1
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Pan Y, Chen H, Lv C, He W, Xu Y, Xuan Q. ATP6V1C1, associated with the tumor microenvironment and mTORC1 signaling pathway, is a potential diagnostic, prognostic, and therapeutic biomarker for hepatocellular carcinoma. Discov Oncol 2024; 15:673. [PMID: 39557733 PMCID: PMC11573946 DOI: 10.1007/s12672-024-01578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global health challenge with high mortality. ATP6V1C1, one of the subunit genes of vacuolar adenosine triphosphatase (V-ATPase), is a potential oncogene. However, its role in HCC remains unclear. MATERIALS AND METHODS Differential analysis of mRNA and microRNA (miRNA), combined with machine learning, identified ATP6V1C1 as a potential biomarker for HCC. The expression and prognostic role of ATP6V1C1 in HCC were evaluated. Additionally, we explored the distribution of ATP6V1C1 in HCC tumor microenvironment (TME) at single-cell and spatial transcriptome levels. Furthermore, the association between ATP6V1C1 and malignant biological features, TME characteristics, and therapy response in HCC was investigated. Finally, in vitro experiments validated the effects of ATP6V1C1 on the malignant phenotype of HCC. RESULTS ATP6V1C1 had higher expression in HCC tissues compared to paired normal tissues. Upregulated ATP6V1C1 was associated with poor HCC prognosis. ATP6V1C1 was primarily expressed in malignant cells and the tumor region in HCC TME. A positive correlation was observed between ATP6V1C1 expression and the activation of cancer-related pathways. The high ATP6V1C1 expression group exhibited increased pro-tumorigenic immune infiltration, inhibited anti-tumor immune activity, and high tumor proliferation rate. HCC patients of low ATP6V1C1 expression group had more clinical response to anti-tumor therapies. Knockdown of ATP6V1C1 impaired the proliferation, migration, and invasion of HCC cells by downregulating the mTORC1 signaling pathway. CONCLUSION ATP6V1C1 multifacetedly contributes to the oncogenesis and progression of HCC and is a promising diagnostic and prognostic biomarker with predictive value on therapy response.
Collapse
Affiliation(s)
- Yuhao Pan
- Department of Oncology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hao Chen
- Department of Oncology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chenhui Lv
- Department of Oncology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei He
- Department of Oncology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yongpeng Xu
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qijia Xuan
- Department of Oncology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
3
|
Suryavanshi A, Vandana, Shukla YK, Kumar V, Gupta P, Asati V, Mahapatra DK, Keservani RK, Jain SK, Bharti SK. MEK inhibitors in oncology: a patent review and update (2016 - present). Expert Opin Ther Pat 2024; 34:963-1007. [PMID: 39275922 DOI: 10.1080/13543776.2024.2403634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Mitogen-activated protein kinase (MEK) is one of the important components of Ras/Raf/MEK/ERK signaling pathway, transduces signal for cell growth, differentiation, and development. Deregulation of MEK leads to a wide variety of cancer; hence, MEK is considered as potential therapeutic targets for the treatment of cancer. The MEK1/2 inhibitors in combination with other inhibitors showed better therapeutic outcomes in various malignancies including resistant or relapsed or refractory cancer. AREAS COVERED A comprehensive patent literature from the year 2016 to May 2024 on MEK inhibitors in oncology, their combination products and structural insights have been reviewed through searching relevant information in PubMed, Scopus, Espacenet, Web of Science, World Intellectual Property Organization and Google Patent databases. EXPERT OPINION Overexpression and mutation of MEK have been reported to cause a wide variety of cancers especially resistant cancers. The MEK1/2 inhibitors in combination with other kinase (BRaf/KRas/PI3K) inhibitors showed significant anti-proliferative activity. Other combination of MEK inhibitor with PD-1, DYRK1, EGFR, BTK and/or VEGF inhibitors, etc. showed promising results in many cancers including colorectal, pancreatic, gastrointestinal, solid tumor, breast cancer, melanoma and multiple myeloma, etc. The dual or multi-targeted approaches of these combinations showed better and precise treatment of patients with resistant cancer.
Collapse
Affiliation(s)
- Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vandana
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Yugal Kishor Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vipul Kumar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Pragya Gupta
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Debarshi Kar Mahapatra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Raj K Keservani
- Faculty of B. Pharmacy, CSM Group of Institutions, Prayagraj, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
4
|
Abuasab T, Mohamed S, Pemmaraju N, Kadia TM, Daver N, DiNardo CD, Ravandi F, Qiao W, Montalban-Bravo G, Borthakur G. BRAF mutation in myeloid neoplasm: incidences and clinical outcomes. Leuk Lymphoma 2024; 65:1344-1349. [PMID: 38696743 DOI: 10.1080/10428194.2024.2347539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024]
Abstract
The presence of BRAF mutation in hematological malignancies, excluding Hairy cell leukemia, and its significance as a driver mutation in myeloid neoplasms (MNs) remains largely understudied. This research aims to evaluate patient characteristics and outcomes of BRAF-mutated MNs. Among a cohort of 6667 patients, 48 (0.7%) had BRAF-mutated MNs. Notably, three patients exhibited sole BRAF mutation, providing evidence supporting the hypothesis of BRAF's role as a driver mutation in MNs. In acute myeloid leukemia, the majority of patients had secondary acute myeloid leukemia, accompanied by poor-risk cytogenic and RAS pathway mutations. Although the acquisition of BRAF mutation during disease progression did not correlate with unfavorable outcomes, its clearance through chemotherapy or stem cell transplant exhibited favorable outcomes (median overall survival of 34.8 months versus 10.4 months, p = 0.047). Furthermore, G469A was the most frequently observed BRAF mutation, differing from solid tumors and hairy cell leukemia, where V600E mutations were predominant.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins B-raf/genetics
- Mutation
- Male
- Middle Aged
- Female
- Aged
- Adult
- Incidence
- Prognosis
- Aged, 80 and over
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/diagnosis
- Young Adult
- Treatment Outcome
Collapse
Affiliation(s)
- Tareq Abuasab
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shehab Mohamed
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
6
|
Al-Wahaibi LH, Youssif BGM, Abou-Zied HA, Bräse S, Brown AB, Tawfeek HN, El-Sheref EM. Synthesis of a new series of 4-pyrazolylquinolinones with apoptotic antiproliferative effects as dual EGFR/BRAF V600E inhibitors. RSC Med Chem 2024; 15:2538-2552. [PMID: 39026636 PMCID: PMC11253863 DOI: 10.1039/d4md00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The current study focuses on developing a single molecule that acts as an antiproliferative agent with dual or multi-targeted action, reducing drug resistance and adverse effects. A new series of 4-pyrazolylquinolin-2-ones (5a-j) with apoptotic antiproliferative effects as dual EGFR/BRAFV600E inhibitors were designed and synthesized. Compounds 5a-j were investigated for their cell viability effect against a normal cell line (MCF-10A). Results showed that none of the compounds were cytotoxic, and all 5a-j demonstrated more than 90% cell viability at 50 μM concentration. Using erlotinib as a reference, the MTT assay investigated the antiproliferative impact of targets 5a-j against four human cancer cell lines. Compounds 5e, 5f, 5h, 5i, and 5j were the most potent antiproliferative agents with GI50 values of 42, 26, 29, 34, and 37 nM, making compounds 5f and 5h more potent than erlotinib (GI50 = 33 nM). Moreover, compounds 5e, 5f, 5h, 5i, and 5j were further investigated as dual EGFR/BRAFV600E inhibitors, and results revealed that compounds 5f, 5h, and 5i are potent antiproliferative agents that act as dual EGFR/BRAFV600E inhibitors. Cell cycle analysis and apoptosis detection revealed that compound 5h displaying cell cycle arrest at the G1 transition could induce apoptosis with a high necrosis percentage. Docking studies revealed that compound 5f exhibited a strong affinity for EGFR and BRAFV600E, with high docking scores of -8.55 kcal mol-1 and -8.22 kcal mol-1, respectively. Furthermore, the ADME analysis of compounds 5a-j highlighted the diversity in their pharmacokinetic properties, emphasizing the importance of experimental validation.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20 10 9829 4419
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University Minia Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology 76131 Karlsruhe Germany
| | - Alan B Brown
- Florida Institute of Technology 150 W University Blvd Melbourne FL 32901 USA
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt +20 10 6489 0489
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt +20 10 6489 0489
| |
Collapse
|
7
|
Sorino C, Iezzi S, Ciuffreda L, Falcone I. Immunotherapy in melanoma: advances, pitfalls, and future perspectives. Front Mol Biosci 2024; 11:1403021. [PMID: 39086722 PMCID: PMC11289331 DOI: 10.3389/fmolb.2024.1403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 08/02/2024] Open
Abstract
Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.
