistance. This study indicated that disrupting UBE2T-H2AX-CHK1 pathway maybe a promising potential strategy to overcome HCC radioresistance. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01734-4.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengying Shen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qingcan Sun
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zeqin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Moses N, Zhang M, Wu JY, Hu C, Xiang S, Geng X, Chen Y, Bai W, Zhang YW, Bepler G, Zhang XM. HDAC6 Regulates Radiosensitivity of Non-Small Cell Lung Cancer by Promoting Degradation of Chk1. Cells 2020; 9:cells9102237. [PMID: 33020410 PMCID: PMC7600810 DOI: 10.3390/cells9102237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
We have previously discovered that HDAC6 regulates the DNA damage response (DDR) via modulating the homeostasis of a DNA mismatch repair protein, MSH2, through HDAC6’s ubiquitin E3 ligase activity. Here, we have reported HDAC6’s second potential E3 ligase substrate, a critical cell cycle checkpoint protein, Chk1. We have found that HDAC6 and Chk1 directly interact, and that HDAC6 ubiquitinates Chk1 in vivo and in vitro. Specifically, HDAC6 interacts with Chk1 via the DAC1 domain, which contains its ubiquitin E3 ligase activity. During the cell cycle, Chk1 protein levels fluctuate, peaking at the G2 phase, subsequently resolving via the ubiquitin-proteasome pathway, and thereby allowing cells to progress to the M phase. However, in HDAC6 knockdown non-small cell lung cancer (NSCLC) cells, Chk1 is constitutively active and fails to resolve post-ionizing radiation (IR), and this enhanced Chk1 activity leads to preferential G2 arrest in HDAC6 knockdown cells accompanied by a reduction in colony formation capacity and viability. Depletion or pharmacological inhibition of Chk1 in HDAC6 knockdown cells reverses this radiosensitive phenotype, suggesting that the radiosensitivity of HDAC6 knockdown cells is dependent on increased Chk1 kinase activity. Overall, our results highlight a novel mechanism of Chk1 regulation at the post-translational level, and a possible strategy for sensitizing NSCLC to radiation via inhibiting HDAC6’s E3 ligase activity.
Collapse
Affiliation(s)
- Niko Moses
- Cancer Biology Graduate Program, Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA;
| | - Mu Zhang
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Jheng-Yu Wu
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Chen Hu
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Shengyan Xiang
- Department of Pathology & Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; (S.X.); (W.B.)
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University,2109 Adelbert Road, Wood Building W343A, Cleveland, OH 44106, USA; (X.G.); (Y.-W.Z.)
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA;
| | - Wenlong Bai
- Department of Pathology & Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; (S.X.); (W.B.)
| | - You-Wei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University,2109 Adelbert Road, Wood Building W343A, Cleveland, OH 44106, USA; (X.G.); (Y.-W.Z.)
| | - Gerold Bepler
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Xiaohong Mary Zhang
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
- Correspondence: ; Tel.: +1-313-576-8672; Fax: +1-313-576-8928
| |
Collapse
|
21
|
Neizer-Ashun F, Bhattacharya R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett 2020; 497:202-211. [PMID: 32991949 DOI: 10.1016/j.canlet.2020.09.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
The DNA damage response enables cells to cope with various stresses that threaten genomic integrity. A critical component of this response is the serine/threonine kinase CHK1 which is encoded by the CHEK1 gene. Originally identified as a regulator of the G2/M checkpoint, CHK1 has since been shown to play important roles in DNA replication, mitotic progression, DNA repair, and overall cell cycle regulation. However, the potential of CHK1 as a cancer therapy has not been realized clinically. Herein we expound our current understanding of the principal roles of CHK1 and highlight different avenues for CHK1 targeting in cancer therapy.
Collapse
Affiliation(s)
- Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States
| | - Resham Bhattacharya
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, United States; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
22
|
Cassidy KB, Bang S, Kurokawa M, Gerber SA. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J 2020; 287:1985-1999. [PMID: 31713291 PMCID: PMC7226928 DOI: 10.1111/febs.15132] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/19/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single-strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady-state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
Collapse
Affiliation(s)
- Katelyn B. Cassidy
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Manabu Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Department of Biological Sciences, Kent State University, Kent, OH 44242
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| | - Scott A. Gerber
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| |
Collapse
|
23
|
Pal D, Torres AE, Stromberg BR, Messina AL, Dickson AS, De K, Willard B, Venere M, Summers MK. Chk1-mediated phosphorylation of Cdh1 promotes the SCF βTRCP-dependent degradation of Cdh1 during S-phase and efficient cell-cycle progression. Cell Death Dis 2020; 11:298. [PMID: 32345958 PMCID: PMC7188793 DOI: 10.1038/s41419-020-2493-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/04/2022]
Abstract
APC/CCdh1 is a ubiquitin ligase with roles in numerous diverse processes, including control of cellular proliferation and multiple aspects of the DNA damage response. Precise regulation of APC/CCdh1 activity is central to efficient cell-cycle progression and cellular homeostasis. Here, we have identified Cdh1 as a direct substrate of the replication stress checkpoint effector kinase Chk1 and demonstrate that Chk1-mediated phosphorylation of Cdh1 contributes to its recognition by the SCFβTRCP ubiquitin ligase, promotes efficient S-phase entry, and is important for cellular proliferation during otherwise unperturbed cell cycles. We also find that prolonged Chk1 activity in late S/G2 inhibits Cdh1 accumulation. In addition to promoting control of APC/CCdh1 activity by facilitating Cdh1 destruction, we find that Chk1 also antagonizes activity of the ligase by perturbing the interaction between Cdh1 and the APC/C. Overall, these data suggest that the rise and fall of Chk1 activity contributes to the regulation of APC/CCdh1 activity that enhances the replication process.
