1
|
Lin Y, Wang S, Li Z, Zhou Y, Wang R, Wang Y, Chen Y. Short-Term Statin Therapy Induces Hepatic Insulin Resistance Through HNF4α/PAQR9/PPM1α Axis Regulated AKT Phosphorylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403451. [PMID: 38970167 PMCID: PMC11425881 DOI: 10.1002/advs.202403451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Statins, the first-line medication for dyslipidemia, are linked to an increased risk of type 2 diabetes. But exactly how statins cause diabetes is yet unknown. In this study, a developed short-term statin therapy on hyperlipidemia mice show that hepatic insulin resistance is a cause of statin-induced diabetes. Statin medication raises the expression of progesterone and adiponectin receptor 9 (PAQR9) in liver, which inhibits insulin signaling through degradation of protein phosphatase, Mg2+/Mn2+ dependent 1 (PPM1α) to activate ERK pathway. STIP1 homology and U-box containing protein 1 (STUB1) is found to mediate ubiquitination of PPM1α promoted by PAQR9. On the other hand, decreased activity of hepatocyte nuclear factor 4 alpha (HNF4α) seems to be the cause of PAQR9 expression under statin therapy. The interventions on PAQR9, including deletion of PAQR9, caloric restriction and HNF4α activation, are all effective treatments for statin-induced diabetes, while liver specific over-expression of PPM1α is another possible tactic. The results reveal the importance of HNF4α-PAQR9-STUB1-PPM1α axis in controlling the statin-induced hepatic insulin resistance, offering a fresh insight into the molecular mechanisms underlying statin therapy.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Shuying Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zixuan Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuling Zhou
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Ruiying Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
2
|
Glebavičiūtė G, Vijaya AK, Preta G. Effect of Statin Lipophilicity on the Proliferation of Hepatocellular Carcinoma Cells. BIOLOGY 2024; 13:455. [PMID: 38927335 PMCID: PMC11200858 DOI: 10.3390/biology13060455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The HMG-CoA reductase inhibitors, statins, are drugs used globally for lowering the level of cholesterol in the blood. Different clinical studies of statins in cancer patients have indicated a decrease in cancer mortality, particularly in patients using lipophilic statins compared to those on hydrophilic statins. In this paper, we selected two structurally different statins (simvastatin and pravastatin) with different lipophilicities and investigated their effects on the proliferation and apoptosis of hepatocellular carcinoma cells. Lipophilic simvastatin highly influences cancer cell growth and survival in a time- and concentration-dependent manner, while pravastatin, due to its hydrophilic structure and limited cellular uptake, showed minimal cytotoxic effects.
Collapse
Affiliation(s)
| | | | - Giulio Preta
- Institute of Biochemistry, Life Science Center, Vilnius University, LT-10257 Vilnius, Lithuania; (G.G.); (A.K.V.)
| |
Collapse
|
3
|
Wan S, He QY, Yang Y, Liu F, Zhang X, Guo X, Niu H, Wang Y, Liu YX, Ye WL, Li XM, ZhuanSun XM, Sun P, He XS, Hu G, Breuhahn K, Zhao H, Wu GQ, Wu H. SPARC Stabilizes ApoE to Induce Cholesterol-Dependent Invasion and Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res 2024; 84:1872-1888. [PMID: 38471084 DOI: 10.1158/0008-5472.can-23-2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Dysregulation of cholesterol homeostasis is implicated in the development and progression of hepatocellular carcinoma (HCC) that is characterized by intrahepatic and early extrahepatic metastases. A better understanding of the underlying mechanisms regulating cholesterol metabolism in HCC could help identify strategies to circumvent the aggressive phenotype. Here, we found that high expression of intracellular SPARC (secreted protein acidic and rich in cysteine) was significantly associated with elevated cholesterol levels and an enhanced invasive phenotype in HCC. SPARC potentiated cholesterol accumulation in HCC cells during tumor progression by stabilizing the ApoE protein. Mechanistically, SPARC competitively bound to ApoE, impairing its interaction with the E3 ligase tripartite motif containing 21 (TRIM21) and preventing its ubiquitylation and subsequent degradation. ApoE accumulation led to cholesterol enrichment in HCC cells, stimulating PI3K-AKT signaling and inducing epithelial-mesenchymal transition (EMT). Importantly, sorafenib-resistant HCC cells were characterized by increased expression of intracellular SPARC, elevated cholesterol levels, and enhanced invasive capacity. Inhibiting SPARC expression or reducing cholesterol levels enhanced the sensitivity of HCC cells to sorafenib treatment. Together, these findings unveil interplay between SPARC and cholesterol homeostasis. Targeting SPARC-triggered cholesterol-dependent oncogenic signaling is a potential therapeutic strategy for advanced HCC. SIGNIFICANCE Intracellular SPARC boosts cholesterol availability to fuel invasion and drug resistance in hepatocellular carcinoma, providing a rational approach to improve the treatment of advanced liver cancer.
Collapse
Affiliation(s)
- Shan Wan
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Quan-Yao He
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yun Yang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Feng Liu
- YongDing Clinical Institute of Soochow University, Hygeia Suzhou YongDing Hospital, Suzhou, China
| | - Xue Zhang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xin Guo
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Hui Niu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yi Wang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yi-Xuan Liu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Wen-Long Ye
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xue-Mei ZhuanSun
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Pu Sun
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hua Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Guo-Qiang Wu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Hua Wu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, Chellappan DK, Singh SK, Dua K. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol Res Pract 2024; 258:155303. [PMID: 38728793 DOI: 10.1016/j.prp.2024.155303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh 452020, India
| | - Dinesh Kumar
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
5
|
Li K, Zhang J, Lyu H, Yang J, Wei W, Wang Y, Luo H, Zhang Y, Jiang X, Yi H, Wang M, Zhang C, Wu K, Xiao L, Wen W, Xu H, Li G, Wan Y, Yang F, Yang R, Fu X, Qin B, Zhou Z, Zhang H, Lee M. CSN6-SPOP-HMGCS1 Axis Promotes Hepatocellular Carcinoma Progression via YAP1 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306827. [PMID: 38308184 PMCID: PMC11005689 DOI: 10.1002/advs.202306827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Cholesterol metabolism has important roles in maintaining membrane integrity and countering the development of diseases such as obesity and cancers. Cancer cells sustain cholesterol biogenesis for their proliferation and microenvironment reprograming even when sterols are abundant. However, efficacy of targeting cholesterol metabolism for cancer treatment is always compromised. Here it is shown that CSN6 is elevated in HCC and is a positive regulator of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) of mevalonate (MVA) pathway to promote tumorigenesis. Mechanistically, CSN6 antagonizes speckle-type POZ protein (SPOP) ubiquitin ligase to stabilize HMGCS1, which in turn activates YAP1 to promote tumor growth. In orthotopic liver cancer models, targeting CSN6 and HMGCS1 hinders tumor growth in both normal and high fat diet. Significantly, HMGCS1 depletion improves YAP inhibitor efficacy in patient derived xenograft models. The results identify a CSN6-HMGCS1-YAP1 axis mediating tumor outgrowth in HCC and propose a therapeutic strategy of targeting non-alcoholic fatty liver diseases- associated HCC.
Collapse
|
6
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
7
|
Gupta A, Das D, Taneja R. Targeting Dysregulated Lipid Metabolism in Cancer with Pharmacological Inhibitors. Cancers (Basel) 2024; 16:1313. [PMID: 38610991 PMCID: PMC11010992 DOI: 10.3390/cancers16071313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic plasticity is recognised as a hallmark of cancer cells, enabling adaptation to microenvironmental changes throughout tumour progression. A dysregulated lipid metabolism plays a pivotal role in promoting oncogenesis. Oncogenic signalling pathways, such as PI3K/AKT/mTOR, JAK/STAT, Hippo, and NF-kB, intersect with the lipid metabolism to drive tumour progression. Furthermore, altered lipid signalling in the tumour microenvironment contributes to immune dysfunction, exacerbating oncogenesis. This review examines the role of lipid metabolism in tumour initiation, invasion, metastasis, and cancer stem cell maintenance. We highlight cybernetic networks in lipid metabolism to uncover avenues for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
| | | | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Singapore
| |
Collapse
|
8
|
Okita Y, Sobue T, Zha L, Kitamura T, Iwasaki M, Inoue M, Yamaji T, Tsugane S, Sawada N. Long-term use of anti-cholesterol drugs and cancer risks in a Japanese population. Sci Rep 2024; 14:2896. [PMID: 38316869 PMCID: PMC10844312 DOI: 10.1038/s41598-024-53252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Several studies have investigated the association between the use of anti-cholesterol drugs and cancer risks, of which results have been inconsistent. This study included 67,768 participants from the Japan Public Health Center-based Prospective Study. The data on anti-cholesterol drug use was collected using three questionnaires of the survey conducted every five years. We divided the participants into three groups according to the duration of the anti-cholesterol drug use. Multivariable-adjusted Cox proportional hazard regression models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI). During the 893,009 person-years of follow-up from the 10-year follow-up survey, 8,775 participants (5,387 men and 3,388 women) were newly diagnosed with cancers. The duration of anti-cholesterol drug use was significantly associated with a decreased risk of liver cancer (HR:0.26, 95% CI 0.11-0.64 in > 5 y group) and with an increased risk of pancreatic cancer (HR:1.59, 95% CI 1.03-2.47 in > 5 y group). Moreover, a different trend was observed between men and women in the association with the risk of lung cancer. This study suggested that long-term use of anti-cholesterol drugs may have associations with a decreased incidence of liver cancer and with an increased incidence of pancreatic cancers.
