1
|
Zerbib J, Ippolito MR, Eliezer Y, De Feudis G, Reuveni E, Savir Kadmon A, Martin S, Viganò S, Leor G, Berstler J, Muenzner J, Mülleder M, Campagnolo EM, Shulman ED, Chang T, Rubolino C, Laue K, Cohen-Sharir Y, Scorzoni S, Taglietti S, Ratti A, Stossel C, Golan T, Nicassio F, Ruppin E, Ralser M, Vazquez F, Ben-David U, Santaguida S. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Nat Commun 2024; 15:7772. [PMID: 39251587 PMCID: PMC11385192 DOI: 10.1038/s41467-024-52176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anouk Savir Kadmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sonia Viganò
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin Berlin, Core Facility High-Throughput Mass Spectrometry, Berlin, Germany
| | - Emma M Campagnolo
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmela Rubolino
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Ratti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Garrison Z, Clister T, Bleem E, Berry EG, Kulkarni RP. Comparison of Immunotherapy versus Targeted Therapy Effectiveness in BRAF-Mutant Melanoma Patients and Use of cGAS Expression and Aneuploidy as Potential Prognostic Biomarkers. Cancers (Basel) 2024; 16:1027. [PMID: 38473384 DOI: 10.3390/cancers16051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BRAF-mutant melanoma patients can be treated with targeted therapy or immunotherapies, and it is not clear which should be provided first. Targeted treatments do not work in up to one-third of cases, while immunotherapies may only be effective in up to 60% and come with a high risk of immune-related side effects. Determining which treatment to provide first is thus of critical importance. Recent studies suggest that chromosomal instability and aneuploidy and cyclic GMP-AMP synthase (cGAS) can act as biomarkers for cancer severity and patient outcome. Neither potential biomarker has been extensively studied in melanoma. We examined 20 BRAF-mutant melanomas treated with immunotherapy or targeted therapy and measured chromosomal aneuploidy and cGAS expression levels. Treatment type, aneuploidy, and cGAS expression were correlated with progression-free survival (PFS) in these patients. Those treated with immunotherapy first had significantly better outcomes than those treated with targeted therapy, suggesting immunotherapy should be strongly considered as the first-line therapy for patients bearing BRAF-mutant melanoma. We found that there was no correlation of aneuploidy with outcome while there was some positive correlation of cGAS levels with PFS. Further studies are needed to confirm these findings and to test other potential biomarkers.
Collapse
Affiliation(s)
- Zachary Garrison
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Bleem
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth G Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
| |
Collapse
|
3
|
Li S, Chen Y, Guo Y, Xu J, Wang X, Ning W, Ma L, Qu Y, Zhang M, Zhang H. Mutation-derived, genomic instability-associated lncRNAs are prognostic markers in gliomas. PeerJ 2023; 11:e15810. [PMID: 37547724 PMCID: PMC10404032 DOI: 10.7717/peerj.15810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Background Gliomas are the most commonly-detected malignant tumors of the brain. They contain abundant long non-coding RNAs (lncRNAs), which are valuable cancer biomarkers. LncRNAs may be involved in genomic instability; however, their specific role and mechanism in gliomas remains unclear. LncRNAs that are related to genomic instability have not been reported in gliomas. Methods The transcriptome data from The Cancer Genome Atlas (TCGA) database were analyzed. The co-expression network of genomic instability-related lncRNAs and mRNA was established, and the model of genomic instability-related lncRNA was identified by univariate Cox regression and LASSO analyses. Based on the median risk score obtained in the training set, we divided the samples into high-risk and low-risk groups and proved the survival prediction ability of genomic instability-related lncRNA signatures. The results were verified in the external data set. Finally, a real-time quantitative polymerase chain reaction assay was performed to validate the signature. Results The signatures of 17 lncRNAs (LINC01579, AL022344.1, AC025171.5, LINC01116, MIR155HG, AC131097.3, LINC00906, CYTOR, AC015540.1, SLC25A21.AS1, H19, AL133415.1, SNHG18, FOXD3.AS1, LINC02593, AL354919.2 and CRNDE) related to genomic instability were identified. In the internal data set and Gene Expression Omnibus (GEO) external data set, the low-risk group showed better survival than the high-risk group (P < 0.001). In addition, this feature was identified as an independent risk factor, showing its independent prognostic value with different clinical stratifications. The majority of patients in the low-risk group had isocitrate dehydrogenase 1 (IDH1) mutations. The expression levels of these lncRNAs were significantly higher in glioblastoma cell lines than in normal cells. Conclusions Our study shows that the signature of 17 lncRNAs related to genomic instability has prognostic value for gliomas and could provide a potential therapeutic method for glioblastoma.
Collapse
|
4
|
Shteinman ER, Wilmott JS, da Silva IP, Long GV, Scolyer RA, Vergara IA. Causes, consequences and clinical significance of aneuploidy across melanoma subtypes. Front Oncol 2022; 12:988691. [PMID: 36276131 PMCID: PMC9582607 DOI: 10.3389/fonc.2022.988691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aneuploidy, the state of the cell in which the number of whole chromosomes or chromosome arms becomes imbalanced, has been recognized as playing a pivotal role in tumor evolution for over 100 years. In melanoma, the extent of aneuploidy, as well as the chromosomal regions that are affected differ across subtypes, indicative of distinct drivers of disease. Multiple studies have suggested a role for aneuploidy in diagnosis and prognosis of melanomas, as well as in the context of immunotherapy response. A number of key constituents of the cell cycle have been implicated in aneuploidy acquisition in melanoma, including several driver mutations. Here, we review the state of the art on aneuploidy in different melanoma subtypes, discuss the potential drivers, mechanisms underlying aneuploidy acquisition as well as its value in patient diagnosis, prognosis and response to immunotherapy treatment.
Collapse
Affiliation(s)
- Eva R. Shteinman
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Cancer & Hematology Centre, Blacktown Hospital, Blacktown, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales (NSW) Health Pathology, Sydney, NSW, Australia
| | - Ismael A. Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Ismael A. Vergara,
| |
Collapse
|
5
|
Darp R, Vittoria MA, Ganem NJ, Ceol CJ. Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis. Nat Commun 2022; 13:4109. [PMID: 35840569 PMCID: PMC9287415 DOI: 10.1038/s41467-022-31899-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Melanomas and other solid tumors commonly have increased ploidy, with near-tetraploid karyotypes being most frequently observed. Such karyotypes have been shown to arise through whole-genome doubling events that occur during early stages of tumor progression. The generation of tetraploid cells via whole-genome doubling is proposed to allow nascent tumor cells the ability to sample various pro-tumorigenic genomic configurations while avoiding the negative consequences that chromosomal gains or losses have in diploid cells. Whereas a high prevalence of whole-genome doubling events has been established, the means by which whole-genome doubling arises is unclear. Here, we find that BRAFV600E, the most common mutation in melanomas, can induce whole-genome doubling via cytokinesis failure in vitro and in a zebrafish melanoma model. Mechanistically, BRAFV600E causes decreased activation and localization of RhoA, a critical cytokinesis regulator. BRAFV600E activity during G1/S phases of the cell cycle is required to suppress cytokinesis. During G1/S, BRAFV600E activity causes inappropriate centriole amplification, which is linked in part to inhibition of RhoA and suppression of cytokinesis. Together these data suggest that common abnormalities of melanomas linked to tumorigenesis - amplified centrosomes and whole-genome doubling events - can be induced by oncogenic BRAF and other mutations that increase RAS/MAPK pathway activity.
