1
|
Santos A, Cristóbal I, Rubio J, Caramés C, Luque M, Sanz-Álvarez M, Zazo S, Madoz-Gúrpide J, Rojo F, García-Foncillas J. MicroRNA-19b Plays a Key Role in 5-Fluorouracil Resistance and Predicts Tumor Progression in Locally Advanced Rectal Cancer Patients. Int J Mol Sci 2022; 23:ijms232012447. [PMID: 36293302 PMCID: PMC9604503 DOI: 10.3390/ijms232012447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
The standard clinical management of locally advanced rectal cancer (LARC) patients includes neoadjuvant 5-fluorouracil (5-FU)-based chemoradiotherapy (CRT) followed by mesorectal excision. MicroRNA (miR)-19b expression levels in LARC biopsies obtained from initial colonoscopy have recently been identified as independent predictors of both patient outcome and pathological response to preoperative CRT in this disease. Moreover, it has been discovered that this miR increases its expression in 5-FU resistant colon cancer cells after 5-FU exposure. Despite the fact that these observations suggest a functional role of miR-19b modulating 5-FU response of LARC cells, this issue still remains to be clarified. Here, we show that downregulation of miR-19b enhances the antitumor effects of 5-FU treatment. Moreover, ectopic miR-19b modulation was able to restore sensitivity to 5-FU treatment using an acquired resistant model to this compound. Notably, we also evaluated the potential clinical impact of miR-19b as a predictive marker of disease progression after tumor surgery resection in LARC patients, observing that miR-19b overexpression significantly anticipates patient recurrence in our cohort (p = 0.002). Altogether, our findings demonstrate the functional role of miR-19b in the progressively decreasing sensitivity to 5-FU treatment and its potential usefulness as a therapeutic target to overcome 5-FU resistance, as well as its clinical impact as predictor of tumor progression and relapse.
Collapse
Affiliation(s)
- Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Correspondence: (I.C.); (J.G.-F.); Tel.: +34-915-504-800 (I.C. & J.G.-F.)
| | - Jaime Rubio
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Cristina Caramés
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, Health Research Institute (IIS)—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Melani Luque
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Marta Sanz-Álvarez
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Sandra Zazo
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Juan Madoz-Gúrpide
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
| | - Jesus García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS—Fundación Jiménez Díaz—UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
- Correspondence: (I.C.); (J.G.-F.); Tel.: +34-915-504-800 (I.C. & J.G.-F.)
| |
Collapse
|
2
|
Kersy O, Salmon-Divon M, Shpilberg O, Hershkovitz-Rokah O. Non-Coding RNAs in Normal B-Cell Development and in Mantle Cell Lymphoma: From Molecular Mechanism to Biomarker and Therapeutic Agent Potential. Int J Mol Sci 2021; 22:ijms22179490. [PMID: 34502399 PMCID: PMC8430640 DOI: 10.3390/ijms22179490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
B-lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies are of B-cell origin, suggesting that the development and activation of B cells must be tightly regulated. In recent years, differentially expressed non-coding RNAs have been identified in mantle cell lymphoma (MCL) tumor samples as opposed to their naive, normal B-cell compartment. These aberrantly expressed molecules, specifically microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), have a role in cellular growth and survival pathways in various biological models. Here, we provide an overview of current knowledge on the role of non-coding RNAs and their relevant targets in B-cell development, activation and malignant transformation, summarizing the current understanding of the role of aberrant expression of non-coding RNAs in MCL pathobiology with perspectives for clinical use.
Collapse
Affiliation(s)
- Olga Kersy
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Institute of Hematology, Assuta Medical Centers, Tel-Aviv 6971028, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Correspondence: ; Tel.: +972-3-764-4094
| |
Collapse
|
3
|
Peng W, Du J, Dai W, Lan W. Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding. Front Cell Dev Biol 2021; 9:603758. [PMID: 34178973 PMCID: PMC8223753 DOI: 10.3389/fcell.2021.603758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a category of small non-coding RNAs that profoundly impact various biological processes related to human disease. Inferring the potential miRNA-disease associations benefits the study of human diseases, such as disease prevention, disease diagnosis, and drug development. In this work, we propose a novel heterogeneous network embedding-based method called MDN-NMTF (Module-based Dynamic Neighborhood Non-negative Matrix Tri-Factorization) for predicting miRNA-disease associations. MDN-NMTF constructs a heterogeneous network of disease similarity network, miRNA similarity network and a known miRNA-disease association network. After that, it learns the latent vector representation for miRNAs and diseases in the heterogeneous network. Finally, the association probability is computed by the product of the latent miRNA and disease vectors. MDN-NMTF not only successfully integrates diverse biological information of miRNAs and diseases to predict miRNA-disease associations, but also considers the module properties of miRNAs and diseases in the course of learning vector representation, which can maximally preserve the heterogeneous network structural information and the network properties. At the same time, we also extend MDN-NMTF to a new version (called MDN-NMTF2) by using modular information to improve the miRNA-disease association prediction ability. Our methods and the other four existing methods are applied to predict miRNA-disease associations in four databases. The prediction results show that our methods can improve the miRNA-disease association prediction to a high level compared with the four existing methods.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Jielin Du
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Wei Lan
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|
5
|
Cortelazzo S, Ponzoni M, Ferreri AJM, Dreyling M. Mantle cell lymphoma. Crit Rev Oncol Hematol 2020; 153:103038. [PMID: 32739830 DOI: 10.1016/j.critrevonc.2020.103038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
MCL is a well-characterized generally aggressive lymphoma with a poor prognosis. However, patients with a more indolent disease have been reported in whom the initiation of therapy can be delayed without any consequence for the survival. In 2017 the World Health Organization updated the classification of MCL describing two main subtypes with specific molecular characteristics and clinical features, classical and indolent leukaemic nonnodal MCL. Recent research results suggested an improving outcome of this neoplasm. The addition of rituximab to conventional chemotherapy has increased overall response rates, but it did not improve overall survival compared to chemotherapy alone. The use of intensive frontline therapies including rituximab and consolidation with autologous stem cell transplantation ameliorated response rate and prolonged progression-free survival in young fit patients, but any impact on survival remains to be proven. Furthermore, the optimal timing, cytoreductive regimen and conditioning regimen, and the clinical implications of achieving a disease remission even at molecular level remain to be elucidated. The development of targeted therapies as the consequence of better understanding of pathogenetic pathways in MCL might improve the outcome of conventional chemotherapy and spare the toxicity of intense therapy in most patients. Cases not eligible for intensive regimens, may be considered for less demanding therapies, such as the combination of rituximab either with CHOP or with purine analogues, or bendamustine. Allogeneic SCT can be an effective option for relapsed disease in patients who are fit enough and have a compatible donor. Maintenance rituximab may be considered after response to immunochemotherapy as the first-line strategy in a wide range of patients. Finally, since the optimal approach to the management of MCL is still evolving, it is critical that these patients are enrolled in clinical trials to identify the better treatment options.