Collapse
|
8
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Dedden D, Nitsche J, Schneider EV, Thomsen M, Schwarz D, Leuthner B, Grädler U. Cryo-EM Structures of CRAF 2/14-3-3 2 and CRAF 2/14-3-3 2/MEK1 2 Complexes. J Mol Biol 2024; 436:168483. [PMID: 38331211 DOI: 10.1016/j.jmb.2024.168483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF2/14-3-32 at 3.4 Å resolution and CRAF2/14-3-32/MEK12 at 4.2 Å resolution using CRAF kinase domain expressed as constitutively active Y340D/Y341D mutant in insect cells. The overall architecture of our CRAF2/14-3-32 and CRAF2/14-3-32/MEK12 cryo-EM structures is highly similar to corresponding BRAF structures in complex with 14-3-3 or 14-3-3/MEK1 and represent the activated dimeric RAF conformation. Our CRAF cryo-EM structures provide additional insights into structural understanding of the activated CRAF2/14-3-32/MEK12 complex.
Collapse
Affiliation(s)
- Dirk Dedden
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Julius Nitsche
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Maren Thomsen
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Daniel Schwarz
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Birgitta Leuthner
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ulrich Grädler
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| |
Collapse
|
10
|
Chen J, Zhang G, Liu X, Tu P. The association of BRAF V600E gene mutation with proliferative activity and histopathological characteristics of congenital melanocytic nevi in children. An Bras Dermatol 2023:S0365-0596(23)00062-4. [PMID: 37156689 DOI: 10.1016/j.abd.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND A lot of congenital melanocytic nevi (CMN) carry the somatic mutation in the oncogene BRAF V600E. But the detailed histopathologic characteristics and the proliferative activity of CMN with BRAF V600E gene mutation have not been systematically documented. OBJECTIVE To identify the proliferative activity and histopathological features correlating them with BRAF V600E gene mutation status in CMN. METHODS CMN were retrospectively identified from the laboratory reporting system. Mutations were determined by Sanger sequencing. The CMN were divided into a mutant group and control group according to whether there was BRAF gene mutation and were strictly matched according to gender, age, nevus size, and location. Histopathological analysis, analysis of Ki67 expression by immunohistochemistry and laser confocal fluorescence microscopy were performed. RESULTS The differences in Ki67 index, the depth of nevus cell involvement and the number of nevus cell nests between the mutant group and the control group was statistically significant, with p-values of 0.041, 0.002 and 0.007, respectively. Compared with BRAF V600E negative nevi, BRAF V600E positive nevi often exhibited predominantly nested intraepidermal melanocytes, and larger junctional nests, but the difference in this data sets were not statistically significant. The number of nests (p = 0.001) was positively correlated with the proportion of Ki67 positive cells. STUDY LIMITATIONS A small sample of patients were included and there was no follow-up. CONCLUSIONS BRAF V600E gene mutations were associated with high proliferative activity and distinct histopathological features in congenital melanocytic nevi.
Collapse
Affiliation(s)
- Jianyou Chen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Gaolei Zhang
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyan Liu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
11
|
Computational analysis of natural product B-Raf inhibitors. J Mol Graph Model 2023; 118:108340. [PMID: 36208592 DOI: 10.1016/j.jmgm.2022.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
B-Raf protein is a serine-threonine kinase and an important signal transduction molecule of the MAPK signaling pathway that mediates signals from RAS to MEK, ultimately promoting various essential cellular functions. The B-Raf kinase domain is divided into two subdomains: a small N-terminal lobe and a large C-terminal lobe, with a deep catalytic cleft between them. The N-terminal lobe contains a phosphate-binding loop (P-loop) and nucleotide-binding pocket, while the C-terminal lobe binds the protein substrates and contains the catalytic loop. The ligand pharmacophore was generated by using 17 different natural products and the receptor pharmacophore was generated by using protein structures. The reported natural product B-Raf inhibitors were analyzed according to the pharmacophore analysis (HipHop fit), virtual screening tools by Lipinski's rule of five. Thirteen out of seventeen molecules share the best ligand based pharmacophoric model (HipHop_5). The best receptor based pharmacophoric model came as AADHR. The compounds were docked against the B-Raf receptors (PDB ID: 3OG7, 4XV2, 5C9C). The compound DHSilB with cDOCKER interaction energy of -62.7 kcal/mol, -83.3 kcal/mol, -73.6 kcal/mol as well as the compound DHSilA with cDOCKER interaction energy of -63.9 kcal/mol, -63.2 kcal/mol, -74.7 kcal/mol showed satisfactory interaction with the respective receptors. Finally, the MD simulation was run for 100 ns for the top docked compounds DHSilA and DHSilB with the B-Raf proteins (PDB ID: 3OG7, 4XV2 and 5C9C). After the MD simulation run for 100 ns, the ligand 2,3-dehydrosilybin A (DHSilA) was found to be more stable in terms of the trajectories of RMSD, RMSF, Rg and H-bonds.
Collapse
|
12
|
BRAF and MEK Targeted Therapies in Pediatric Central Nervous System Tumors. Cancers (Basel) 2022; 14:cancers14174264. [PMID: 36077798 PMCID: PMC9454417 DOI: 10.3390/cancers14174264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary This review is divided into two parts. The first analyzes the mechanisms of two important cellular pathways that are involved in tumoral proliferation, differentiation, migration, and angiogenesis: RAS/RAF/MEK/MAPK and PI3K/AKT/mTOR. The second part focuses on the currently available experience regarding targeted therapies against the mitogen-activated protein kinase (MAPK) pathway in pediatric CNS tumors, with the hope of offering a practical guide for consultation. Abstract BRAF is a component of the MAPK and PI3K/AKT/mTOR pathways that play a crucial role in cellular proliferation, differentiation, migration, and angiogenesis. Pediatric central nervous system tumors very often show mutations of the MAPK pathway, as demonstrated by next-generation sequencing (NGS), which now has an increasing role in cancer diagnostics. The MAPK mutated pathway in pediatric CNS tumors is the target of numerous drugs, approved or under investigation in ongoing clinical trials. In this review, we describe the main aspects of MAPK and PI3K/AKT/mTOR signaling pathways, with a focus on the alterations commonly involved in tumorigenesis. Furthermore, we reported the main available data about current BRAF and MEK targeted therapies used in pediatric low-grade gliomas (pLLGs), pediatric high-grade gliomas (pHGGs), and other CNS tumors that often present BRAF or MEK mutations. Further molecular stratification and clinical trial design are required for the treatment of pediatric CNS tumors with BRAF and MEK inhibitors.
Collapse
|
13
|
Khan PS, Rajesh P, Rajendra P, Chaskar MG, Rohidas A, Jaiprakash S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg Chem 2022; 120:105597. [PMID: 35033817 DOI: 10.1016/j.bioorg.2022.105597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
The significance of B-RAF in the promotion of cell proliferation and motility was explored by the researchers in the past. However, in 2002, several researchers found that mutation in B-RAF leads to cancer. Extensive research on B-RAF mutations suggested B-RAF V600E mutation as a critical predictive, prognostic and diagnostic biomarker in numerous cancers such as melanoma, thyroid, and colorectal cancers. Based on the significance of B-RAF kinase and associated mutation, the present review will give a brief overview about structure and functions of B-RAF enzyme, its role in different types of cancer, available drugs in the market for B-RAF inhibition, chemical classification and SAR studies of reported investigational B-RAF inhibitors in patented and non-patented literature during last decade. The SAR provided for all the reported inhibitors will help researchers to gain knowledge about the possible structural features required for selective B-RAF inhibition. This insightful analysis of B-RAF will certainly help researchers to develop novel anticancer agents in the future.
