1
|
Zerbib J, Ippolito MR, Eliezer Y, De Feudis G, Reuveni E, Savir Kadmon A, Martin S, Viganò S, Leor G, Berstler J, Muenzner J, Mülleder M, Campagnolo EM, Shulman ED, Chang T, Rubolino C, Laue K, Cohen-Sharir Y, Scorzoni S, Taglietti S, Ratti A, Stossel C, Golan T, Nicassio F, Ruppin E, Ralser M, Vazquez F, Ben-David U, Santaguida S. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Nat Commun 2024; 15:7772. [PMID: 39251587 PMCID: PMC11385192 DOI: 10.1038/s41467-024-52176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anouk Savir Kadmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sonia Viganò
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin Berlin, Core Facility High-Throughput Mass Spectrometry, Berlin, Germany
| | - Emma M Campagnolo
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmela Rubolino
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Ratti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Li S, Chen Y, Guo Y, Xu J, Wang X, Ning W, Ma L, Qu Y, Zhang M, Zhang H. Mutation-derived, genomic instability-associated lncRNAs are prognostic markers in gliomas. PeerJ 2023; 11:e15810. [PMID: 37547724 PMCID: PMC10404032 DOI: 10.7717/peerj.15810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Background Gliomas are the most commonly-detected malignant tumors of the brain. They contain abundant long non-coding RNAs (lncRNAs), which are valuable cancer biomarkers. LncRNAs may be involved in genomic instability; however, their specific role and mechanism in gliomas remains unclear. LncRNAs that are related to genomic instability have not been reported in gliomas. Methods The transcriptome data from The Cancer Genome Atlas (TCGA) database were analyzed. The co-expression network of genomic instability-related lncRNAs and mRNA was established, and the model of genomic instability-related lncRNA was identified by univariate Cox regression and LASSO analyses. Based on the median risk score obtained in the training set, we divided the samples into high-risk and low-risk groups and proved the survival prediction ability of genomic instability-related lncRNA signatures. The results were verified in the external data set. Finally, a real-time quantitative polymerase chain reaction assay was performed to validate the signature. Results The signatures of 17 lncRNAs (LINC01579, AL022344.1, AC025171.5, LINC01116, MIR155HG, AC131097.3, LINC00906, CYTOR, AC015540.1, SLC25A21.AS1, H19, AL133415.1, SNHG18, FOXD3.AS1, LINC02593, AL354919.2 and CRNDE) related to genomic instability were identified. In the internal data set and Gene Expression Omnibus (GEO) external data set, the low-risk group showed better survival than the high-risk group (P < 0.001). In addition, this feature was identified as an independent risk factor, showing its independent prognostic value with different clinical stratifications. The majority of patients in the low-risk group had isocitrate dehydrogenase 1 (IDH1) mutations. The expression levels of these lncRNAs were significantly higher in glioblastoma cell lines than in normal cells. Conclusions Our study shows that the signature of 17 lncRNAs related to genomic instability has prognostic value for gliomas and could provide a potential therapeutic method for glioblastoma.
Collapse
|
4
|
Hackett R. DMM Outstanding Paper Prize 2022 winners: Tamihiro Kamata, Jennifer K. Sargent and Mark A. Warner. Dis Model Mech 2023; 16:308868. [PMID: 37144683 PMCID: PMC10184667 DOI: 10.1242/dmm.050268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Disease Models & Mechanisms (DMM) is delighted to announce that the winners of the DMM Outstanding Paper Prize 2022 are Tamihiro Kamata for their Research Article (titled ' Statins mediate anti- and pro-tumourigenic functions by remodelling the tumour microenvironment'), and Jennifer K. Sargent and Mark A. Warner for their Resource Article (titled ' Genetically diverse mouse platform to xenograft cancer cells'). The two prizes of £1000 are awarded to the first author(s) of the papers that are judged by the journal's Editors to be the most outstanding contribution to the journal that year.
Collapse
Affiliation(s)
- Rachel Hackett
- The Company of Biologists, Bidder Building, Station Road, Cambridge CB24 9LF, UK
| |
Collapse
|
5
|
Tham M, Stark HJ, Jauch A, Harwood C, Pavez Lorie E, Boukamp P. Adverse Effects of Vemurafenib on Skin Integrity: Hyperkeratosis and Skin Cancer Initiation Due to Altered MEK/ERK-Signaling and MMP Activity. Front Oncol 2022; 12:827985. [PMID: 35174094 PMCID: PMC8842679 DOI: 10.3389/fonc.2022.827985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022] Open
Abstract
The BRAF inhibitor vemurafenib, approved for treating patients with BRAF V600E-mutant and unresectable or metastatic melanomas, rapidly induces cutaneous adverse events, including hyperkeratotic skin lesions and cutaneous squamous cell carcinomas (cSCC). To determine, how vemurafenib would provoke these adverse events, we utilized long-term in vitro skin equivalents (SEs) comprising epidermal keratinocytes and dermal fibroblasts in their physiological environment. We inserted keratinocytes with different genetic background [normal keratinocytes: NHEK, HaCaT (p53/mut), and HrasA5 (p53/mut+Hras/mut)] to analyze effects depending on the stage of carcinogenesis. We now show that vemurafenib activates MEK-ERK signaling in both, keratinocytes, and fibroblasts in vitro and in the in vivo-like SEs. As a consequence, vemurafenib does not provide a growth advantage but leads to a differentiation phenotype, causing accelerated differentiation and hyperkeratosis in the NHEK and normalized stratification and cornification in the transformed keratinocytes. Although all keratinocytes responded very similarly to vemurafenib in their expression profile, particularly with a significant induction of MMP1 and MMP3, only the HrasA5 cells revealed a vemurafenib-dependent pathophysiological shift to tumor progression, i.e., the initiation of invasive growth. This was shown by increased proteolytic activity allowing for penetration of the basement membrane and invasion into the disrupted underlying matrix. Blocking MMP activity, by the addition of ilomastat, prevented invasion with all corresponding degradative activities, thus substantiating that the RAS-RAF-MEK-ERK/MMP axis is the most important molecular basis for the rapid switch towards tumorigenic conversion of the HrasA5 keratinocytes upon vemurafenib treatment. Finally, cotreatment with vemurafenib and the MEK inhibitor cobimetinib prevented MEK-ERK hyperactivation and with that abolished both, the epidermal differentiation and the tumor invasion phenotype. This suggests that both cutaneous adverse events are under direct control of vemurafenib-dependent MEK-ERK hyperactivation and confirms the dependence on preexisting genetic alterations of the skin keratinocytes that determine the basis towards induction of tumorigenic progression.