Collapse
Affiliation(s)
- Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Abbey L Messina
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kuntal De
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Monica Venere
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Cartel M, Didier C. Regulation of CHK1 by the Ubiquitin-Proteasome System. FEBS J 2020; 287:1982-1984. [PMID: 31904911 DOI: 10.1111/febs.15173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Abstract
The checkpoint kinase 1 (CHK1) is a master regulator of genome integrity in vertebrate cells. Despite its important cell cycle functions, its regulation is still incompletely understood. Cassidy et al. provide novel insights on the regulation of the CHK1 abundance by the HECT E3 ligase HUWE1 during unperturbed cell cycle as well as in response to replicative stress. These results may help us to apprehend the underlying mechanism of tumorigenesis.
Collapse
Affiliation(s)
- Maëlle Cartel
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL 5294, Université de Toulouse, France.,Équipe Labellisée 2016, Ligue Nationale Contre le Cancer, Toulouse, France
| | - Christine Didier
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL 5294, Université de Toulouse, France.,Équipe Labellisée 2016, Ligue Nationale Contre le Cancer, Toulouse, France
| |
Collapse
|
25
|
Dantuma NP, Herzog LK. Machado-Joseph Disease: A Stress Combating Deubiquitylating Enzyme Changing Sides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:237-260. [PMID: 32274760 DOI: 10.1007/978-3-030-38266-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Machado-Joseph disease (MJD), also known as Spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant inheritable neurodegenerative disorder. After a long pre-symptomatic period, this late-onset disease progressively disables patients and typically leads to premature death. Neuronal loss in specific regions of the cerebellum, brainstem and basal ganglia as well as the spinal cord explains the spectra of debilitating neurological symptoms, most strikingly progressive limb, and gait ataxia. The genetic cause of MJD is a polyglutamine (polyQ) repeat expansion in the gene that encodes ataxin-3. This polyQ-containing protein displays a well-defined catalytic activity as ataxin-3 is a deubiquitylating enzyme that removes and disassembles ubiquitin chains from specific substrates. While mutant ataxin-3 with an expanded polyQ repeat induces cellular stress due to its propensity to aggregate, the native functions of wild-type ataxin-3 are linked to the cellular countermeasures against the very same stress conditions inflicted by polyQ-containing and other aggregation-prone proteins. Hence, a mixture of gain-of-function and loss-of-function mechanisms are likely to contribute to the neuronal demise observed in MJD. In this review, we discuss the intimate link between ataxin-3 and cellular stress and its relevance for therapeutic intervention in MJD.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
| | - Laura K Herzog
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
CRL4 Ubiquitin Pathway and DNA Damage Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:225-239. [PMID: 31898231 DOI: 10.1007/978-981-15-1025-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA damage occurs in a human cell at an average frequency of 10,000 incidences per day by means of external and internal culprits, damage that triggers sequential cellular responses and stalls the cell cycle while activating specific DNA repair pathways. Failure to remove DNA lesions would compromise genomic integrity, leading to human diseases such as cancer and premature aging. If DNA damage is extensive and cannot be repaired, cells undergo apoptosis. DNA damage response (DDR) often entails posttranslational modifications of key DNA repair and DNA damage checkpoint proteins, including phosphorylation and ubiquitination. Cullin-RING ligase 4 (CRL4) enzyme has been found to target multiple DDR proteins for ubiquitination. In this chapter, we will discuss key repair and checkpoint proteins that are subject to ubiquitin-dependent regulation by members of the CRL4 family during ultraviolet light (UV)-induced DNA damage.
Collapse
|
27
|
Alleva B, Clausen S, Koury E, Hefel A, Smolikove S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008486. [PMID: 31738749 PMCID: PMC6886871 DOI: 10.1371/journal.pgen.1008486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/02/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombination. One class of products formed by recombination are crossovers, which are required for proper chromosome segregation in the first meiotic division. The synaptonemal complex (SC) is a protein structure that connects homologous chromosomes during meiotic prophase I. The proper assembly of the SC is important for recombination, crossover formation, and the subsequent chromosome segregation. Here we identify the components of Cullin RING E3 ubiquitin ligase 4 (CRL4) that play a role in SC assembly in Caenorhabditis elegans. Mutants of the CRL4 complex (cul-4, ddb-1, and gad-1) show defects in SC assembly manifested in the formation of polycomplexes (PCs), impaired progression of meiotic recombination, and reduction in crossover numbers. PCs that are formed in cul-4 mutants lack the mobile properties of wild type SC, but are likely not a direct target of ubiquitination. In C. elegans, SC assembly does not require recombination and there is no evidence that PC formation is regulated by recombination as well. However, in one cul-4 mutant PC formation is dependent upon early meiotic recombination, indicating that proper assembly of the SC can be diminished by recombination in some scenarios. Lastly, our studies suggest that CUL-4 deregulation leads to transposition of the Tc3 transposable element, and defects in formation of SPO-11-mediated DSBs. Our studies highlight previously unknown functions of CRL4 in C. elegans meiosis and show that CUL-4 likely plays multiple roles in meiosis that are essential for maintaining genome integrity. Defects in the formation of the structure named the synaptonemal complex (SC) lead to the missegregation of chromosomes in the divisions that generate sperm and egg cells. In humans, this chromosome missegregation is associated with infertility and developmental disabilities of the surviving progeny. Abnormal SC structures composed of misfolded and aggregated SC proteins are associated with an inability to properly repair DNA damage and accurately segregate meiotic chromosomes. How SC proteins assemble such that they do not form misfolded protein aggregates is poorly understood. The germlines of nematodes (Caenorhabditis elegans) that lack protein components of the Cullin 4 E3 Ubiquitin ligase complex (CRL4), have defects in the formation of the SC that can be due to misfolding of SC proteins and their aggregation. CRL4 appears to be involved in other germline functions that directly affect chromosome stability (DNA damage repair and transposition), indicating that CRL4 has a central function in the formation of functional sperm and egg cells.