Collapse
Affiliation(s)
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy; Medical Oncology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Martin Dreyling
- Medizinische Klinik III der Universität München-Grosshadern, München, Germany
| |
Collapse
|
6
|
Li Y, Mao M, Liu H, Wang X, Kou Z, Nie Y, Wang Y, Wang Z, Huang Q, Lang T, Gu Z, An L, Zhang X, Fu L. miR-34a and miR-29b as indicators for prognosis of treatment-free survival of chronic lymphocytic leukemia patients in Chinese Uygur and Han populations. Mol Cell Probes 2019; 47:101436. [DOI: 10.1016/j.mcp.2019.101436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
7
|
A. Richard S. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.4.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Plasma microRNA profiling: Exploring better biomarkers for lymphoma surveillance. PLoS One 2017; 12:e0187722. [PMID: 29131834 PMCID: PMC5683633 DOI: 10.1371/journal.pone.0187722] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Early detection of relapsed lymphoma improves response and survival. Current tools lack power for detection of early relapse, while being cumbersome and expensive. We searched for sensitive biomarkers that precede clinical relapse, and serve for further studies on therapy response and relapse. We recruited 20 healthy adults, 14 diffuse large B-cell lymphoma (DLBCL) patients and 11 Hodgkin lymphoma (HL) patients at diagnosis. Using small-RNA sequencing we identified in DLBCL patients increased plasma levels of miR-124 and miR-532-5p, and decreased levels of miR-425, miR-141, miR-145, miR-197, miR-345, miR-424, miR-128 and miR-122. In the HL group, we identified miR-25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140* and miR-125a to be up-regulated, while miR-23a, miR-122, miR-93 and miR-144 were down-regulated. Pathway analysis of potential mRNAs targets of these miRNA revealed in the DLBCL group potential up-regulation of STAT3, IL8, p13k/AKT and TGF-B signaling, and potential down-regulation of the PTEN and p53 pathways; while in the HL group we have found the cAMP-mediated pathway and p53 pathway to be potentially down-regulated. Survival analyses revealed that plasma levels of miR-20a/b, miR-93 and miR-106a/b were associated with higher mortality. In conclusion, we identified sets of dysregulated circulating miRNA that might serve as reliable biomarkers for relapsed lymphoma.
Collapse
|
9
|
Solé C, Larrea E, Di Pinto G, Tellaetxe M, Lawrie CH. miRNAs in B-cell lymphoma: Molecular mechanisms and biomarker potential. Cancer Lett 2017; 405:79-89. [DOI: 10.1016/j.canlet.2017.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
|
10
|
Fernández C, Bellosillo B, Ferraro M, Seoane A, Sánchez-González B, Pairet S, Pons A, Barranco L, Vela MC, Gimeno E, Colomo L, Besses C, Navarro A, Salar A. MicroRNAs 142-3p, miR-155 and miR-203 Are Deregulated in Gastric MALT Lymphomas Compared to Chronic Gastritis. Cancer Genomics Proteomics 2017; 14:75-82. [PMID: 28031239 DOI: 10.21873/cgp.20020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Over the last years, our knowledge on pathogenesis of gastric MALT lymphoma has greatly improved, but its morphological diagnosis is still hampered by overlapping histological features with advanced chronic gastritis. MicroRNAs are deregulated in lymphomas, but their role and usefulness in gastric MALT lymphoma has not been extensively investigated. MATERIALS AND METHODS We analyzed the expression of 384 miRNAs using TaqMan microRNA assay in a training series of 10 gastric MALT lymphomas, 3 chronic gastritis and 2 reactive lymph nodes. Then, significantly deregulated miRNAs were individually assessed by real-time PCR in a validation series of 16 gastric MALT lymphomas and 12 chronic gastritis. RESULTS Gastric MALT lymphoma is characterized by a specific miRNA expression profile. Among the differentially expressed miRNAs, a significant overexpression of miR-142-3p and miR-155 and down-regulation of miR-203 was observed in gastric MALT lymphoma when compared to chronic gastritis. CONCLUSION miR-142-3p, miR-155 and miR-203 expression levels might be helpful biomarkers for the differential diagnosis between gastric MALT lymphomas and chronic gastritis.
Collapse
Affiliation(s)
- Concepción Fernández
- Pathology Department, Hospital del Mar, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Hospital del Mar, Barcelona, Spain .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mariana Ferraro
- Universitat Autònoma de Barcelona, Barcelona, Spain.,Hematology Department, Hospital del Mar, Barcelona, Spain
| | - Agustín Seoane
- Digestive Department, Hospital del Mar, Barcelona, Spain
| | - Blanca Sánchez-González
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Hematology Department, Hospital del Mar, Barcelona, Spain
| | - Silvia Pairet
- Pathology Department, Hospital del Mar, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Aina Pons
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Luis Barranco
- Digestive Department, Hospital del Mar, Barcelona, Spain
| | | | - Eva Gimeno
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Hematology Department, Hospital del Mar, Barcelona, Spain
| | - Lluís Colomo
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Carles Besses
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Hematology Department, Hospital del Mar, Barcelona, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Antonio Salar
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Hematology Department, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
11
|
Zhu RX, Song CH, Yang JS, Yi QT, Li BJ, Liu SH. Downregulation of AATK mediates microRNA-558-induced resistance of A549 cells to radiotherapy. Mol Med Rep 2016; 14:2846-52. [PMID: 27485693 DOI: 10.3892/mmr.2016.5579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/04/2016] [Indexed: 11/06/2022] Open
Abstract
The deregulation of microRNAs (miRNAs) is often implicated in the control of sensitivity to radiotherapy. The objective of the present study was to identify the association between miR‑558 and apoptosis‑associated tyrosine kinase (AATK), and their importance in regulating the development of resistance to radiotherapy. The current study demonstrated that AATK, a radiosensitization-associated gene, is a target of miR‑558 in lung cancer cells, using in silico analysis and a luciferase reporter system. Furthermore, it was determined that transfection of 30 or 50 nM miR‑558 mimics and AATK specific siRNA markedly suppressed the mRNA and protein expression of AATK. To determine whether miR‑558 was required for lung cancer cell radioresistance, A549 cells were treated with different doses of ionizing radiation, from 0 to 10 Gy, following transfection with miR‑558 mimics or AATK specific siRNA. It was determined that the administration of miR‑558 mimics or AATK specific siRNA alone did not significantly alter the survival rate of the cells. By contrast, in the cells exposed to 4, 6 or 8 Gy, the administration of miR‑558 mimics or AATK specific siRNA significantly promoted cell survival rate and overexpression of AATK reversed this effect. In conclusion, these data demonstrate that the miR‑558/AATK cascade is important for the radiosensitization of lung cancer cells and may be a potential radiotherapy target.
Collapse
Affiliation(s)
- Rui-Xia Zhu
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Chun-Hui Song
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Jin-Shan Yang
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Qing-Ting Yi
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Bao-Jian Li
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Si-Hai Liu
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| |
Collapse
|
12
|
Genomic imbalances and microRNA transcriptional profiles in patients with mycosis fungoides. Tumour Biol 2016; 37:13637-13647. [DOI: 10.1007/s13277-016-5259-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/15/2016] [Indexed: 01/12/2023] Open
|
13
|
Dal Bo M, Bomben R, Hernández L, Gattei V. The MYC/miR-17-92 axis in lymphoproliferative disorders: A common pathway with therapeutic potential. Oncotarget 2016; 6:19381-92. [PMID: 26305986 PMCID: PMC4637292 DOI: 10.18632/oncotarget.4574] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/10/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding single-stranded RNA molecules acting as master regulators of gene expression post transcriptionally by inhibiting the translation or inducing the degradation of target messenger RNAs (mRNAs). In particular, the miR-17-92 cluster is widely expressed in many different cell types and is essential for many developmental and pathogenic processes. As a strong oncogene, miR-17-92 can regulate multiple cellular processes that favor malignant transformation, promoting cell survival, rapid cell proliferation, and increased angiogenesis. The miR-17-92 cluster has been reported to be involved in hematopoietic malignancies including diffuse large B-cell lymphoma, mantle cell lymphoma, Burkitt's lymphoma, and chronic lymphocytic leukemia. Given the multiple and potent effects on cellular proliferation and apoptosis exerted by the miR-17-92 cluster, miRNAs belonging to the cluster surely represent attractive targets for cancer therapy also in the context of lymphoproliferative disorders. In the present review, we focus on the role of the miR-17-92 cluster in lymphoproliferative disorders, including diagnostic/prognostic implications, and on the potential applications of anti-miRNAs based therapies targeting miRNAs belonging to the cluster.
Collapse
Affiliation(s)
- Michele Dal Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano PN, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano PN, Italy
| | - Luis Hernández
- Department of Pathology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano PN, Italy
| |
Collapse
|
14
|
Abstract
microRNAs (miRNAs) are noncoding regulatory RNAs usually consisting of 20-24 nucleotides. During the past decade, increases and decreases in miRNA expression have been shown to associate with various types of diseases, including cancer. Over 4500 miRNAs have been identified in humans, and it is known that nearly all human protein-encoding genes can be controlled by miRNAs in both healthy and malignant cells. Detailed genome-wide miRNA expression analysis has been performed in various malignant lymphoma subtypes, and these analyses have led to the discovery of subtype-specific miRNA alterations. In this chapter, I describe several key miRNAs and their targets in distinct malignant lymphoma subsets and their roles in their pathogenesis, studies of which will lead new therapeutic strategies against aggressive lymphomas.