Collapse
Affiliation(s)
- Marius Tham
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Jürgen Stark
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University Heidelberg, Heidelberg, Germany
| | - Catherine Harwood
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.,Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Petra Boukamp
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
6
|
John L, Krauth MT, Podar K, Raab MS. Pathway-Directed Therapy in Multiple Myeloma. Cancers (Basel) 2021; 13:1668. [PMID: 33916289 PMCID: PMC8036678 DOI: 10.3390/cancers13071668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant plasma cell disorder with an unmet medical need, in particular for relapsed and refractory patients. Molecules within deregulated signaling pathways, including the RAS/RAF/MEK/ERK, but also the PI3K/AKT-pathway belong to the most promising evolving therapeutic targets. Rationally derived compounds hold great therapeutic promise to target tumor-specific abnormalities rather than general MM-associated vulnerabilities. This paradigm is probably best depicted by targeting mutated BRAF: while well-tolerated, remarkable responses have been achieved in selected patients by inhibition of BRAFV600E alone or in combination with MEK. Targeting of AKT has also shown promising results in a subset of patients as monotherapy or to resensitize MM-cells to conventional treatment. Approaches to target transcription factors, convergence points of signaling cascades such as p53 or c-MYC, are emerging as yet another exciting strategy for pathway-directed therapy. Informed by our increasing knowledge on the impact of signaling pathways in MM pathophysiology, rationally derived Precision-Medicine trials are ongoing. Their results are likely to once more fundamentally change treatment strategies in MM.
Collapse
Affiliation(s)
- Lukas John
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Klaus Podar
- Department of Internal Medicine, Karl Landsteiner University of Health Sciences, Mitterweg 10, 3500 Krems an der Donau, Austria;
| | - Marc-Steffen Raab
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Genomic and transcriptomic landscape of conjunctival melanoma. PLoS Genet 2020; 16:e1009201. [PMID: 33383577 PMCID: PMC7775126 DOI: 10.1371/journal.pgen.1009201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Conjunctival melanoma (CJM) is a rare but potentially lethal and highly-recurrent cancer of the eye. Similar to cutaneous melanoma (CM), it originates from melanocytes. Unlike CM, however, CJM is relatively poorly characterized from a genomic point of view. To fill this knowledge gap and gain insight into the genomic nature of CJM, we performed whole-exome (WES) or whole-genome sequencing (WGS) of tumor-normal tissue pairs in 14 affected individuals, as well as RNA sequencing in a subset of 11 tumor tissues. Our results show that, similarly to CM, CJM is also characterized by a very high mutation load, composed of approximately 500 somatic mutations in exonic regions. This, as well as the presence of a UV light-induced mutational signature, are clear signs of the role of sunlight in CJM tumorigenesis. In addition, the genomic classification of CM proposed by TCGA seems to be well-applicable to CJM, with the presence of four typical subclasses defined on the basis of the most frequently mutated genes: BRAF, NF1, RAS, and triple wild-type. In line with these results, transcriptomic analyses revealed similarities with CM as well, namely the presence of a transcriptomic subtype enriched for immune genes and a subtype enriched for genes associated with keratins and epithelial functions. Finally, in seven tumors we detected somatic mutations in ACSS3, a possible new candidate oncogene. Transfected conjunctival melanoma cells overexpressing mutant ACSS3 showed higher proliferative activity, supporting the direct involvement of this gene in the tumorigenesis of CJM. Altogether, our results provide the first unbiased and complete genomic and transcriptomic classification of CJM. Conjunctival melanoma is an extremely rare form of cancer of the eye that arises from melanocytes–the cells producing the protective pigment melanin–in the outmost layer of the eye: the conjunctiva. This tissue, similarly to the skin, can also be exposed to UV light radiation from the sun. We investigated the genetic background of this rare form of cancer in samples from fourteen patients, by global DNA and RNA sequencing. Our results showed that conjunctival melanoma is genetically very similar to cutaneous melanoma. More precisely, in tumor DNA we detected signs of damage caused by UV light, as well as mutations in the genes BRAF, NF1 and NRAS/HRAS, previously described to be involved in cutaneous melanoma. Analysis of tumor gene expression also revealed similarities between these two types of cancer, some of which could be used as prognostic factors or as indicators of a patients’ response to therapy. In addition, we identified frequent somatic mutations in ACSS3, a gene not yet associated with either conjunctival or cutaneous melanoma, which represents a potential key player in oncogenesis of conjunctival melanoma.
Collapse
|
8
|
Wu PK, Becker A, Park JI. Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. Int J Mol Sci 2020; 21:ijms21155436. [PMID: 32751750 PMCID: PMC7432891 DOI: 10.3390/ijms21155436] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
In response to extracellular stimuli, the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway regulates diverse cellular processes. While mainly known as a mitogenic signaling pathway, the Raf/MEK/ERK pathway can mediate not only cell proliferation and survival but also cell cycle arrest and death in different cell types. Growing evidence suggests that the cell fate toward these paradoxical physiological outputs may be determined not only at downstream effector levels but also at the pathway level, which involves the magnitude of pathway activity, spatial-temporal regulation, and non-canonical functions of the molecular switches in this pathway. This review discusses recent updates on the molecular mechanisms underlying the pathway-mediated growth inhibitory signaling, with a major focus on the regulation mediated at the pathway level.
Collapse
Affiliation(s)
- Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Correspondence: (P.-K.W.); (J.-I.P.)
| | - Andrew Becker
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (P.-K.W.); (J.-I.P.)
| |
Collapse
|
9
|
Benstead-Hume G, Wooller SK, Downs JA, Pearl FMG. Defining Signatures of Arm-Wise Copy Number Change and Their Associated Drivers in Kidney Cancers. Int J Mol Sci 2019; 20:E5762. [PMID: 31744086 PMCID: PMC6887958 DOI: 10.3390/ijms20225762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC).
Collapse
Affiliation(s)
- Graeme Benstead-Hume
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| | - Sarah K. Wooller
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| | - Jessica A Downs
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK;
| | - Frances M. G. Pearl
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| |
Collapse
|
10
|
Atypical BRAF and NRAS Mutations in Mucosal Melanoma. Cancers (Basel) 2019; 11:cancers11081133. [PMID: 31398831 PMCID: PMC6721527 DOI: 10.3390/cancers11081133] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Primary mucosal melanomas represent a minority of melanomas, but have a significantly worse prognosis than cutaneous melanomas. A better characterization of the molecular pathogenesis of this melanoma subtype could help us understand the risk factors associated with the development of mucosal melanomas and highlight therapeutic targets. Because the Mitogen-Activated Protein Kinase (MAPK) pathway plays such a significant role in melanoma development, we explore v-raf murine sarcoma viral oncogene homolog B (BRAF) and neuroblastoma RAS viral oncogene homolog (NRAS) mutations in mucosal melanoma and compare them to the mutation profiles in cutaneous melanoma and other tumors with BRAF and NRAS mutations. We show that in addition to being less frequent, BRAF and NRAS mutations are different in mucosal melanoma compared to cutaneous melanomas. Strikingly, the BRAF and NRAS mutation profiles in mucosal melanoma are closer to those found in cancers such as lung cancer, suggesting that mutations in mucosal melanoma could be linked to some genotoxic agents that remain to be identified. We also show that the atypical BRAF and NRAS mutations found in mucosal melanomas have particular effects on protein activities, which could be essential for the transformation of mucosal melanocytes.