Collapse
Affiliation(s)
- Revati Darp
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA
| | - Marc A Vittoria
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Craig J Ceol
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA.
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA.
| |
Collapse
|
6
|
Vittoria MA, Kingston N, Kotynkova K, Xia E, Hong R, Huang L, McDonald S, Tilston-Lunel A, Darp R, Campbell JD, Lang D, Xu X, Ceol CJ, Varelas X, Ganem NJ. Inactivation of the Hippo tumor suppressor pathway promotes melanoma. Nat Commun 2022; 13:3732. [PMID: 35768444 PMCID: PMC9243107 DOI: 10.1038/s41467-022-31399-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
Melanoma is commonly driven by activating mutations in the MAP kinase BRAF; however, oncogenic BRAF alone is insufficient to promote melanomagenesis. Instead, its expression induces a transient proliferative burst that ultimately ceases with the development of benign nevi comprised of growth-arrested melanocytes. The tumor suppressive mechanisms that restrain nevus melanocyte proliferation remain poorly understood. Here we utilize cell and murine models to demonstrate that oncogenic BRAF leads to activation of the Hippo tumor suppressor pathway, both in melanocytes in vitro and nevus melanocytes in vivo. Mechanistically, we show that oncogenic BRAF promotes both ERK-dependent alterations in the actin cytoskeleton and whole-genome doubling events, which independently reduce RhoA activity to promote Hippo activation. We also demonstrate that functional impairment of the Hippo pathway enables oncogenic BRAF-expressing melanocytes to bypass nevus formation and rapidly form melanomas. Our data reveal that the Hippo pathway enforces the stable arrest of nevus melanocytes and represents a critical barrier to melanoma development. Activating mutations of BRAF alone are inadequate to drive melanoma formation. Here the authors show that activation of Hippo signalling by oncogenic BRAF represents an additional safeguard to limit BRAF-dependent human melanocyte growth and melanoma formation.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Nathan Kingston
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kristyna Kotynkova
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Eric Xia
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rui Hong
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lee Huang
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shayna McDonald
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Revati Darp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Deborah Lang
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Neil J Ganem
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
7
|
Sisdelli L, Cordioli MIV, Vaisman F, Monte O, Longui CA, Cury AN, Freitas MO, Rangel-Pozzo A, Mai S, Cerutti JM. A Multifocal Pediatric Papillary Thyroid Carcinoma (PTC) Harboring the AGK-BRAF and RET/PTC3 Fusion in a Mutually Exclusive Pattern Reveals Distinct Levels of Genomic Instability and Nuclear Organization. BIOLOGY 2021; 10:biology10020125. [PMID: 33562578 PMCID: PMC7914679 DOI: 10.3390/biology10020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Genetic alterations, such as RET/PTC and AGK-BRAF fusions, are frequent events in pediatric papillary thyroid carcinoma (PTC). However, their role as prognostic markers in pediatric PTC is still under investigation. In this study, we present a patient harboring three tumor foci with distinct genetic alterations (AGK-BRAF, RET/PTC3 and an absence of canonical alterations) that were investigated for DNA structure and telomere-related genomic instability. These preliminary results highlight that AGK-BRAF fusion likely affects nuclear architecture, which might explain a more aggressive disease outcome observed in pediatric PTC cases with AGK-BRAF fusion. Abstract The spectrum and incidence of gene fusions in papillary thyroid carcinoma (PTC) can differ significantly depending on the age of onset, histological subtype or radiation exposure history. In sporadic pediatric PTC, RET/PTC1-3 and AGK-BRAF fusions are common genetic alterations. The role of RET/PTC as a prognostic marker in pediatric PTC is still under investigation. We recently showed that AGK-BRAF fusion is prevalent in young patients (mean 10 years) and associated with specific and aggressive pathological features such as multifocality and lung metastasis. In this pilot study, we report a unique patient harboring three different foci: the first was positive for AGK-BRAF fusion, the second was positive for just RET/PTC3 fusion and the third was negative for both rearrangements. To investigate whether AGK-BRAF and RET/PTC3 are associated with genomic instability and chromatin modifications, we performed quantitative fluorescence in situ hybridization (Q-FISH) of telomere repeats followed by 3D imaging analysis and 3D super-resolution Structured Illumination Microscopy (3D-SIM) to analyze the DNA structure from the foci. We demonstrated in this preliminary study that AGK-BRAF is likely associated with higher levels of telomere-related genomic instability and chromatin remodeling in comparison with RET/PTC3 foci. Our results suggest a progressive disruption in chromatin structure in AGK-BRAF-positive cells, which might explain a more aggressive disease outcome in patients harboring this rearrangement.
Collapse
Affiliation(s)
- Luiza Sisdelli
- The Genetic Basis of Thyroid Tumors Lab, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.S.); (M.I.V.C.)
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (A.R.-P.); (S.M.)
| | - Maria Isabel V. Cordioli
- The Genetic Basis of Thyroid Tumors Lab, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.S.); (M.I.V.C.)
| | | | - Osmar Monte
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, Brazil; (O.M.); (C.A.L.)
| | - Carlos A. Longui
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, Brazil; (O.M.); (C.A.L.)
| | - Adriano N. Cury
- Department of Medicine, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, Brazil;
| | - Monique O. Freitas
- Medical Genetics Service of the Martagão Gesteira Childcare and Pediatrics Institute (IPPMG), Medical School, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil;
| | - Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (A.R.-P.); (S.M.)
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (A.R.-P.); (S.M.)
| | - Janete M. Cerutti
- The Genetic Basis of Thyroid Tumors Lab, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.S.); (M.I.V.C.)