Collapse
Affiliation(s)
- Yuki Okita
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ling Zha
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku-Ku, Tokyo, 162-8636, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-Ku, Tokyo, 104-0045, Japan
| |
Collapse
|
9
|
Wang J, Liu C, Hu R, Wu L, Li C. Statin therapy: a potential adjuvant to immunotherapies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1324140. [PMID: 38362156 PMCID: PMC10867224 DOI: 10.3389/fphar.2024.1324140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide and accounts for more than 90% of primary liver cancer. The advent of immune checkpoint inhibitor (ICI)-related therapies combined with angiogenesis inhibition has revolutionized the treatment of HCC in late-stage and unresectable HCC, as ICIs alone were disappointing in treating HCC. In addition to the altered immune microenvironment, abnormal lipid metabolism in the liver has been extensively characterized in various types of HCC. Stains are known for their cholesterol-lowering properties and their long history of treating hypercholesterolemia and reducing cardiovascular disease risk. Apart from ICI and other conventional therapies, statins are frequently used by advanced HCC patients with dyslipidemia, which is often marked by the abnormal accumulation of cholesterol and fatty acids in the liver. Supported by a body of preclinical and clinical studies, statins may unexpectedly enhance the efficacy of ICI therapy in HCC patients through the regulation of inflammatory responses and the immune microenvironment. This review discusses the abnormal changes in lipid metabolism in HCC, summarizes the clinical evidence and benefits of stain use in HCC, and prospects the possible mechanistic actions of statins in transforming the immune microenvironment in HCC when combined with immunotherapies. Consequently, the use of statin therapy may emerge as a novel and valuable adjuvant for immunotherapies in HCC.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Laboratory Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ronghua Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Wu
- School of Clinical Medicine, Nanchang Medical College, Nanchang, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang X, Lou D, Fu R, Wu F, Zheng D, Ma X. Association between Statins Types with Incidence of Liver Cancer: An Updated Meta-analysis. Curr Med Chem 2024; 31:762-775. [PMID: 37393552 PMCID: PMC10661961 DOI: 10.2174/0929867330666230701000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Previous studies have found a potential role for statins in liver cancer prevention. OBJECTIVE This study aimed to explore the effect of different types of statins on the incidence of liver cancer. METHODS Relevant articles were systematically retrieved from PubMed, EBSCO, Web of Science, and Cochrane Library databases from inception until July 2022 to explore the relationship between lipophilic statins or hydrophilic statins exposure and the incidence of liver cancer. The main outcome was the incidence of liver cancer. RESULTS Eleven articles were included in this meta-analysis. The pooled results showed a reduced incidence of liver cancer in patients exposed to lipophilic statins (OR=0.54, p < 0.001) and hydrophilic statins (OR=0.56, p < 0.001) compared with the non-exposed cohort. Subgroup analysis showed that both exposures to lipophilic (Eastern countries: OR=0.51, p < 0.001; Western countries: OR=0.59, p < 0.001) and hydrophilic (Eastern countries: OR=0.51, p < 0.001; Western countries: OR=0.66, p=0.019) statins reduced the incidence of liver cancer in Eastern and Western countries, and the reduction was most significant in Eastern countries. Moreover, atorvastatin (OR=0.55, p < 0.001), simvastatin (OR=0.59, p < 0.001), lovastatin (OR=0.51, p < 0.001), pitavastatin (OR=0.36, p=0.008) and rosuvastatin (OR=0.60, p=0.027) could effectively reduce the incidence of liver cancer, unlike fluvastatin, cerivastatin and pravastatin. CONCLUSION Both lipophilic and hydrophilic statins contribute to the prevention of liver cancer. Moreover, the efficacy was influenced by the region and the specific type of statins used.
Collapse
Affiliation(s)
- Xingfen Zhang
- Department of Liver Disease, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Dandi Lou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feng Wu
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Dingcheng Zheng
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xueqiang Ma
- Department of Hepatobiliary Surgery, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
11
|
Cao D, Liu H. Dysregulated cholesterol regulatory genes in hepatocellular carcinoma. Eur J Med Res 2023; 28:580. [PMID: 38071335 PMCID: PMC10710719 DOI: 10.1186/s40001-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Cholesterol is an indispensable component in mammalian cells, and cholesterol metabolism performs important roles in various biological activities. In addition to the Warburg effect, dysregulated cholesterol metabolism is one of the metabolic hallmarks of several cancers. It has reported that reprogrammed cholesterol metabolism facilitates carcinogenesis, metastasis, and drug-resistant in various tumors, including hepatocellular carcinoma (HCC). Some literatures have reported that increased cholesterol level leads to lipotoxicity, inflammation, and fibrosis, ultimately promoting the development and progression of HCC. Contrarily, other clinical investigations have demonstrated a link between higher cholesterol level and lower risk of HCC. These incongruent findings suggest that the connection between cholesterol and HCC is much complicated. In this report, we summarize the roles of key cholesterol regulatory genes including cholesterol biosynthesis, uptake, efflux, trafficking and esterification in HCC. In addition, we discuss promising related therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dan Cao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 the South of Maoyuan Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Shaffer LR, Mahmud N. Statins in Cirrhosis: Hope or Hype? J Clin Exp Hepatol 2023; 13:1032-1046. [PMID: 37975036 PMCID: PMC10643276 DOI: 10.1016/j.jceh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 11/19/2023] Open
Abstract
In recent years, studies have demonstrated the benefits of statins in a range of chronic diseases separate from cardiovascular outcomes. Early studies in the context of chronic liver disease have suggested favorable effects of statins leading to slowed fibrosis progression, reduced portal pressures, decreased rates of hepatic decompensation, and improved survival. This has increased interest in the potential role that statins may have in the management of chronic liver disease and cirrhosis, though many questions remain unanswered, including concerns regarding the safety of higher dose statins in patients with advanced decompensated cirrhosis. In this review, we provide an update on the current literature addressing the use of statins in patients with cirrhosis and highlight areas in which additional studies are needed.
Collapse
Affiliation(s)
- Lauren R. Shaffer
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nadim Mahmud
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Gastroenterology Section, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Leonard David Institute of Health Economics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Sinn DH, Kang D, Park Y, Kim H, Hong YS, Cho J, Gwak GY. Statin use and the risk of hepatocellular carcinoma among patients with chronic hepatitis B: an emulated target trial using longitudinal nationwide population cohort data. BMC Gastroenterol 2023; 23:366. [PMID: 37880589 PMCID: PMC10601275 DOI: 10.1186/s12876-023-02996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND No randomized controlled trials have been completed to see whether statin can decrease hepatocellular carcinoma (HCC) risk in chronic hepatitis B (CHB) patients. We used large-scale, population-based, observational data to emulate a target trial with two groups, statin user and statin non-user. METHODS Among 1,379,708 nonunique individuals from the Korean National Health Insurance Service data, 2,915 CHB patients with serum cholesterol level of 200 mg/dL or higher who started statin therapy and 8,525 propensity-score matched CHB patients with serum cholesterol level of 200 mg/dL or higher who did not start statin therapy were analyzed for the development of HCC. In addition, liver cancer or liver-related mortality and all-cause mortality were assessed. RESULTS During follow-up, 207 participants developed HCC. Incidence rate of HCC was 0.2 per 1,000 person-years in the statin user group and 0.3 per 1,000 person-years in the statin non-user group. Fully adjusted hazard ratio (HR) for incident HCC comparing statin user group to statin nonuser group was 0.56 (95% confidence interval [CI]: 0.39 to 0.80). The association between statin use and decreased HCC risk was consistent in all subgroups analyzed. Fully adjusted HR comparing statin user to statin nonuser was 0.59 (95% CI: 0.35 to 0.99) for liver cancer or liver-related mortality and 0.93 (95% CI: 0.78 to 1.11) for all-cause mortality. CONCLUSIONS Statin might have a benefit for preventing HCC in CHB patients with elevated cholesterol levels. Statin should be actively considered for CHB patients with dyslipidemia.