Collapse
|
11
|
Beneker CM, Rovoli M, Kontopidis G, Röring M, Galda S, Braun S, Brummer T, McInnes C. Design and Synthesis of Type-IV Inhibitors of BRAF Kinase That Block Dimerization and Overcome Paradoxical MEK/ERK Activation. J Med Chem 2019; 62:3886-3897. [PMID: 30977659 DOI: 10.1021/acs.jmedchem.8b01288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the clinical success of BRAF inhibitors like vemurafenib in treating metastatic melanoma, resistance has emerged through "paradoxical MEK/ERK signaling" where transactivation of one protomer occurs as a result of drug inhibition of the other partner in the activated dimer. The importance of the dimerization interface in the signaling potential of wild-type BRAF in cells expressing oncogenic Ras has recently been demonstrated and proposed as a site of therapeutic intervention in targeting cancers resistant to adenosine triphosphate competitive drugs. The proof of concept for a structure-guided approach targeting the dimerization interface is described through the design and synthesis of macrocyclic peptides that bind with high affinity to BRAF and that block paradoxical signaling in malignant melanoma cells occurring through this drug target. The lead compounds identified are type-IV kinase inhibitors and represent an ideal framework for conversion into next-generation BRAF inhibitors through macrocyclic drug discovery.
Collapse
Affiliation(s)
- Chad M Beneker
- Drug Discovery and Biomedical Sciences , College of Pharmacy , Columbia , South Carolina 29208 , United States
| | - Magdalini Rovoli
- Laboratory of Biochemistry, Department of Veterinary Medicine , University of Thessaly , Karditsa 43131 , Greece
| | - George Kontopidis
- Laboratory of Biochemistry, Department of Veterinary Medicine , University of Thessaly , Karditsa 43131 , Greece
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany
| | - Simeon Galda
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany.,Centre for Biological Signalling Studies, BIOSS , University of Freiburg , Schänzlestrasse 18 , Freiburg 79104 , Germany.,German Consortium for Translational Cancer Research DKTK, Partner Site Freiburg , German Cancer Research Center (DKFZ) , Heidelberg 69120 , Germany
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences , College of Pharmacy , Columbia , South Carolina 29208 , United States
| |
Collapse
|
12
|
B-Raf deficiency impairs tumor initiation and progression in a murine breast cancer model. Oncogene 2019; 38:1324-1339. [DOI: 10.1038/s41388-018-0663-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
|
13
|
Ochoa S, Martínez-Pérez E, Zea DJ, Molina-Vila MA, Marino-Buslje C. Comutation and exclusion analysis in human tumors: A tool for cancer biology studies and for rational selection of multitargeted therapeutic approaches. Hum Mutat 2019; 40:413-425. [PMID: 30629309 DOI: 10.1002/humu.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 11/11/2022]
Abstract
Malignant tumors originate from somatic mutations and other genomic and epigenomic alterations, which lead to loss of control of the cellular circuitry. These alterations present patterns of co-occurrence and mutual exclusivity that can influence prognosis and modify response to drugs, highlighting the need for multitargeted therapies. Studies in this area have generally focused in particular malignancies and considered whole genes instead of specific mutations, ignoring the fact that different alterations in the same gene can have widely different effects. Here, we present a comprehensive analysis of co-dependencies of individual somatic mutations in the whole spectrum of human tumors. Combining multitesting with conditional and expected mutational probabilities, we have discovered rules governing the codependencies of driver and nondriver mutations. We also uncovered pairs and networks of comutations and exclusions, some of them restricted to certain cancer types and others widespread. These pairs and networks are not only of basic but also of clinical interest, and can be of help in the selection of multitargeted antitumor therapies. In this respect, recurrent driver comutations suggest combinations of drugs that might be effective in the clinical setting, while recurrent exclusions indicate combinations unlikely to be useful.
Collapse
Affiliation(s)
- Soledad Ochoa
- Fundación Instituto Leloir, Avda. Patricias Argentinas 435, Buenos Aires, Argentina
| | | | - Diego Javier Zea
- Fundación Instituto Leloir, Avda. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Miguel Angel Molina-Vila
- Laboratory of Onchology, Hospital Universitario Quirón Dexeus, C/Sabino Arana 5-19, 08028, Barcelona, Spain
| | | |
Collapse
|
14
|
Bastidas Torres AN, Cats D, Mei H, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 2018; 57:653-664. [PMID: 30144205 PMCID: PMC6282857 DOI: 10.1002/gcc.22679] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). Causative genetic alterations in MF are unknown. The low recurrence of pathogenic small-scale mutations (ie, nucleotide substitutions, indels) in the disease, calls for the study of additional aspects of MF genetics. Here, we investigated structural genomic alterations in tumor-stage MF by integrating whole-genome sequencing and RNA-sequencing. Multiple genes with roles in cell physiology (n = 113) and metabolism (n = 92) were found to be impacted by genomic rearrangements, including 47 genes currently implicated in cancer. Fusion transcripts involving genes of interest such as DOT1L, KDM6A, LIFR, TP53, and TP63 were also observed. Additionally, we identified recurrent deletions of genes involved in cell cycle control, chromatin regulation, the JAK-STAT pathway, and the PI-3-K pathway. Remarkably, many of these deletions result from genomic rearrangements. Deletion of tumor suppressors HNRNPK and SOCS1 were the most frequent genetic alterations in MF after deletion of CDKN2A. Notably, SOCS1 deletion could be detected in early-stage MF. In agreement with the observed genomic alterations, transcriptome analysis revealed up-regulation of the cell cycle, JAK-STAT, PI-3-K and developmental pathways. Our results position inactivation of HNRNPK and SOCS1 as potential driver events in MF development.
Collapse
Affiliation(s)
| | - Davy Cats
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Nieto P, Ambrogio C, Esteban-Burgos L, Gómez-López G, Blasco MT, Yao Z, Marais R, Rosen N, Chiarle R, Pisano DG, Barbacid M, Santamaría D. A Braf kinase-inactive mutant induces lung adenocarcinoma. Nature 2017; 548:239-243. [PMID: 28783725 PMCID: PMC5648056 DOI: 10.1038/nature23297] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/16/2017] [Indexed: 12/31/2022]
Abstract
The initiating oncogenic event in almost half of human lung adenocarcinomas is still unknown, a fact that complicates the development of selective targeted therapies. Yet these tumours harbour a number of alterations without obvious oncogenic function including BRAF-inactivating mutations. Inactivating BRAF mutants in lung predominate over the activating V600E mutant that is frequently observed in other tumour types. Here we demonstrate that the expression of an endogenous Braf(D631A) kinase-inactive isoform in mice (corresponding to the human BRAF(D594A) mutation) triggers lung adenocarcinoma in vivo, indicating that BRAF-inactivating mutations are initiating events in lung oncogenesis. Moreover, inactivating BRAF mutations have also been identified in a subset of KRAS-driven human lung tumours. Co-expression of Kras(G12V) and Braf(D631A) in mouse lung cells markedly enhances tumour initiation, a phenomenon mediated by Craf kinase activity, and effectively accelerates tumour progression when activated in advanced lung adenocarcinomas. We also report a key role for the wild-type Braf kinase in sustaining Kras(G12V)/Braf(D631A)-driven tumours. Ablation of the wild-type Braf allele prevents the development of lung adenocarcinoma by inducing a further increase in MAPK signalling that results in oncogenic toxicity; this effect can be abolished by pharmacological inhibition of Mek to restore tumour growth. However, the loss of wild-type Braf also induces transdifferentiation of club cells, which leads to the rapid development of lethal intrabronchiolar lesions. These observations indicate that the signal intensity of the MAPK pathway is a critical determinant not only in tumour development, but also in dictating the nature of the cancer-initiating cell and ultimately the resulting tumour phenotype.