Collapse
Affiliation(s)
- Pathan Shahebaaz Khan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India
| | - Patil Rajesh
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa (Bk), Pune, India
| | - Patil Rajendra
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, M.S., India
| | - Manohar G Chaskar
- Prof Ramkrishna More College, Akurdi, Pune 411044, Maharashtra, India
| | - Arote Rohidas
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul. Republic of Korea
| | - Sangshetti Jaiprakash
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India.
| |
Collapse
|
14
|
He L, Jhong JH, Chen Q, Huang KY, Strittmatter K, Kreuzer J, DeRan M, Wu X, Lee TY, Slavov N, Haas W, Marneros AG. Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell Rep 2021; 37:109955. [PMID: 34731634 PMCID: PMC8783961 DOI: 10.1016/j.celrep.2021.109955] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Macrophages undergoing M1- versus M2-type polarization differ significantly in their cell metabolism and cellular functions. Here, global quantitative time-course proteomics and phosphoproteomics paired with transcriptomics provide a comprehensive characterization of temporal changes in cell metabolism, cellular functions, and signaling pathways that occur during the induction phase of M1- versus M2-type polarization. Significant differences in, especially, metabolic pathways are observed, including changes in glucose metabolism, glycosaminoglycan metabolism, and retinoic acid signaling. Kinase-enrichment analysis shows activation patterns of specific kinases that are distinct in M1- versus M2-type polarization. M2-type polarization inhibitor drug screens identify drugs that selectively block M2- but not M1-type polarization, including mitogen-activated protein kinase kinase (MEK) and histone deacetylase (HDAC) inhibitors. These datasets provide a comprehensive resource to identify specific signaling and metabolic pathways that are critical for macrophage polarization. In a proof-of-principle approach, we use these datasets to show that MEK signaling is required for M2-type polarization by promoting peroxisome proliferator-activated receptor-γ (PPARγ)-induced retinoic acid signaling.
Collapse
Affiliation(s)
- Lizhi He
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jhih-Hua Jhong
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan; Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qi Chen
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu 300, Taiwan
| | - Karin Strittmatter
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Johannes Kreuzer
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael DeRan
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Nikolai Slavov
- Department of Bioengineering and Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Wilhelm Haas
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
15
|
Design, Synthesis and Anticancer Profile of New 4-(1 H-benzo[ d]imidazol-1-yl)pyrimidin-2-amine-Linked Sulfonamide Derivatives with V600EBRAF Inhibitory Effect. Int J Mol Sci 2021; 22:ijms221910491. [PMID: 34638829 PMCID: PMC8508980 DOI: 10.3390/ijms221910491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
A new series of 4-(1H-benzo[d]imidazol-1-yl)pyrimidin-2-amine linked sulfonamide derivatives 12a–n was designed and synthesized according to the structure of well-established V600EBRAF inhibitors. The terminal sulfonamide moiety was linked to the pyrimidine ring via either ethylamine or propylamine bridge. The designed series was tested at fixed concentration (1 µM) against V600EBRAF, finding that 12e, 12i and 12l exhibited the strongest inhibitory activity among all target compounds and 12l had the lowest IC50 of 0.49 µM. They were further screened on NCI 60 cancer cell lines to reveal that 12e showed the most significant growth inhibition against multiple cancer cell lines. Therefore, cell cycle analysis of 12e was conducted to investigate the effect on cell cycle progression. Finally, virtual docking studies was performed to gain insights for the plausible binding modes of vemurafenib, 12i, 12e and 12l.
Collapse
|
16
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
17
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
Sidhom EH, Kim C, Kost-Alimova M, Ting MT, Keller K, Avila-Pacheco J, Watts AJ, Vernon KA, Marshall JL, Reyes-Bricio E, Racette M, Wieder N, Kleiner G, Grinkevich EJ, Chen F, Weins A, Clish CB, Shaw JL, Quinzii CM, Greka A. Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease. J Clin Invest 2021; 131:141380. [PMID: 33444290 DOI: 10.1172/jci141380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Eriene-Heidi Sidhom
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Choah Kim
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - May Theng Ting
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Keith Keller
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Andrew Jb Watts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katherine A Vernon
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie L Marshall
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Matthew Racette
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicolas Wieder
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Simnica D, Ittrich H, Bockemeyer C, Stein A, Binder M. Targeting the Mutational Landscape of Bystander Cells: Drug-Promoted Blood Cancer From High-Prevalence Pre-neoplasias in Patients on BRAF Inhibitors. Front Oncol 2020; 10:540030. [PMID: 33042833 PMCID: PMC7517330 DOI: 10.3389/fonc.2020.540030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/13/2020] [Indexed: 01/07/2023] Open
Abstract
Drug-promoted cancers are increasingly recognized as a serious clinical problem in patients receiving BRAF inhibitory treatment. Here we report on a patient with BRAF mutant hairy cell leukemia and monoclonal B-cell lymphocytosis (MBL), who responded durably to BRAF/MEK inhibitors (BRAFi/MEKi) but experienced transformation of a RAS mutant MBL to chronic lymphocytic leukemia (CLL) with accelerated nodal progression. Hypothesizing that BRAFi triggered excessive MEK-ERK signaling in the MBL/CLL clone via the CRAF/RAS complex as previously described for BRAFi-induced cancers, BRAFi was discontinued inducing a rapid remission of the CLL on MEKi alone. Liquid biopsy monitoring showed a continuous increase of the MBL/CLL clone from the start of BRAFi/MEKi treatment followed by a rapid decline upon BRAFi withdrawal. Next-generation sequencing of a cohort of patients with MBL and monoclonal gammopathy of unclear significance (MGUS) revealed that almost one third of these cases harbored RAS mutations. In view of the population frequency of lymphatic pre-malignant conditions and the prevalence of RAS mutations in such cases, vigilant surveillance remains critical in patients treated with BRAF inhibitors.
Collapse
Affiliation(s)
- Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum/UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bockemeyer
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum/UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Stein
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum/UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hematology-Oncology Practice Hamburg (HOPE), Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum/UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Ghanadan A, Yousefi T, Kamyab-Hesari K, Azhari V, Nasimi M. Prevalence and Main Determinants of BRAF V600E Mutation in Dysplastic and Congenital Nevi. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:51-56. [PMID: 33391380 PMCID: PMC7691709 DOI: 10.30699/ijp.2020.130968.2451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 01/19/2023]
Abstract
Background & Objective: Predicting the transformation of dysplastic or congenital nevi into malignant lesions results in a significant increase in the survival of patients. Some specific gene mutations have been reported to be very helpful in this regard. Therefore, this study aimed to evaluate the prevalence of BRAF V600E mutation in dysplastic and congenital nevi. Methods: This cross-sectional study was conducted on patients with congenital (n=30) or dysplastic (n=30) nevi. For genomic analysis, the BRAF gene mutation (V600E) was evaluated using the real-time polymerase chain reaction. Results: The prevalence of BRAF gene (V600E) mutation was found as 1 case (3.3%) in congenital and 8 cases (26.7%) in dysplastic nevi indicating the higher prevalence of this mutation in patients with dysplastic nevi (P=0.026). Moreover, in the dysplastic nevi group, the presence of BRAF gene mutation (V600E) showed a significant relationship with the severity of dysplasia as the mutation rate was 25% in mild cases, in comparison with 54.5% in moderate dysplasia cases (P=0.009). Conclusion: According to the results, 3.3% of the patients with congenital nevi and 26.7% of the subjects with dysplastic nevi were positive for BRAF V600E mutation. Furthermore, the severity of dysplasia could have a positive relationship with the presence of the mutation.