- Correspondence: ; Tel.: +55-11-5576-4979
| |
Collapse
|
8
|
Schwertheim S, Theurer S, Jastrow H, Herold T, Ting S, Westerwick D, Bertram S, Schaefer CM, Kälsch J, Baba HA, Schmid KW. New insights into intranuclear inclusions in thyroid carcinoma: Association with autophagy and with BRAFV600E mutation. PLoS One 2019; 14:e0226199. [PMID: 31841566 PMCID: PMC6913918 DOI: 10.1371/journal.pone.0226199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Intranuclear inclusions (NI) in normal and neoplastic tissues have been known for years, representing one of the diagnostic criteria for papillary thyroid carcinoma (PTC). BRAF activation is involved among others in autophagy. NI in hepatocellular carcinoma contain autophagy-associated proteins. Our aim was to clarify if NI in thyroid carcinoma (TC) have a biological function. Methods NI in 107 paraffin-embedded specimens of TC including all major subtypes were analyzed. We considered an inclusion as positive if it was delimited by a lamin AC (nuclear membrane marker) stained intact membrane and completely closed. Transmission electron microscopy (TEM), immunohistochemistry (IHC), immunofluorescence (IF) and 3D reconstruction were performed to investigate content and shape of NI; BRAFV600E mutation was analyzed by next generation sequencing. Results In 29% of the TCs at least one lamin AC positive intranuclear inclusion was detected; most frequently (76%) in PTCs. TEM analyses revealed degenerated organelles and heterolysosomes within such NI; 3D reconstruction of IF stained nuclei confirmed complete closure by the nuclear membrane without any contact to the cytoplasm. NI were positively stained for the autophagy-associated proteins LC3B, ubiquitin, cathepsin D, p62/sequestosome1 and cathepsin B in 14–29% of the cases. Double-IF revealed co-localization of LC3B & ubiquitin, p62 & ubiquitin and LC3B & p62 in the same NI. BRAFV600E mutation, exclusively detected in PTCs, was significantly associated with the number of NI/PTC (p = 0.042) and with immunoreactivity for autophagy-associated proteins in the NI (p≤0.035). BRAF-IHC revealed that some of these BRAF-positive thyrocytes contained mutant BRAF in their NI co-localized with autophagy-associated proteins. Conclusions NI are completely delimited by nuclear membrane in TC. The presence of autophagy-associated proteins within the NI together with degenerated organelles and lysosomal proteases suggests their involvement in autophagy and proteolysis. Whether and how BRAFV600E protein is degraded in NI needs further investigation.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy and Electron Microscopy Unit of Imaging Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph M. Schaefer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A. Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Kurt W. Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Vanhaesebroeck B, Bilanges B, Madsen RR, Dale KL, Lau E, Vladimirou E. Perspective: Potential Impact and Therapeutic Implications of Oncogenic PI3K Activation on Chromosomal Instability. Biomolecules 2019; 9:E331. [PMID: 31374965 PMCID: PMC6723836 DOI: 10.3390/biom9080331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic activation of the class I PI3K pathway is very common in cancer. This mostly results from oncogenic mutations in PIK3CA, the gene encoding the ubiquitously expressed PI3Kα catalytic subunit, or from inactivation of the PTEN tumour suppressor, a lipid phosphatase that opposes class I PI3K signalling. The clinical impact of PI3K inhibitors in solid tumours, aimed at dampening cancer-cell-intrinsic PI3K activity, has thus far been limited. Challenges include poor drug tolerance, incomplete pathway inhibition and pre-existing or inhibitor-induced resistance. The principle of pharmacologically targeting cancer-cell-intrinsic PI3K activity also assumes that all cancer-promoting effects of PI3K activation are reversible, which might not be the case. Emerging evidence suggests that genetic PI3K pathway activation can induce and/or allow cells to tolerate chromosomal instability, which-even if occurring in a low fraction of the cell population-might help to facilitate and/or drive tumour evolution. While it is clear that such genomic events cannot be reverted pharmacologically, a role for PI3K in the regulation of chromosomal instability could be exploited by using PI3K pathway inhibitors to prevent those genomic events from happening and/or reduce the pace at which they are occurring, thereby dampening cancer development or progression. Such an impact might be most effective in tumours with clonal PI3K activation and achievable at lower drug doses than the maximum-tolerated doses of PI3K inhibitors currently used in the clinic.
Collapse
Affiliation(s)
- Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Ralitsa R Madsen
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Katie L Dale
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Evelyn Lau
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Elina Vladimirou
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Zhang Y, Dong J, Shi R, Feng L, Li Y, Cheng C, Zhang L, Song B, Bi Y, Huang H, Kong P, Guo J, Liu J. Mps1 is associated with the BRAF V600E mutation and predicts poor outcome in patients with colorectal cancer. Oncol Lett 2019; 17:2809-2817. [PMID: 30854056 PMCID: PMC6365956 DOI: 10.3892/ol.2019.9924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) with the V600E mutation of B-Raf proto-oncogene serine/threonine kinase (BRAFV600E) mutation is insensitive to chemotherapy and is indicative of a poor patient prognosis. Although BRAF inhibitors have a marked effect on malignant melanoma harboring the BRAFV600E mutation, they have a limited effect on patients with CRC with the same BRAF mutation. A previous study identified a novel gene, monopolar spindle protein kinase 1 (Mps1), a downstream target of BRAFV600E only, rather than of wild-type BRAF as well, which contributes to tumorigenesis in melanoma. In the present study, the incidence of BRAFV600E in patients with CRC was identified and the correlation of Mps1, phospho-extracellular-signal-regulated kinase (p-ERK) and BRAFV600E was investigated. The results indicated that the mutation rate of BRAFV600E was 5.2% in CRC. Poorly differentiated tumors and mucinous tumors have a significantly higher incidence of BRAFV600E compared with well-differentiated tumors and non-mucinous tumors (P<0.05). Kaplan-Meier survival analysis indicated that the survival rate was markedly lower in patients with BRAFV600E compared with in patients with wild-type BRAF (BRAFWT). The expression of p-ERK and Mps1 in CRC with BRAFV600E was significantly higher compared with in CRC with BRAFWT (P<0.05), and their expression is associated with cancer classification, degree of differentiation and lymph node transfusion (P<0.05). In addition p-ERK expression was positively correlated with Mps1 expression, with a contingency coefficient of 0.679 (P=0.002). In conclusion, the results of the present study indicated that Mps1 was significantly associated with BRAFV600E/p-ERK and may serve a crucial function in the development of CRC. The results of the present study raise the possibility that targeting the oncogenic BRAF and Mps1, particularly when in conjunction, could provide promising therapeutic opportunities for the treatment of CRC.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinyao Dong
- Endoscopy Center, Shanxi Cancer Hospital, Taiyuan, Shanxi 30013, P.R. China
| | - Ruyi Shi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Liguo Feng
- Department of General Surgery, Taiyuan Municipal No. 2 People's Hospital, Taiyuan, Shanxi 030002, P.R. China
| | - Yike Li
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Caixia Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Pathology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Song
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanghui Bi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - He Huang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengzhou Kong
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiansheng Guo
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jing Liu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
11
|
Chunduri NK, Storchová Z. The diverse consequences of aneuploidy. Nat Cell Biol 2019; 21:54-62. [PMID: 30602769 DOI: 10.1038/s41556-018-0243-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Abstract
Aneuploidy, or imbalanced chromosome number, has profound effects on eukaryotic cells. In humans, aneuploidy is associated with various pathologies, including cancer, which suggests that it mediates a proliferative advantage under these conditions. Here, we discuss physiological changes triggered by aneuploidy, such as altered cell growth, transcriptional changes, proteotoxic stress, genomic instability and response to interferons, and how cancer cells adapt to the changing aneuploid genome.