Collapse
Affiliation(s)
- Patricia Nieto
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Chiara Ambrogio
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Laura Esteban-Burgos
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - María Teresa Blasco
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Zhan Yao
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, M20 4BX Manchester, UK
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Roberto Chiarle
- Department of Pathology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Mariano Barbacid
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - David Santamaría
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| |
Collapse
|
16
|
KRAS G12D expression in lung-resident myeloid cells promotes pulmonary LCH-like neoplasm sensitive to statin treatment. Blood 2017; 130:514-526. [PMID: 28550040 DOI: 10.1182/blood-2017-02-770149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 12/25/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare histiocytic neoplasm associated with somatic mutations in the genes involved in the RAF/MEK/extracellular signal-regulated kinase (ERK) signaling pathway. Recently, oncogenic mutations in NRAS/KRAS, upstream regulators of the RAF/MEK/ERK pathway, have been reported in pulmonary, but not in nonpulmonary, LCH cases, suggesting organ-specific contribution of oncogenic RAS to LCH pathogenesis. Using a mouse model expressing KRASG12D in the lung by nasal delivery of adenoviral Cre recombinase (Cre), here we show that KRASG12D expression in lung-resident myeloid cells induces pulmonary LCH-like neoplasms composed of pathogenic CD11chighF4/80+CD207+ cells. The pathogenic cells were mitotically inactive, but proliferating precursors were detected in primary cultures of lung tissue. These precursors were derived, at least in part, from CD11cdimCD11bintGr1- lung-resident monocytic cells transformed by KRASG12D In contrast, BRAFV600E expression induced by the same method failed to develop LCH-like neoplasms, suggesting that each oncogene may initiate pulmonary LCH by transforming different types of lung-resident myeloid cells. In vivo treatment of the KRASG12D-induced LCH-like mouse with the cholesterol-lowering drug atorvastatin ameliorated the pathology, implicating statins as potential therapeutics against a subset of pulmonary LCH.
Collapse
|
17
|
Xu J, Pfarr N, Endris V, Mai EK, Md Hanafiah NH, Lehners N, Penzel R, Weichert W, Ho AD, Schirmacher P, Goldschmidt H, Andrulis M, Raab MS. Molecular signaling in multiple myeloma: association of RAS/RAF mutations and MEK/ERK pathway activation. Oncogenesis 2017; 6:e337. [PMID: 28504689 PMCID: PMC5523069 DOI: 10.1038/oncsis.2017.36] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is still considered to be incurable in most cases. A dominant mutation cluster has been identified in RAS/RAF genes, emphasizing the potential significance of RAS/RAF/MEK/ERK signaling as a therapeutic target. As yet, however, the clinical relevance of this finding is unclear as clinical responses to MEK inhibition in RAS-mutant MM have been mixed. We therefore assessed RAS/RAF mutation status and MEK/ERK pathway activation by both targeted sequencing and phospho-ERK immunohistochemistry in 180 tissue biopsies from 103 patients with newly diagnosed MM (NDMM) and 77 patients with relapsed/refractory MM (rrMM). We found a significant enrichment of RAS/BRAF mutations in rrMM compared to NDMM (P=0.011), which was mainly due to an increase of NRAS mutations (P=0.010). As expected, BRAF mutations were significantly associated with activated downstream signaling. However, only KRAS and not NRAS mutations were associated with pathway activation compared to RAS/BRAFwt (P=0.030). More specifically, only KRASG12D and BRAFV600E were consistently associated with ERK activation (P<0.001 and P=0.006, respectively). Taken together, these results suggest the need for a more specific stratification strategy consisting of both confirmation of protein-level pathway activation as well as detailed RAS/RAF mutation status to allow for a more precise and more effective application of targeted therapies, for example, with BRAF/MEK inhibitors in MM.
Collapse
Affiliation(s)
- J Xu
- Max Eder Group Experimental Therapies for Hematologic Malignancies, Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - N Pfarr
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - V Endris
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - E K Mai
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - N H Md Hanafiah
- Max Eder Group Experimental Therapies for Hematologic Malignancies, Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - N Lehners
- Max Eder Group Experimental Therapies for Hematologic Malignancies, Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - R Penzel
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - W Weichert
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - A D Ho
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - P Schirmacher
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - H Goldschmidt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - M Andrulis
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - M S Raab
- Max Eder Group Experimental Therapies for Hematologic Malignancies, Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
18
|
Dasatinib induces DNA damage and activates DNA repair pathways leading to senescence in non-small cell lung cancer cell lines with kinase-inactivating BRAF mutations. Oncotarget 2016; 7:565-79. [PMID: 26623721 PMCID: PMC4808018 DOI: 10.18632/oncotarget.6376] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/14/2015] [Indexed: 12/31/2022] Open
Abstract
Improved therapies are greatly needed for non-small cell lung cancer (NSCLC) that does not harbor targetable kinase mutations or translocations. We previously demonstrated that NSCLC cells that harbor kinase-inactivating BRAF mutations (KIBRAF) undergo senescence when treated with the multitargeted kinase inhibitor dasatinib. Similarly, treatment with dasatinib resulted in a profound and durable response in a patient with KIBRAF NSCLC. However, no canonical pathways explain dasatinib-induced senescence in KIBRAF NSCLC. To investigate the underlying mechanism, we used 2 approaches: gene expression and reverse phase protein arrays. Both approaches showed that DNA repair pathways were differentially modulated between KIBRAF NSCLC cells and those with wild-type (WT) BRAF. Consistent with these findings, dasatinib induced DNA damage and activated DNA repair pathways leading to senescence only in the KIBRAF cells. Moreover, dasatinib-induced senescence was dependent on Chk1 and p21, proteins known to mediate DNA damage-induced senescence. Dasatinib also led to a marked decrease in TAZ but not YAP protein levels. Overexpression of TAZ inhibited dasatinib-induced senescence. To investigate other vulnerabilities in KIBRAF NSCLC cells, we compared the sensitivity of these cells with that of WTBRAF NSCLC cells to 79 drugs and identified a pattern of sensitivity to EGFR and MEK inhibitors in the KIBRAF cells. Clinically approved EGFR and MEK inhibitors, which are better tolerated than dasatinib, could be used to treat KIBRAF NSCLC. Our novel finding that dasatinib induced DNA damage and subsequently activated DNA repair pathways leading to senescence in KIBRAF NSCLC cells represents a unique vulnerability with potential clinical applications.