Collapse
Affiliation(s)
- Benjamin Alleva
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Clausen
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Emily Koury
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam Hefel
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sarit Smolikove
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Michelena J, Gatti M, Teloni F, Imhof R, Altmeyer M. Basal CHK1 activity safeguards its stability to maintain intrinsic S-phase checkpoint functions. J Cell Biol 2019; 218:2865-2875. [PMID: 31366665 PMCID: PMC6719454 DOI: 10.1083/jcb.201902085] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The essential kinase CHK1 controls cell cycle checkpoint signaling and S-phase progression. Michelena et al. reveal that steady-state activity of CHK1 is required to sustain its own stability and that failure to do so results in CHK1 degradation and sensitizes cells to replication stress. The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.
Collapse
Affiliation(s)
- Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Chen Z, Han Y, Deng C, Chen W, Jin L, Chen H, Wang K, Shen H, Qian L. Inflammation‐dependent downregulation of miR‐194‐5p contributes to human intervertebral disc degeneration by targeting CUL4A and CUL4B. J Cell Physiol 2019; 234:19977-19989. [PMID: 30945295 DOI: 10.1002/jcp.28595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi Chen
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Yingchao Han
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Chao Deng
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Wei Chen
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Linyu Jin
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Hao Chen
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Kun Wang
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Hongxing Shen
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Lie Qian
- Department of Spine Surgery Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
30
|
Akgül B, Kirschberg M, Storey A, Hufbauer M. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1. Int J Cancer 2019; 145:797-806. [PMID: 30786016 DOI: 10.1002/ijc.32223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Human papillomavirus 8 (HPV8) is associated with the development of squamous cell carcinoma (SCC) of the skin. HPV-infected keratinocytes are able to override normal checkpoint control mechanisms and sustain cell cycle activity, allowing for synthesis of cellular proteins necessary for viral genome amplification. To study how HPV8 may disrupt cell cycle control, we analyzed the impact of HPV8 early gene expression on one of the key regulators of cell cycle and DNA damage response, checkpoint kinase-1 (CHK1). We found that expression of E1, E1̂E4, E2, E6 or E7 individually did not affect CHK1; however, keratinocytes expressing the complete early genome region (CER) of HPV8 showed a profound loss of CHK1 protein levels, that proved to be mediated by E6E7 co-expression. Neither CHK1 promoter regulation nor the ubiquitin-proteasome pathway are involved in HPV8-mediated CHK1 repression. However, CHK1 protein repression in organotypic skin cultures was paralleled by downregulation of the autophagy marker LC3B. Treatment of HPV8-CER expressing cells with the autophagy inhibitor Bafilomycin A1 rescued CHK1 expression and led to LC3B accumulation. Taken together, our data implicate that CHK1 autophagic degradation is enhanced by HPV8, which may contribute to the oncogenic potential of the virus.