Collapse
|
15
|
Fernandez-Mercado M, Manterola L, Lawrie CH. MicroRNAs in Lymphoma: Regulatory Role and Biomarker Potential. Curr Genomics 2016; 16:349-58. [PMID: 27047255 PMCID: PMC4763973 DOI: 10.2174/1389202916666150707160147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
Although it is now evident that microRNAs (miRNAs) play a critical regulatory role in many, if not all, pathological and physiological processes, remarkably they have only formally been recognized for less than fifteen years. These endogenously produced short non-coding RNAs have created a new paradigm of gene control and have utility as both novel biomarkers of cancer and as potential therapeutics. In this review we consider the role of miRNAs in lymphoid biology both under physiological (i.e. lymphopoiesis) and malignant (i.e. lymphomagenesis) conditions. In addition to the functional significance of aberrant miRNA expression in lymphomas we discuss their use as novel biomarkers, both as a in situ tumour biomarker and as a non-invasive surrogate for the tumour by testing miRNAs in the blood of patients. Finally we consider the use of these molecules as potential therapeutic agents for lymphoma (and other cancer) patients and discuss some of the hurdles yet to be overcome in order to translate this potential into clinical practice
Collapse
Affiliation(s)
| | - Lorea Manterola
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain; ; Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK;; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
16
|
Roisman A, Huamán Garaicoa F, Metrebian F, Narbaitz M, Kohan D, García Rivello H, Fernandez I, Pavlovsky A, Pavlovsky M, Hernández L, Slavutsky I. SOXC and MiR17-92 gene expression profiling defines two subgroups with different clinical outcome in mantle cell lymphoma. Genes Chromosomes Cancer 2016; 55:531-40. [PMID: 26998831 DOI: 10.1002/gcc.22355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a heterogeneous B-cell lymphoid malignancy where most patients follow an aggressive clinical course whereas others are associated with an indolent performance. SOX4, SOX11, and SOX12 belong to SOXC family of transcription factors involved in embryonic neurogenesis and tissue remodeling. Among them, SOX11 has been found aberrantly expressed in most aggressive MCL patients, being considered a reliable biomarker in the pathology. Several studies have revealed that microRNAs (miRs) from the miR-17-92 cluster are among the most deregulated miRNAs in human cancers, still little is known about this cluster in MCL. In this study we screened the transcriptional profiles of 70 MCL patients for SOXC cluster and miR17, miR18a, miR19b and miR92a, from the miR-17-92 cluster. Gene expression analysis showed higher SOX11 and SOX12 levels compared to SOX4 (P ≤ 0.0026). Moreover we found a negative correlation between the expression of SOX11 and SOX4 (P < 0.0001). miR17-92 cluster analysis showed that miR19b and miR92a exhibited higher levels than miR17 and miR18a (P < 0.0001). Unsupervised hierarchical clustering revealed two subgroups with significant differences in relation to aggressive MCL features, such as blastoid morphological variant (P = 0.0412), nodal presentation (P = 0.0492), CD5(+) (P = 0.0004) and shorter overall survival (P < 0.0001). Together, our findings show for the first time an association between the differential expression profiles of SOXC and miR17-92 clusters in MCL and also relate them to different clinical subtypes of the disease adding new biological information that may contribute to a better understanding of this pathology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alejandro Roisman
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Fuad Huamán Garaicoa
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,FUNDALEU, Buenos Aires, Argentina
| | - Fernanda Metrebian
- División Patología, Instituto de Investigaciones Hematológicas, ANM, Buenos Aires, Argentina
| | - Marina Narbaitz
- FUNDALEU, Buenos Aires, Argentina.,División Patología, Instituto de Investigaciones Hematológicas, ANM, Buenos Aires, Argentina
| | - Dana Kohan
- Servicio de Patología, Hospital Italiano, Buenos Aires, Argentina
| | | | | | | | | | - Luis Hernández
- Patología Molecular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| |
Collapse
|
17
|
Cai Q, Medeiros LJ, Xu X, Young KH. MYC-driven aggressive B-cell lymphomas: biology, entity, differential diagnosis and clinical management. Oncotarget 2015; 6:38591-616. [PMID: 26416427 PMCID: PMC4770723 DOI: 10.18632/oncotarget.5774] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
MYC, a potent oncogene located at chromosome locus 8q24.21, was identified initially by its involvement in Burkitt lymphoma with t(8;14)(q24;q32). MYC encodes a helix-loop-helix transcription factor that accentuates many cellular functions including proliferation, growth and apoptosis. MYC alterations also have been identified in other mature B-cell neoplasms and are associated with aggressive clinical behavior. There are several regulatory factors and dysregulated signaling that lead to MYC up-regulation in B-cell lymphomas. One typical example is the failure of physiological repressors such as Bcl6 or BLIMP1 to suppress MYC over-expression. In addition, MYC alterations are often developed concurrently with other genetic alterations that counteract the proapoptotic function of MYC. In this review, we discuss the physiologic function of MYC and the role that MYC likely plays in the pathogenesis of B-cell lymphomas. We also summarize the role MYC plays in the diagnosis, prognostication and various strategies to detect MYC rearrangement and expression.
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolu Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
18
|
The High Expression of the microRNA 17-92 Cluster and its Paralogs, and the Downregulation of the Target Gene PTEN, Is Associated with Primary Cutaneous B-Cell Lymphoma Progression. J Invest Dermatol 2015; 135:1659-1667. [PMID: 25634356 DOI: 10.1038/jid.2015.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 01/11/2015] [Indexed: 01/07/2023]
Abstract
The oncogenic microRNA (miR) 17-92 cluster has a causative role in the lymphomagenesis of nodal B-cell lymphomas, by activating proliferation and inhibiting apoptosis. Here we analyzed primary cutaneous B-cell lymphomas for the miR-17-92 cluster and its paralogs miR-106a-363 and miR-106b-25. In 22 primary cutaneous diffuse large B-cell lymphomas, leg type (PCLBCL-LT) compared with 22 primary cutaneous follicle center lymphomas (PCFCLs), we found that miR-20a and miR-106a were overexpressed. Multivariate Cox analysis showed that higher miR-20a and miR-20b expression levels were associated with shorter disease-free and overall survival, independently from histological type. Gene expression profiling also showed a downregulation of 8 candidate target genes of miR-20a, miR-20b, and miR-106a in PCLBCL-LT compared with PCFCL. Among the candidate target genes, PTEN, NCOA3, and CAPRIN2 were confirmed to be underexpressed in PCLBCL-LT using quantitative reverse transcriptase-PCR on CD20-positive laser-microdissected tumor cells. In multivariate Cox analysis, lower PTEN mRNA expression level was associated with shorter disease-free survival (DFS), independently from the histological type. Altogether, this molecular and bioinformatic study of 44 patient skin biopsy samples showed that the oncogenic miR-17-92 cluster and its paralogs were involved in cutaneous B-cell lymphoma progression, and that the downregulation of the target gene PTEN was associated with shorter DFS.
Collapse
|
19
|
Karnati HK, Raghuwanshi S, Sarvothaman S, Gutti U, Saladi RGV, Komati JK, Tummala PR, Gutti RK. microRNAs: Key Players in Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:171-211. [DOI: 10.1007/978-3-319-22380-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Veigaard C, Kjeldsen E. Exploring the genome-wide relation between copy number status and microRNA expression. Genomics 2014; 104:271-8. [PMID: 25124499 DOI: 10.1016/j.ygeno.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 12/19/2022]
Abstract
The deregulation of miRNAs has been associated with several different cancer types. Deregulation occurs in several ways, but generally little is known about the basis for the distorted expression of miRNAs. We investigated the relation between copy number status and miRNA expression at the genome-wide level using cytogenetic and array-based methods to characterize genomic aberrations in hematopoietic cell lines. For the same cell lines, we obtained global miRNA expression profiles, and analyzed the genome-wide correlation using the Spearman's rank test. This analysis showed that the expression of only a two miRNAs (miR-324-5p encoded by MIR324 at 17p13.1 and miR-660 encoded by MIR660 at Xp11.23) was influenced by copy number status. Our data imply that no direct relation between copy number status and miRNA expression exists in the investigated cell lines.