Collapse
|
19
|
Dela Cruz FS, Diolaiti D, Turk AT, Rainey AR, Ambesi-Impiombato A, Andrews SJ, Mansukhani MM, Nagy PL, Alvarez MJ, Califano A, Forouhar F, Modzelewski B, Mitchell CM, Yamashiro DJ, Marks LJ, Glade Bender JL, Kung AL. A case study of an integrative genomic and experimental therapeutic approach for rare tumors: identification of vulnerabilities in a pediatric poorly differentiated carcinoma. Genome Med 2016; 8:116. [PMID: 27799065 PMCID: PMC5088685 DOI: 10.1186/s13073-016-0366-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Precision medicine approaches are ideally suited for rare tumors where comprehensive characterization may have diagnostic, prognostic, and therapeutic value. We describe the clinical case and molecular characterization of an adolescent with metastatic poorly differentiated carcinoma (PDC). Given the rarity and poor prognosis associated with PDC in children, we utilized genomic analysis and preclinical models to validate oncogenic drivers and identify molecular vulnerabilities. Methods We utilized whole exome sequencing (WES) and transcriptome analysis to identify germline and somatic alterations in the patient’s tumor. In silico and in vitro studies were used to determine the functional consequences of genomic alterations. Primary tumor was used to generate a patient-derived xenograft (PDX) model, which was used for in vivo assessment of predicted therapeutic options. Results WES revealed a novel germline frameshift variant (p.E1554fs) in APC, establishing a diagnosis of Gardner syndrome, along with a somatic nonsense (p.R790*) APC mutation in the tumor. Somatic mutations in TP53, MAX, BRAF, ROS1, and RPTOR were also identified and transcriptome and immunohistochemical analyses suggested hyperactivation of the Wnt/ß-catenin and AKT/mTOR pathways. In silico and biochemical assays demonstrated that the MAX p.R60Q and BRAF p.K483E mutations were activating mutations, whereas the ROS1 and RPTOR mutations were of lower utility for therapeutic targeting. Utilizing a patient-specific PDX model, we demonstrated in vivo activity of mTOR inhibition with temsirolimus and partial response to inhibition of MEK. Conclusions This clinical case illustrates the depth of investigation necessary to fully characterize the functional significance of the breadth of alterations identified through genomic analysis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0366-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Daniel Diolaiti
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrew T Turk
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Allison R Rainey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Stuart J Andrews
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Peter L Nagy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.,Present Address: Medical Neurogenetics Laboratories, Atlanta, GA, 30342, USA
| | | | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Farhad Forouhar
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Beata Modzelewski
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chelsey M Mitchell
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Darrell J Yamashiro
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Lianna J Marks
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Julia L Glade Bender
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Richtig G, Aigelsreiter A, Kashofer K, Talakic E, Kupsa R, Schaider H, Richtig E. Two Case Reports of Rare BRAF Mutations in Exon 11 and Exon 15 with Discussion of Potential Treatment Options. Case Rep Oncol 2016; 9:543-546. [PMID: 27790118 PMCID: PMC5075727 DOI: 10.1159/000449125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BRAF mutations occur in up to 50% of melanomas. Mutations in the BRAF gene directly influence the patient's treatment because several inhibitors are available that only target BRAFV600 mutations. Herein, we describe two cases of patients with metastatic melanomas, each carrying a ‘nonstandard’ mutation in the BRAF gene: BRAFK601E and BRAFG466E, respectively. The first patient was treated with a MEK inhibitor and the second one with ipilimumab. However, not all BRAF mutations result in increased BRAF kinase activity, and clinical data for ‘nonstandard’ mutations, such as those described in our case report, are sparse. Therefore, treatment with MEK inhibitors can be helpful in cases where BRAF mutations result in increased activity, whereas immune checkpoint inhibitors might be used in cases where the mutations lead to activity levels below those of the wild type.
Collapse
Affiliation(s)
- Georg Richtig
- Department of Dermatology, Medical University of Graz, Graz, Austria; Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Emina Talakic
- Division of General Radiological Diagnostics, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Romana Kupsa
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Helmut Schaider
- Dermatology Research Centre, School of Medicine, The University of Queensland, Brisbane, Qld., Australia
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Noeparast A, Teugels E, Giron P, Verschelden G, De Brakeleer S, Decoster L, De Grève J. Non-V600 BRAF mutations recurrently found in lung cancer predict sensitivity to the combination of Trametinib and Dabrafenib. Oncotarget 2016; 8:60094-60108. [PMID: 28947956 PMCID: PMC5601124 DOI: 10.18632/oncotarget.11635] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/09/2016] [Indexed: 12/12/2022] Open
Abstract
Approximately half of BRAF-mutated Non-small cell lung cancers (NSCLCs) harbor a non-V600 BRAF mutation, accounting for ∼40,000 annual deaths worldwide. Recent studies have revealed the benefits of combined targeted therapy with a RAF-inhibitor (Dabrafenib) and a MEK-inhibitor (Trametinib) in treating V600 BRAF mutant cancers, including NSCLC. In contrast, sensitivity of non-V600 BRAF mutations to these inhibitors is not documented. Non-V600 mutations can either increase or impair BRAF kinase activity. However, impaired BRAF kinases can still activate the ERK pathway in a CRAF-dependent manner. Herein, beyond describing a cohort of BRAF mutant NSCLC patients and functionally analyzing 13 tumor-derived BRAF mutations, we demonstrate that both types of non-V600 BRAF mutations can be sensitive to clinically relevant doses of Dabrafenib and Trametinib in HEK293T cells, in lung epithelial cellular model (BEAS-2B) and in human cancer cell lines harboring non-V600 BRAF mutations. ERK activity induced by both types of these mutations is further reduced by combinatorial drug treatment. Moreover, the combination leads to more prolonged ERK inhibition and has anti-proliferative and pro-apoptotic effects in cells harboring both types of non-V600 BRAF mutations. This study provides a basis for the clinical exploration of non-V600 BRAF mutant lung cancers upon treatment with Trametinib and Dabrafenib.