Collapse
Affiliation(s)
- Alierza Ghanadan
- Department of dermatopathology, Razi hospital, and pathology department of cancer institute, Imam Khomeini hospital complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Yousefi
- Department of Anatomical Pathology, Yas hospital complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Kamyab-Hesari
- Department of dermatopathology, Razi hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahidehsadat Azhari
- Department of dermatopathology, Razi hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nasimi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Chavda J, Bhatt H. Systemic review on B-Raf V600E mutation as potential therapeutic target for the treatment of cancer. Eur J Med Chem 2020; 206:112675. [PMID: 32798788 DOI: 10.1016/j.ejmech.2020.112675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
Cancer is one of the major public catastrophes worldwide and as per WHO, cancer is the leading cause of death universally after CVS disorders accounting for 9.6 million deaths in 2018. WHO statistics revealed five dangerous types of cancer viz. lung, breast, colorectal, prostate and skin. In male, lung cancer causes highest death, while in female, breast cancer causes the most. Alteration in MAPK signalling pathway plays a significant role in majority of cancer cases. Raf protein is activated by phosphorylation via downstream regulation of the MAPK pathway. Raf composed of 3 subtypes, viz. A-Raf, B-Raf, and C-Raf. B-Raf kinase plays a significant role in healthy cell growth in the MAPK pathway and the problem associated with B-Raf mutation leads to the development of cancer and other diseases. The progression of mutant B-Raf (B-RafV600E) protein is higher in cancer as compare to other diseases. In 2002, B-RafV600E mutation was identified for the first time in the development of cancer. The frequency of B-RafV600E mutation is higher in melanoma, thyroid, colorectal and ovarian cancer. We have covered small molecule B-RafV600E inhibitors reported in various literatures; from 2002 to 2020 and also covered clinical trial data. To widen the scope of readers, we compiled details of small molecules, specifically inhibiting B-RafV600E mutant and showing anti-proliferative activity against various cancer cell lines along with in-vivo data. We believe that the information covered here will be important in signifying the potentials of B-RafV600E mutation and its inhibitors as potent anticancer agents.
Collapse
Affiliation(s)
- Jaydeepsinh Chavda
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India
| | - Hardik Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India.
| |
Collapse
|
22
|
Abdel-Maksoud MS, Ali EM, Ammar UM, Mersal KI, Yoo KH, Oh CH. Design and synthesis of novel pyrrolo[2,3-b]pyridine derivatives targeting V600EBRAF. Bioorg Med Chem 2020; 28:115493. [DOI: 10.1016/j.bmc.2020.115493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
|
23
|
Feng Y, Wang Y, Zhao S, Zhang DP, Li X, Liu H, Dong Y, Sun FG. A practical ortho-acylation of aryl iodides enabled by moisture-insensitive activated esters via palladium/norbornene catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00982b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein reported is a practical Catellani-type ortho-acylation of aryl iodides enabled by employing moisture-insensitive esters as the electrophile via C(O)–O bond cleavage.
Collapse
Affiliation(s)
- Yunxia Feng
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yangyang Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shen Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Dao-Peng Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Feng-Gang Sun
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
24
|
Man RJ, Zhang YL, Jiang AQ, Zhu HL. A patent review of RAF kinase inhibitors (2010–2018). Expert Opin Ther Pat 2019; 29:675-688. [DOI: 10.1080/13543776.2019.1651842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruo-Jun Man
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, People’s Republic of China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
25
|
Pereira GJV, Tavares MT, Azevedo RA, Martins BB, Cunha MR, Bhardwaj R, Cury Y, Zambelli VO, Barbosa EG, Hediger MA, Parise-Filho R. Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: Design, synthesis and molecular modeling. Bioorg Med Chem 2019; 27:2893-2904. [PMID: 31104785 DOI: 10.1016/j.bmc.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 05/12/2019] [Indexed: 01/19/2023]
Abstract
The use of molecules inspired by natural scaffolds has proven to be a very promising and efficient method of drug discovery. In this work, capsaicin, a natural product from Capsicum peppers with antitumor properties, was used as a prototype to obtain urea and thiourea analogues. Among the most promising compounds, the thiourea compound 6g exhibited significant cytotoxic activity against human melanoma A2058 cells that was twice as high as that of capsaicin. Compound 6g induced significant and dose-dependent G0/G1 cell cycle arrest in A2058 cells triggering cell death by apoptosis. Our results suggest that 6g modulates the RAF/MEK/ERK pathway, inducing important morphological changes, such as formation of apoptotic bodies and increased levels of cleaved caspase-3. Compared to capsaicin, 6g had no significant TRPV1/6 agonist effect or irritant effects on mice. Molecular modeling studies corroborate the biological findings and suggest that 6g, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. Inverse virtual screening strategy found MEK1 as a possible biological target for 6g. Consistent with these findings, our observations suggested that 6g could be developed as a potential anticancer agent.
Collapse
Affiliation(s)
- Gustavo José Vasco Pereira
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício Temotheo Tavares
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Alexandre Azevedo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Micael Rodrigues Cunha
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | | | | | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Roberto Parise-Filho
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Shaw J, Dale I, Hemsley P, Leach L, Dekki N, Orme JP, Talbot V, Narvaez AJ, Bista M, Martinez Molina D, Dabrowski M, Main MJ, Gianni D. Positioning High-Throughput CETSA in Early Drug Discovery through Screening against B-Raf and PARP1. SLAS DISCOVERY 2018; 24:121-132. [PMID: 30543471 PMCID: PMC6484527 DOI: 10.1177/2472555218813332] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methods to measure cellular target engagement are increasingly being used in early drug discovery. The Cellular Thermal Shift Assay (CETSA) is one such method. CETSA can investigate target engagement by measuring changes in protein thermal stability upon compound binding within the intracellular environment. It can be performed in high-throughput, microplate-based formats to enable broader application to early drug discovery campaigns, though high-throughput forms of CETSA have only been reported for a limited number of targets. CETSA offers the advantage of investigating the target of interest in its physiological environment and native state, but it is not clear yet how well this technology correlates to more established and conventional cellular and biochemical approaches widely used in drug discovery. We report two novel high-throughput CETSA (CETSA HT) assays for B-Raf and PARP1, demonstrating the application of this technology to additional targets. By performing comparative analyses with other assays, we show that CETSA HT correlates well with other screening technologies and can be applied throughout various stages of hit identification and lead optimization. Our results support the use of CETSA HT as a broadly applicable and valuable methodology to help drive drug discovery campaigns to molecules that engage the intended target in cells.
Collapse
Affiliation(s)
- Joseph Shaw
- 1 Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Ian Dale
- 1 Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Paul Hemsley
- 1 Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Lindsey Leach
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, UK
| | | | - Jonathan P Orme
- 1 Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Verity Talbot
- 4 Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Ana J Narvaez
- 4 Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Michal Bista
- 5 Structure, Biophysics & Fragment Based Lead Generation, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | - Martin J Main
- 1 Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,6 Medicines Discovery Catapult, Mereside, Alderley Park, UK
| | - Davide Gianni
- 1 Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
27
|
Pan JH, Zhou H, Zhu SB, Huang JL, Zhao XX, Ding H, Pan YL. Development of small-molecule therapeutics and strategies for targeting RAF kinase in BRAF-mutant colorectal cancer. Cancer Manag Res 2018; 10:2289-2301. [PMID: 30122982 PMCID: PMC6078078 DOI: 10.2147/cmar.s170105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RAF kinase is crucially involved in cell proliferation and survival in colorectal cancer (CRC). Patients with metastatic CRC (mCRC) harboring BRAF mutations (BRAFms) not only experience a poor prognosis but also benefit less from therapeutics targeting ERK signaling. With advances in RAF inhibitors and second-generation inhibitors including encorafenib and vemurafenib, which have been approved for treating BRAF-V600E malignancies, the combinatorial therapeutic strategies of RAF inhibitors elicit remarkable responses in patients with BRAF-V600E mCRC. However, the therapeutic efficacy is restricted by resistance, which might be due to RAF dimerization and reactivation of the MAPK pathway. In addition, the next-generation RAF inhibitors, which are characterized by varying structural and biochemical properties, have achieved preclinical and clinical advances. Herein, we summarize the existing mechanism of RAF kinases in CRC, including MAPK feedback reactivation of resistance to RAF inhibitors. We additionally summarize the development of three generations of RAF inhibitors and different therapeutic strategies including the combination of EGFR, BRAF, and PI3K inhibitors for BRAFm CRC treatment.