Collapse
Affiliation(s)
- Christopher Veigaard
- Department of Hematology, Aarhus University Hospital, Aarhus University, 8000 Aarhus C, Denmark
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
21
|
Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 2013; 122:3884-91. [PMID: 24009228 DOI: 10.1182/blood-2013-05-498329] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MYC is a potent oncogene initially identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. MYC gene alterations have been identified in other mature B-cell neoplasms that are usually associated with an aggressive clinical behavior. Most of these tumors originate in cells that do not normally express MYC protein. The oncogenic events leading to MYC up-regulation seem to overcome the inhibitory effect of physiological repressors such as BCL6 or BLIMP1. Aggressive lymphomas frequently carry additional oncogenic alterations that cooperate with MYC dysregulation, likely counteracting its proapoptotic function. The development of FISH probes and new reliable antibodies have facilitated the study of MYC gene alterations and protein expression in large series of patients, providing new clinical and biological perspectives regarding MYC dysregulation in aggressive lymphomas. MYC gene alterations in large B-cell lymphomas are frequently associated with BCL2 or BCL6 translocations conferring a very aggressive behavior. Conversely, MYC protein up-regulation may occur in tumors without apparent gene alterations, and its association with BCL2 overexpression also confers a poor prognosis. In this review, we integrate all of this new information and discuss perspectives, challenges, and open questions for the diagnosis and management of patients with MYC-driven aggressive B-cell lymphomas.
Collapse
|
22
|
Goswami RS, Atenafu EG, Xuan Y, Waldron L, Reis PP, Sun T, Datti A, Xu W, Kuruvilla J, Good DJ, Lai R, Church AJ, Lam WS, Baetz T, Lebrun DP, Sehn LH, Farinha P, Jurisica I, Bailey DJ, Gascoyne RD, Crump M, Kamel-Reid S. MicroRNA signature obtained from the comparison of aggressive with indolent non-Hodgkin lymphomas: potential prognostic value in mantle-cell lymphoma. J Clin Oncol 2013; 31:2903-11. [PMID: 23835716 DOI: 10.1200/jco.2012.45.3050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Mantle-cell lymphoma (MCL) has a variable natural history but is incurable with current therapies. MicroRNAs (miRs) are useful in prognostic assessment of cancer. We determined an miR signature defining aggressiveness in B-cell non-Hodgkin lymphomas (NHL) and assessed whether this signature aids in MCL prognosis. METHODS We assessed miR expression in a training set of 43 NHL cases. The miR signature was validated in 44 additional cases and examined on a training set of 119 MCL cases from four institutions in Canada. miRs significantly associated with overall survival were examined in an independent cohort of 114 MCL cases to determine association with patient outcome. miR expression was combined with current clinical prognostic factors to develop an enhanced prognostic model in patients with MCL. RESULTS Fourteen miRs were differentially expressed between aggressive and indolent NHL; 11 of 14 were validated in an independent set of NHL (excluding MCL). miR-127-3p and miR-615-3p were significantly associated with overall survival in the MCL training set. Their expression was validated in an independent MCL patient set. In comparison with Ki-67, expression of these miRs was more significantly associated with overall survival among patients with MCL. miR-127-3p was combined with Ki-67 to create a new prognostic model for MCL. A similar model was created with miR-615-3p and Mantle Cell Lymphoma International Prognostic Index scores. CONCLUSION Eleven miRs are differentially expressed between aggressive and indolent NHL. Two novel miRs were associated with overall survival in MCL and were combined with clinical prognostic models to generate novel prognostic data for patients with MCL.
Collapse
|
23
|
Navarro A, Clot G, Prieto M, Royo C, Vegliante MC, Amador V, Hartmann E, Salaverria I, Beà S, Martín-Subero JI, Rosenwald A, Ott G, Wiestner A, Wilson WH, Campo E, Hernández L. microRNA expression profiles identify subtypes of mantle cell lymphoma with different clinicobiological characteristics. Clin Cancer Res 2013; 19:3121-9. [PMID: 23640973 PMCID: PMC3691513 DOI: 10.1158/1078-0432.ccr-12-3077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE microRNAs (miRNA) are posttranscriptional gene regulators that may be useful as diagnostic and/or prognostic biomarkers. We aim to study the expression profiles of a high number of miRNAs and their relationship with clinicopathologic and biologic relevant features in leukemic mantle cell lymphomas (MCL). EXPERIMENTAL DESIGN Expression profiling of 664 miRNAs was investigated using a high-throughput quantitative real-time PCR platform in 30 leukemic MCLs. Statistical and bioinformatic analyses were conducted to define miRNAs associated with different clinicopathologic parameters. Gene expression profiling was investigated by microarrays in 16 matching cases to study the potential genes and pathways targeted by selected miRNAs. The prognostic value of miR-34a was investigated in 2 independent series of 29 leukemic and 50 nodal MCLs. RESULTS Robust consensus clustering defined 2 main MCL subgroups with significant differences in the immunoglobulin (IGHV) mutational status, SOX11 expression, genomic complexity, and nodal clinical presentation. Supervised analyses of IGHV and SOX11 categories identified 17 and 22 miRNAs differentially expressed, respectively. Enriched targets of these miRNAs corresponded to relevant pathways in MCL pathogenesis such as DNA stress response, CD40 signaling, and chromatin modification. In addition, we found 7 miRNAs showing prognostic significance independently of IGHV status and SOX11 expression. Among them, miR-34a was also associated with poor prognosis in 2 independent series of leukemic and nodal MCL, and in cooperation with high expression of the MYC oncogene. CONCLUSION We have identified miRNAs and target pathways related to clinical and biologic variants of leukemic MCL, and validated miR-34a as a prognostic marker in MCL.
Collapse
Affiliation(s)
- Alba Navarro
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Guillem Clot
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Miriam Prieto
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Cristina Royo
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Maria Carmela Vegliante
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Virginia Amador
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | - Itziar Salaverria
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sílvia Beà
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | - German Ott
- Department of Clinical Pathology, Robert Bosch Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | - Wyndham H. Wilson
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Elías Campo
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Luis Hernández
- Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Tagawa H, Ikeda S, Sawada K. Role of microRNA in the pathogenesis of malignant lymphoma. Cancer Sci 2013; 104:801-9. [PMID: 23551855 DOI: 10.1111/cas.12160] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) are non-coding regulatory RNA usually consisting of 20-24 nucleotides. Over the past decade, increases and decreases in miRNA expression have been shown to associate with various types of disease, including cancer. The first two known miRNA aberrations resulted from altered expression of DLEU2 and C13orf25 in hematological malignancies. DLEU2, which encodes miR-15a and miR-16-1, was discovered from 13q14 deletion in chronic lymphocytic leukemia, while C13orf25, which encodes six mature miRNA (miR-17, miR-18, miR-19a, miR-19b, miR-20a and miR-92a), was identified from 13q31 amplification in aggressive B-cell lymphomas. These miRNA were downregulated or upregulated in accordance with genomic deletion or amplification, which suggests that they contribute to tumorigenesis through altered regulation of target oncogenes or tumor suppressors. Consistent with that idea, miR-15a/16-1 is known to regulate Bcl2 in chronic lymphocytic leukemia, and miR-17-92 regulates the tumor suppressors p21, Pten and Bim in aggressive B-cell lymphomas. Dysregulation of other miRNA, including miR-21, miR-29, miR-150 and miR-155, have also been shown to play crucial roles in the pathogenesis of aggressive transformed, high-grade and refractory lymphomas. Addition of miRNA dysregulation to the original genetic events likely enhances tumorigenicity of malignant lymphoma through activation of one or more signaling pathways.