Collapse
Affiliation(s)
- Baki Akgül
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Matthias Kirschberg
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
32
|
Ma Y, Cui D, Xiong X, Inuzuka H, Wei W, Sun Y, North BJ, Zhao Y. SCFβ-TrCP ubiquitinates CHK1 in an AMPK-dependent manner in response to glucose deprivation. Mol Oncol 2018; 13:307-321. [PMID: 30428154 PMCID: PMC6360357 DOI: 10.1002/1878-0261.12403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
The ATR/CHK1 pathway is a key effector of cellular response to DNA damage and therefore is a critical regulator of genomic stability. While the ATR/CHK1 pathway is often inactivated by mutations, CHK1 itself is rarely mutated in human cancers. Thus, cellular levels of CHK1 likely play a key role in the maintenance of genomic stability and preventing tumorigenesis. Glucose deprivation is observed in many solid tumors due to high glycolytic rates of cancer cells and insufficient vascularization, yet cancer cells have devised mechanisms to survive in conditions of low glucose. Although CHK1 degradation through the ubiquitin-proteasome pathway following glucose deprivation has been previously reported, the detailed molecular mechanisms remain elusive. Here, we show that CHK1 is ubiquitinated and degraded upon glucose deprivation by the Skp1-Cullin-F-box (β-TrCP) E3 ubiquitin ligase. Specifically, CHK1 contains a β-TrCP recognizable degron domain, which is phosphorylated by AMPK in response to glucose deprivation, allowing for β-TrCP to recognize CHK1 for subsequent ubiquitination and degradation. Our results provide a novel mechanism by which glucose metabolism regulates a DNA damage effector, and imply that glucose deprivation, which is often found in solid tumor microenvironments, may enhance mutagenesis, clonal expansion, and tumor progression by triggering CHK1 degradation.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Chk1 KA1 domain auto-phosphorylation stimulates biological activity and is linked to rapid proteasomal degradation. Sci Rep 2018; 8:17536. [PMID: 30510197 PMCID: PMC6277497 DOI: 10.1038/s41598-018-35616-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/24/2018] [Indexed: 11/08/2022] Open
Abstract
The DNA damage-activated protein kinase Chk1 is known to undergo auto-phosphorylation, however the sites and functional significance of this modification remain poorly understood. We have identified two novel Chk1 auto-phosphorylation sites, threonines 378 and 382 (T378/382), located in a highly conserved motif within the C-terminal Kinase Associated 1 (KA1) domain. T378/382 occur within optimal consensus Chk1 phosphorylation motifs and substitution with phospho-mimetic aspartic acid residues results in a constitutively active mutant Chk1 kinase (Chk1-DD) that arrests cell cycle progression in G2 phase of the cell cycle in the absence of DNA damage. Remarkably, the mutant Chk1-DD protein is also subject to very rapid proteasomal degradation, with a half-life approximately one tenth that of wild-type Chk1. Consistent with this, T378/T382 auto-phosphorylation also accelerates the proteasomal degradation of constitutively active Chk1 KA1 domain structural mutants. T378/382 auto-phosphorylation and accelerated degradation of wild-type Chk1 occurs at low levels during unperturbed growth, but surprisingly, is not augmented in response to genotoxic stress. Taken together, these observations demonstrate that Chk1 T378/T382 auto-phosphorylation within the KA1 domain is linked to kinase activation and rapid proteasomal degradation, and suggest a non-canonical mechanism of regulation.
Collapse
|
34
|
Chan JKL, Yuen D, Too PHM, Sun Y, Willard B, Man D, Tam C. Keratin 6a reorganization for ubiquitin-proteasomal processing is a direct antimicrobial response. J Cell Biol 2018; 217:731-744. [PMID: 29191848 PMCID: PMC5800800 DOI: 10.1083/jcb.201704186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/01/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Skin and mucosal epithelia deploy antimicrobial peptides (AMPs) to eliminate harmful microbes. We reported that the intermediate filament keratin 6a (K6a) is constitutively processed into antimicrobial fragments in corneal epithelial cells. In this study, we show that K6a network remodeling is a host defense response that directly up-regulates production of keratin-derived AMPs (KAMPs) by the ubiquitin-proteasome system (UPS). Bacterial ligands trigger K6a phosphorylation at S19, S22, S37, and S60, leading to network disassembly. Mutagenic analysis of K6a confirmed that the site-specific phosphorylation augmented its solubility. K6a in the cytosol is ubiquitinated by cullin-RING E3 ligases for subsequent proteasomal processing. Without an appreciable increase in K6a gene expression and proteasome activity, a higher level of cytosolic K6a results in enhanced KAMP production. Although proteasome-mediated proteolysis is known to produce antigenic peptides in adaptive immunity, our findings demonstrate its new role in producing AMPs for innate immune defense. Manipulating K6a phosphorylation or UPS activity may provide opportunities to harness the innate immunity of epithelia against infection.
Collapse
Affiliation(s)
- Jonathan K L Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| | - Don Yuen
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Priscilla Hiu-Mei Too
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Belinda Willard
- Proteomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - David Man
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
35
|
Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, Huang M, Gong J, Li X, Wang Y, Guo C, Tang TS. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res 2017; 45:4532-4549. [PMID: 28180282 PMCID: PMC5416811 DOI: 10.1093/nar/gkx095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance.
Collapse
Affiliation(s)
- Yingfeng Tu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Xuefei Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Hongyan Shen
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolu Ma
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengli Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Huang
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Juanjuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 64807296; Fax: +86 10 64807313; . Correspondence may also be addressed to Caixia Guo. Tel: +86 10 84097646; Fax: +86 10 84097720;
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 64807296; Fax: +86 10 64807313; . Correspondence may also be addressed to Caixia Guo. Tel: +86 10 84097646; Fax: +86 10 84097720;
| |
Collapse
|
36
|
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 2017; 18:386. [PMID: 28521758 PMCID: PMC5437562 DOI: 10.1186/s12864-017-3754-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations. Results Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained). Conclusions Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3754-y) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Liu Z, Yanagisawa K, Griesing S, Iwai M, Kano K, Hotta N, Kajino T, Suzuki M, Takahashi T. TTF-1/NKX2-1 binds to DDB1 and confers replication stress resistance to lung adenocarcinomas. Oncogene 2017; 36:3740-3748. [PMID: 28192407 DOI: 10.1038/onc.2016.524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023]
Abstract
TTF-1, also known as NKX2-1, is a transcription factor that has indispensable roles in both lung development and physiology. We and others have reported that TTF-1 frequently exhibits high expression with increased copy number in lung adenocarcinomas, and also has a role as a lineage-survival oncogene through transcriptional activation of crucial target genes including ROR1 and LMO3. In the present study, we employed a global proteomic search for proteins that interact with TTF-1 in order to provide a more comprehensive picture of this still enigmatic lineage-survival oncogene. Our results unexpectedly revealed a function independent of its transcriptional activity, as TTF-1 was found to interact with DDB1 and block its binding to CHK1, which in turn attenuated ubiquitylation and subsequent degradation of CHK1. Furthermore, TTF-1 overexpression conferred resistance to cellular conditions under DNA replication stress (RS) and prevented an increase in consequential DNA double-strand breaks, as reflected by attenuated induction of pCHK2 and γH2AX. Our findings suggest that the novel non-transcriptional function of TTF-1 identified in this study may contribute to lung adenocarcinoma development by conferring tolerance to DNA RS, which is known to be inherently elicited by activation of various oncogenes.