Collapse
Affiliation(s)
| | - Zuzana Storchová
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
12
|
Priebe MK, Dewert N, Amschler K, Erpenbeck L, Heinzerling L, Schön MP, Seitz CS, Lorenz VN. c-Rel is a cell cycle modulator in human melanoma cells. Exp Dermatol 2018; 28:121-128. [PMID: 30466153 DOI: 10.1111/exd.13848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Melanoma progression and resistance to therapy are associated with faulty regulation of signalling molecules including the central transcription factor NF-κB. Increased expression of the c-Rel subunit of NF-κB has been described in progressing melanoma, though mechanistic implications of this upregulation remain unclear. To elucidate the functional role of c-Rel in melanoma biology, we have assessed its expression in human melanoma as well as in melanoma cell lines. Suppression of c-Rel expression in four melanoma cell lines resulted in reduced growth and altered cell cycle regulation, namely G2/M and polyploid phase induction. Moreover, mitotic spindle morphology was profoundly altered in three of the cell lines with a predominance of monopolar structures. These findings suggest that c-Rel is involved in G2/M phase regulation, prevention of polyploidy and, consequently, chromosomal stability. Our results highlight a novel tumor-promoting function of c-Rel in human melanoma cells through governing cell cycle regulation.
Collapse
Affiliation(s)
- Marie K Priebe
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Nadin Dewert
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Amschler
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Lucie Heinzerling
- Department of Dermatology, Friedrich Alexander University, Erlangen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Cornelia S Seitz
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Verena N Lorenz
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Acquisition of an oncogenic fusion protein serves as an initial driving mutation by inducing aneuploidy and overriding proliferative defects. Oncotarget 2018; 7:62814-62835. [PMID: 27588498 PMCID: PMC5325330 DOI: 10.18632/oncotarget.11716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
While many solid tumors are defined by the presence of a particular oncogene, the role that this oncogene plays in driving transformation through the acquisition of aneuploidy and overcoming growth arrest are often not known. Further, although aneuploidy is present in many solid tumors, it is not clear whether it is the cause or effect of malignant transformation. The childhood sarcoma, Alveolar Rhabdomyosarcoma (ARMS), is primarily defined by the t(2;13)(q35;q14) translocation, creating the PAX3-FOXO1 fusion protein. It is unclear what role PAX3-FOXO1 plays in the initial stages of tumor development through the acquisition and persistence of aneuploidy. In this study we demonstrate that PAX3-FOXO1 serves as a driver mutation to initiate a cascade of mRNA and miRNA changes that ultimately reprogram proliferating myoblasts to induce the formation of ARMS. We present evidence that cells containing PAX3-FOXO1 have changes in the expression of mRNA and miRNA essential for maintaining proper chromosome number and structure thereby promoting aneuploidy. Further, we demonstrate that the presence of PAX3-FOXO1 alters the expression of growth factor related mRNA and miRNA, thereby overriding aneuploid-dependent growth arrest. Finally, we present evidence that phosphorylation of PAX3-FOXO1 contributes to these changes. This is one of the first studies describing how an oncogene and post-translational modifications drive the development of a tumor through the acquisition and persistence of aneuploidy. This mechanism has implications for other solid tumors where large-scale genomics studies may elucidate how global alterations contribute to tumor phenotypes allowing the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
14
|
Denu RA, Shabbir M, Nihal M, Singh CK, Longley BJ, Burkard ME, Ahmad N. Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma. Mol Cancer Res 2018; 16:517-527. [PMID: 29330283 DOI: 10.1158/1541-7786.mcr-17-0197] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) is common in cancer and can arise by centriole overduplication or by cell doubling events, including the failure of cell division and cell-cell fusion. To assess the relative contributions of these two mechanisms, the number of centrosomes with mature/mother centrioles was examined by immunofluorescence in a tissue microarray of human melanomas and benign nevi (n = 79 and 17, respectively). The centrosomal protein 170 (CEP170) was used to identify centrosomes with mature centrioles; this is expected to be present in most centrosomes with cell doubling, but on fewer centrosomes with overduplication. Using this method, it was determined that the majority of CA in melanoma can be attributed to centriole overduplication rather than cell doubling events. As Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication, the hypothesis that PLK4 overexpression contributes to centriole overduplication was evaluated. PLK4 is significantly overexpressed in melanoma compared with benign nevi and in a panel of human melanoma cell lines (A375, Hs294T, G361, WM35, WM115, 451Lu, and SK-MEL-28) compared with normal human melanocytes. Interestingly, although PLK4 expression did not correlate with CA in most cases, treatment of melanoma cells with a selective small-molecule PLK4 inhibitor (centrinone B) significantly decreased cell proliferation. The antiproliferative effects of centrinone B were also accompanied by induction of apoptosis.Implications: This study demonstrates that centriole overduplication is the predominant mechanism leading to centrosome amplification in melanoma and that PLK4 should be further evaluated as a potential therapeutic target for melanoma treatment. Mol Cancer Res; 16(3); 517-27. ©2018 AACR.
Collapse
Affiliation(s)
- Ryan A Denu
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Maria Shabbir
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Minakshi Nihal
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Chandra K Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
15
|
Harrison LE, Bleiler M, Giardina C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem Pharmacol 2017; 147:1-8. [PMID: 29128368 DOI: 10.1016/j.bcp.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Cancer cells have long been noted for alterations in centrosome structure, number, and function. Colorectal cancers are interesting in this regard since two frequently mutated genes, APC and CTNNB1 (β-catenin), encode proteins that directly interact with the centrosome and affect its ability to direct microtubule growth and establish cell polarity. Colorectal cancers also frequently display centrosome over-duplication and clustering. Efforts have been directed toward understanding how supernumerary centrosomes cluster and whether disrupting this clustering may be a way to induce aberrant/lethal mitoses of cancer cells. Given the important role of the centrosome in establishing spindle polarity and regulating some apoptotic signaling pathways, other approaches to centrosome targeting may be fruitful as well. Basic information on the nature and extent of centrosome defects in colorectal cancer, including why they over-duplicate and whether this over-duplication compensates for their functional defects, could provide a framework for the development of novel approaches for the therapeutic targeting of colorectal cancer.
Collapse
Affiliation(s)
- Lauren E Harrison
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Marina Bleiler
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Charles Giardina
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
16
|
Epstein-Barr virus BRLF1 induces genomic instability and progressive malignancy in nasopharyngeal carcinoma cells. Oncotarget 2017; 8:78948-78964. [PMID: 29108278 PMCID: PMC5668011 DOI: 10.18632/oncotarget.20695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/02/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious health problem in China and Southeast Asia. Relapse is the major cause of mortality, but mechanisms of relapse are mysterious. Epstein-Barr virus (EBV) reactivation and host genomic instability (GI) have correlated with NPC development. Previously, we reported that lytic early genes DNase and BALF3 induce genetic alterations and progressive malignancy in NPC cells, implying lytic proteins may be required for NPC relapse. In this study, we show that immediate early gene BRLF1 induces chromosome mis-segregation and genomic instability in the NPC cells. Similar phenomenon was also demonstrated in 293 and zebrafish embryonic cells. BRLF1 nuclear localization signal (NLS) mutant still induced genomic instability and inhibitor experiments revealed that BRLF1 interferes with chromosome segregation and induces genomic instability by activating Erk signaling. Furthermore, the chromosome aberrations and tumorigenic features of NPC cells were significantly increased with the rounds of BRLF1 expression, and these cells developed into larger tumor nodules in mice. Therefore, BRLF1 may be the important factor contributing to NPC relapse and targeting BRLF1 may benefit patients.