Collapse
Affiliation(s)
- Amir Noeparast
- Laboratory of Molecular Oncology and Department of Medical Oncology, Oncologisch Centrum, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Erik Teugels
- Laboratory of Molecular Oncology and Department of Medical Oncology, Oncologisch Centrum, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe Giron
- Laboratory of Molecular Oncology and Department of Medical Oncology, Oncologisch Centrum, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gil Verschelden
- Laboratory of Molecular Oncology and Department of Medical Oncology, Oncologisch Centrum, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sylvia De Brakeleer
- Laboratory of Molecular Oncology and Department of Medical Oncology, Oncologisch Centrum, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lore Decoster
- Laboratory of Molecular Oncology and Department of Medical Oncology, Oncologisch Centrum, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Molecular Oncology and Department of Medical Oncology, Oncologisch Centrum, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Kamata T, Jin H, Giblett S, Patel B, Patel F, Foster C, Pritchard C. The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours. EMBO Mol Med 2016; 7:1119-37. [PMID: 26183450 PMCID: PMC4568947 DOI: 10.15252/emmm.201404838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment is known to play an integral role in facilitating cancer progression at advanced stages, but its function in some pre-cancerous lesions remains elusive. We have used the V600EBRAF-driven mouse lung model that develop premalignant lesions to understand stroma–tumour interactions during pre-cancerous development. In this model, we have found that immature macrophage-lineage cells (IMCs) producing PDGFA, TGFβ and CC chemokines are recruited to the stroma of premalignant lung adenomas through CC chemokine receptor 1 (CCR1)-dependent mechanisms. Stromal IMCs promote proliferation and transcriptional alterations suggestive of epithelial–mesenchymal transition in isolated premalignant lung tumour cells ex vivo, and are required for the maintenance of early-stage lung tumours in vivo. Furthermore, we have found that IMC recruitment to the microenvironment is restrained by the cholesterol-binding protein, Niemann-Pick type C2 (NPC2). Studies on isolated cells ex vivo confirm that NPC2 is secreted from tumour cells and is taken up by IMCs wherein it suppresses secretion of the CCR1 ligand CC chemokine 6 (CCL6), at least in part by facilitating its lysosomal degradation. Together, these findings show that NPC2 secreted by premalignant lung tumours suppresses IMC recruitment to the microenvironment in a paracrine manner, thus identifying a novel target for the development of chemopreventive strategies in lung cancer.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Hong Jin
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Susan Giblett
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Falguni Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Charles Foster
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Köhler M, Röring M, Schorch B, Heilmann K, Stickel N, Fiala GJ, Schmitt LC, Braun S, Ehrenfeld S, Uhl FM, Kaltenbacher T, Weinberg F, Herzog S, Zeiser R, Schamel WW, Jumaa H, Brummer T. Activation loop phosphorylation regulates B-Raf in vivo and transformation by B-Raf mutants. EMBO J 2015; 35:143-61. [PMID: 26657898 DOI: 10.15252/embj.201592097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Martin Köhler
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Michael Röring
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Björn Schorch
- Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Katharina Heilmann
- Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Natalie Stickel
- Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany Department of Hematology and Oncology, University Medical Center ALU, Freiburg, Germany
| | - Gina J Fiala
- Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lisa C Schmitt
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Sandra Braun
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany
| | - Sophia Ehrenfeld
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Franziska M Uhl
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Thorsten Kaltenbacher
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Florian Weinberg
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Sebastian Herzog
- Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Comprehensive Cancer Centre, Freiburg, Germany German Consortium for Translational Cancer Research DKTK, Standort Freiburg, Germany
| | - Wolfgang W Schamel
- Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany Center for Chronic Immunodeficiency CCI, University Medical Center, Freiburg, Germany
| | - Hassan Jumaa
- Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Tilman Brummer
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Comprehensive Cancer Centre, Freiburg, Germany German Consortium for Translational Cancer Research DKTK, Standort Freiburg, Germany
| |
Collapse
|
24
|
Miura K, Satoh M, Kinouchi M, Yamamoto K, Hasegawa Y, Philchenkov A, Kakugawa Y, Fujiya T. The preclinical development of regorafenib for the treatment of colorectal cancer. Expert Opin Drug Discov 2014; 9:1087-101. [PMID: 24896071 DOI: 10.1517/17460441.2014.924923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The RAS-RAF-MEK-ERK pathway is one of the best characterized kinase cascades. During the exploration of small molecules that inhibit RAF1 kinase, regorafenib (BAY 73-4506) was discovered as a multikinase inhibitor which demonstrated anti-cancer, anti-angiogenic, and apoptotic activities in metastatic colorectal cancer. This was not the first multikinase inhibitor discovered for the disease; indeed, before regorafenib was approved by FDA as a multikinase inhibitor for metastatic colorectal cancer in 2012, sorafenib (BAY 43-9006) had already been developed to be the first in the world as a multikinase inhibitor for malignancy. Indeed, the only difference between the two compounds is fluorine bound to its proximal phenyl ring although the end result is a considerably different profile, both as a kinase inhibitor as well as in its clinical application. AREAS COVERED In this drug discovery case history, the authors review the design, discovery, and development of both regorafenib and sorafenib from back in the 1990s. Furthermore, the authors highlight the drug's anti-cancer and anti-angiogenic properties as well as its efficacy, safety pharmacology and toxicology based on FDA documents. EXPERT OPINION In order to better predict the efficacy of kinase inhibitors and to utilize them more efficiently, our understanding of drug discovery, the approaches for kinase profiling, and technologies needed for their development are paramount. Indeed, the authors believe that the field should better explore the use of predictive biomarkers that might be able to better assess these therapeutics. Pharmaceutical scientists must also consider the cost effectiveness of the targeted agents developed as a number of the drugs developed are very expensive.
Collapse
Affiliation(s)
- Koh Miura
- Miyagi Cancer Center, Department of Surgery , 47-1 Nodayama, Natori 981-1293 , Japan +81 22 384 3151 ; +81 22 381 1168 ; ,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang L, Singh RR, Patel KP, Stingo F, Routbort M, You MJ, Miranda RN, Garcia-Manero G, Kantarjian HM, Medeiros LJ, Luthra R, Khoury JD. BRAF kinase domain mutations are present in a subset of chronic myelomonocytic leukemia with wild-type RAS. Am J Hematol 2014; 89:499-504. [PMID: 24446311 DOI: 10.1002/ajh.23652] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 12/25/2022]
Abstract
The frequency of RAS mutations in chronic myelomonocytic leukemia (CMML) suggests that activation of the MAPK pathway is important in CMML pathogenesis. Accordingly, we hypothesized that mutations in other members of the MAPK pathway might be overrepresented in RAS(wt) CMML. We performed targeted next generation sequencing analysis on 70 CMML patients with known RAS mutation status. The study group included 37 men and 33 women with a median age of 67.8 years (range, 28-86 years). Forty patients were RAS(wt) and 30 were RAS(mut) ; the latter included KRAS = 17; NRAS = 12; KRAS + NRAS = 1. Five patients (7.1% of total group; 12.5% of RAS(wt) group) with RAS(wt) had kinase domain BRAF mutations. The BRAF mutations were of missense type and involved exon 11 in one patient and exon 15 in four patients. All BRAF(mut) patients had CMML-1 with low-risk cytogenetic findings. Two (40%) of the five patients with BRAF(mut) patients transformed to acute myeloid leukemia during follow-up. In summary, we demonstrate that a subset of patients with RAS(wt) CMML harbors BRAF kinase domain mutations that are potentially capable of activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Rajesh R. Singh
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Keyur P. Patel
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Francesco Stingo
- Department of Biostatistics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Mark Routbort
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - M. James You
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Roberto N. Miranda
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | | | - Hagop M. Kantarjian
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - L. Jeffrey Medeiros
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Joseph D. Khoury
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
26
|
Abstract
The incidence of malignant melanoma is increasing annually. Early stages can be cured with surgical intervention but metastatic disease has generally had a dismal prognosis with few effective interventions. A half of all melanomas possess a BRAF mutation, which can be targeted by specific inhibitors. Vemurafenib is an orally active, purposely designed mutant BRAF inhibitor, which has recently been shown to have a survival benefit measured in months in metastatic patients. In this article, the authors discuss the scientific rationale, drug development process and clinical trials that have led to vemurafenib becoming the first BRAF inhibitor approved for the treatment of patients with mutant BRAF metastatic melanoma.