Collapse
Affiliation(s)
- Z Liu
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Griesing
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Iwai
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Kano
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - N Hotta
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Greer YE, Gao B, Yang Y, Nussenzweig A, Rubin JS. Lack of Casein Kinase 1 Delta Promotes Genomic Instability - The Accumulation of DNA Damage and Down-Regulation of Checkpoint Kinase 1. PLoS One 2017; 12:e0170903. [PMID: 28125685 PMCID: PMC5268481 DOI: 10.1371/journal.pone.0170903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Casein kinase 1 delta (CK1δ) is a conserved serine/threonine protein kinase that regulates diverse cellular processes. Mice lacking CK1δ have a perinatal lethal phenotype and typically weigh 30% less than their wild type littermates. However, the causes of death and small size are unknown. We observed cells with abnormally large nuclei in tissue from Csnk1d null embryos, and multiple centrosomes in mouse embryo fibroblasts (MEFs) deficient in CK1δ (MEFCsnk1d null). Results from γ-H2AX staining and the comet assay demonstrated significant DNA damage in MEFCsnk1d null cells. These cells often contain micronuclei, an indicator of genomic instability. Similarly, abrogation of CK1δ expression in control MEFs stimulated micronuclei formation after doxorubicin treatment, suggesting that CK1δ loss increases vulnerability to genotoxic stress. Cellular levels of total and activated checkpoint kinase 1 (Chk1), which functions in the DNA damage response and mitotic checkpoints, and its downstream effector, Cdc2/CDK1 kinase, were often decreased in MEFCsnk1d null cells as well as in control MEFs transfected with CK1δ siRNA. Hydroxyurea-induced Chk1 activation, as measured by Ser345 phosphorylation, and nuclear localization also were impaired in MEF cells following siRNA knockdown of CK1δ. Similar results were observed in the MCF7 human breast cancer cell line. The decreases in phosphorylated Chk1 were rescued by concomitant expression of siRNA-resistant CK1δ. Experiments with cycloheximide demonstrated that the stability of Chk1 protein was diminished in cells subjected to CK1δ knockdown. Together, these findings suggest that CK1δ contributes to the efficient repair of DNA damage and the proper functioning of mitotic checkpoints by maintaining appropriate levels of Chk1.
Collapse
Affiliation(s)
- Yoshimi Endo Greer
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
- Women’s Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (YEG); (JSR)
| | - Bo Gao
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey S. Rubin
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (YEG); (JSR)
| |
Collapse
|
39
|
Kim KS, Choi KJ, Bae S. A novel Chk1-binding peptide that enhances genotoxic sensitivity through the cellular redistribution of nuclear Chk1. Int J Mol Med 2016; 38:1490-1498. [PMID: 28025997 PMCID: PMC5065296 DOI: 10.3892/ijmm.2016.2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Since checkpoint kinase 1 (Chk1) is an essential factor for cell viability following DNA damage, the inhibition of Chk1 has been a major focus of pharmaceutical development to enhance the sensitivity of tumor cells to chemo- and radiotherapy that damage DNA. However, due to the off-target effects of conventional Chk1-targeting strategies and the toxicity of Chk1 inhibitors, alternative strategies are required to target Chk1. To facilitate such efforts, in this study, we identified a specific Chk1-binding 12-mer peptide from the screening of a phage display library and characterized the peptide in terms of cellular cytotoxicity, and in terms of its effect on Chk1 activity and sensitivity to genotoxic agents. This peptide, named N-terminal Chk1-binding peptide (Chk1‑NP), bound the kinase domain of Chk1. Simulation of the binding revealed that the very N-terminus of the Chk1 kinase domain is the potential peptide binding site. Of note, the polyarginine-mediated internalization of Chk1‑NP redistributed nuclear Chk1 with a prominent decrease in the nucleus in the absence of DNA damage. Treatment with Chk1‑NP peptide alone decreased the viability of p53-defective HeLa cells, but not that of p53-functional NCI-H460 cells under normal conditions. The treatment of HeLa or NCI-H460 cells with the peptide significantly enhanced radiation sensitivity following ionizing radiation (IR) with a greater enhancement observed in HeLa cells. Moreover, the IR-induced destabilization of Chk1 was aggravated by treatment with Chk1‑NP. Therefore, the decreased nuclear localization and protein levels of Chk1 seem to be responsible for the enhanced cancer cell killing following combined treatment with IR and Chk1‑NP. The approach using the specific Chk1-binding peptide may facilitate the mechanistic understanding and potential modulation of Chk1 activities and may provide a novel rationale for the development of specific Chk1-targeting agents.