Collapse
|
17
|
Maleki SS, Röcken C. Chromosomal Instability in Gastric Cancer Biology. Neoplasia 2017; 19:412-420. [PMID: 28431273 PMCID: PMC5397576 DOI: 10.1016/j.neo.2017.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus–positive, chromosomal-instable (CIN), and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus–positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6) and/or molecular-biological analysis. Epstein-Barr virus–positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA). However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer.
Collapse
Affiliation(s)
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
18
|
Fontebasso AM, Shirinian M, Khuong-Quang DA, Bechet D, Gayden T, Kool M, De Jay N, Jacob K, Gerges N, Hutter B, Şeker-Cin H, Witt H, Montpetit A, Brunet S, Lepage P, Bourret G, Klekner A, Bognár L, Hauser P, Garami M, Farmer JP, Montes JL, Atkinson J, Lambert S, Kwan T, Korshunov A, Tabori U, Collins VP, Albrecht S, Faury D, Pfister SM, Paulus W, Hasselblatt M, Jones DTW, Jabado N. Non-random aneuploidy specifies subgroups of pilocytic astrocytoma and correlates with older age. Oncotarget 2016; 6:31844-56. [PMID: 26378811 PMCID: PMC4741644 DOI: 10.18632/oncotarget.5571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/15/2015] [Indexed: 11/25/2022] Open
Abstract
Pilocytic astrocytoma (PA) is the most common brain tumor in children but is rare in adults, and hence poorly studied in this age group. We investigated 222 PA and report increased aneuploidy in older patients. Aneuploid genomes were identified in 45% of adult compared with 17% of pediatric PA. Gains were non-random, favoring chromosomes 5, 7, 6 and 11 in order of frequency, and preferentially affecting non-cerebellar PA and tumors with BRAF V600E mutations and not with KIAA1549-BRAF fusions or FGFR1 mutations. Aneuploid PA differentially expressed genes involved in CNS development, the unfolded protein response, and regulators of genomic stability and the cell cycle (MDM2, PLK2),whose correlated programs were overexpressed specifically in aneuploid PA compared to other glial tumors. Thus, convergence of pathways affecting the cell cycle and genomic stability may favor aneuploidy in PA, possibly representing an additional molecular driver in older patients with this brain tumor.
Collapse
Affiliation(s)
- Adam M Fontebasso
- Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, American University Of Beirut, Beirut, Lebanon
| | - Dong-Anh Khuong-Quang
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Denise Bechet
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Tenzin Gayden
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Marcel Kool
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolas De Jay
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Karine Jacob
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Noha Gerges
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Barbara Hutter
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Huriye Şeker-Cin
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Hendrik Witt
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Alexandre Montpetit
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Sébastien Brunet
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Pierre Lepage
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Geneviève Bourret
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Almos Klekner
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Peter Hauser
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Miklós Garami
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Jean-Pierre Farmer
- Department of Neurosurgery, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Jose-Luis Montes
- Department of Neurosurgery, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Jeffrey Atkinson
- Department of Neurosurgery, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Sally Lambert
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Tony Kwan
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uri Tabori
- Division of Pediatric Hematology-Oncology and The Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - V Peter Collins
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Damien Faury
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Nada Jabado
- Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada.,Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Tambe MB, Narvi E, Kallio M. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner. FEBS Lett 2016; 590:2757-67. [PMID: 27423135 DOI: 10.1002/1873-3468.12310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
Abstract
Dual specificity phosphatase-3 (Dusp3/Vhr) regulates cell cycle progression by counteracting the effects of mitogen-activated protein kinases (Mapk) Erk1/2 and Jnk. Despite the known upregulation of Dusp3 at M phase in mammalian cells, its mitotic functions are poorly characterized. Here, we report that loss of Dusp3 by RNAi leads to the formation of multipolar spindles in human mitotic cancer cells in an Erk1/2-dependent manner. In the phosphatase-silenced cells, the normal bipolar spindle structure was restored by chemical inhibition of Erk1/2 and ectopic overexpression of Dusp3. We propose that at M phase Dusp3 keeps Erk1/2 activity in check to facilitate normal mitosis.
Collapse
Affiliation(s)
- Mahesh Balasaheb Tambe
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland.,Centre for Biotechnology, University of Turku, Finland.,Drug Research Doctoral Programme and FinPharma Doctoral Program Drug Discovery, University of Turku, Finland
| | - Elli Narvi
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Finland
| | - Marko Kallio
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland.,Centre for Biotechnology, University of Turku, Finland
| |
Collapse
|
20
|
Cheng C, Cui H, Zhang L, Jia Z, Song B, Wang F, Li Y, Liu J, Kong P, Shi R, Bi Y, Yang B, Wang J, Zhao Z, Zhang Y, Hu X, Yang J, He C, Zhao Z, Wang J, Xi Y, Xu E, Li G, Guo S, Chen Y, Yang X, Chen X, Liang J, Guo J, Cheng X, Wang C, Zhan Q, Cui Y. Genomic analyses reveal FAM84B and the NOTCH pathway are associated with the progression of esophageal squamous cell carcinoma. Gigascience 2016; 5:1. [PMID: 26759717 PMCID: PMC4709967 DOI: 10.1186/s13742-015-0107-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the sixth most lethal cancer worldwide and the fourth most lethal cancer in China. Genomic characterization of tumors, particularly those of different stages, is likely to reveal additional oncogenic mechanisms. Although copy number alterations and somatic point mutations associated with the development of ESCC have been identified by array-based technologies and genome-wide studies, the genomic characterization of ESCCs from different stages of the disease has not been explored. Here, we have performed either whole-genome sequencing or whole-exome sequencing on 51 stage I and 53 stage III ESCC patients to characterize the genomic alterations that occur during the various clinical stages of ESCC, and further validated these changes in 36 atypical hyperplasia samples. RESULTS Recurrent somatic amplifications at 8q were found to be enriched in stage I tumors and the deletions of 4p-q and 5q were particularly identified in stage III tumors. In particular, the FAM84B gene was amplified and overexpressed in preclinical and ESCC tumors. Knockdown of FAM84B in ESCC cell lines significantly reduced in vitro cell growth, migration and invasion. Although the cancer-associated genes TP53, PIK3CA, CDKN2A and their pathways showed no significant difference between stage I and stage III tumors, we identified and validated a prevalence of mutations in NOTCH1 and in the NOTCH pathway that indicate that they are involved in the preclinical and early stages of ESCC. CONCLUSIONS Our results suggest that FAM84B and the NOTCH pathway are involved in the progression of ESCC and may be potential diagnostic targets for ESCC susceptibility.