Collapse
Affiliation(s)
- Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Danbee Kang
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Yewan Park
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hyunsoo Kim
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Yun Soo Hong
- Departments of Epidemiology and Medicine, Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Juhee Cho
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea.
- Departments of Epidemiology and Medicine, Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Geum-Youn Gwak
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
14
|
Piekuś-Słomka N, Mocan LP, Shkreli R, Grapă C, Denkiewicz K, Wesolowska O, Kornek M, Spârchez Z, Słomka A, Crăciun R, Mocan T. Don't Judge a Book by Its Cover: The Role of Statins in Liver Cancer. Cancers (Basel) 2023; 15:5100. [PMID: 37894467 PMCID: PMC10605163 DOI: 10.3390/cancers15205100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Statins, which are inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, are an effective pharmacological tool for lowering blood cholesterol levels. This property makes statins one of the most popular drugs used primarily to prevent cardiovascular diseases, where hyperlipidemia is a significant risk factor that increases mortality. Nevertheless, studies conducted mainly in the last decade have shown that statins might prevent and treat liver cancer, one of the leading causes of cancer-related mortality worldwide. This narrative review summarizes the scientific achievements to date regarding the role of statins in liver tumors. Molecular biology tools have revealed that cell growth and proliferation can be inhibited by statins, which further inhibit angiogenesis. Clinical studies, supported by meta-analysis, confirm that statins are highly effective in preventing and treating hepatocellular carcinoma and cholangiocarcinoma. However, this effect may depend on the statin's type and dose, and more clinical trials are required to evaluate clinical effects. Moreover, their potential hepatotoxicity is a significant caveat for using statins in clinical practice. Nevertheless, this group of drugs, initially developed to prevent cardiovascular diseases, is now a key candidate in hepato-oncology patient management. The description of new drug-statin-like structures, e.g., with low toxicity to liver cells, may bring another clinically significant improvement to current cancer therapies.
Collapse
Affiliation(s)
- Natalia Piekuś-Słomka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Lavinia Patricia Mocan
- Department of Histology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Rezarta Shkreli
- Department of Pharmacy, Faculty of Medical Sciences, Aldent University, 1001-1028 Tirana, Albania;
| | - Cristiana Grapă
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Kinga Denkiewicz
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Oliwia Wesolowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Zeno Spârchez
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Rareș Crăciun
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Tudor Mocan
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- UBBMed Department, Babeș-Bolyai University, 400349 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Kim DG, Yim SH, Min EK, Choi MC, Kim MS, Joo DJ, Lee JG. Effect of statins on the recurrence of hepatocellular carcinoma after liver transplantation: An illusion revealed by exposure density sampling. Liver Int 2023; 43:2017-2025. [PMID: 37365992 DOI: 10.1111/liv.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Statins have been reported to reduce overall death and hepatocellular carcinoma (HCC) recurrence in liver transplantation (LT) recipients. However, previous retrospective studies have significant flaws in immortal time bias. METHODS Using data from 658 patients who received LT for HCC, we matched 140 statin users with statin nonusers in a 1:2 ratio at the time of the first statin administration after LT using the exposure density sampling (EDS). The propensity score, calculated using baseline variables (including explant pathology), was used for EDS to equilibrate both groups. HCC recurrence and overall death were compared after adjusting for information at the time of sampling. RESULTS Among statin users, the median time to statin start was 219 (IQR 98-570) days, and intensity of statins was mainly moderate (87.1%). Statin users and nonusers sampled using EDS showed well-balanced baseline characteristics, including detailed tumour pathology, and similar HCC recurrence with cumulative incidences of 11.3% and 11.8% at 5 years, respectively (p = .861). In multivariate Cox models (HR 1.04, p = .918) and subgroup analyses, statins did not affect HCC recurrence. Conversely, statin users showed a significantly lower risk of overall death than nonusers (HR 0.28, p < .001). There was no difference in the type and intensity of statin usage between statin users who experienced HCC recurrence and those who did not. CONCLUSION Upon controlling immortal time bias by EDS, statins did not affect HCC recurrence but reduced mortality after LT. Statin usage is encouraged for survival benefits but not for preventing HCC recurrence in LT recipients.
Collapse
Affiliation(s)
- Deok-Gie Kim
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hyuk Yim
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Ki Min
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Mun Chae Choi
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Myoung Soo Kim
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Jin Joo
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Geun Lee
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Vell MS, Loomba R, Krishnan A, Wangensteen KJ, Trebicka J, Creasy KT, Trautwein C, Scorletti E, Seeling KS, Hehl L, Rendel MD, Zandvakili I, Li T, Chen J, Vujkovic M, Alqahtani S, Rader DJ, Schneider KM, Schneider CV. Association of Statin Use With Risk of Liver Disease, Hepatocellular Carcinoma, and Liver-Related Mortality. JAMA Netw Open 2023; 6:e2320222. [PMID: 37358849 PMCID: PMC10293910 DOI: 10.1001/jamanetworkopen.2023.20222] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 06/27/2023] Open
Abstract
Importance Given the burden of chronic liver disease on the health care system, more information on the hepatoprotective association of statins in the general population is needed. Objective To examine whether regular statin use is associated with a reduction in liver disease, particularly hepatocellular carcinoma (HCC) and liver-related deaths, in the general population. Design, Setting, and Participants This cohort study used data from the UK Biobank (UKB) (individuals aged 37-73 years) collected from baseline (2006-2010) to the end of follow-up in May 2021, from the TriNetX cohort (individuals aged 18-90 years) enrolled from baseline (2011-2020) until end of follow-up in September 2022, and from the Penn Medicine Biobank (PMBB) (individuals aged 18-102 years) with ongoing enrollment starting in 2013 to the end of follow-up in December 2020. Individuals were matched using propensity score matching according to the following criteria: age, sex, body mass index, ethnicity, diabetes with or without insulin or biguanide use, hypertension, ischemic heart disease, dyslipidemia, aspirin use, and number of medications taken (UKB only). Data analysis was performed from April 2021 to April 2023. Exposure Regular statin use. Main Outcomes and Measures Primary outcomes were liver disease and HCC development as well as liver-associated death. Results A total of 1 785 491 individuals were evaluated after matching (aged 55 to 61 years on average, up to 56% men, and up to 49% women). A total of 581 cases of liver-associated death, 472 cases of incident HCC, and 98 497 new liver diseases were registered during the follow-up period. Individuals were aged 55-61 years on average, with a slightly higher proportion of men (up to 56%). In UKB individuals (n = 205 057) without previously diagnosed liver disease, statin users (n = 56 109) had a 15% lower hazard ratio (HR) for the association of developing a new liver disease (HR, 0.85; 95% CI, 0.78-0.92; P < .001). In addition, statin users demonstrated a 28% lower HR for the association with liver-related death (HR, 0.72; 95% CI, 0.59-0.88; P = .001) and a 42% lower HR for the development of HCC (HR, 0.58; 95% CI, 0.35-0.96; P = .04). In TriNetX individuals (n = 1 568 794), the HR for the association of HCC was reduced even further for statin users (HR, 0.26; 95% CI, 0.22-0.31; P = .003). The hepatoprotective association of statins was time and dose dependent, with a significant association in PMBB individuals (n = 11 640) for incident liver diseases after 1 year of statin use (HR, 0.76; 95% CI, 0.59-0.98; P = .03). Taking statins was particularly beneficial in men, individuals with diabetes, and individuals with a high Fibrosis-4 index at baseline. Carriers of the heterozygous minor allele of PNPLA3 rs738409 benefited from statin use and had a 69% lower HR for the association with HCC (UKB HR, 0.31; 95% CI, 0.11-0.85; P = .02). Conclusions and Relevance This cohort study indicates substantial preventive associations of statins against liver disease, with an association with duration and dose of intake.