Collapse
Affiliation(s)
- Heather M Shaw
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN, UK
| | | |
Collapse
|
27
|
Kamata T, Dankort D, Kang J, Giblett S, Pritchard CA, McMahon M, Leavitt AD. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720. Mol Cancer Res 2013; 11:1530-41. [PMID: 24152792 DOI: 10.1158/1541-7786.mcr-13-0294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Mutational activation of BRAF leading to expression of the BRAF(V600E) oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAF(V600E) is a driver oncoprotein and pharmacologic target in solid tumors such as melanoma, lung, and thyroid cancer, it remains unknown whether BRAF(V600E) is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAF(V600E) in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAF(V600E) expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAF(V600E)-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MAP-ERK kinase inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and phosphoinositide 3-kinase (PI3K) inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAF(V600E) drives aberrant proliferation of monocyte-lineage cells. IMPLICATIONS This study supports the development of pathway-targeted therapeutics in the treatment of BRAF(V600E)-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave, Room S-561, San Francisco, CA 94143-0100.
| | | | | | | | | | | | | |
Collapse
|
28
|
Huang G, Li Z, Wan X, Wang Y, Dong J. Human endogenous retroviral K element encodes fusogenic activity in melanoma cells. J Carcinog 2013; 12:5. [PMID: 23599687 PMCID: PMC3622401 DOI: 10.4103/1477-3163.109032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/01/2013] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION AND HYPOTHESIS Nuclear atypia with features of multi nuclei have been detected in human melanoma specimens. We found that the K type human endogenous retroviral element (HERV K) is expressed in such cells. Since cellular syncytia can form when cells are infected with retroviruses, we hypothesized that HERV K expressed in melanoma cells may contribute to the formation of multinuclear atypia cells in melanoma. EXPERIMENTS AND RESULTS We specifically inhibited HERV K expression using RNA interference (RNAi) and monoclonal antibodies and observed dramatic reduction of intercellular fusion of cultured melanoma cells. Importantly, we identified loss of heterozygosity (LOH)of D19S433 in a cell clone that survived and proliferated after cell fusion. CONCLUSION Our results support the notion that proteins encoded by HERV K can mediate intercellular fusion of melanoma cells, which may generate multinuclear cells and drive the evolution of genetic changes that provide growth and survival advantages.
Collapse
Affiliation(s)
- Gengming Huang
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA ; Sealy Center for Cancer Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
29
|
The cancer biology of whole-chromosome instability. Oncogene 2013; 32:4727-36. [DOI: 10.1038/onc.2012.616] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022]
|
30
|
Sen B, Peng S, Tang X, Erickson HS, Galindo H, Mazumdar T, Stewart DJ, Wistuba I, Johnson FM. Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci Transl Med 2012; 4:136ra70. [PMID: 22649091 DOI: 10.1126/scitranslmed.3003513] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During a clinical trial of the tyrosine kinase inhibitor dasatinib for advanced non-small cell lung cancer (NSCLC), one patient responded dramatically and remains cancer-free 4 years later. A comprehensive analysis of his tumor revealed a previously undescribed, kinase-inactivating BRAF mutation ((Y472C)BRAF); no inactivating BRAF mutations were found in the nonresponding tumors taken from other patients. Cells transfected with (Y472C)BRAF exhibited CRAF, MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), and ERK (extracellular signal-regulated kinase) activation-characteristics identical to signaling changes that occur with previously known kinase-inactivating BRAF mutants. Dasatinib selectively induced senescence in NSCLC cells with inactivating BRAF mutations. Transfection of other NSCLC cells with these BRAF mutations also increased these cells' dasatinib sensitivity, whereas transfection with an activating BRAF mutation led to their increased dasatinib resistance. The sensitivity induced by (Y472C)BRAF was reversed by the introduction of a BRAF mutation that impairs RAF dimerization. Dasatinib inhibited CRAF modestly, but concurrently induced RAF dimerization, resulting in ERK activation in NSCLC cells with kinase-inactivating BRAF mutations. The sensitivity of NSCLC with kinase-impaired BRAF to dasatinib suggested synthetic lethality of BRAF and an unknown dasatinib target. Inhibiting BRAF in NSCLC cells expressing wild-type BRAF likewise enhanced these cells' dasatinib sensitivity. Thus, the patient's BRAF mutation was likely responsible for his tumor's marked response to dasatinib, suggesting that tumors bearing kinase-impaired BRAF mutations may be exquisitely sensitive to dasatinib. Moreover, the potential synthetic lethality of combination therapy including dasatinib and BRAF inhibitors may lead to additional therapeutic options against cancers with wild-type BRAF.
Collapse
Affiliation(s)
- Banibrata Sen
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Andreadi C, Cheung LK, Giblett S, Patel B, Jin H, Mercer K, Kamata T, Lee P, Williams A, McMahon M, Marais R, Pritchard C. The intermediate-activity (L597V)BRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes Dev 2012; 26:1945-58. [PMID: 22892241 PMCID: PMC3435497 DOI: 10.1101/gad.193458.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
(L597V)BRAF mutations are acquired somatically in human cancer samples and are frequently coincident with RAS mutations. Germline (L597V)BRAF mutations are also found in several autosomal dominant developmental conditions known as RASopathies, raising the important question of how the same mutation can contribute to both pathologies. Using a conditional knock-in mouse model, we show that endogenous expression of (L597V)Braf leads to approximately twofold elevated Braf kinase activity and weak activation of the Mek/Erk pathway. This is associated with induction of RASopathy hallmarks including cardiac abnormalities and facial dysmorphia but is not sufficient for tumor formation. We combined (L597V)Braf with (G12D)Kras and found that (L597V)Braf modified (G12D)Kras oncogenesis such that fibroblast transformation and lung tumor development were more reminiscent of that driven by the high-activity (V600E)Braf mutant. Mek/Erk activation levels were comparable with those driven by (V600E)Braf in the double-mutant cells, and the gene expression signature was more similar to that induced by (V600E)Braf than (G12D)Kras. However, unlike (V600E)Braf, Mek/Erk pathway activation was mediated by both Craf and Braf, and ATP-competitive RAF inhibitors induced paradoxical Mek/Erk pathway activation. Our data show that weak activation of the Mek/Erk pathway underpins RASopathies, but in cancer, (L597V)Braf epistatically modifies the transforming effects of driver oncogenes.
Collapse
Affiliation(s)
- Catherine Andreadi
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Lai-Kay Cheung
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Susan Giblett
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Hong Jin
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kathryn Mercer
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Tamihiro Kamata
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Pearl Lee
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Alexander Williams
- Bioinformatics Core, Gladstone Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Martin McMahon
- Helen Diller Family Comprehensive Cancer Center, Department of Cell and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Richard Marais
- Signal Transduction Team, The Institute of Cancer Research, Cancer Research UK Centre of Cell and Molecular Biology, London SW3 6JB, United Kingdom
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
32
|
Satoh T, Smith A, Sarde A, Lu HC, Mian S, Trouillet C, Mufti G, Emile JF, Fraternali F, Donadieu J, Geissmann F. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS One 2012; 7:e33891. [PMID: 22506009 PMCID: PMC3323620 DOI: 10.1371/journal.pone.0033891] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/19/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Langerhans cell histiocytosis (LCH) features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or 'LCH cells'. Badalian-Very et al. recently reported the presence of a canonical (V600E)B-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients. METHODS AND RESULTS Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using 'next generation' pyrosequencing. In 9 cases the mutation identified was (V600E)B-RAF. In 2 cases novel polymorphisms were identified. A somatic (600DLAT)B-RAF insertion mimicked the structural and functional consequences of the (V600E)B-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The (600DLAT)B-RAF and (V600E)B-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%-2% relative mutation abundance. A novel germ line (T599A)B-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, (T599A)B-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation. CONCLUSIONS Our data confirmed presence of the (V600E)B-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that (V600E)B-RAF and (600DLAT)B-RAF mutations are somatic mutants enriched in LCH CD1a(+) cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line (T599A)B-RAF allele.