Collapse
Affiliation(s)
- Kwang Seok Kim
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyu Jin Choi
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Sangwoo Bae
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| |
Collapse
|
40
|
Peng Z, Liao Z, Matsumoto Y, Yang A, Tomkinson AE. Human DNA Ligase I Interacts with and Is Targeted for Degradation by the DCAF7 Specificity Factor of the Cul4-DDB1 Ubiquitin Ligase Complex. J Biol Chem 2016; 291:21893-21902. [PMID: 27573245 DOI: 10.1074/jbc.m116.746198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
The synthesis, processing, and joining of Okazaki fragments during DNA replication is complex, requiring the sequential action of a large number of proteins. Proliferating cell nuclear antigen, a DNA sliding clamp, interacts with and coordinates the activity of several DNA replication proteins, including the enzymes flap endonuclease 1 (FEN-1) and DNA ligase I that complete the processing and joining of Okazaki fragments, respectively. Although it is evident that maintaining the appropriate relative stoichiometry of FEN-1 and DNA ligase I, which compete for binding to proliferating cell nuclear antigen, is critical to prevent genomic instability, little is known about how the steady state levels of DNA replication proteins are regulated, in particular the proteolytic mechanisms involved in their turnover. Because DNA ligase I has been reported to be ubiquitylated, we used a proteomic approach to map ubiquitylation sites and screen for DNA ligase I-associated E3 ubiquitin ligases. We identified three ubiquitylated lysine residues and showed that DNA ligase I interacts with and is targeted for ubiquitylation by DCAF7, a specificity factor for the Cul4-DDB1 complex. Notably, knockdown of DCAF7 reduced the degradation of DNA ligase I in response to inhibition of proliferation and replacement of ubiquitylated lysine residues reduced the in vitro ubiquitylation of DNA ligase I by Cul4-DDB1 and DCAF7. In contrast, a different E3 ubiquitin ligase regulates FEN-1 turnover. Thus, although the expression of many of the genes encoding DNA replication proteins is coordinately regulated, our studies reveal that different mechanisms are involved in the turnover of these proteins.
Collapse
Affiliation(s)
- Zhimin Peng
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Zhongping Liao
- the Department of Anatomy and Neurobiology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yoshihiro Matsumoto
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Austin Yang
- the Department of Anatomy and Neurobiology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| |
Collapse
|
41
|
Jiang X, Wang J, Xing L, Shen H, Lian W, Yi L, Zhang D, Yang H, Liu J, Zhang X. Sterigmatocystin-induced checkpoint adaptation depends on Chk1 in immortalized human gastric epithelial cells in vitro. Arch Toxicol 2016; 91:259-270. [PMID: 26914363 DOI: 10.1007/s00204-016-1682-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022]
Abstract
Sterigmatocystin (ST) is a common contaminant detected in food and animal feed that has been recognized as a possible human carcinogen. Our previous studies demonstrate that ST causes DNA damage and subsequently triggers cell cycle arrest in G2 and apoptosis in immortalized human gastric epithelial cells (GES-1). Recently, studies have shown that in certain contexts, cells with DNA damage may escape checkpoint arrest and enter mitosis without repairing the damage. The term for this process is "checkpoint adaptation," and it increases the risk of unstable genome propagation, which may contribute to carcinogenesis. Thus, we aimed to investigate whether checkpoint adaptation occurs in GES-1 cells treated with ST and explored the underlying molecular mechanisms that contribute to this phenotype. In this study, we found that ST treatment for 24 h in GES-1 cells led to an initial G2 arrest; however, a fraction of GES-1 cells became large and rounded, and the number of p-H3-positive cells increased sharply after ST treatment for 48 h. Moreover, collection of the large and rounded cells by mechanical shake-off revealed that the majority of these large cells were found in the mitotic phase of the cell cycle. Importantly, we found that these rounded cells entered mitosis despite damaged DNA and that a small subset of this cell population survived and continued to propagate. These results suggest that ST induces an initial G2 arrest that is subsequently followed by G2 phase checkpoint adaptation, which may potentially promote genomic instability and result in tumorigenesis. Furthermore, we showed that activation of Chk1 contributes to the G2 arrest in GES-1 cells that are treated with ST for 24 h and that prolonged treatment of cells with ST for 48 h led to a decrease in the total protein and phosphorylation levels of Chk1 in mitotic cells, indicating that checkpoint adaptation may be driven by inactivation of Chk1. Knockdown studies confirmed that cells entered mitosis following inactivation of Chk1. Taken together, we show that ST treatment for 24 h activates Chk1 and induces a G2 arrest in GES-1 cells. However, prolonged ST treatment for 48 h led to Chk1 inactivation in GES-1 cells, which promotes checkpoint adaptation and entry of cells into mitosis despite damaged DNA. Importantly, checkpoint adaptation in GES-1 cells treated with ST may potentially promote genomic instability and drive tumorigenesis.