Collapse
Affiliation(s)
- Mara Sophie Vell
- Gastroenterology, Metabolic Diseases, and Intensive Care, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Rohit Loomba
- Division of Gastroenterology, University of California, San Diego, La Jolla
| | - Arunkumar Krishnan
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown
| | - Kirk J. Wangensteen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jonel Trebicka
- Medical Clinic B, Gastroenterology, Hepatology, Endocrinology, Clinical Infectiology, University Hospital Münster, Münster, Germany
| | - Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia
| | - Christian Trautwein
- Gastroenterology, Metabolic Diseases, and Intensive Care, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Eleonora Scorletti
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Katharina Sophie Seeling
- Gastroenterology, Metabolic Diseases, and Intensive Care, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Leonida Hehl
- Gastroenterology, Metabolic Diseases, and Intensive Care, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Miriam Daphne Rendel
- Gastroenterology, Metabolic Diseases, and Intensive Care, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Inuk Zandvakili
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Tang Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jinbo Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Marijana Vujkovic
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Saleh Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Liver Transplant Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Daniel James Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kai Markus Schneider
- Gastroenterology, Metabolic Diseases, and Intensive Care, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin Victoria Schneider
- Gastroenterology, Metabolic Diseases, and Intensive Care, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
17
|
Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00754-7. [PMID: 36932227 DOI: 10.1038/s41575-023-00754-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 03/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), including its more severe manifestation, nonalcoholic steatohepatitis (NASH), has a global prevalence of 20-25% and is a major public health problem. Its incidence is increasing in parallel to the rise in obesity, diabetes and metabolic syndrome. Progression from NASH to NASH-related hepatocellular carcinoma (HCC) (~2% of cases per year) is influenced by many factors, including the tissue and immune microenvironment, germline mutations in PNPLA3, and the microbiome. NASH-HCC has unique molecular and immune traits compared with other aetiologies of HCC and is equally prevalent in men and women. Comorbidities associated with NASH, such as obesity and diabetes mellitus, can prevent the implementation of potentially curative therapies in certain patients; nonetheless, outcomes are similar in patients who receive treatment. NASH-HCC at the early to intermediate stages is managed with surgery and locoregional therapies, whereas advanced HCC is treated with systemic therapies, including anti-angiogenic therapies and immune-checkpoint inhibitors. In this Review, we present the latest knowledge of the pathogenic mechanisms and clinical management of NASH-HCC. We discuss data highlighting the controversy over varying responses to immune-checkpoint inhibitors according to underlying aetiology and suggest that the future of NASH-HCC management lies in improved surveillance, targeted combination therapies to overcome immune evasion, and identifying biomarkers to recognize treatment responders.
Collapse
|
18
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
19
|
Xu K, Ding J, Zhou L, Li D, Luo J, Wang W, Shang M, Lin B, Zhou L, Zheng S. SMYD2 Promotes Hepatocellular Carcinoma Progression by Reprogramming Glutamine Metabolism via c-Myc/GLS1 Axis. Cells 2022; 12:cells12010025. [PMID: 36611819 PMCID: PMC9818721 DOI: 10.3390/cells12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming, such as alterations in glutamine metabolism or glycolysis, is the hallmark of hepatocellular carcinoma (HCC). However, the underlying mechanisms are still incompletely elucidated. Previous studies have identified that methyltransferase SET and MYND domain-containing protein 2(SMYD2) is responsible for the pathogenesis of numerous types of cancer. Here, we innovatively uncover how SMYD2 regulates glutamine metabolism in HCC cells and promotes HCC progression. We identified that SMYD2 expression is upregulated in HCC tissues, which correlates with unfavorable clinical outcomes. Our in vitro and in vivo results showed that the depletion of SMYD2 inhibits HCC cell growth. Mechanistically, c-Myc methylation by SMYD2 increases its protein stability through the ubiquitin-proteasome system. We showed SMYD2 depletion destabilized c-Myc protein by increasing the conjugated K48-linked polyubiquitin chain. SMYD2 increased c-Myc expression and further upregulated glutaminase1 (GLS1), a crucial enzyme that catalyzes the conversion of glutamine to glutamic acid, in HCC cells. GLS1 plays an important role in SMYD2-mediated HCC progression and glutamine metabolism regulation. The knockdown of SMYD2 inhibited glutamine metabolism in HCC cells and overcame their chemoresistance to sorafenib. Collectively, our findings demonstrated a novel mechanism of how SMYD2 promotes HCC progression by regulating glutamine metabolism through the c-Myc/GLS1signaling, implicating the therapeutic potential of targeting SMYD2 in HCC patients.
Collapse
Affiliation(s)
- Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Jun Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Lingfeng Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Dazhi Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Jia Luo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Mingge Shang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Bingyi Lin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
- Correspondence: (L.Z.); (S.Z.); Tel.: +86-0571-87236466 (L.Z.); +86-0571-87236570 (S.Z.)
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, NO.79 Qing Chun Road, Hangzhou 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
- Correspondence: (L.Z.); (S.Z.); Tel.: +86-0571-87236466 (L.Z.); +86-0571-87236570 (S.Z.)
| |
Collapse
|
20
|
Chen Y, Li M, Yang Y, Lu Y, Li X. Antidiabetic drug metformin suppresses tumorigenesis through inhibition of mevalonate pathway enzyme HMGCS1. J Biol Chem 2022; 298:102678. [PMID: 36356901 PMCID: PMC9723917 DOI: 10.1016/j.jbc.2022.102678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Metformin, an antidiabetic drug, shows some potent antitumor effects. However, the molecular mechanism of metformin in tumor suppression has not been clarified. Here, we provided evidence using in vitro and in vivo data that metformin inhibited mevalonate pathway by downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), a key enzyme in this pathway. Our results further demonstrated that metformin downregulated HMGCS1 expression through inhibition of transcription factor nuclear factor E2-related factor 2. In addition, we determined that HMGCS1 was highly expressed in human liver and lung cancer tissues and associated with lower survival rates. In summary, our study indicated that metformin suppresses tumorigenesis through inhibition of the nuclear factor E2-related factor 2-HMGCS1 axis, which might be a potential target in cancer prevention and treatment.
Collapse
Affiliation(s)
- Yiyan Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yanying Yang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,For correspondence: Xiaoying Li; Yan Lu
| | - Xiaoying Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China,For correspondence: Xiaoying Li; Yan Lu
| |
Collapse
|
21
|
Association of statin treatment with hepatocellular carcinoma risk in end-stage kidney disease patients with chronic viral hepatitis. Sci Rep 2022; 12:10807. [PMID: 35752695 PMCID: PMC9233705 DOI: 10.1038/s41598-022-14713-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Statin use in end-stage kidney disease (ESKD) patients are not encouraged due to low cardioprotective effects. Although the risk of hepatocellular carcinoma (HCC), a frequently occurring cancer in East Asia, is elevated in ESKD patients, the relationship between statins and HCC is not known despite its possible chemopreventive effect. The relationship between statin use and HCC development in ESKD patients with chronic hepatitis was evaluated. In total, 6165 dialysis patients with chronic hepatitis B or C were selected from a national health insurance database. Patients prescribed with ≥ 28 cumulative defined daily doses of statins during the first 3 months after dialysis commencement were defined as statin users, while those not prescribed with statins were considered as non-users. Primary outcome was the first diagnosis of HCC. Sub-distribution hazard model with inverse probability of treatment weighting was used to estimate HCC risk considering death as competing risk. During a median follow-up of 2.8 years, HCC occurred in 114 (3.2%) statin non-users and 33 (1.2%) statin users. The HCC risk was 41% lower in statin users than in non-users (sub-distribution hazard ratio, 0.59; 95% confidence interval [CI], 0.42-0.81). The weighted incidence rate of HCC was lower in statin users than in statin non-users (incidence rate difference, - 3.7; 95% CI - 5.7 to - 1.7; P < 0.001). Incidence rate ratio (IRR) was also consistent with other analyses (IRR, 0.56; 95% CI, 0.41 to 0.78; P < 0.001). Statin use was associated with a lower risk of incident HCC in dialysis patients with chronic hepatitis B or C infection.