Collapse
Affiliation(s)
- Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan.
| | | | | |
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) have become one of the hottest topics in biology over recent years, but remarkably have only been formally recognized for just over 10 years. These endogenously produced short (19-24 nt) non-coding RNAs have introduced an entirely new paradigm in our understanding of gene control and it is now evident that miRNAs play a crucial regulatory role in many, if not all, physiological and pathological processes. In this review we provide an overview of the role and potential clinical utility for miRNAs in hematological malignancies and their function in normal hematopoiesis. Although still in its infancy, the miRNA field has already added much to our understanding of hematological processes, and provides us with novel tools as both biomarkers and therapeutic agents for hematological malignancies.
Collapse
|
26
|
Bousquet M, Zhuang G, Meng C, Ying W, Cheruku PS, Shie AT, Wang S, Ge G, Wong P, Wang G, Safe S, Zhou B. miR-150 blocks MLL-AF9-associated leukemia through oncogene repression. Mol Cancer Res 2013; 11:912-22. [PMID: 23604034 DOI: 10.1158/1541-7786.mcr-13-0002-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The microRNA miR-150, a critical regulator of hematopoiesis, is downregulated in mixed-lineage leukemia (MLL). In this study, miR-150 acts as a potent leukemic tumor suppressor by blocking the oncogenic properties of leukemic cells. By using MLL-AF9-transformed cells, we demonstrate that ectopic expression of miR-150 inhibits blast colony formation, cell growth, and increases apoptosis in vitro. More importantly, ectopic expression of miR-150 in MLL-AF9-transformed cells completely blocked the development of myeloid leukemia in transplanted mice. Furthermore, gene expression profiling revealed that miR-150 altered the expression levels of more than 30 "stem cell signature" genes and many others that are involved in critical cancer pathways. In addition to the known miR-150 target Myb, we also identified Cbl and Egr2 as bona fide targets and shRNA-mediated suppression of these genes recapitulated the pro-apoptotic effects observed in leukemic cells with miR-150 ectopic expression. In conclusion, we demonstrate that miR-150 is a potent leukemic tumor suppressor that regulates multiple oncogenes. IMPLICATIONS These data establish new, key players for the development of therapeutic strategies to treat MLL-AF9-related leukemia.
Collapse
Affiliation(s)
- Marina Bousquet
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Mantle cell lymphoma (MCL) is a rare and aggressive subtype of non-Hodgkin lymphoma. New treatment modalities, including intensive induction regimens with immunochemotherapy and autologous stem cell transplant, have improved survival. However, many patients still relapse, and there is a need for novel therapeutic strategies. Recent progress has been made in the understanding of the role of microRNAs (miRNAs) in MCL. Comparisons of tumor samples from patients with MCL with their normal counterparts (naive B-cells) have identified differentially expressed miRNAs with roles in cellular growth and survival pathways, as demonstrated in various biological model systems. In addition, MCL clinico-pathological and prognostic subtypes can be identified using individual miRNAs or miRNA classifiers. miRNA based therapies have now shown efficacy in animal models, and many efforts are currently being made to further develop these drugs for use in patients. Thus, there is hope that specific targeting of pathogenic miRNAs may be used in cases of MCL when conventional therapies fail. Here, we review the current knowledge about the role of miRNAs in MCL, and highlight the perspectives for clinical use.
Collapse
Affiliation(s)
- Simon Husby
- Department of Hematology, Rigshospitalet, Denmark
| | | | | |
Collapse
|
28
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
29
|
Campo E. Whole genome profiling and other high throughput technologies in lymphoid neoplasms--current contributions and future hopes. Mod Pathol 2013; 26 Suppl 1:S97-S110. [PMID: 23281439 DOI: 10.1038/modpathol.2012.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of high throughput technologies based on the knowledge of the human genome has opened the possibility to search for global genomic alterations in tumors responsible for their development and progression that may have important clinical implications. One of the major applications of this genomic knowledge has been the design of different types of microarray platforms for the analysis of DNA alterations and gene expression profiling (GEP). The main contributions of the DNA studies in lymphoid neoplasms include the definition of relatively characteristic genomic profiles for specific disease entities, the demonstration of common chromosomal alterations across entities, the identification of genes and pathways targeted by the altered chromosomal regions, and the identification of chromosomal alterations with prognostic implications. RNA GEP studies in these tumors have enhanced the molecular characterization of known entities and facilitated the recognition of new subtypes and categories of lymphoid neoplasms, the identification of new biomarkers and prognostic models, and the detection of oncogenic pathways with potential implications for targeted therapies. The recent development of the next generation sequencing (NGS) technologies and its application in lymphoid neoplasms already have provided an initial view of the complex landscape of somatic mutations in these tumors and some findings with important functional and clinical implications. This review addresses the major contributions and limitations of the microarray technologies in the understanding of lymphoid neoplasms and discusses how this knowledge may be transferred into the clinics. The initial results of the NGS studies are also presented.
Collapse
Affiliation(s)
- Elías Campo
- Haematopathology Section, Department of Anatomic Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Abstract
Genomic profiling of mantle cell lymphoma (MCL) cells has enabled a better understanding of the complex mechanisms underlying the pathogenesis of disease. Besides the t(11;14)(q13;q32) leading to cyclin D1 overexpression, MCL exhibits a characteristic pattern of DNA copy number aberrations that differs from those detected in other B-cell lymphomas. These genomic changes disrupt selected oncogenes and suppressor genes that are required for lymphoma development and progression, many of which are components of cell cycle, DNA damage response and repair, apoptosis, and cell-signaling pathways. Additionally, some of them may represent effective therapeutic targets. A number of genomic and molecular abnormalities have been correlated with the clinical outcome of patients with MCL and are considered prognostic factors. However, only a few genomic markers have been shown to predict the response to current or novel targeted therapies. One representative example is the high-level amplification of the BCL2 gene, which predicts a good response to pro-apoptotic BH3 mimetic drugs. In summary, genomic analyses have contributed to the substantial advances made in the comprehension of the pathogenesis of MCL, providing a solid basis for the identification of optimal therapeutic targets and for the design of new molecular therapies aiming to cure this fatal disease.
Collapse
Affiliation(s)
- Melissa Rieger Menanteau
- Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
31
|
Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:575-583. [PMID: 24319234 DOI: 10.1182/asheducation-2013.1.575] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
MYC is a potent oncogene initially identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. MYC gene alterations have been identified in other mature B-cell neoplasms that are usually associated with an aggressive clinical behavior. Most of these tumors originate in cells that do not normally express MYC protein. The oncogenic events leading to MYC up-regulation seem to overcome the inhibitory effect of physiological repressors such as BCL6 or BLIMP1. Aggressive lymphomas frequently carry additional oncogenic alterations that cooperate with MYC dysregulation, likely counteracting its proapoptotic function. The development of FISH probes and new reliable antibodies have facilitated the study of MYC gene alterations and protein expression in large series of patients, providing new clinical and biological perspectives regarding MYC dysregulation in aggressive lymphomas. MYC gene alterations in large B-cell lymphomas are frequently associated with BCL2 or BCL6 translocations conferring a very aggressive behavior. Conversely, MYC protein up-regulation may occur in tumors without apparent gene alterations, and its association with BCL2 overexpression also confers a poor prognosis. In this review, we integrate all of this new information and discuss perspectives, challenges, and open questions for the diagnosis and management of patients with MYC-driven aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- German Ott
- 1Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | |
Collapse
|
32
|
CCND2 rearrangements are the most frequent genetic events in cyclin D1(-) mantle cell lymphoma. Blood 2012; 121:1394-402. [PMID: 23255553 DOI: 10.1182/blood-2012-08-452284] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin D1(-) mantle cell lymphomas (MCLs) are not well characterized, in part because of the difficulties in their recognition. SOX11 has been identified recently as a reliable biomarker of MCL that is also expressed in the cyclin D1(-) variant. We investigated 40 lymphomas with MCL morphology and immunophenotype that were negative for cyclin D1 expression/t(11;14)(q13;q32) but positive for SOX11. These tumors presented clinically with generalized lymphadenopathy, advanced stage, and poor outcome (5-year overall survival, 48%). Chromosomal rearrangements of the CCND2 locus were detected in 55% of the cases, with an IG gene as partner in 18 of 22, in particular with light chains (10 IGK@ and 5 IGL@). No mutations in the phosphorylation motifs of CCND1, CCND2, or CCND3 were detected. The global genomic profile and the high complexity of the 32 cyclin D1(-) SOX11(+) MCL patients analyzed by copy number arrays were similar to the conventional cyclin D1/SOX11 MCL. 17p deletions and high Ki67 expression conferred a significantly worse outcome for the patients. This comprehensive characterization of a large series of cyclin D1(-) MCL patients indicates that these tumors are clinically and biologically similar to the conventional cyclin D1(+) MCL and provides a basis for the proper identification and clinical management of these patients.