Collapse
Affiliation(s)
- Jing-Hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China,
| | - Hong Zhou
- Department of Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Sheng-Bin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China,
| | - Jin-Lian Huang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China,
| | - Xiao-Xu Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China,
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China,
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China,
| |
Collapse
|
28
|
Kinoshita-Kikuta E, Kinoshita E, Ueda S, Ino Y, Kimura Y, Hirano H, Koike T. Increase in constitutively active MEK1 species by introduction of MEK1 mutations identified in cancers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:62-70. [PMID: 29753091 DOI: 10.1016/j.bbapap.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/26/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The kinase MEK1 is an essential component of the mitogen-activated protein kinase cascades. Somatic mutations that have been identified in the MEK1-coding gene generally enhance kinase activity. Consequently, MEK1 has attracted much interest as a target for cancer therapy to block the aberrant activity. By using Phos-tag affinity electrophoresis, we found that the introduction of mutations detected in certain sporadic cancers or in MEK-inhibitor-resistant cancer cells produced constitutively active MEK1 species containing phosphorylated Ser-218 and Ser-222 residues; it also enhanced the constitutive activity of the kinase. Phosphorylation profiling of the mutants in the presence of inhibitors of RAF/MEK demonstrated that several mutations conferred resistance to multiple inhibitors as a result of an increase in the quantity of active MEK1 species containing the two phosphorylated Ser-218 and Ser-222 residues. Phos-tag-based phosphorylation profiling of MEK1 can therefore provide clinical insights into characteristics of individual mutations in the MEK1-coding gene.
Collapse
Affiliation(s)
- Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan.
| | - Sayaka Ueda
- Department of Functional Molecular Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
29
|
Molnár E, Rittler D, Baranyi M, Grusch M, Berger W, Döme B, Tóvári J, Aigner C, Tímár J, Garay T, Hegedűs B. Pan-RAF and MEK vertical inhibition enhances therapeutic response in non-V600 BRAF mutant cells. BMC Cancer 2018; 18:542. [PMID: 29739364 PMCID: PMC5941622 DOI: 10.1186/s12885-018-4455-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Currently, there are no available targeted therapy options for non-V600 BRAF mutated tumors. The aim of this study was to investigate the effects of RAF and MEK concurrent inhibition on tumor growth, migration, signaling and apoptosis induction in preclinical models of non-V600 BRAF mutant tumor cell lines. METHODS Six BRAF mutated human tumor cell lines CRL5885 (G466 V), WM3629 (D594G), WM3670 (G469E), MDAMB231 (G464 V), CRL5922 (L597 V) and A375 (V600E as control) were investigated. Pan-RAF inhibitor (sorafenib or AZ628) and MEK inhibitor (selumetinib) or their combination were used in in vitro viability, video microscopy, immunoblot, cell cycle and TUNEL assays. The in vivo effects of the drugs were assessed in an orthotopic NSG mouse breast cancer model. RESULTS All cell lines showed a significant growth inhibition with synergism in the sorafenib/AZ628 and selumetinib combination. Combination treatment resulted in higher Erk1/2 inhibition and in increased induction of apoptosis when compared to single agent treatments. However, single selumetinib treatment could cause adverse therapeutic effects, like increased cell migration in certain cells, selumetinib and sorafenib combination treatment lowered migratory capacity in all the cell lines. Importantly, combination resulted in significantly increased tumor growth inhibition in orthotropic xenografts of MDAMB231 cells when compared to sorafenib - but not to selumetinib - treatment. CONCLUSIONS Our data suggests that combined blocking of RAF and MEK may achieve increased therapeutic response in non-V600 BRAF mutant tumors.
Collapse
Affiliation(s)
- Eszter Molnár
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary
| | - Dominika Rittler
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary
| | - Marcell Baranyi
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary
| | - Michael Grusch
- Institute of Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Balázs Döme
- Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria.,National Korányi Institute of TB and Pulmonology, Budapest, 1085, Hungary.,Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, 1122, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, 1122, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, 45239, Essen, Germany
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary.,HAS-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary.,HAS-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary.,HAS Postdoctoral Fellowship Program Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Balázs Hegedűs
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary. .,Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, 45239, Essen, Germany. .,HAS-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary.
| |
Collapse
|
30
|
Kiuru M, Tartar DM, Qi L, Chen D, Yu L, Konia T, McPherson JD, Murphy WJ, Fung MA. Improving classification of melanocytic nevi: Association of BRAF V600E expression with distinct histomorphologic features. J Am Acad Dermatol 2018; 79:221-229. [PMID: 29653212 DOI: 10.1016/j.jaad.2018.03.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND A subset of melanomas carrying a B-Raf proto-oncogene, serine/threonine kinase gene (BRAF) V600E mutation, which is the most common targetable mutation in melanoma, arise in association with a melanocytic nevus that is also harboring a BRAF V600E mutation. The detailed histomorphologic characteristics of nevi positive for BRAF V600E have not been systematically documented. OBJECTIVE To identify histomorphologic features correlating with BRAF V600E status in nevi. METHODS We retrospectively identified melanocytic nevi from our laboratory reporting system. We performed a histomorphologic analysis and analysis of BRAF V600E expression by immunohistochemistry. RESULTS Thirteen nevi (14.8%) were negative and 76 (86.4%) were positive for BRAF V600E. The nevi positive for BRAF V600E were predominantly dermal (predominantly dermal growth in 55.3% of nevi positive for BRAF V600E and 15.4% of nevi negative for BRAF V600E [P = .01]) and showed a congenital growth pattern (congenital growth pattern in 51.3% of nevi positive for BRAF V600E and 15.4% of nevi negative for BRAF V600E [P = .02]). Compared with nevi negative for BRAF V600E, those that were positive for BRAF V600E often exhibited predominantly nested intraepidermal melanocytes, larger junctional nests, abrupt lateral circumscription, and larger cell size. Architectural disorder and inflammatory infiltrates were seen more often in nevi negative for BRAF V600E. BRAF sequencing of a subset of nevi confirmed the immunohistochemical results. LIMITATIONS Limitations include the study's retrospective design and the small sample size of nevi negative for BRAF V600E. CONCLUSIONS BRAF V600E is associated with distinct histomorphologic features in nevi. These features may contribute to improving the accuracy of classification and diagnosis of melanocytic neoplasms.
Collapse
Affiliation(s)
- Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento and Davis, California; Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento and Davis, California.
| | - Danielle M Tartar
- Department of Dermatology, University of California, Davis, Sacramento and Davis, California
| | - Lihong Qi
- Department of Public Health Sciences, University of California, Davis, Sacramento and Davis, California
| | - Danyang Chen
- Department of Public Health Sciences, University of California, Davis, Sacramento and Davis, California
| | - Lan Yu
- Department of Dermatology, University of California, Davis, Sacramento and Davis, California
| | - Thomas Konia
- Department of Dermatology, University of California, Davis, Sacramento and Davis, California; Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento and Davis, California
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento and Davis, California
| | - William J Murphy
- Department of Dermatology, University of California, Davis, Sacramento and Davis, California; Department of Internal Medicine, University of California, Davis, Sacramento and Davis, California
| | - Maxwell A Fung
- Department of Dermatology, University of California, Davis, Sacramento and Davis, California; Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento and Davis, California
| |
Collapse
|
31
|
Bright MD, Clarke PA, Workman P, Davies FE. Oncogenic RAC1 and NRAS drive resistance to endoplasmic reticulum stress through MEK/ERK signalling. Cell Signal 2018; 44:127-137. [PMID: 29329780 PMCID: PMC6562199 DOI: 10.1016/j.cellsig.2018.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022]
Abstract
Cancer cells are able to survive under conditions that cause endoplasmic reticulum stress (ER-stress), and can adapt to this stress by upregulating cell-survival signalling pathways and down-regulating apoptotic pathways. The cellular response to ER-stress is controlled by the unfolded protein response (UPR). Small Rho family GTPases are linked to many cell responses including cell growth and apoptosis. In this study, we investigate the function of small GTPases in cell survival under ER-stress. Using siRNA screening we identify that RAC1 promotes cell survival under ER-stress in cells with an oncogenic N92I RAC1 mutation. We uncover a novel connection between the UPR and N92I RAC1, whereby RAC1 attenuates phosphorylation of EIF2S1 under ER-stress and drives over-expression of ATF4 in basal conditions. Interestingly, the UPR connection does not drive resistance to ER-stress, as knockdown of ATF4 did not affect this. We further investigate cancer-associated kinase signalling pathways and show that RAC1 knockdown reduces the activity of AKT and ERK, and using a panel of clinically important kinase inhibitors, we uncover a role for MEK/ERK, but not AKT, in cell viability under ER-stress. A known major activator of ERK phosphorylation in cancer is oncogenic NRAS and we show that knockdown of NRAS in cells, which bear a Q61 NRAS mutation, sensitises to ER-stress. These findings highlight a novel mechanism for resistance to ER-stress through oncogenic activation of MEK/ERK signalling by small GTPases.