Collapse
|
22
|
Marcianò G, Palleria C, Casarella A, Rania V, Basile E, Catarisano L, Vocca C, Bianco L, Pelaia C, Cione E, D’Agostino B, Citraro R, De Sarro G, Gallelli L. Effect of Statins on Lung Cancer Molecular Pathways: A Possible Therapeutic Role. Pharmaceuticals (Basel) 2022; 15:589. [PMID: 35631415 PMCID: PMC9144184 DOI: 10.3390/ph15050589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a common neoplasm, usually treated through chemotherapy, radiotherapy and/or surgery. Both clinical and experimental studies on cancer cells suggest that some drugs (e.g., statins) have the potential to improve the prognosis of cancer. In fact, statins blocking the enzyme "hydroxy-3-methylglutaryl-coenzyme A reductase" exert pleiotropic effects on different genes involved in the pathogenesis of lung cancer. In this narrative review, we presented the experimental and clinical studies that evaluated the effects of statins on lung cancer and described data on the effectiveness and safety of these compounds. We also evaluated gender differences in the treatment of lung cancer to understand the possibility of personalized therapy based on the modulation of the mevalonate pathway. In conclusion, according to the literature data, statins exert multiple effects on lung cancer cells, even if the evidence for their use in clinical practice is lacking.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Alessandro Casarella
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Emanuele Basile
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luca Catarisano
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Cristina Vocca
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luigi Bianco
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Corrado Pelaia
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Sim Y, Lim C, Phyu N, Tan KTB, Chew LST, Wong CY, Madhukumar P, Yong WS, Lim SZ, Hamzah JLB, Tan SY, Chay WY, Wong FY, Tan PH, Tan VKM. The Impact of Statin Use and Breast Cancer Recurrence - A Retrospective Study in Singapore. Front Oncol 2022; 12:835320. [PMID: 35433431 PMCID: PMC9008885 DOI: 10.3389/fonc.2022.835320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Statins, HMG-CoA reductase inhibitors, are commonly used cholesterol-lowering medications which are also increasingly recognized to have anti-cancer properties for various cancers, including breast cancer. Most clinical evidence supports a protective effect of statin on reducing breast cancer recurrence, particularly in hormone-receptor positive breast cancers.This study seeks to study the impact of statin use on breast cancer recurrence in an Asian population. Methods This is a retrospective study of patients diagnosed with breast cancer at the National Cancer Centre and Singapore General Hospital from 2005-2015. Statin use was defined as use after surgery. Associations between statin use, breast cancer recurrence and overall survival were estimated using Cox proportional hazards regression with adjustment for age, TNM stage, grade, ER/HER2 status, and co-morbidities. Associations between statin-use and disease-specific survival were estimated using competing risks regression. Results A total of 7858 females with breast cancer were studied, 1353(17.2%) were statin users, 6505(82.8%) were non-statin users, with a median follow-up of 8.67 years. Distribution of cancer stage, histology, molecular subtypes and grades were similar in both groups. Estrogen receptor(ER) positive (HR 0.57,95%CI 0.43-0.76,p<0.001) and HER2 negative (HR 0.74,95%CI 0.57-0.96,p=0.026) invasive cancers had a lower risk of recurrence in statin users. Statin users trended towards a long term recurrence-risk reduction (all subtypes,HR 0.48,p=0.002; ER-, HR 0.34,p=0.036; HER2+,HR 0.10,p=0.002). The risk-reduction benefit is not appreciated in statin users with DCIS, possibly due to small recurrence event numbers. Disease-specific survival benefit was seen in statin users with ER+ cancers (adjusted SHR 0.71,95%CI 0.53-0.96,p=0.027), especially ER+ invasive cancers (adjusted SHR 0.72, 95%CI 0.53-0.97,p=0.028), but with no statistically significant benefit in overall survival for statin users (all subtypes). Conclusion This is the first known retrospective study on the effect of statin use and breast cancer recurrence in an Asian population. Similar to previous international studies, statin use is associated with a risk reduction in breast cancer recurrence. This is especially beneficial in patients who have ER+ and HER2- invasive breast cancer. Statin use is also associated with a reduced risk of breast cancer recurrence in all subtypes of breast cancer in the long term (>6 years post diagnosis).
Collapse
Affiliation(s)
- Yirong Sim
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| | - Cindy Lim
- Clinical Trials and Epidemiological Sciences (CTE), National Cancer Centre Singapore, Singapore, Singapore
| | - Nitar Phyu
- Department of Cancer Informatics, National Cancer Centre Singapore, Singapore, Singapore
| | - Kiat Tee Benita Tan
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore.,Department of General Surgery, Sengkang General Hospital, Singapore, Singapore
| | - Lita Sui Tjien Chew
- Department of Pharmacy, National Cancer Center Singapore, Singapore, Singapore
| | - Chow Yin Wong
- Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| | - Preetha Madhukumar
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| | - Wei Sean Yong
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| | - Sue Zann Lim
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| | - Julie Liana Bte Hamzah
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| | - Si Ying Tan
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| | - Wen Yee Chay
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Fuh Yong Wong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Veronique Kiak-Mien Tan
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-National University of Singapore (NUS) Breast Centre, Singapore, Singapore
| |
Collapse
|
24
|
A Meta-Analysis of Statin Use and Risk of Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2022; 2022:5389044. [PMID: 35356132 PMCID: PMC8958112 DOI: 10.1155/2022/5389044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The use of statins is a potential protective factor against the development of hepatocellular carcinoma. Therefore, we conducted a meta-analysis to evaluate the contribution of statins to the risk of hepatocellular carcinoma. METHODS We searched for PubMed and EMBASE through January 2021. RESULTS Thirty-two studies (eighteen cohort, eleven case-control, and three randomized controlled trials) reporting 56,838 cases of hepatocellular carcinoma in 4,963,518 persons were included. Statin users were less likely to develop hepatocellular carcinoma than nonusers (adjusted odds ratio, 0.58; 95% CI: 0.51-0.67). Stratified analysis showed that statins reduced the risk of hepatocellular carcinoma in Asian and Western populations (odds ratio, 0.54 vs. 0.60). Besides, statins have protective effects against hepatocellular carcinoma after hepatitis B virus (odds ratio, 0.44; 95% CI: 0.22-0.85) and hepatitis C virus infections (odds ratio, 0.53; 95% CI: 0.49-0.57). Statins have protective effects on people with chronic liver disease (odds ratio, 0.52; 95% CI: 0.40-0.68) and on the general population (odds ratio, 0.60; 95% CI: 0.50-0.72). Lipophilic statins can prevent hepatocellular carcinoma (odds ratio, 0.51, 95% CI: 0.46-0.57), while hydrophilic statins cannot (odds ratio, 0.77, 95% CI: 0.58-1.02). The single-drug analyses showed that simvastatin (odds ratio, 0.53, 95% CI: 0.48-0.59), atorvastatin (odds ratio, 0.54, 95% CI: 0.45-0.64), rosuvastatin (odds ratio, 0.55, 95% CI: 0.37-0.83), lovastatin (odds ratio, 0.30, 95% CI: 0.15-0.62), and pitavastatin (odds ratio, 0.36, 95% CI: 0.17-0.75) had significant benefits. Further studies have shown that those in the high-dose group experienced better effects in preventing hepatocellular carcinoma (adjusted hazard ratio, 0.38 vs. 0.55). Further research found that the combined use of aspirin did not increase the chemoprevention effect of liver cancer (odds ratio, 0.57; 95% CI: 0.40-0.81). In addition, the preventive effect of statins improved with the extension of follow-up time (odds ratio, 0.54 vs. 0.65). CONCLUSION Our meta-analysis shows that the use of statins is associated with a lower risk of liver cancer.
Collapse
|
25
|
Goh MJ, Sinn DH. Statin and aspirin for chemoprevention of hepatocellular carcinoma: Time to use or wait further? Clin Mol Hepatol 2022; 28:380-395. [PMID: 35021597 PMCID: PMC9293618 DOI: 10.3350/cmh.2021.0366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022] Open
Abstract
Preclinical studies highlighted potential therapeutic applications of aspirin and statins as anticancer agents based on their pleiotropic effects. Epidemiologic studies suggested the role of aspirin and statins in the chemoprevention of hepatocellular carcinoma (HCC). However, observational data is prone to bias, and no prospective randomized trials are currently available to assess the risks and benefits of statin or aspirin therapy for chemoprevention of HCC. It is therefore important for clinicians and researchers to be aware of the quality of current evidence regarding this issue. In this review, we summarize currently available evidence to assist clinicians with their decision to use statin or aspirin and provide information for further clinical investigations.