Collapse
Affiliation(s)
- Xiujuan Jiang
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China
| | - Juan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Weiguang Lian
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Li Yi
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Donghui Zhang
- Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People's Republic of China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Jianghui Liu
- The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China.
| |
Collapse
|
42
|
Tan X, Liang RY, Chuang SM. hHR23A is required to control the basal turnover of Chk1. Cell Signal 2015; 27:2304-13. [DOI: 10.1016/j.cellsig.2015.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/15/2015] [Indexed: 11/26/2022]
|
43
|
Ricardo-Lax I, Ramanan V, Michailidis E, Shamia T, Reuven N, Rice CM, Shlomai A, Shaul Y. Hepatitis B virus induces RNR-R2 expression via DNA damage response activation. J Hepatol 2015; 63:789-96. [PMID: 26026873 DOI: 10.1016/j.jhep.2015.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infects and replicates in quiescent hepatocytes, which are deficient in dNTPs, the critical precursors of HBV replication. Most tumor viruses promote dNTP production in host cells by inducing cell proliferation. Although HBV is known as a major cause of hepatocellular carcinoma, it does not lead to cellular proliferation. Instead, HBV acquires dNTPs by activating the expression of the R2 subunit of the Ribonucleotide Reductase (RNR) holoenzyme, the cell cycle gene that is rate-limiting for generation of dNTPs, without inducing the cell cycle. We wished to elucidate the molecular basis of HBV-dependent R2 expression in quiescent cells. METHODS Quiescent HepG2 cells were transduced with an HBV-containing lentiviral vector, and primary human hepatocytes were infected with HBV. DNA damage response and RNR-R2 gene expression were monitored under this condition. RESULTS We report here that HBV-induced R2 expression is mediated by the E2F1 transcription factor, and that HBV induces E2F1 accumulation, modification and binding to the R2 promoter. We found that Chk1, a known E2F1 kinase that functions in response to DNA damage, was activated by HBV. In cells where Chk1 was pharmacologically inhibited, or depleted by shRNA-mediated knockdown, HBV-mediated R2 expression was severely attenuated. Furthermore, we found that HBV attenuates DNA repair, thus reducing cellular dNTP consumption. CONCLUSIONS Our findings demonstrate that HBV exploits the Chk1-E2F1 axis of the DNA damage response pathway to induce R2 expression in a cell cycle-independent manner. This suggests that inhibition of this pathway may have a therapeutic value for HBV carriers.
Collapse
Affiliation(s)
- Inna Ricardo-Lax
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vyas Ramanan
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States
| | - Tal Shamia
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States.
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
44
|
Kim KS, Heo JI, Choi KJ, Bae S. Enhancement of cellular radiation sensitivity through degradation of Chk1 by the XIAP-XAF1 complex. Cancer Biol Ther 2015; 15:1622-34. [PMID: 25535897 DOI: 10.4161/15384047.2014.962305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP) and Chk1 are potential molecular targets in radiotherapy. However, their molecular association in the regulation of radiation sensitivity has been rarely studied. Here, we show that XIAP modulates radiation sensitivity by regulating stability of Chk1 in lung cancer cells. Both Chk1 and XIAP are highly expressed in various lung cancer cells. Overexpression of XIAP increased cell survival following genotoxic treatments by preventing downregulation of Chk1. However, XIAP reversed Chk1-protective activity in the presence of XIAP-associated factor 1 (XAF1) by degrading Chk1 via ubiquitination-dependent proteasomal proteolysis. The XIAP-XAF1 complex-mediated Chk1 degradation also required CUL4A and DDB1. Chk1 or XIAP was associated with DDB1 and CUL4A. Depletion of CUL4A or DDB1 prevented the XIAP-XAF1-mediated Chk1 degradation suggesting involvement of a CUL4A/DDB1-based E3 ubiquitin ligase in the process or its collaboration with XIAP E3 ligase activity. Taken together, our findings show that XIAP plays a dual role in modulation of Chk1 stability and cell viability following IR. In the absence of XAF1, XIAP stabilizes Chk1 under IR with corresponding increase of cell viability. By contrast, when XAF1 is overexpressed, XIAP facilitates Chk1 degradation, which leads to enhancement of radiation sensitivity. This selective regulation of Chk1 stability by XIAP and XAF1 could be harnessed to devise a strategy to modulate radiation sensitivity in lung cancer cells.
Collapse
Affiliation(s)
- Kwang Seok Kim
- a Division of Radiation Effects; Korea Institute of Radiological and Medical Sciences ; Seoul , Republic of Korea
| | | | | | | |
Collapse
|
45
|
Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015; 573:33-45. [PMID: 26344709 DOI: 10.1016/j.gene.2015.08.064] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023]
Abstract
The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| | - Pengbo Zhou
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| |
Collapse
|
46
|
Smits VAJ, Gillespie DA. DNA damage control: regulation and functions of checkpoint kinase 1. FEBS J 2015. [DOI: 10.1111/febs.13387] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Veronique A. J. Smits
- Unidad de Investigación; Hospital Universitario de Canarias; Instituto de Tecnologías Biomédicas; Tenerife Spain
| | - David A. Gillespie
- Instituto de Tecnologías Biomédicas; Centro de Investigaciones Biomédicas de Canarias; Facultad de Medicina; Campus Ciencias de la Salud; Universidad de La Laguna; Tenerife Spain
| |
Collapse
|
47
|
Hao J, de Renty C, Li Y, Xiao H, Kemp MG, Han Z, DePamphilis ML, Zhu W. And-1 coordinates with Claspin for efficient Chk1 activation in response to replication stress. EMBO J 2015; 34:2096-110. [PMID: 26082189 DOI: 10.15252/embj.201488016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/08/2015] [Indexed: 11/09/2022] Open
Abstract
The replisome is important for DNA replication checkpoint activation, but how specific components of the replisome coordinate with ATR to activate Chk1 in human cells remains largely unknown. Here, we demonstrate that And-1, a replisome component, acts together with ATR to activate Chk1. And-1 is phosphorylated at T826 by ATR following replication stress, and this phosphorylation is required for And-1 to accumulate at the damage sites, where And-1 promotes the interaction between Claspin and Chk1, thereby stimulating efficient Chk1 activation by ATR. Significantly, And-1 binds directly to ssDNA and facilitates the association of Claspin with ssDNA. Furthermore, And-1 associates with replication forks and is required for the recovery of stalled forks. These studies establish a novel ATR-And-1 axis as an important regulator for efficient Chk1 activation and reveal a novel mechanism of how the replisome regulates the replication checkpoint and genomic stability.