Collapse
|
33
|
The miR-17-92 microRNA cluster: a novel diagnostic tool in large B-cell malignancies. J Transl Med 2012; 92:1574-82. [PMID: 22964854 DOI: 10.1038/labinvest.2012.129] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) can present as de novo or can arise through the transformation of many indolent lymphomas, including follicular lymphoma (FL). The morphological differentiation between germinal center-DLBCL (GC-DLBCL) and high-grade (grade 3) FL could be challenging; the accurate sub-classification of large B-cell lymphomas is mandatory in order to select the most appropriate among the new-targeted therapies. Recent expression profiling studies reported microRNAs (miRNAs) (and miR-17-92 cluster, in particular) as useful tools in differentiating DLBCL and FL. However, these preliminary results are based on cell line-derived data or did not consider grade 3 FL cases. To investigate this point, 36 cases of GC-DLBCL and 18 cases of grade 3 non-transforming FL were considered. All diagnoses were based on the World Health Organization criteria and were confirmed by clinical, histological, and immunohistochemical data. Six members of the miR-17-92 cluster (ie, miR-18b, miR-19b, miR-20a, miR-92, miR-93, and miR-106a) and two control miRNAs (ie, miR-150 and miR-210) were quantified by quantitative reverse transcription-polymerase chain reaction. All the considered miR-17-92 cluster miRNAs were significantly overexpressed in GC-DLBCL, being miR-20a and miR-106a the most dysregulated (P<0.001). Receiver operating characteristics (ROCs) analysis was used to find the optimal cut-off in distinguishing the two histotypes. The ROC estimated thresholds for miR-18b, miR-19b, miR-20a, miR-92, and miR-106a displayed a sensitivity level higher than 0.80 in achieving the GC-DLBCL diagnosis. The classification tree built on the six thresholds allowed the correct identification of 35/36 GC-DLBCL (97.2%). Profiling the miR-17-92 cluster is a promising investigative method for differentiating GC-DLBCL from high-grade FL. Subject to the validation of these findings in further larger studies; miR-17-92 cluster could represent a reliable, standardizable diagnostic tool for the sub-classification of large B-cell lymphoid neoplasm.
Collapse
|
34
|
Zeng X, Xiang J, Wu M, Xiong W, Tang H, Deng M, Li X, Liao Q, Su B, Luo Z, Zhou Y, Zhou M, Zeng Z, Li X, Shen S, Shuai C, Li G, Fang J, Peng S. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One 2012; 7:e46367. [PMID: 23056289 PMCID: PMC3466268 DOI: 10.1371/journal.pone.0046367] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/29/2012] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs have been considered as a kind of potential novel biomarker for cancer detection due to their remarkable stability in the blood and the characteristics of their expression profile in many diseases. Methods We performed microarray-based serum miRNA profiling on the serum of twenty nasopharyngeal carcinoma patients at diagnosis along with 20 non-cancerous individuals as controls. This was followed by a real-time quantitative Polymerase Chain Reaction (RT-qPCR) in a separate cohort of thirty patients with nasopharyngeal carcinoma and thirty age- matched non-cancerous volunteers. A model for diagnosis was established by a conversion of mathematical calculation formula which has been validated by analyzing 74 cases of patients with nasopharyngeal carcinoma and 57 cases of non-cancerous volunteers. Results The profiles showed that 39 and 17 miRNAs are exclusively expressed in the serum of non-cancerous volunteers and of patients with nasopharyngeal carcinoma respectively. 4 miRNAs including miR-17, miR-20a, miR-29c, and miR-223 were found to be expressed differentially in the serum of NPC compared with that of non-cancerous control. Based on this, a diagnosis equation with Ct difference method has been established to distinguish NPC cases and non-cancerous controls and validated with high sensitivity and specificity. Conclusions We demonstrate that the serum miRNA-based biomarker model become a novel tool for NPC detection. The circulating 4-miRNA-based method may provide a novel strategy for NPC diagnosis.
Collapse
Affiliation(s)
- Xi Zeng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Juanjuan Xiang
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Minghua Wu
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wei Xiong
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Hailin Tang
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Min Deng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Xiayu Li
- Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qianjin Liao
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Bo Su
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Cancer Research Institute, University of South China, Hengyang, Hunan, P.R. China
| | - Zhaohui Luo
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Yanhong Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Shourong Shen
- Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan, P.R. China
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Jiasheng Fang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (JF); (SP)
| | - Shuping Peng
- Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (JF); (SP)
| |
Collapse
|
35
|
Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest 2012; 122:3416-23. [PMID: 23023712 DOI: 10.1172/jci61272] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mantle cell lymphoma is a B cell malignancy in which constitutive dysregulation of cyclin D1 and the cell cycle, disruption of DNA damage response pathways, and activation of cell survival mechanisms contribute to oncogenesis. A small number of tumors lack cyclin D1 overexpression, suggesting that its dysregulation is always not required for tumor initiation. Some cases have hypermutated IGHV and stable karyotypes, a predominant nonnodal disease, and an indolent clinical evolution, which suggests that they may correspond to distinct subtypes of the disease. In this review, we discuss the molecular pathways that contribute to pathogenesis, and how improved understanding of these molecular mechanisms offers new perspectives for the treatment of patients.
Collapse
Affiliation(s)
- Pedro Jares
- Hematopathology Section, Department of Pathology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
36
|
D'Agostino DM, Zanovello P, Watanabe T, Ciminale V. The microRNA regulatory network in normal- and HTLV-1-transformed T cells. Adv Cancer Res 2012; 113:45-83. [PMID: 22429852 DOI: 10.1016/b978-0-12-394280-7.00002-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent efforts to understand the molecular networks governing normal T cell development and driving the neoplastic transformation of T cells have brought to light the involvement of microRNAs (miRNAs), a class of noncoding RNAs of approximately 22 nucleotides that regulate gene expression at the posttranscriptional level. In the present review, we compare the expression profiles of miRNAs in normal T cell development to that of transformed T cells using as a model adult T cell leukemia/lymphoma, an aggressive malignancy of mature CD4+ T cells that is caused by infection with human T cell leukemia virus type 1.
Collapse
Affiliation(s)
- Donna M D'Agostino
- Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
37
|
Abstract
There is a demand to understand B-cell lymphoma pathogenesis better, to identify new markers, and to define multiple lymphoproliferative disorders more accurately. MicroRNAs (miRNAs) are regulators of protein translation, comprising a group of more than 1500 short noncoding single-strand RNA molecules of approximately 22 nucleotides in length. They are easily detectable in fresh or paraffin-embedded diagnostic tissue and serum. Expression of individual miRNAs and miRNA signatures allows specific cell-differentiation stages to be identified, and is a powerful diagnostic and prognostic method. Here we review what is known about the pathogenic relevance of miRNAs, and use of miRNAs for the diagnosis and prognosis of B-cell lymphomas. Most of the published data concern chronic lymphocytic lymphoma and diffuse large B-cell lymphoma, and implicate miRNAs in the pathogenesis of these diseases. They identify miRNAs that could be used for diagnosis, prognosis, or prediction of response to specific therapies.