Collapse
Affiliation(s)
- Myung Ji Goh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Wang H, Zhang S, Zhang Y, Jia J, Wang J, Liu X, Zhang J, Song X, Ribback S, Cigliano A, Evert M, Liang B, Wu H, Calvisi DF, Zeng Y, Chen X. TAZ is indispensable for c-MYC-induced hepatocarcinogenesis. J Hepatol 2022; 76:123-134. [PMID: 34464659 PMCID: PMC9569156 DOI: 10.1016/j.jhep.2021.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Mounting evidence implicates the Hippo downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in hepatocellular carcinoma (HCC). We investigated the functional contribution of YAP and/or TAZ to c-MYC-induced liver tumor development. METHODS The requirement for YAP and/or TAZ in c-Myc-driven hepatocarcinogenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout (KO) mice. An hepatocyte-specific inducible TTR-CreERT2 KO system was applied to evaluate the role of YAP and TAZ during tumor progression. Expression patterns of YAP, TAZ, c-MYC, and BCL2L12 were analyzed in human HCC samples. RESULTS We found that the Hippo cascade is inactivated in c-Myc-induced mouse HCC. Intriguingly, TAZ mRNA levels and activation status correlated with c-MYC activity in human and mouse HCC, but YAP mRNA levels did not. We demonstrated that TAZ is a direct transcriptional target of c-MYC. In c-Myc induced murine HCCs, ablation of Taz, but not Yap, completely prevented tumor development. Mechanistically, TAZ was required to avoid c-Myc-induced hepatocyte apoptosis during tumor initiation. The anti-apoptotic BCL2L12 gene was identified as a novel target regulated specifically by YAP/TAZ, whose silencing strongly suppressed c-Myc-driven murine hepatocarcinogenesis. In c-Myc murine HCC lesions, conditional knockout of Taz, but not Yap, led to tumor regression, supporting the requirement of TAZ for c-Myc-driven HCC progression. CONCLUSIONS TAZ is a pivotal player at the crossroad between the c-MYC and Hippo pathways in HCC. Targeting TAZ might be beneficial for the treatment of patients with HCC and c-MYC activation. LAY SUMMARY The identification of novel treatment targets and approaches for patients with hepatocellular carcinoma is crucial to improve survival outcomes. We identified TAZ as a transcriptional target of c-MYC which plays a critical role in c-MYC-dependent hepatocarcinogenesis. TAZ could potentially be targeted for the treatment of patients with c-MYC-driven hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Shanshan Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Jiaoyuan Jia
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA,Department of Oncology and Hematology, the Second Hospital, Jilin University, Changchun, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xianqiong Liu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA,School of Pharmacy, Hubei University of Chinese Medicine Wuhan, Hubei, China
| | - Jie Zhang
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Bingyong Liang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA,Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wu
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany,Corresponding authors. Address: Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany. (D.F. Calvisi), or Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China. Tel.: +86 18980602421, Fax: +86 028 8542 2114. (Y. Zeng), or Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA. (X. Chen). (D.F. Calvisi), (Y. Zeng), (X. Chen)
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA.
| |
Collapse
|
27
|
Bi Q, Luo R, Li Y, Zhao J, Fu X, Chen H, Lv Y, Liu Z, Liang Q, Tang Q. Low Inorganic Phosphate Stress Inhibits Liver Cancer Progression: from In Vivo to In Vitro. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qiu‐Chen Bi
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health Nanchang University Nanchang 330031 China
- Institute for Advanced Study Nanchang University Nanchang 330031 China
| | - Rong‐Guang Luo
- Department of Medical Imaging and Interventional Radiology The First Affiliated Hospital of Nanchang University Nanchang 330006 China
| | - Yan‐Shu Li
- Jiangxi Center of Medical Device Testing Nanchang 330029 China
| | - Jun Zhao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health Nanchang University Nanchang 330031 China
| | - Xin Fu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health Nanchang University Nanchang 330031 China
| | - Hong Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health Nanchang University Nanchang 330031 China
| | - Yang‐Feng Lv
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health Nanchang University Nanchang 330031 China
- Institute for Advanced Study Nanchang University Nanchang 330031 China
| | - Zhi‐Xing Liu
- Department of Ultrasonic Radiology The First Affiliated Hospital of Nanchang University Nanchang 330006 China
| | - Qing‐Rong Liang
- Institute for Advanced Study Nanchang University Nanchang 330031 China
| | - Qun Tang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health Nanchang University Nanchang 330031 China
- Institute for Advanced Study Nanchang University Nanchang 330031 China
| |
Collapse
|
28
|
Statins Enhance the Molecular Response in Chronic Myeloid Leukemia when Combined with Tyrosine Kinase Inhibitors. Cancers (Basel) 2021; 13:cancers13215543. [PMID: 34771705 PMCID: PMC8582667 DOI: 10.3390/cancers13215543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Approximately 50–60% of patients with chronic myeloid leukemia (CML) achieve a stable deep molecular response (DMR) after tyrosine kinase inhibitor (TKI) therapy. The achievement of DMR is a prerequisite for treatment-free remission. Repurposing statins is a straightforward strategy for enhancing molecular response in CML treatment. Second-generation TKIs have been reported to exhibit cardiovascular toxicity. Thus, statins have been widely prescribed for patients with CML undergoing second-generation TKI therapy for modifying cardiovascular risk factors, such as hyperlipidemia. Furthermore, the results of this study support the therapeutic benefit of the concomitant use of statins in TKI therapy for patients with CML. Additionally, the potential additive effects of statins and TKIs enhance the DMR rate in patients with CML, rendering these effects clinically relevant in these patients. In particular, this combination is a strong candidate for the achievement of DMR in patients with CML who have not achieved DMR with TKI therapy alone. Abstract Previous studies have suggested that statins can be repurposed for cancer treatment. However, the therapeutic efficacy of statins in chronic myeloid leukemia (CML) has not yet been demonstrated. In this study, we retrospectively evaluated the outcomes of 408 CML patients who underwent imatinib therapy. The deep molecular response rates in patients treated with the statin/TKI combination were significantly higher than those in patients treated with TKI alone (p = 0.0016). The statin/TKI combination exerted potent cytotoxic effects against wild-type and ABL1 mutant CML, BaF3, and K562/T315I mutant cells. Furthermore, the statin/TKI combination additively inhibited the colony-forming capacity of murine CML-KLS+ cells in vitro. In addition, we examined the additive growth-inhibitory effects of the statin/tyrosine kinase inhibitor (TKI) combination against CML patient-derived CD34+ cells. The growth-inhibitory effects of the statin/imatinib combination against CD34+/CML primary cells were higher than those against CD34+/Norm cells (p = 0.005), suggesting that the combination of rosuvastatin and imatinib exerted growth-inhibitory effects against CML CD34+ cells, but not against normal CD34+ cells. Furthermore, results from RNA sequencing of control and statin-treated cells suggested that statins inhibited c-Myc-mediated and hematopoietic cell differentiation pathways. Thus, statins can be potentially repurposed to improve treatment outcomes in CML patients when combined with TKI therapy.
Collapse
|
29
|
Yu H, He J, Liu W, Feng S, Gao L, Xu Y, Zhang Y, Hou X, Zhou Y, Yang L, Wang X. The Transcriptional Coactivator, ALL1-Fused Gene From Chromosome 9, Simultaneously Sustains Hypoxia Tolerance and Metabolic Advantages in Liver Cancer. Hepatology 2021; 74:1952-1970. [PMID: 33928666 DOI: 10.1002/hep.31870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Proteins that recognize epigenetic modifications function as mediators to interpret epigenetic codes. Hypoxia response and metabolic rewiring are two major events during cancer progression. However, whether and how the epigenetic regulator integrates hypoxia response and metabolism together remain open for study. APPROACH AND RESULTS We data mined the clinical association of 33 histone lysine acetylation reader proteins with liver cancer and found that ALL1-fused gene from chromosome 9 (AF9) is up-regulated in cancer and correlates with tumor stage and poor prognosis. Conditional deletion of Af9 in mouse liver resulted in decreased tumor formation induced by c-MET proto-oncogene/β-catenin. Loss of AF9 heavily impaired cell proliferation and completely blocked solid tumor formation. We further discovered that AF9 formed a positive feedback circuit with hypoxia-inducible factor 1 alpha (HIF1α) and also stabilized MYC proto-oncogene (cMyc). Mechanically, AF9 interacted with HIF1α and targeted HIF1A promoter whereas AF9 recognized cMyc acetylation at K148, protected cMyc phosphorylation at S62, and then stabilized cMyc, which, in turn, up-regulates phosphofructokinase, platelet expression. Otherwise, knockout of Af9 in mouse hepatocytes increased the infiltration of CD8+ T cells, which is linked to the down-regulation of lactate dehydrogenase A. CONCLUSIONS AF9 is up-regulated to promote gene expression of hypoxia tolerance and glycolysis by simultaneously forming a complex with HIF1α and recognizing acetylated cMyc. Our results establish the oncogenic role of AF9 in human liver cancer, which could be a potential target for designing drugs against liver cancer.