Collapse
Affiliation(s)
- Takeshi Satoh
- School of Medicine, Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London, United Kingdom
| | - Alexander Smith
- Haematology Department, King's College London, London, United Kingdom
| | - Aurelien Sarde
- School of Medicine, Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London, United Kingdom
| | - Hui-chun Lu
- Randall Division of Molecular Biophysics, King's College London, London, United Kingdom
| | - Sophie Mian
- Haematology Department, King's College London, London, United Kingdom
| | - Celine Trouillet
- School of Medicine, Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London, United Kingdom
| | - Ghulam Mufti
- Haematology Department, King's College London, London, United Kingdom
| | | | - Franca Fraternali
- Randall Division of Molecular Biophysics, King's College London, London, United Kingdom
| | - Jean Donadieu
- Centre de Référence de l'Histiocytose, Hopital d'Enfants Armand Trousseau, Pediatric Hematology Unit, AP-HP, Paris, France
| | - Frederic Geissmann
- School of Medicine, Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Kim JH, Lee ER, Jeon K, Choi HY, Lim H, Kim SJ, Chae HJ, Park SH, Kim S, Seo YR, Kim JH, Cho SG. Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:876-88. [DOI: 10.1016/j.bbamcr.2012.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/22/2012] [Accepted: 01/23/2012] [Indexed: 12/30/2022]
|
34
|
Mielgo A, Seguin L, Huang M, Camargo MF, Anand S, Franovic A, Weis SM, Advani SJ, Murphy EA, Cheresh DA. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med 2011; 17:1641-5. [PMID: 22081024 PMCID: PMC3233644 DOI: 10.1038/nm.2464] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 08/08/2011] [Indexed: 02/08/2023]
Abstract
RAF kinases regulate cell proliferation and survival and can be dysregulated in tumors. The role of RAF in cell proliferation has been linked to its ability to activate mitogen-activated protein kinase kinase 1 (MEK) and mitogen-activated protein kinase 1 (ERK). Here we identify a MEK-independent role for RAF in tumor growth. Specifically, in mitotic cells, CRAF becomes phosphorylated on Ser338 and localizes to the mitotic spindle of proliferating tumor cells in vitro as well as in murine tumor models and in biopsies from individuals with cancer. Treatment of tumors with allosteric inhibitors, but not ATP-competitive RAF inhibitors, prevents CRAF phosphorylation on Ser338 and localization to the mitotic spindle and causes cell-cycle arrest at prometaphase. Furthermore, we identify phospho-Ser338 CRAF as a potential biomarker for tumor progression and a surrogate marker for allosteric RAF blockade. Mechanistically, CRAF, but not BRAF, associates with Aurora kinase A (Aurora-A) and Polo-like kinase 1 (Plk1) at the centrosomes and spindle poles during G2/M. Indeed, allosteric or genetic inhibition of phospho-Ser338 CRAF impairs Plk1 activation and accumulation at the kinetochores, causing prometaphase arrest, whereas a phospho-mimetic Ser338D CRAF mutant potentiates Plk1 activation, mitosis and tumor progression in mice. These findings show a previously undefined role for RAF in tumor progression beyond the RAF-MEK-ERK paradigm, opening new avenues for targeting RAF in cancer.
Collapse
Affiliation(s)
- Ainhoa Mielgo
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boyd EM, Bench AJ, van ‘t Veer MB, Wright P, Bloxham DM, Follows GA, Scott MA. High resolution melting analysis for detection of BRAF exon 15 mutations in hairy cell leukaemia and other lymphoid malignancies. Br J Haematol 2011; 155:609-12. [DOI: 10.1111/j.1365-2141.2011.08868.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
|
37
|
Abstract
Raf are conserved, ubiquitous serine/protein kinases discovered as the cellular elements hijacked by transforming retroviruses. The three mammalian RAF proteins (A, B and CRAF) can be activated by the human oncogene RAS, downstream from which they exert both kinase-dependent and kinase-independent, tumor-promoting functions. The kinase-dependent functions are mediated chiefly by the MEK/ERK pathway, whose activation is associated with proliferation in a broad range of human tumors. Almost 10 years ago, activating BRAF mutations were discovered in a subset of human tumors, and in the past year treatment with small-molecule RAF inhibitors has yielded unprecedented response rates in melanoma patients. Thus, Raf qualifies as an excellent molecular target for anticancer therapy. This review focuses on the role of BRAF and CRAF in different aspects of carcinogenesis, on the success of molecular therapies targeting Raf and the challenges they present.
Collapse
|
38
|
Kamata T, Pritchard C. Mechanisms of aneuploidy induction by RAS and RAF oncogenes. Am J Cancer Res 2011; 1:955-971. [PMID: 22016838 PMCID: PMC3196290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 03/28/2011] [Indexed: 05/31/2023] Open
Abstract
Most cancers progress with the accumulation of genetic mutations with time and this is frequently associated with the acquisition of genomic instability in the form of whole chromosome changes, chromosomal rearrangements, gene amplifications or smaller changes at the nucleotide level. Whole chromosome instability (W-CIN), characterised by aneuploidy, is a major form of genomic instability observed in human cancers and several lines of evidence now support the argument that W-CIN is a promoter of tumourigenesis rather than being a passenger event. The primary mechanism proposed for evolution of CIN is abnormalities in mitosis/cytokinesis. However, mutations in genes directly involved in controlling mitosis/cytokinesis are rare in human cancers and so the mechanisms underpinning the evolution of CIN in cancers are not currently clear. On the other hand, mutations in RAS or BRAF are frequently found in human cancers, many of which demonstrate CIN, suggesting a possible link between deregulated signaling through the RAS/RAF/MEK/ERK pathway and CIN. In this review, we focus on a potential relationship between deregulated RAS/RAF signaling and CIN, and discuss possible mechanisms connecting the two.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Department of Biochemistry, University of Leicester University Road, Leicester, LEI 7RH, UK
| | | |
Collapse
|
39
|
Nandan MO, Yang VW. An Update on the Biology of RAS/RAF Mutations in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2011; 7:113-120. [PMID: 21625338 DOI: 10.1007/s11888-011-0086-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deaths caused by colorectal cancer (CRC) are among the leading causes of cancer-related death in the United States and around the world. Approximately 150,000 Americans are diagnosed with CRC each year and around 50,000 will die from it. Mutations in many key genes have been identified that are important to the pathogenesis of CRC. Among the genes mutated in CRC, RAS and RAF mutations are common events. Both RAS and RAF are critical mediators of the mitogen-activated protein kinase (MAPK) pathway that is involved in regulating cellular homeostasis, including proliferation, survival, and differentiation. In this review, we provide a historical perspective and update on RAS/RAF mutations as related to colorectal cancer. Additionally, we will review recent mouse models of RAS and RAF mutations that have an impact on CRC research.
Collapse
Affiliation(s)
- Mandayam O Nandan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|