Collapse
|
38
|
Iqbal J, Shen Y, Liu Y, Fu K, Jaffe ES, Liu C, Liu Z, Lachel CM, Deffenbacher K, Greiner TC, Vose JM, Bhagavathi S, Staudt LM, Rimsza L, Rosenwald A, Ott G, Delabie J, Campo E, Braziel RM, Cook JR, Tubbs RR, Gascoyne RD, Armitage JO, Weisenburger DD, McKeithan TW, Chan WC. Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis. Blood 2012; 119:4939-48. [PMID: 22490335 PMCID: PMC3367895 DOI: 10.1182/blood-2011-07-370122] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/25/2012] [Indexed: 12/24/2022] Open
Abstract
miRNA deregulation has been implicated in the pathogenesis of mantle cell lymphoma (MCL). Using a high-throughput quantitative real-time PCR platform, we performed miRNA profiling on cyclin D1-positive MCL (n = 30) and cyclin D1-negative MCL (n = 7) and compared them with small lymphocytic leukemia/lymphoma (n = 12), aggressive B-cell lymphomas (n = 138), normal B-cell subsets, and stromal cells. We identified a 19-miRNA classifier that included 6 up-regulated miRNAs and 13 down regulated miRNA that was able to distinguish MCL from other aggressive lymphomas. Some of the up-regulated miRNAs are highly expressed in naive B cells. This miRNA classifier showed consistent results in formalin-fixed paraffin-embedded tissues and was able to distinguish cyclin D1-negative MCL from other lymphomas. A 26-miRNA classifier could distinguish MCL from small lymphocytic leukemia/lymphoma, dominated by 23 up-regulated miRNAs in MCL. Unsupervised hierarchical clustering of MCL patients demonstrated a cluster characterized by high expression of miRNAs from the polycistronic miR17-92 cluster and its paralogs, miR-106a-363 and miR-106b-25, and associated with high proliferation gene signature. The other clusters showed enrichment of stroma-associated miRNAs, and also had higher expression of stroma-associated genes. Our clinical outcome analysis in the present study suggested that miRNAs can serve as prognosticators.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genome, Human
- High-Throughput Screening Assays
- Humans
- Lymphoma, Mantle-Cell/classification
- Lymphoma, Mantle-Cell/diagnosis
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/mortality
- Male
- MicroRNAs/genetics
- MicroRNAs/physiology
- Microarray Analysis
- Middle Aged
- Prognosis
- Validation Studies as Topic
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Maj J, Jankowska-Konsur A, Sadakierska-Chudy A, Noga L, Reich A. Altered microRNA expression in mycosis fungoides. Br J Dermatol 2012; 166:331-6. [DOI: 10.1111/j.1365-2133.2011.10669.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Del Giudice I, Messina M, Chiaretti S, Santangelo S, Tavolaro S, De Propris MS, Nanni M, Pescarmona E, Mancini F, Pulsoni A, Martelli M, Di Rocco A, Finolezzi E, Paoloni F, Mauro FR, Cuneo A, Guarini A, Foà R. Behind the scenes of non-nodal MCL: downmodulation of genes involved in actin cytoskeleton organization, cell projection, cell adhesion, tumour invasion, TP53 pathway and mutated status of immunoglobulin heavy chain genes. Br J Haematol 2011; 156:601-11. [DOI: 10.1111/j.1365-2141.2011.08962.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ. miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:110. [PMID: 22133358 PMCID: PMC3245444 DOI: 10.1186/1756-9966-30-110] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/01/2011] [Indexed: 11/10/2022]
Abstract
Background miR-15a and miR-16-1(miR-15a/16-1) have been implicated as tumor suppressors in chronic lymphocytic leukemia, multiple myeloma, and acute myeloid leukemic cells. However the mechanism of inhibiting the proliferation of leukemic cells is poorly understood. Methods K562 and HL-60 cells were transfected with pRS-15/16 or pRS-E, cell growth were measured by CCK-8 assay and direct cell count. Meanwhile WT1 protein and mRNA level were measured by Western blotting and quantitative real-time PCR. Results In this study we found that over-expression of miR-15a/16-1 significantly inhibited K562 and HL-60 cells proliferation. Enforced expression of miR-15a/16-1 in K562 and HL-60 cells significantly reduced the protein level of WT1 but not affected the mRNA level. However enforced expression of miR-15a/16-1 can not reduce the activity of a luciferase reporter carrying the 3'-untranslated region(3'UTR) of WT1. Silencing of WT1 by specific siRNA suppressed leukemic cells proliferation resembling that of miR-15a/16-1 over-expression. Anti-miR-15a/16-1 oligonucleotides (AMO) reversed the expression of WT1 in K562 and HL-60 cells. Finally, we found a significant inverse correlation between miR-15a or miR-16-1 expression and WT1 protein levels in primary acute myeloid leukemia (AML) blasts and normal controls. Conclusions These data suggest that miR-15a/16-1 may function as a tumor suppressor to regulate leukemic cell proliferation potentially by down-regulating the WT1 oncogene. However WT1 is not directly targeted by miR-15a/16-1 through miRNA-mRNA base pairing, therefore more study are required to understand the mechanism by which miR-15a/16-1 downregulate WT1.
Collapse
Affiliation(s)
- Shen-meng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical College, China
| | | | | | | | | | | |
Collapse
|
42
|
Rao E, Jiang C, Ji M, Huang X, Iqbal J, Lenz G, Wright G, Staudt LM, Zhao Y, McKeithan TW, Chan WC, Fu K. The miRNA-17∼92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 2011; 26:1064-72. [PMID: 22116552 DOI: 10.1038/leu.2011.305] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The median survival of patients with mantle cell lymphoma (MCL) ranges from 3 to 5 years with current chemotherapeutic regimens. A common secondary genomic alteration detected in MCL is chromosome 13q31-q32 gain/amplification, which targets a microRNA (miRNA) cluster, miR-17∼92. On the basis of gene expression profiling, we found that high level expression of C13orf25, the primary transcript from which these miRNAs are processed, was associated with poorer survival in patients with MCL (P=0.021). We demonstrated that the protein phosphatase PHLPP2, an important negative regulator of the PI3K/AKT pathway, was a direct target of miR-17∼92 miRNAs, in addition to PTEN and BIM. These proteins were down-modulated in MCL cells with overexpression of the miR-17∼92 cluster. Overexpression of miR-17∼92 activated the PI3K/AKT pathway and inhibited chemotherapy-induced apoptosis in MCL cell lines. Conversely, inhibition of miR-17∼92 expression suppressed the PI3K/AKT pathway and inhibited tumor growth in a xenograft MCL mouse model. Targeting the miR-17∼92 cluster may therefore provide a novel therapeutic approach for patients with MCL.
Collapse
Affiliation(s)
- E Rao
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T, Zhu J, Huang SJ, Wan YL. Prognostic values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol 2011; 106:232-7. [PMID: 22065543 DOI: 10.1002/jso.22138] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/17/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNAs have been shown to offer great potential in both the diagnosis and prognosis of cancer. Despite the well-established role of the miR-17-92 in cancer formation and progression, the contribution of each individual miRNA remains to be characterized. Thus, we investigated whether deregulation of the miR-17-92 associated with colon cancer prognosis. METHODS Expression levels of the miR-17-92 cluster and its paralogs were determined in 48 colon tumor and 48 paired normal tissues by real-time qRT-PCR. Associations with miRNA expression, age, sex, TNM staging, and survival prognosis were evaluated. RESULTS MiR-17-92 cluster and its paralogs were significantly overexpressed in colon tumor. No significant associations were found between the deregulation of certain miRNAs and the clinical and pathologic characteristics observed in patients. Kaplan-Meier curves demonstrated significantly reduced overall survival in patients expressing high levels of miR-17. In multivariate Cox models, miR-17 overexpression (HR 2.67; P = 0.007) and TNM staging (HR 8.87; P = 0.002) were significantly associated with a risk of death. CONCLUSIONS The miR-17-92 cluster and its paralogs were significantly elevated in patients with colon cancer, and heightened expression of miR-17 was associated with poor survival. Moreover, miR-17 and TNM staging were both identified as significant, but independent, prognostic biomarkers in colon cancer.