Collapse
Affiliation(s)
- Hua Yu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuya Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Li Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yingying Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yawei Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xuyang Hou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yan Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Wong YJ, Qiu TY, Ng GK, Zheng Q, Teo EK. Efficacy and Safety of Statin for Hepatocellular Carcinoma Prevention Among Chronic Liver Disease Patients: A Systematic Review and Meta-analysis. J Clin Gastroenterol 2021; 55:615-623. [PMID: 33606427 DOI: 10.1097/mcg.0000000000001478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION AND AIM Hepatocellular carcinoma (HCC) is a deadly complication among patients with chronic liver disease (CLD). Controversies on the efficacy and safety of statin to prevent HCC among patients with CLD remain despite the growing evidences. We aim to investigate the efficacy and safety of using statin for HCC prevention among adult with CLD. METHODS We performed a systematic search of 4 electronic databases (PubMed/MEDLINE, EMBASE, Cochrane library, and ClinicalTrial.gov) up to April 15, 2020. We selected all types of studies evaluating the statin use and the risk of HCC among CLD patients, regardless of language, region, publication date, or status. The primary endpoint was the pooled risk of HCC. The secondary endpoint was the risk of statin-associated myopathy. RESULT From 583 citations, we included a total of 13 studies (1,742,260 subjects, 7 types of statins), fulfilling the inclusion criteria, evaluating efficacy and safety of statin in CLD patients for HCC prevention. All studies were observational (2 nested case-control studies, 11 cohort studies), and no randomised trial was identified. We found that statin user has a lower pooled risk of HCC development (hazard ratio=0.57, 95% confidence interval: 0.52-0.62, I2=42%). HCC reduction was consistent among statin users in cirrhosis, hepatitis B virus, and hepatitis C virus infections. The risk of statin-associated myopathy was similar between statin user and nonuser (hazard ratio=1.07, 95% confidence interval=0.91-1.27). CONCLUSION Statin use was safe and associated with a lower pooled risk of HCC development among adults with CLD. Given the bias with observation studies, prospective randomised trial is needed to confirm this finding.
Collapse
Affiliation(s)
- Yu-Jun Wong
- Department of Gastroenterology and Hepatology, Changi General Hospital
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Tian-Yu Qiu
- Department of Gastroenterology and Hepatology, Changi General Hospital
| | | | | | - Eng Kiong Teo
- Department of Gastroenterology and Hepatology, Changi General Hospital
- Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
31
|
Orabi D, Berger NA, Brown JM. Abnormal Metabolism in the Progression of Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma: Mechanistic Insights to Chemoprevention. Cancers (Basel) 2021; 13:3473. [PMID: 34298687 PMCID: PMC8307710 DOI: 10.3390/cancers13143473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the rise and becoming a major contributor to the development of hepatocellular carcinoma (HCC). Reasons for this include the rise in obesity and metabolic syndrome in contrast to the marked advances in prevention and treatment strategies of viral HCC. These shifts are expected to rapidly propel this trend even further in the coming decades, with NAFLD on course to become the leading etiology of end-stage liver disease and HCC. No Food and Drug Administration (FDA)-approved medications are currently available for the treatment of NAFLD, and advances are desperately needed. Numerous medications with varying mechanisms of action targeting liver steatosis and fibrosis are being investigated including peroxisome proliferator-activated receptor (PPAR) agonists and farnesoid X receptor (FXR) agonists. Additionally, drugs targeting components of metabolic syndrome, such as antihyperglycemics, have been found to affect NAFLD progression and are now being considered in the treatment of these patients. As NAFLD drug discovery continues, special attention should be given to their relationship to HCC. Several mechanisms in the pathogenesis of NAFLD have been implicated in hepatocarcinogenesis, and therapies aimed at NAFLD may additionally harbor independent antitumorigenic potential. This approach may provide novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nathan A. Berger
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
| |
Collapse
|
32
|
McCann C, Kerr EM. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers (Basel) 2021; 13:3351. [PMID: 34283054 PMCID: PMC8267696 DOI: 10.3390/cancers13133351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major cause of cancer treatment failure, effectively driven by processes that promote escape from therapy-induced cell death. The mechanisms driving evasion of apoptosis have been widely studied across multiple cancer types, and have facilitated new and exciting therapeutic discoveries with the potential to improve cancer patient care. However, an increasing understanding of the crosstalk between cancer hallmarks has highlighted the complexity of the mechanisms of drug resistance, co-opting pathways outside of the canonical "cell death" machinery to facilitate cell survival in the face of cytotoxic stress. Rewiring of cellular metabolism is vital to drive and support increased proliferative demands in cancer cells, and recent discoveries in the field of cancer metabolism have uncovered a novel role for these programs in facilitating drug resistance. As a key organelle in both metabolic and apoptotic homeostasis, the mitochondria are at the forefront of these mechanisms of resistance, coordinating crosstalk in the event of cellular stress, and promoting cellular survival. Importantly, the appreciation of this role metabolism plays in the cytotoxic response to therapy, and the ability to profile metabolic adaptions in response to treatment, has encouraged new avenues of investigation into the potential of exploiting metabolic addictions to improve therapeutic efficacy and overcome drug resistance in cancer. Here, we review the role cancer metabolism can play in mediating drug resistance, and the exciting opportunities presented by imposed metabolic vulnerabilities.
Collapse
Affiliation(s)
| | - Emma M. Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, BT9 7AE Belfast, Ireland;
| |
Collapse
|
33
|
Kilinc S, Paisner R, Camarda R, Gupta S, Momcilovic O, Kohnz RA, Avsaroglu B, L'Etoile ND, Perera RM, Nomura DK, Goga A. Oncogene-regulated release of extracellular vesicles. Dev Cell 2021; 56:1989-2006.e6. [PMID: 34118203 DOI: 10.1016/j.devcel.2021.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/24/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Oncogenes can alter metabolism by changing the balance between anabolic and catabolic processes. However, how oncogenes regulate tumor cell biomass remains poorly understood. Using isogenic MCF10A cells transformed with nine different oncogenes, we show that specific oncogenes reduce the biomass of cancer cells by promoting extracellular vesicle (EV) release. While MYC and AURKB elicited the highest number of EVs, each oncogene selectively altered the protein composition of released EVs. Likewise, oncogenes alter secreted miRNAs. MYC-overexpressing cells require ceramide, whereas AURKB requires ESCRT to release high levels of EVs. We identify an inverse relationship between MYC upregulation and activation of the RAS/MEK/ERK signaling pathway for regulating EV release in some tumor cells. Finally, lysosome genes and activity are downregulated in the context of MYC and AURKB, suggesting that cellular contents, instead of being degraded, were released via EVs. Thus, oncogene-mediated biomass regulation via differential EV release is a new metabolic phenotype.
Collapse
Affiliation(s)
- Seda Kilinc
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Rebekka Paisner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roman Camarda
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suprit Gupta
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Olga Momcilovic
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebecca A Kohnz
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Baris Avsaroglu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noelle D L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rushika M Perera
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel K Nomura
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Statins are a class of lipid lower medications used primarily in patients with high-risk cardiovascular disease. Since their development, statins have been considered to be harmful in patients with liver disease, and many of the prescribing information labels consider them to be contraindicated in patients with active liver disease. However, recent studies have shown the contrary, warranting further investigation and discussion. This review aims to describe the latest literature on the mechanism, safety profile and potential benefits of statins use on the natural history of chronic liver disease (CLD) progression and its complications. RECENT FINDINGS A number of recently published studies have added to the existing body of literature supporting the concept that statins are safe and likely to be beneficial for treating patients with CLD. Patients with CLD including hepatitis B virus infection, hepatitis C virus infection, nonalcoholic fatty liver disease and alcohol on statins have been shown to have a lower rate of decompensating events, lower incidence of hepatocellular cancer, a lower rate of infections, and increased survival. However, the majority of the available literature supporting statin use in patients with liver disease comes from retrospective observational studies with high potential for bias. SUMMARY Statins appear to be safe in patients with compensated cirrhosis, and evidence suggests that they may reduce fibrosis, even in patients with advanced fibrosis and cirrhosis. Further high-quality research on this topic is needed to fully delineate the effect of statins in patients with liver disease.