Collapse
Affiliation(s)
- Michael D Bright
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK.
| | - Paul A Clarke
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Paul Workman
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Faith E Davies
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| |
Collapse
|
32
|
Concomitant BCORL1 and BRAF Mutations in Vemurafenib-Resistant Melanoma Cells. Neoplasia 2018; 20:467-477. [PMID: 29605720 PMCID: PMC5915992 DOI: 10.1016/j.neo.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
BRAF is the most frequently mutated gene in melanoma. Constitutive activation of mutant BRAFV600E leads to aberrant Ras-independent MAPK signaling and cell transformation. Inhibition of mutant BRAF is a current frontline therapy for such cases, with improved survival compared with chemotherapy. Unfortunately, reactivation of MAPK signaling by several mechanisms has been shown to cause drug resistance and disease recurrence. In this work, we describe the co-occurrence of an in-frame deletion within an amplified BRAFV600E locus and a missense point mutation of the transcriptional repressor BCORL1 in vemurafenib-resistant A375 melanoma cells. Functional data confirmed that truncated p47BRAFV600E and mutant BCORL1Q1076H both contribute to resistance. Interestingly, either endogenous BCORL1 silencing or ectopic BCORL1Q1076H expression mimicked the effects of a CRISPR/Cas9-edited BCORL1Q1076H locus, suggesting a complex mixture of loss- and gain-of-function effects caused by the mutation. Transcriptomic data confirmed this hypothesis. Finally, we show that the pan-RAF inhibitor sorafenib is not affected by expression of BRAF deletion variant and effectively synergizes with vemurafenib to block resistant cells, suggesting a possible intervention for this class of mutants.
Collapse
|
33
|
Affiliation(s)
- Bogos Agianian
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Evripidis Gavathiotis
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
34
|
Padala RR, Karnawat R, Viswanathan SB, Thakkar AV, Das AB. Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/β-catenin signaling network constitutively activate inter-pathway positive feedback loops. MOLECULAR BIOSYSTEMS 2018; 13:830-840. [PMID: 28367561 DOI: 10.1039/c6mb00786d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perturbations in molecular signaling pathways are a result of genetic or epigenetic alterations, which may lead to malignant transformation of cells. Despite cellular robustness, specific genetic or epigenetic changes of any gene can trigger a cascade of failures, which result in the malfunctioning of cell signaling pathways and lead to cancer phenotypes. The extent of cellular robustness has a link with the architecture of the network such as feedback and feedforward loops. Perturbation in components within feedback loops causes a transition from a regulated to a persistently activated state and results in uncontrolled cell growth. This work represents the mathematical and quantitative modeling of ERK, PI3K/Akt, and Wnt/β-catenin signaling crosstalk to show the dynamics of signaling responses during genetic and epigenetic changes in cancer. ERK, PI3K/Akt, and Wnt/β-catenin signaling crosstalk networks include both intra and inter-pathway feedback loops which function in a controlled fashion in a healthy cell. Our results show that cancerous perturbations of components such as EGFR, Ras, B-Raf, PTEN, and components of the destruction complex cause extreme fragility in the network and constitutively activate inter-pathway positive feedback loops. We observed that the aberrant signaling response due to the failure of specific network components is transmitted throughout the network via crosstalk, generating an additive effect on cancer growth and proliferation.
Collapse
Affiliation(s)
- Rahul Rao Padala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana 506004, India.
| | | | | | | | | |
Collapse
|
35
|
Martin CE, Jones N. Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond. Front Endocrinol (Lausanne) 2018; 9:302. [PMID: 29922234 PMCID: PMC5996060 DOI: 10.3389/fendo.2018.00302] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Podocytes are a major component of the glomerular blood filtration barrier, and alterations to the morphology of their unique actin-based foot processes (FP) are a common feature of kidney disease. Adjacent FP are connected by a specialized intercellular junction known as the slit diaphragm (SD), which serves as the ultimate barrier to regulate passage of macromolecules from the blood. While the link between SD dysfunction and reduced filtration selectivity has been recognized for nearly 50 years, our understanding of the underlying molecular circuitry began only 20 years ago, sparked by the identification of NPHS1, encoding the transmembrane protein nephrin. Nephrin not only functions as the core component of the extracellular SD filtration network but also as a signaling scaffold via interactions at its short intracellular region. Phospho-regulation of several conserved tyrosine residues in this region influences signal transduction pathways which control podocyte cell adhesion, shape, and survival, and emerging studies highlight roles for nephrin phospho-dynamics in mechanotransduction and endocytosis. The following review aims to summarize the last 5 years of advancement in our knowledge of how signaling centered at nephrin directs SD barrier formation and function. We further provide insight on promising frontiers in podocyte biology, which have implications for SD signaling in the healthy and diseased kidney.
Collapse
|
36
|
Sieber J, Wieder N, Clark A, Reitberger M, Matan S, Schoenfelder J, Zhang J, Mandinova A, Bittker JA, Gutierrez J, Aygün O, Udeshi N, Carr S, Mundel P, Jehle AW, Greka A. GDC-0879, a BRAF V600E Inhibitor, Protects Kidney Podocytes from Death. Cell Chem Biol 2017; 25:175-184.e4. [PMID: 29249695 DOI: 10.1016/j.chembiol.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/20/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023]
Abstract
Progressive kidney diseases affect approximately 500 million people worldwide. Podocytes are terminally differentiated cells of the kidney filter, the loss of which leads to disease progression and kidney failure. To date, there are no therapies to promote podocyte survival. Drug repurposing may therefore help accelerate the development of cures in an area of tremendous unmet need. In a newly developed high-throughput screening assay of podocyte viability, we identified the BRAFV600E inhibitor GDC-0879 and the adenylate cyclase agonist forskolin as podocyte-survival-promoting compounds. GDC-0879 protects podocytes from injury through paradoxical activation of the MEK/ERK pathway. Forskolin promotes podocyte survival by attenuating protein biosynthesis. Importantly, GDC-0879 and forskolin are shown to promote podocyte survival against an array of cellular stressors. This work reveals new therapeutic targets for much needed podocyte-protective therapies and provides insights into the use of GDC-0879-like molecules for the treatment of progressive kidney diseases.