Collapse
Affiliation(s)
- Caixia Cheng
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Heyang Cui
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Ling Zhang
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Zhiwu Jia
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Bin Song
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Fang Wang
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Yaoping Li
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Department of Tumor Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Jing Liu
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Pengzhou Kong
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Ruyi Shi
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Yanghui Bi
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Bin Yang
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Department of Tumor Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Juan Wang
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Zhenxiang Zhao
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Yanyan Zhang
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Xiaoling Hu
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Jie Yang
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Chanting He
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Zhiping Zhao
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Jinfen Wang
- />Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Yanfeng Xi
- />Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Enwei Xu
- />Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Guodong Li
- />Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Shiping Guo
- />Department of Tumor Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Yunqing Chen
- />Department of Tumor Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001 China
| | - Xiaofeng Yang
- />Department of Urology Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Xing Chen
- />Department of Endoscopy, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi 030001 China
| | - Jianfang Liang
- />Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Jiansheng Guo
- />Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Xiaolong Cheng
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| | - Chuangui Wang
- />Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Qimin Zhan
- />Cancer Institute and Cancer Hospital, State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yongping Cui
- />Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001 China
- />Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001 China
| |
Collapse
|
21
|
Sun W, Quan C, Huang Y, Ji W, Yu L, Li X, Zhang Y, Zheng Z, Zou H, Li Q, Xu P, Feng Y, Li L, Zhang Y, Cui Y, Jia X, Meng X, Zhang C, Jin Y, Bai J, Yu J, Yu Y, Yang J, Fu S. Constitutive ERK1/2 activation contributes to production of double minute chromosomes in tumour cells. J Pathol 2014; 235:14-24. [PMID: 25214430 PMCID: PMC4280677 DOI: 10.1002/path.4439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/12/2014] [Accepted: 09/07/2014] [Indexed: 12/11/2022]
Abstract
Double minute chromosomes (DMs) are extrachromosomal cytogenetic structures found in tumour cells. As hallmarks of gene amplification, DMs often carry oncogenes and drug-resistance genes and play important roles in malignant tumour progression and drug resistance. The mitogen-activated protein kinase (MAPK) signalling pathway is frequently dysregulated in human malignant tumours, which induces genomic instability, but it remains unclear whether a close relationship exists between MAPK signalling and DMs. In the present study, we focused on three major components of MAPK signalling, ERK1/2, JNK1/2/3 and p38, to investigate the relationship between MAPK and DM production in tumour cells. We found that the constitutive phosphorylation of ERK1/2, but not JNK1/2/3 and p38, was closely associated with DMs in tumour cells. Inhibition of ERK1/2 activation in DM-containing and ERK1/2 constitutively phosphorylated tumour cells was able to markedly decrease the number of DMs, as well as the degree of amplification and expression of DM-carried genes. The mechanism was found to be an increasing tendency of DM DNA to break, become enveloped into micronuclei (MNs) and excluded from the tumour cells during the S/G2 phases of the cell cycle, events that accompanied the reversion of malignant behaviour. Our study reveals a linkage between ERK1/2 activation and DM stability in tumour cells.
Collapse
Affiliation(s)
- Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Orr B, Compton DA. A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front Oncol 2013; 3:164. [PMID: 23825799 PMCID: PMC3695391 DOI: 10.3389/fonc.2013.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022] Open
Abstract
Most solid tumors are characterized by abnormal chromosome numbers (aneuploidy) and karyotypic profiling has shown that the majority of these tumors are heterogeneous and chromosomally unstable. Chromosomal instability (CIN) is defined as persistent mis-segregation of whole chromosomes and is caused by defects during mitosis. Large-scale genome sequencing has failed to reveal frequent mutations of genes encoding proteins involved in mitosis. On the contrary, sequencing has revealed that most mutated genes in cancer fall into a limited number of core oncogenic signaling pathways that regulate the cell cycle, cell growth, and apoptosis. This led to the notion that the induction of oncogenic signaling is a separate event from the loss of mitotic fidelity, but a growing body of evidence suggests that oncogenic signaling can deregulate cell cycle progression, growth, and differentiation as well as cause CIN. These new results indicate that the induction of CIN can no longer be considered separately from the cancer-associated driver mutations. Here we review the primary causes of CIN in mitosis and discuss how the oncogenic activation of key signal transduction pathways contributes to the induction of CIN.
Collapse
Affiliation(s)
- Bernardo Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , Hanover, NH , USA ; The Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth , Hanover, NH , USA
| | | |
Collapse
|
23
|
Zhang L, Shi R, He C, Cheng C, Song B, Cui H, Zhang Y, Zhao Z, Bi Y, Yang X, Miao X, Guo J, Chen X, Wang J, Li Y, Cheng X, Liu J, Cui Y. Oncogenic B-Raf(V600E) abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells. Cancer Lett 2013; 337:125-32. [PMID: 23726842 DOI: 10.1016/j.canlet.2013.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 12/16/2022]
Abstract
Activating B-Raf mutations that deregulate the mitogen-activated protein kinase (MAPK) pathway commonly occur in cancer. Although B-Raf(V600E) induces increased Mps1 protein contributing to centrosome amplification and chromosome instability, the regulatory mechanisms of Mps1 in melanoma cells is not fully understood. Here, we report that Mps1/AKT and B-Raf(WT)/ERK signaling form an auto-regulatory negative feedback loop in melanoma cells; notably, oncogenic B-Raf(V600E) abrogates the negative feedback loop, contributing the aberrant Mps1 functions and tumorigenesis. Our findings raise the possibility that targeting the oncogenic B-Raf and Mps1, especially when used in combination could potentially provide great therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Huang G, Li Z, Wan X, Wang Y, Dong J. Human endogenous retroviral K element encodes fusogenic activity in melanoma cells. J Carcinog 2013; 12:5. [PMID: 23599687 PMCID: PMC3622401 DOI: 10.4103/1477-3163.109032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/01/2013] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION AND HYPOTHESIS Nuclear atypia with features of multi nuclei have been detected in human melanoma specimens. We found that the K type human endogenous retroviral element (HERV K) is expressed in such cells. Since cellular syncytia can form when cells are infected with retroviruses, we hypothesized that HERV K expressed in melanoma cells may contribute to the formation of multinuclear atypia cells in melanoma. EXPERIMENTS AND RESULTS We specifically inhibited HERV K expression using RNA interference (RNAi) and monoclonal antibodies and observed dramatic reduction of intercellular fusion of cultured melanoma cells. Importantly, we identified loss of heterozygosity (LOH)of D19S433 in a cell clone that survived and proliferated after cell fusion. CONCLUSION Our results support the notion that proteins encoded by HERV K can mediate intercellular fusion of melanoma cells, which may generate multinuclear cells and drive the evolution of genetic changes that provide growth and survival advantages.