Collapse
Affiliation(s)
- Ge Yu
- Department of General Surgery, First Hospital of Peking University, West District, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Royo C, Salaverria I, Hartmann EM, Rosenwald A, Campo E, Beà S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol 2011; 21:322-34. [DOI: 10.1016/j.semcancer.2011.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
|
45
|
Schiffman JD, Lorimer PD, Rodic V, Jahromi MS, Downie JM, Bayerl MG, Sanmann JN, Althof PA, Sanger WG, Barnette P, Perkins SL, Miles RR. Genome wide copy number analysis of paediatric Burkitt lymphoma using formalin-fixed tissues reveals a subset with gain of chromosome 13q and corresponding miRNA over expression. Br J Haematol 2011; 155:477-86. [PMID: 21981616 DOI: 10.1111/j.1365-2141.2011.08883.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The majority of paediatric Burkitt lymphoma (pBL) patients that relapse will die of disease, but markers for this high-risk subset are unknown. MYC translocations characterize pBL, but additional genetic changes may relate to prognosis and serve as potential biomarkers. We utilized a molecular inversion probe single nucleotide polymorphism assay to perform high resolution, genome-wide copy number analysis on archival formalin-fixed, paraffin-embedded pBL and germline tissues. We identified copy number abnormalities (CNAs) in 18/28 patients (64%) with a total of 62 CNAs that included 32 gains and 30 copy number losses. We identified seven recurrent CNAs including 1q gain (7/28, 25%), 13q gain (3/28, 11%), and 17p loss (4/28, 14%). The minimum common amplified region on 13q was at 13q31 and included the MIR17HG (MIR17-92) locus. Samples with this gain had higher levels of MIR17 RNA and showed a tendency for early relapse. Tumour-specific uniparental disomy was identified in 32% of cases and usually was recurrent. These results demonstrate that high-resolution copy number analysis can be performed on archival lymphoma tissue specimens, which has significance for the study of rare diseases.
Collapse
Affiliation(s)
- Joshua D Schiffman
- Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City, UT 84112-0565, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Navarro A, Royo C, Hernández L, Jares P, Campo E. Molecular Pathogenesis of Mantle Cell Lymphoma: New Perspectives and Challenges With Clinical Implications. Semin Hematol 2011; 48:155-65. [DOI: 10.1053/j.seminhematol.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
The Role of mTOR Inhibitors for the Treatment of B-Cell Lymphomas. Adv Hematol 2011; 2012:435342. [PMID: 21822434 PMCID: PMC3124126 DOI: 10.1155/2012/435342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/07/2011] [Indexed: 02/02/2023] Open
Abstract
Despite the fact that the majority of lymphomas initially respond to treatment, many patients relapse and die from disease that is refractory to current regimens. The need for new treatment strategies in lymphomas has led to the investigation and evaluation of novel agents that target cellular pathways. The mammalian target of rapamycin (mTOR) is a representative pathway that may be implicated in lymphomagenesis. Rapamycin and especially its derivatives (temsirolimus, everolimus, and deforolimus) represent the first described mTOR inhibitors. These agents have shown promising results in the treatment of lymphoid malignancies. On the other hand, new ATP-competitive mTOR inhibitors that provoke a broader inhibition of mTOR activity are in early stages of clinical development. The purpose of this paper is to summarize the existing knowledge about mTOR inhibitors and their use in the treatment of B-cell lymphomas. Relevant issues regarding mTOR biology in general as well as in B-cell lymphoid neoplasms are also discussed in short.
Collapse
|
48
|
Alencar AJ, Malumbres R, Kozloski GA, Advani R, Talreja N, Chinichian S, Briones J, Natkunam Y, Sehn LH, Gascoyne RD, Tibshirani R, Lossos IS. MicroRNAs are independent predictors of outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Clin Cancer Res 2011; 17:4125-35. [PMID: 21525173 DOI: 10.1158/1078-0432.ccr-11-0224] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) heterogeneity has prompted investigations for new biomarkers that can accurately predict survival. A previously reported 6-gene model combined with the International Prognostic Index (IPI) could predict patients' outcome. However, even these predictors are not capable of unambiguously identifying outcome, suggesting that additional biomarkers might improve their predictive power. EXPERIMENTAL DESIGN We studied expression of 11 microRNAs (miRNA) that had previously been reported to have variable expression in DLBCL tumors. We measured the expression of each miRNA by quantitative real-time PCR analyses in 176 samples from uniformly treated DLBCL patients and correlated the results to survival. RESULTS In a univariate analysis, the expression of miR-18a correlated with overall survival (OS), whereas the expression of miR-181a and miR-222 correlated with progression-free survival (PFS). A multivariate Cox regression analysis including the IPI, the 6-gene model-derived mortality predictor score and expression of the miR-18a, miR-181a, and miR-222, revealed that all variables were independent predictors of survival except the expression of miR-222 for OS and the expression of miR-18a for PFS. CONCLUSION The expression of specific miRNAs may be useful for DLBCL survival prediction and their role in the pathogenesis of this disease should be examined further.
Collapse
Affiliation(s)
- Alvaro J Alencar
- Department of Medicine, Division of Hematology-Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Porkka KP, Ogg EL, Saramäki OR, Vessella RL, Pukkila H, Lähdesmäki H, van Weerden WM, Wolf M, Kallioniemi OP, Jenster G, Visakorpi T. The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer 2011; 50:499-509. [PMID: 21472816 DOI: 10.1002/gcc.20873] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate the expression of protein coding genes. In this study, we screened highly informative prostate cancer cell lines and xenografts (n = 42) for miRNA gene copy number and expression changes. The expression profiling showed distinction between cell lines and xenografts as well as between androgen sensitive and independent models. Only a few copy number alterations that were associated with expression changes were identified. Most importantly, the miR-15a-miR-16-1 locus was found to be homozygously deleted in two samples leading to the abolishment of miR-15a, but not miR-16, expression. miR-16 is also expressed from another genomic locus. Mutation screening of the miR-15a-miR-16-1 gene in the model systems as well as clinical samples (n = 50) revealed no additional mutations. In conclusion, our data indicate that putative tumor suppressors, miR-15a and miR-16-1, are homozygously deleted in a subset of prostate cancers, further suggesting that these miRNAs could be important in the development of prostate cancer.
Collapse
Affiliation(s)
- Kati P Porkka
- Institute of Medical Technology, University of Tampere, Tampere University Hospital, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ohyashiki K, Umezu T, Yoshizawa SI, Ito Y, Ohyashiki M, Kawashima H, Tanaka M, Kuroda M, Ohyashiki JH. Clinical impact of down-regulated plasma miR-92a levels in non-Hodgkin's lymphoma. PLoS One 2011; 6:e16408. [PMID: 21383985 PMCID: PMC3044711 DOI: 10.1371/journal.pone.0016408] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/27/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We undertook a study to evaluate the clinical relevance of miR-92a in plasma obtained from non-Hodgkin's lymphoma (NHL) patients, because the miR-17-92 polycistronic miRNA cluster plays a crucial role in lymphomagenesis and affects neo-angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS Plasma miR-92a values in NHL were extremely low (<5%), compared with healthy subjects (P<.0001), irrespective of lymphoma sub-type. The very low plasma level of miR-92a increased in the complete response (CR) phase but did not reach the normal range, and the plasma level was lower again in the relapse phase. Patients in CR or CR unconfirmed with a plasma miR-92a level of less than the cut-off level showed a significantly high relapse rate compared with patients with normalized plasma miR-92a level. CONCLUSIONS/SIGNIFICANCE The current results therefore indicate that the plasma miR-92a value could be a novel biomarker not only for diagnosis but also for monitoring lymphoma patients after chemotherapy.
Collapse
Affiliation(s)
- Kazuma Ohyashiki
- Hematology Division, First Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|