Collapse
Affiliation(s)
- Jonas Sieber
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolas Wieder
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Abbe Clark
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Manuel Reitberger
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Sofia Matan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jeannine Schoenfelder
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jianming Zhang
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Anna Mandinova
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | | - Juan Gutierrez
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ozan Aygün
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Namrata Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter Mundel
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Andreas Werner Jehle
- Department of Biomedicine, Molecular Nephrology, University of Basel, Basel 4031, Switzerland
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
37
|
Chen G, Gao C, Gao X, Zhang DH, Kuan SF, Burns TF, Hu J. Wnt/β-Catenin Pathway Activation Mediates Adaptive Resistance to BRAF Inhibition in Colorectal Cancer. Mol Cancer Ther 2017; 17:806-813. [PMID: 29167314 DOI: 10.1158/1535-7163.mct-17-0561] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
One of the most encouraging developments in oncology has been the success of BRAF inhibitors in BRAF-mutant melanoma. However, in contrast to its striking efficacy in BRAF-mutant melanomas, BRAF inhibitor monotherapy is ineffective in BRAF-mutant colorectal cancer. Although many studies on BRAF inhibitor resistance in colorectal cancer have focused on mechanisms underlying the reactivation of the EGFR/RAS/RAF/MEK/ERK pathway, the current study focuses on identifying novel adaptive signaling mechanisms, a fresh angle on colorectal cancer resistance to BRAF inhibition. We found that treatment with BRAF inhibitors (both current and next-generation BRAF inhibitors) upregulated the Wnt/β-catenin pathway in BRAFV600E-mutant colorectal cancer cell lines through activating the cytoplasmic tyrosine kinase focal adhesion kinase (FAK). The results showed that FAK activation upon BRAF inhibitor treatment did not require EGFR or ERK1/2 activation, implying that BRAF inhibitor treatment-induced hyperactivation of Wnt signaling is "pathway reactivation"-independent. BRAF inhibition-induced Wnt pathway activation was further validated in preclinical models of BRAFV600E-mutant colorectal cancer, including cell line xenograft model and a patient-derived xenograft model. Combined inhibition of BRAF/Wnt pathways or BRAF/FAK pathways exerted strong synergistic antitumor effects in cell culture model and mouse xenograft model. Overall, the current study has identified activation of the Wnt/β-catenin pathway as a novel fundamental cause of colon cancer resistance to BRAF inhibition. Our results suggest that although complete vertical pathway blockade is pivotal for effective and durable control of BRAF-mutant colorectal cancer, cotargeting parallel adaptive signaling-the Wnt/β-catenin pathway-is also essential. Mol Cancer Ther; 17(4); 806-13. ©2017 AACR.
Collapse
Affiliation(s)
- Guangming Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xuan Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dennis Han Zhang
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shih-Fan Kuan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy F Burns
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Zhang Y, Sun F, Dan W, Fang X. Friedel-Crafts Acylation Reactions of BN-Substituted Arenes. J Org Chem 2017; 82:12877-12887. [PMID: 29083179 DOI: 10.1021/acs.joc.7b02343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acylation reaction of BN-arenes has been studied using BN-arene and acyl chloride in good to excellent yields, which led to the first synthesis of indanone BN-analogue. The BN-aromatic ketone products have been characterized by 1H NMR spectroscopy with their molecular structures unambiguously confirmed by X-ray crystallography. The annulation reaction of BN-arenes promoted by AgBF4 occurs in a completely regioselective manner and a mechanism for this transformation is proposed.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability (CAS), Tongji University , 1239 Siping Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Feiye Sun
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability (CAS), Tongji University , 1239 Siping Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Wenyan Dan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability (CAS), Tongji University , 1239 Siping Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Xiangdong Fang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability (CAS), Tongji University , 1239 Siping Road, Yangpu District, Shanghai 200092, People's Republic of China
| |
Collapse
|
39
|
Abstract
The discovery that a subset of human tumours is dependent on mutationally deregulated BRAF kinase intensified the development of RAF inhibitors to be used as potential therapeutics. The US Food and Drug Administration (FDA)-approved second-generation RAF inhibitors vemurafenib and dabrafenib have elicited remarkable responses and improved survival of patients with BRAF-V600E/K melanoma, but their effectiveness is limited by resistance. Beyond melanoma, current clinical RAF inhibitors show modest efficacy when used for colorectal and thyroid BRAF-V600E tumours or for tumours harbouring BRAF alterations other than the V600 mutation. Accumulated experimental and clinical evidence indicates that the complex biochemical mechanisms of RAF kinase signalling account both for the effectiveness of RAF inhibitors and for the various mechanisms of tumour resistance to them. Recently, a number of next-generation RAF inhibitors, with diverse structural and biochemical properties, have entered preclinical and clinical development. In this Review, we discuss the current understanding of RAF kinase regulation, mechanisms of inhibitor action and related clinical resistance to these drugs. The recent elucidation of critical structural and biochemical aspects of RAF inhibitor action, combined with the availability of a number of structurally diverse RAF inhibitors currently in preclinical and clinical development, will enable the design of more effective RAF inhibitors and RAF-inhibitor-based therapeutic strategies, tailored to different clinical contexts.
Collapse
Affiliation(s)
- Zoi Karoulia
- Department of Oncological Sciences and Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences and Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
40
|
Gong ZH, Yao J, Ji JF, Yang J, Xiang T, Zhou CK. Synthesis and biological evaluation of novel N-(5-phenyl-1H-pyrazol-3-yl)benzenesulfonamide derivatives as potential BRAFV600E inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Fan X, Sun L, Li K, Yang X, Cai B, Zhang Y, Zhu Y, Ma Y, Guan Z, Wu Y, Zhang L, Yang Z. The Bioactivity of D-/L-Isonucleoside- and 2'-Deoxyinosine-Incorporated Aptamer AS1411s Including DNA Replication/MicroRNA Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:218-229. [PMID: 29246300 PMCID: PMC5651494 DOI: 10.1016/j.omtn.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
In this study, chemical modification of 2'-deoxyinosine (2'-dI) and D-/L-isothymidine (D-/L-isoT) was performed on AS1411. They could promote the nucleotide-protein interaction by changing the local conformation. Twenty modified sequences were obtained, FCL-I and FCL-II showed the most noticeable activity improvement. They stabilized the G-quadruplex, remained highly resistant to serum degradation and specificity for nucleolin, further inhibited tumor cell growth, exhibited a stronger ability to influence the different phases of the tumor cell cycle, induced S-phase arrest, promoted the inhibition of DNA replication, and suppressed the unwound function of a large T antigen as powerful as AS1411. The microarray analysis and TaqMan PCR results showed that FCL-II can upregulate the expression of four breast-cancer-related, lowly expressed miRNAs and downregulate the expression of three breast-cancer-related, highly expressed miRNAs (>2.5-fold). FCL-II resulted in enhanced treatment effects greater than AS1411 in animal experiments (p < 0.01). The computational results further proved that FCL-II exhibits more structural advantages than AS1411 for binding to the target protein nucleolin, indicating its great potential in antitumor therapy.
Collapse
Affiliation(s)
- Xinmeng Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lidan Sun
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang 443002, PR China
| | - Kunfeng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Baobin Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yanfen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
42
|
Bahrami A, Hesari A, Khazaei M, Hassanian SM, Ferns GA, Avan A. The therapeutic potential of targeting the BRAF mutation in patients with colorectal cancer. J Cell Physiol 2017; 233:2162-2169. [DOI: 10.1002/jcp.25952] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies; Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - AmirReza Hesari
- Department of Biology, Damghan Branch; Islamic Azad University; Damghan Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Biochemistry, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Gordon A. Ferns
- Division of Medical Education; Brighton and Sussex Medical School; Falmer, Brighton UK
| | - Amir Avan
- Metabolic syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Cancer Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
43
|
Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel ES. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog 2017; 56:1515-1525. [PMID: 28052407 DOI: 10.1002/mc.22611] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
BRAF is a commonly mutated oncogene in various human malignancies and a target of a new class of anti-cancer agents, BRAF-inhibitors (BRAFi). The initial enthusiasm for these agents, based on the early successes in the management of metastatic melanoma, is now challenged by the mounting evidence of intrinsic BRAFi-insensitivity in many BRAF-mutated tumors, by the scarcity of complete responses, and by the inevitable emergence of drug resistance in initially responsive cases. These setbacks put an emphasis on discovering the means to increase the efficacy of BRAFi and to prevent or overcome BRAFi-resistance. We explored the role of p21-activated kinases (PAKs), in particular PAK1, in BRAFi response. BRAFi lowered the levels of active PAK1 in treated cells. An activated form of PAK1 conferred BRAFi-resistance on otherwise sensitive cells, while genetic or pharmacologic suppression of PAK1 had a sensitizing effect. While activation of AKT1 and RAC1 proto-oncogenes increased BRAFi-tolerance, the protective effect was negated in the presence of PAK inhibitors. Furthermore, combining otherwise ineffective doses of PAK- and BRAF-inhibitors synergistically affected intrinsically BRAFi-resistant cells. Considering the high incidence of PAK1 activation in cancers, our findings suggests PAK inhibition as a strategy to augment BRAFi therapy and overcome some of the well-known resistance mechanisms.