Collapse
Affiliation(s)
- Gengming Huang
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA ; Sealy Center for Cancer Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
25
|
The cancer biology of whole-chromosome instability. Oncogene 2013; 32:4727-36. [DOI: 10.1038/onc.2012.616] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022]
|
26
|
Bonet C, Giuliano S, Ohanna M, Bille K, Allegra M, Lacour JP, Bahadoran P, Rocchi S, Ballotti R, Bertolotto C. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J Biol Chem 2012; 287:29887-98. [PMID: 22767597 DOI: 10.1074/jbc.m112.371682] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metastatic melanoma is a deadly skin cancer and is resistant to almost all existing treatment. Vemurafenib, which targets the BRAFV600E mutation, is one of the drugs that improves patient outcome, but the patients next develop secondary resistance and a return to cancer. Thus, new therapeutic strategies are needed to treat melanomas and to increase the duration of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor response. The ERK pathway controls cell proliferation, and Aurora B plays a pivotal role in cell division. Here, we confirm that Aurora B is highly expressed in metastatic melanoma cells and that Aurora B inhibition triggers both senescence-like phenotypes and cell death in melanoma cells. Furthermore, we show that the BRAF/ERK axis controls Aurora B expression at the transcriptional level, likely through the transcription factor FOXM1. Our results provide insight into the mechanism of Aurora B regulation and the first molecular basis of Aurora B regulation in melanoma cells. The inhibition of Aurora B expression that we observed in vemurafenib-sensitive melanoma cells was rescued in cells resistant to this drug. Consistently, these latter cells remain sensitive to the effect of the Aurora B inhibitor. Noteworthy, wild-type BRAF melanoma cells are also sensitive to Aurora B inhibition. Collectively, our findings, showing that Aurora B is a potential target in melanoma cells, particularly in those vemurafenib-resistant, may open new avenues to improve the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Caroline Bonet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 1, Biologie et Pathologies des Mélanocytes de la Pigmentation Cutanée au Mélanome, Nice F-06204, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Cheng X, Zhang Y, Li S, Cui H, Zhang L, Shi R, Zhao Z, He C, Wang C, Zhao H, Zhang C, Fisk HA, Guadagno TM, Cui Y. Phosphorylation of Mps1 by BRAFV600E prevents Mps1 degradation and contributes to chromosome instability in melanoma. Oncogene 2012; 32:713-23. [PMID: 22430208 DOI: 10.1038/onc.2012.94] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activating BRAF mutations that deregulate the mitogen-activated protein kinase (MAPK) pathway commonly occur in cancer. BRAF(V600E) induces centrosome amplification and spindle abnormalities that result in aneuploidy. We find modification of Mps1 is critical for contributing to centrosome amplification and chromosome instability induced by BRAF(V600E). Phosphorylation of Mps1 at residue S281 induced by BRAF(V600E) stabilizes Mps1 protein by preventing its ubiquitination by APC/C and subsequent degradation, allowing the non-degraded protein to accumulate at centrosomes. Cells in which endogenous Mps1 was replaced with a phospho-mimetic Mps1 mutant are viable but amplify centrosomes and missegregate chromosomes frequently. Importantly, analysis of tumor micro arrays revealed that phospho-MAPK and S281-phosphorylated Mps1 were highly correlated in human melanoma tissues, implying that MAPK contributes to defects in the degradation of Mps1 in situ. We propose that continuously activated BRAF(V600E) signaling may be a possible mechanism for the deregulation of Mps1 stability and kinase activity in human tumors, and that persistent phosphorylation of Mps1 through BRAF(V600E) signaling is a key event in disrupting the control of centrosome duplication and chromosome stability that may contribute to tumorigenesis. Our findings raise the possibility that targeting the oncogenic BRAF and S281-phosphorylated Mps1, especially when used in combination could potentially provide great therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- J Liu
- Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Centrosomal dysregulation in human metastatic melanoma cell lines. Cancer Genet 2012; 204:477-85. [PMID: 22018269 DOI: 10.1016/j.cancergen.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 06/14/2011] [Accepted: 07/06/2011] [Indexed: 02/05/2023]
Abstract
Correct partitioning of the replicated genome during mitosis is orchestrated by centrosomes, and chromosomal instability is a commonly reported feature of human cancer. Melanomas are notorious for their genetic instability and rapid clonal evolution that may be manifested as aggressive growth and facile generation of therapy-resistant variants. We characterized the centrosomal status, ploidy, and gene status (TP53, CDKN2A/B, BRAF, and NRAS) of 15 human metastatic melanoma cell lines. Cells were labelled for pericentrin (a centrosomal marker), DNA and α-tubulin, and scored for centrosome morphology, supernumerary centrosomes, and mitotic symmetry. The incidence of supernumerary centrosomes correlated with that of gross centrosomal abnormalities (r = 0.90), mitotic asymmetry (r = 0.90), and, surprisingly, increased content of G/M cells (r = 0.79). Centrosomal numerical dysregulation, observed in all cell lines, was found not to be specifically related to the status of any of the characterized gene mutations that were found in 13/15 cell lines. We conclude that centrosomal dysregulation may arise from multiple mechanisms and may drive the generation of genetic and phenotypic diversity in melanoma.
Collapse
|
29
|
Maric I, Viaggi S, Caria P, Frau DV, Degan P, Vanni R. Centrosomal and mitotic abnormalities in cell lines derived from papillary thyroid cancer harboring specific gene alterations. Mol Cytogenet 2011; 4:26. [PMID: 22087789 PMCID: PMC3248874 DOI: 10.1186/1755-8166-4-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 11/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiated thyroid carcinoma offers a good model to investigate the possible correlation between specific gene mutations and chromosome instability. Papillary thyroid neoplasms are characterized by different mutually exclusive genetic alterations, some of which are associated with aneuploidy and aggressive phenotype. RESULTS We investigated the centrosome status and mitotic abnormalities in three thyroid carcinoma-derived cell lines, each maintaining the specific, biologically relevant gene alteration harbored by the parental tumors: RET/PTC1 rearrangement in TPC1; heterozygous and homozygous BRAFV600E mutation in K1 and in B-CPAP, respectively. B-CPAP cells showed a statistically significant (P < 0.01) higher frequency of abnormal mitotic figures compared to TPC1 and K1 cells. CONCLUSIONS Our data indicate that RET/PTC1 oncogenic activity is not related to mitotic chromosome impairment and missegregation whereas, based on the consistent difference in types/frequencies of centrosome and spindle abnormalities observed between K1 and B-CPAP cells, the hetero/homozygous allelic status of BRAFV600E mutation seems to be not irrelevant in respect to chromosomal instability development.