Collapse
Affiliation(s)
- Jing Hao
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | | | - Yongming Li
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Haijie Xiao
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Michael G Kemp
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Zhiyong Han
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | | | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| |
Collapse
|
48
|
Grote D, Moison C, Duhamel S, Chagraoui J, Girard S, Yang J, Mayotte N, Coulombe Y, Masson JY, Brown GW, Meloche S, Sauvageau G. E4F1 is a master regulator of CHK1-mediated functions. Cell Rep 2015; 11:210-9. [PMID: 25843717 DOI: 10.1016/j.celrep.2015.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 01/12/2023] Open
Abstract
It has been previously shown that the polycomb protein BMI1 and E4F1 interact physically and genetically in the hematopoietic system. Here, we report that E4f1 is essential for hematopoietic cell function and survival. E4f1 deletion induces acute bone marrow failure characterized by apoptosis of progenitors while stem cells are preserved. E4f1-deficient cells accumulate DNA damage and show defects in progression through S phase and mitosis, revealing a role for E4F1 in cell-cycle progression and genome integrity. Importantly, we showed that E4F1 interacts with and protects the checkpoint kinase 1 (CHK1) protein from degradation. Finally, defects observed in E4f1-deficient cells were fully reversed by ectopic expression of Chek1. Altogether, our results classify E4F1 as a master regulator of CHK1 activity that ensures high fidelity of DNA replication, thus safeguarding genome stability.
Collapse
Affiliation(s)
- David Grote
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Céline Moison
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Stéphanie Duhamel
- Signaling and Cell Growth Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Simon Girard
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jay Yang
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nadine Mayotte
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sylvain Meloche
- Signaling and Cell Growth Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Pharmacology, University of Montreal, Montreal, QC H3C 3J7, Canada.
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
49
|
Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 2015; 36:124-38. [PMID: 25704559 DOI: 10.1016/j.it.2015.01.004] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/24/2022]
Abstract
Over half a century has passed since interferons (IFNs) were discovered and shown to inhibit virus infection in cultured cells. Since then, researchers have steadily brought to light the molecular details of IFN signaling, catalogued their pleiotropic effects on cells, and harnessed their therapeutic potential for a variety of maladies. While advances have been plentiful, several fundamental questions have yet to be answered and much complexity remains to be unraveled. We explore the current knowledge surrounding four main questions: are type I IFN subtypes differentially produced in response to distinct pathogens? How are IFN subtypes distinguished by cells? What are the mechanisms and consequences of viral antagonism? Lastly, how can the IFN response be harnessed to improve vaccine efficacy?
Collapse
Affiliation(s)
- Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Liu EY, Xu N, O'Prey J, Lao LY, Joshi S, Long JS, O'Prey M, Croft DR, Beaumatin F, Baudot AD, Mrschtik M, Rosenfeldt M, Zhang Y, Gillespie DA, Ryan KM. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc Natl Acad Sci U S A 2015; 112:773-8. [PMID: 25568088 PMCID: PMC4311830 DOI: 10.1073/pnas.1409563112] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
(Macro)autophagy delivers cellular constituents to lysosomes for degradation. Although a cytoplasmic process, autophagy-deficient cells accumulate genomic damage, but an explanation for this effect is currently unclear. We report here that inhibition of autophagy causes elevated proteasomal activity leading to enhanced degradation of checkpoint kinase 1 (Chk1), a pivotal factor for the error-free DNA repair process, homologous recombination (HR). We show that loss of autophagy critically impairs HR and that autophagy-deficient cells accrue micronuclei and sub-G1 DNA, indicators of diminished genomic integrity. Moreover, due to impaired HR, autophagy-deficient cells are hyperdependent on nonhomologous end joining (NHEJ) for repair of DNA double-strand breaks. Consequently, inhibition of NHEJ following DNA damage in the absence of autophagy results in persistence of genomic lesions and rapid cell death. Because autophagy deficiency occurs in several diseases, these findings constitute an important link between autophagy and DNA repair and highlight a synthetic lethal strategy to kill autophagy-deficient cells.
Collapse
Affiliation(s)
- Emma Y Liu
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Naihan Xu
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jim O'Prey
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Laurence Y Lao
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Sanket Joshi
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Jaclyn S Long
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Margaret O'Prey
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Daniel R Croft
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Florian Beaumatin
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Alice D Baudot
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Michaela Mrschtik
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Mathias Rosenfeldt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Yaou Zhang
- Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - David A Gillespie
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom; and
| |
Collapse
|