Collapse
Affiliation(s)
- Mahamat Babagana
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Sydney Johnson
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Hannah Slabodkin
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Wiam Bshara
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Carl Morrison
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| |
Collapse
|
44
|
Hutchinson KE, Johnson DB, Johnson AS, Sanchez V, Kuba M, Lu P, Chen X, Kelley MC, Wang Q, Zhao Z, Kris M, Berger MF, Sosman JA, Pao W. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget 2016; 6:22348-60. [PMID: 26084293 PMCID: PMC4673168 DOI: 10.18632/oncotarget.4255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022] Open
Abstract
Melanomas are characterized by activating “driver” mutations in BRAF, NRAS, KIT, GNAQ, and GNA11. Resultant mitogen-activated protein kinase (MAPK) pathway signaling makes some melanomas susceptible to BRAF (BRAF V600 mutations), MEK1/2 (BRAF V600, L597, fusions; NRAS mutations), or other kinase inhibitors (KIT), respectively. Among driver-negative (“pan-negative”) patients, an unexplained heterogeneity of response to MEK1/2 inhibitors has been observed. Analysis of 16 pan-negative melanoma cell lines revealed that 8 (50%; termed Class I) are sensitive to the MEK1/2 inhibitor, trametinib, similar to BRAF V600E melanomas. A second set (termed Class II) display reduced trametinib sensitivity, paradoxical activation of MEK1/2 and basal activation of ERBBs 1, 2, and 3 (4 lines, 25%). In 3 of these lines, PI3K/AKT and MAPK pathway signaling is abrogated using the ERBB inhibitor, afatinib, and proliferation is even further reduced upon the addition of trametinib. A potential mechanism of ERBB activation in Class II melanomas is minimal expression of the ERK1/2 phosphatase, DUSP4, as ectopic restoration of DUSP4 attenuated ERBB signaling through potential modulation of the ERBB ligand, amphiregulin (AREG). Consistent with these data, immunohistochemical analysis of patient melanomas revealed a trend towards lower overall DUSP4 expression in pan-negative versus BRAF- and NRAS-mutant tumors. This study is the first to demonstrate that differential ERBB activity in pan-negative melanoma may modulate sensitivity to clinically-available MEK1/2 inhibitors and provides rationale for the use of ERBB inhibitors, potentially in combination with MEK1/2 inhibitors, in subsets of this disease.
Collapse
Affiliation(s)
- Katherine E Hutchinson
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam S Johnson
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Violeta Sanchez
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Kuba
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark C Kelley
- Department of Surgery, Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qingguo Wang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhongming Zhao
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark Kris
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.,Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jeffrey A Sosman
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William Pao
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Currently an employee of Roche Pharma Research and Early Development, Basel, Switzerland
| |
Collapse
|
45
|
Karoulia Z, Wu Y, Ahmed TA, Xin Q, Bollard J, Krepler C, Wu X, Zhang C, Bollag G, Herlyn M, Fagin JA, Lujambio A, Gavathiotis E, Poulikakos PI. An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell 2016; 30:485-498. [PMID: 27523909 PMCID: PMC5021590 DOI: 10.1016/j.ccell.2016.06.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 05/10/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The complex biochemical effects of RAF inhibitors account for both the effectiveness and mechanisms of resistance to these drugs, but a unified mechanistic model has been lacking. Here we show that RAF inhibitors exert their effects via two distinct allosteric mechanisms. Drug resistance due to dimerization is determined by the position of the αC helix stabilized by inhibitor, whereas inhibitor-induced RAF priming and dimerization are the result of inhibitor-induced formation of the RAF/RAS-GTP complex. The biochemical effect of RAF inhibitor in cells is the combined outcome of the two mechanisms. Therapeutic strategies including αC-helix-IN inhibitors are more effective in multiple mutant BRAF-driven tumor models, including colorectal and thyroid BRAF(V600E) cancers, in which first-generation RAF inhibitors have been ineffective.
Collapse
Affiliation(s)
- Zoi Karoulia
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Wu
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tamer A Ahmed
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qisheng Xin
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julien Bollard
- Department of Oncological Sciences, Liver Cancer program, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19014, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19014, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Liver Cancer program, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
46
|
Rolfo C, Caparica R. B-RAF mutation in non-small cell lung cancer: the sleeping beauty is waking up. Transl Lung Cancer Res 2016; 5:367-9. [PMID: 27650165 PMCID: PMC5009081 DOI: 10.21037/tlcr.2016.07.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/23/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital & Center for Oncological Research of Antwerp University (CORE), Edegem, Belgium
| | - Rafael Caparica
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital & Center for Oncological Research of Antwerp University (CORE), Edegem, Belgium
| |
Collapse
|
47
|
Fan X, Sun L, Wu Y, Zhang L, Yang Z. Bioactivity of 2'-deoxyinosine-incorporated aptamer AS1411. Sci Rep 2016; 6:25799. [PMID: 27194215 PMCID: PMC4872150 DOI: 10.1038/srep25799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/18/2016] [Indexed: 11/09/2022] Open
Abstract
Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2'-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2'-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2'-deoxyinosine at positions 12 and 24 (FAN-1224dI), 13 and 24 (FAN-1324dI), and 15 and 24 (FAN-1524dI) promoted G-quartet formation, as well as inhibition of DNA replication and tumor cell growth, and induced S-phase cell cycle arrest. In further animal experiments, FAN-1224dI, FAN-1324dI and FAN-1524dI resulted in enhanced treatment effects than AS1411 alone. These results suggested that the position and number of modification substituents in AS1411 are critical parameters to improve the diagnostic and therapeutic function of the aptamer. Structural investigations of the FAN-1524dI/nucleolin complex structure, using molecular dynamics simulation, revealed the critical interactions involving nucleolin and 2'-dI incorporated AS1411 compared with AS1411 alone. These findings augment understanding of the role of 2'-deoxyinosine moieties in interactive binding processes.
Collapse
Affiliation(s)
- Xinmeng Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lidan Sun
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang, 443002 China
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| |
Collapse
|
48
|
Purinylpyridinylamino-based DFG-in/αC-helix-out B-Raf inhibitors: Applying mutant versus wild-type B-Raf selectivity indices for compound profiling. Bioorg Med Chem 2016; 24:2215-34. [DOI: 10.1016/j.bmc.2016.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/20/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
49
|
Prediction of the engendering mechanism and specific genes of primary melanoma by bioinformatics analysis. DERMATOL SIN 2016. [DOI: 10.1016/j.dsi.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Jiang L, Chu H, Zheng H. B-Raf mutation and papillary thyroid carcinoma patients. Oncol Lett 2016; 11:2699-2705. [PMID: 27073540 PMCID: PMC4812206 DOI: 10.3892/ol.2016.4298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/11/2015] [Indexed: 02/02/2023] Open
Abstract
Thyroid carcinoma is the most prevalent endocrine neoplasm globally. In the majority of thyroid carcinoma cases, a positive prognosis is predicted following administration of the appropriate treatment. A wide range of genetic alterations present in thyroid carcinoma exert their oncogenic actions partially through the activation of the mitogen-activated protein kinase pathway, with the B-Raf mutation in particular being focused on by experts for decades. The B-Raf gene has numerous mutations, however, V600E presents with the highest frequency. It is believed that the existence of the V600E mutation may demonstrate an association with the clinicopathological characteristics of patients, however, inconsistencies remain in the literature. A number of explanatory theories have been presented in order to resolve these discrepancies. Recently, it has been suggested that the V600E mutation may function as a target in a novel approach that may aid the diagnosis and prognosis of thyroid carcinoma, with a number of vying methods put forward to that effect. The current review aims to assist researchers in further understanding the possible association between B-Raf mutations and thyroid carcinoma.
Collapse
Affiliation(s)
- Lixin Jiang
- Department of General Surgery, Affiliated Hospital of Qingdao University, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Haidi Chu
- Department of General Surgery, Affiliated Hospital of Qingdao University, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Haitao Zheng
- Department of General Surgery, Affiliated Hospital of Qingdao University, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|