Collapse
Affiliation(s)
- Irena Maric
- Dipartimento per lo Studio del Territorio e delle sue Risorse, Università degli Studi di Cagliari, Genova, 16132, Italy.,IRCCS Azienda Ospedaliera Universitaria San Martino - IST - Istituto Nazionale per la Ricerca sul Cancro, Genova, 16132, Italy
| | - Silvia Viaggi
- Dipartimento per lo Studio del Territorio e delle sue Risorse, Università degli Studi di Cagliari, Genova, 16132, Italy.,IRCCS Azienda Ospedaliera Universitaria San Martino - IST - Istituto Nazionale per la Ricerca sul Cancro, Genova, 16132, Italy
| | - Paola Caria
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, 09042, Italy
| | - Daniela V Frau
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, 09042, Italy
| | - Paolo Degan
- IRCCS Azienda Ospedaliera Universitaria San Martino - IST - Istituto Nazionale per la Ricerca sul Cancro, Genova, 16132, Italy
| | - Roberta Vanni
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, 09042, Italy
| |
Collapse
|
30
|
Mielgo A, Seguin L, Huang M, Camargo MF, Anand S, Franovic A, Weis SM, Advani SJ, Murphy EA, Cheresh DA. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med 2011; 17:1641-5. [PMID: 22081024 PMCID: PMC3233644 DOI: 10.1038/nm.2464] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 08/08/2011] [Indexed: 02/08/2023]
Abstract
RAF kinases regulate cell proliferation and survival and can be dysregulated in tumors. The role of RAF in cell proliferation has been linked to its ability to activate mitogen-activated protein kinase kinase 1 (MEK) and mitogen-activated protein kinase 1 (ERK). Here we identify a MEK-independent role for RAF in tumor growth. Specifically, in mitotic cells, CRAF becomes phosphorylated on Ser338 and localizes to the mitotic spindle of proliferating tumor cells in vitro as well as in murine tumor models and in biopsies from individuals with cancer. Treatment of tumors with allosteric inhibitors, but not ATP-competitive RAF inhibitors, prevents CRAF phosphorylation on Ser338 and localization to the mitotic spindle and causes cell-cycle arrest at prometaphase. Furthermore, we identify phospho-Ser338 CRAF as a potential biomarker for tumor progression and a surrogate marker for allosteric RAF blockade. Mechanistically, CRAF, but not BRAF, associates with Aurora kinase A (Aurora-A) and Polo-like kinase 1 (Plk1) at the centrosomes and spindle poles during G2/M. Indeed, allosteric or genetic inhibition of phospho-Ser338 CRAF impairs Plk1 activation and accumulation at the kinetochores, causing prometaphase arrest, whereas a phospho-mimetic Ser338D CRAF mutant potentiates Plk1 activation, mitosis and tumor progression in mice. These findings show a previously undefined role for RAF in tumor progression beyond the RAF-MEK-ERK paradigm, opening new avenues for targeting RAF in cancer.
Collapse
Affiliation(s)
- Ainhoa Mielgo
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kamata T, Hussain J, Giblett S, Hayward R, Marais R, Pritchard C. BRAF inactivation drives aneuploidy by deregulating CRAF. Cancer Res 2010; 70:8475-86. [PMID: 20978199 DOI: 10.1158/0008-5472.can-10-0603] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aspartate-594 is the third most common BRAF residue mutated in human cancer. Mutants of this residue are kinase inactive, and the mechanism(s) by which they contribute to cancer has remained perplexing. Using a conditional knock-in mouse model, we show that the (D594A)Braf mutant does not drive tumor development per se but is able to induce aneuploidy in murine splenocytes and mouse embryonic fibroblasts and contributes to immortalization through the propagation of aneuploid cells. (D594A)Braf lacks kinase activity but induces the related gene product Craf as well as the mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. Here, we show that the aneuploid phenotype is dependent on Craf. Treatment with the MEK inhibitor U0126 did not attenuate the emergence of aneuploidy but prevented the growth of aneuploid cells. These results provide a previously unidentified link between Craf and chromosomal stability, with important implications for our understanding of the development of cancers with driver mutations that hyperactivate Craf.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Li Z, Sheng T, Wan X, Liu T, Wu H, Dong J. Expression of HERV-K correlates with status of MEK-ERK and p16INK4A-CDK4 pathways in melanoma cells. Cancer Invest 2010; 28:1031-7. [PMID: 20874005 DOI: 10.3109/07357907.2010.512604] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dysregulated ERK and RB pathways often coexist in melanoma cells. The K-type human endogenous retrovirus (HERV-K) is implicated in melanomagenesis. Some of the phenotypes that are modified by HERV-K (e.g., changes in cell shape, melanin production, and anchorage-dependent growth) overlap with those that are regulated by ERK and RB pathways. As ERK signaling can regulate retroviruses, we hypothesized that HERV-K expression is controlled by ERK-RB pathways. We found that the levels of HERV-K GAG and EVE correlated with the activation of ERK and loss of p16INK4A and that inhibition of MEK or CDK4, especially in combination, reduced HERV-K EVE in melanoma cells.
Collapse
Affiliation(s)
- Zhongwu Li
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0743, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cui Y, Cheng X, Zhang C, Zhang Y, Li S, Wang C, Guadagno TM. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases. J Biol Chem 2010; 285:32988-32998. [PMID: 20729194 DOI: 10.1074/jbc.m110.140905] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.
Collapse
Affiliation(s)
- Yongping Cui
- From the Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi 030001, China; Department of Cell Biology and Genetics, Taiyuan, Shanxi 030001, China.
| | - Xiaolong Cheng
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ce Zhang
- From the Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi 030001, China
| | - Yanyan Zhang
- Department of Cell Biology and Genetics, Taiyuan, Shanxi 030001, China
| | - Shujing Li
- Department of Cell Biology and Genetics, Taiyuan, Shanxi 030001, China
| | - Chuangui Wang
- School of Life Science, East China Normal University, Shanghai 200062, China
| | - Thomas M Guadagno
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612.
| |
Collapse
|
34
|
Klein A, Li N, Nicholson JM, McCormack AA, Graessmann A, Duesberg P. Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes. ACTA ACUST UNITED AC 2010; 200:79-99. [PMID: 20620590 DOI: 10.1016/j.cancergencyto.2010.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
Cancers are clones of autonomous cells defined by individual karyotypes, much like species. Despite such karyotypic evidence for causality, three to six synergistic mutations, termed oncogenes, are generally thought to cause cancer. To test single oncogenes, they are artificially activated with heterologous promoters and spliced into the germ line of mice to initiate cancers with collaborating spontaneous oncogenes. Because such cancers are studied as models for the treatment of natural cancers with related oncogenes, the following must be answered: 1) which oncogenes collaborate with the transgenes in cancers; 2) how do single transgenic oncogenes induce diverse cancers and hyperplasias; 3) what maintains cancers that lose initiating transgenes; 4) why are cancers aneuploid, over- and underexpressing thousands of normal genes? Here we try to answer these questions with the theory that carcinogenesis is a form of speciation. We postulate that transgenic oncogenes initiate carcinogenesis by inducing aneuploidy. Aneuploidy destabilizes the karyotype by unbalancing teams of mitosis genes. This instability thus catalyzes the evolution of new cancer species with individual karyotypes. Depending on their degree of aneuploidy, these cancers then evolve new subspecies. To test this theory, we have analyzed the karyotypes and phenotypes of mammary carcinomas of mice with transgenic SV40 tumor virus- and hepatitis B virus-derived oncogenes. We found that (1) a given transgene induced diverse carcinomas with individual karyotypes and phenotypes; (2) these karyotypes coevolved with newly acquired phenotypes such as drug resistance; (3) 8 of 12 carcinomas were transgene negative. Having found one-to-one correlations between individual karyotypes and phenotypes and consistent coevolutions of karyotypes and phenotypes, we conclude that carcinogenesis is a form of speciation and that individual karyotypes maintain cancers as they maintain species. Because activated oncogenes destabilize karyotypes and are dispensable in cancers, we conclude that they function indirectly, like carcinogens. Such oncogenes would thus not be valid models for the treatment of cancers.
Collapse
Affiliation(s)
- Andreas Klein
- Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Institut für Biochemie, Monbijoustrasse 2, Berlin, Germany
| | | | | | | | | | | |
Collapse
|