Collapse
Affiliation(s)
- Mohamad Kareem Marrache
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
35
|
Saxton RA, Henneberg LT, Calafiore M, Su L, Jude KM, Hanash AM, Garcia KC. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity 2021; 54:660-672.e9. [PMID: 33852830 PMCID: PMC8054646 DOI: 10.1016/j.immuni.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Interleukin-22 (IL-22) acts on epithelial cells to promote tissue protection and regeneration, but can also elicit pro-inflammatory effects, contributing to disease pathology. Here, we engineered a high-affinity IL-22 super-agonist that enabled the structure determination of the IL-22-IL-22Rα-IL-10Rβ ternary complex to a resolution of 2.6 Å. Using structure-based design, we systematically destabilized the IL-22-IL-10Rβ binding interface to create partial agonist analogs that decoupled downstream STAT1 and STAT3 signaling. The extent of STAT bias elicited by a single ligand varied across tissues, ranging from full STAT3-biased agonism to STAT1/3 antagonism, correlating with IL-10Rβ expression levels. In vivo, this tissue-selective signaling drove tissue protection in the pancreas and gastrointestinal tract without inducing local or systemic inflammation, thereby uncoupling these opposing effects of IL-22 signaling. Our findings provide insight into the mechanisms underlying the cytokine pleiotropy and illustrate how differential receptor expression levels and STAT response thresholds can be synthetically exploited to endow pleiotropic cytokines with enhanced functional specificity.
Collapse
Affiliation(s)
- Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Lukas T Henneberg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Marco Calafiore
- Departments of Medicine, Human Oncology and Pathogenesis Program, and Immunology and Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Leon Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Alan M Hanash
- Departments of Medicine, Human Oncology and Pathogenesis Program, and Immunology and Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Statin use and the prognosis of patients with hepatocellular carcinoma: a meta-analysis. Biosci Rep 2021; 40:222339. [PMID: 32162652 PMCID: PMC7133516 DOI: 10.1042/bsr20200232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Association between statin use and prognosis in patients with hepatocellular carcinoma (HCC) remains unknown. We performed a meta-analysis of follow-up studies to systematically evaluate the influence of statin use on clinical outcome in HCC patients. Methods: Studies were obtained via systematic search of PubMed, Cochrane’s Library, and Embase databases. A randomized-effect model was used to pool the results. Subgroup analyses were performed to evaluate the influence of study characteristics on the association. Results: Nine retrospective cohort studies were included. Overall, statin use was associated with a reduced all-cause mortality in HCC patients (risk ratio [RR]: 0.81, 95% CI: 0.74–0.88, P < 0.001; I2 = 63%). Subgroup analyses showed similar results for patients with stage I-III HCC (RR: 0.83, 0.79, and 0.90 respectively, P all < 0.01) and patients after palliative therapy for HCC (RR: 0.80, P < 0.001), but not for patents with stage IV HCC (RR: 0.91, P = 0.28) or those after curative therapy (RR: 0.92, P = 0.20). However, the different between subgroups were not significant (both P > 0.05). Moreover, statin use was associated with reduced HCC-related mortality (RR: 0.78, P = 0.001) in overall patient population and HCC recurrence in patients after curative therapies (RR: 0.55, P < 0.001). Conclusions: Satin use is associated with reduced mortality and recurrence of HCC. These results should be validated in prospective cohort studies and randomized controlled trials.
Collapse
|
37
|
Statin Use Decreases the Risk of Metachronous Gastric Cancer in Patients without Helicobacter pylori Infection. Cancers (Basel) 2021; 13:cancers13051020. [PMID: 33804425 PMCID: PMC7957799 DOI: 10.3390/cancers13051020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that statins reduce the risk of gastric cancer; however, their role has not been adequately studied in patients without Helicobacterpylori infection. We aimed to investigate whether statins reduced the risk of metachronous gastric cancer (GC) in H. pylori-negative patients who underwent endoscopic resection for early gastric cancer (EGC). Retrospective data of 2153 patients recruited between January 2007 and December 2016, with no H. pylori infection at baseline, who underwent resection for EGC, were analyzed. Metachronous GC was defined as a newly developed GC at least 1 year after endoscopic resection. Patients who used statins for at least 28 days during the follow-up period were considered as statin users. During a median follow-up of 5 years (interquartile range, 3.5-6.2), metachronous GC developed in 165 (7.6%) patients. In the multivariate Cox regression analysis, statin use was an independent factor associated with GC recurrence (adjusted hazard ratio (HR), 0.46; 95% confidence interval (CI), 0.26-0.82). Moreover, the risk of GC reduced with increasing duration (<3 years: HR 0.40, 95% CI 0.14-1.13; ≥3 years: HR 0.21, 95% CI 0.05-0.90; p trend = 0.011) and the dose of statin (cumulative defined daily dose (cDDD) < 500: HR 0.45, 95% CI 0.16-1.28; cDDD ≥ 500: HR 0.19, 95% CI 0.04-0.80; p trend = 0.008) in the propensity score-matched cohort. Statin use was associated with a lower risk of GC recurrence in H. pylori-negative patients with resected EGC in a dose-response relationship.
Collapse
|
38
|
Guerra B, Recio C, Aranda-Tavío H, Guerra-Rodríguez M, García-Castellano JM, Fernández-Pérez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front Oncol 2021; 11:626971. [PMID: 33718197 PMCID: PMC7947625 DOI: 10.3389/fonc.2021.626971] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
A hallmark of cancer cells includes a metabolic reprograming that provides energy, the essential building blocks, and signaling required to maintain survival, rapid growth, metastasis, and drug resistance of many cancers. The influence of tumor microenviroment on cancer cells also results an essential driving force for cancer progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/or signaling pathways linked to critical regulators of lipid metabolism can influence gene expression and chromatin remodeling, cellular differentiation, stress response pathways, or tumor microenviroment, and, collectively, drive tumor development. Reprograming of lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol biosynthetic pathway in specific cancer cells which, in comparison with normal cell counterparts, are dependent of the continuous availability of MVA/cholesterol-derived metabolites (i.e., sterols and non-sterol intermediates) for tumor development. Accordingly, there are increasing amount of data, from preclinical and epidemiological studies, that support an inverse association between the use of statins, potent inhibitors of MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate, liver, breast, hematological malignances). In contrast, despite the tolerance and therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment demands the use of relatively high doses of single statins for a prolonged period, thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant, synergistic effects of tolerable doses of statins with conventional chemotherapy might enhance efficacy with lower doses of each drug and, probably, reduce adverse effects and resistance. In spite of that, clinical trials to identify combinatory therapies that improve therapeutic window are still a challenge. In the present review, we revisit molecular evidences showing that deregulated activity of MVA biosynthetic pathway has an essential role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors to improve therapeutic window in cancer.
Collapse
Affiliation(s)
- Borja Guerra
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Haidée Aranda-Tavío
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miguel Guerra-Rodríguez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José M García-Castellano
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
39
|
Wang H, Wang P, Xu M, Song X, Wu H, Evert M, Calvisi DF, Zeng Y, Chen X. Distinct functions of transforming growth factor-β signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death Dis 2021; 12:200. [PMID: 33608500 PMCID: PMC7895828 DOI: 10.1038/s41419-021-03488-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of transforming growth factor-beta (TGFβ) signaling has been implicated in liver carcinogenesis with both tumor promoting and inhibiting activities. Activation of the c-MYC protooncogene is another critical genetic event in hepatocellular carcinoma (HCC). However, the precise functional crosstalk between c-MYC and TGFβ signaling pathways remains unclear. In the present investigation, we investigated the expression of TGFβ signaling in c-MYC amplified human HCC samples as well as the mechanisms whereby TGFβ modulates c-Myc driven hepatocarcinogenesis during initiation and progression. We found that several TGFβ target genes are overexpressed in human HCCs with c-MYC amplification. In vivo, activation of TGFβ1 impaired c-Myc murine HCC initiation, whereas inhibition of TGFβ pathway accelerated this process. In contrast, overexpression of TGFβ1 enhanced c-Myc HCC progression by promoting tumor cell metastasis. Mechanistically, activation of TGFβ promoted tumor microenvironment reprogramming rather than inducing epithelial-to-mesenchymal transition during HCC progression. Moreover, we identified PMEPA1 as a potential TGFβ1 target. Altogether, our data underline the divergent roles of TGFβ signaling during c-MYC induced HCC initiation and progression.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Hong Wu
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
40
|
Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 2021; 18:261-279. [PMID: 33469195 DOI: 10.1038/s41571-020-00459-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
The immune system has crucial roles in cancer development and treatment. Whereas adaptive immunity can prevent or constrain cancer through immunosurveillance, innate immunity and inflammation often promote tumorigenesis and malignant progression of nascent cancer. The past decade has witnessed the translation of knowledge derived from preclinical studies of antitumour immunity into clinically effective, approved immunotherapies for cancer. By contrast, the successful implementation of treatments that target cancer-associated inflammation is still awaited. Anti-inflammatory agents have the potential to not only prevent or delay cancer onset but also to improve the efficacy of conventional therapeutics and next-generation immunotherapies. Herein, we review the current clinical advances and experimental findings supporting the utility of an anti-inflammatory approach to the treatment of solid malignancies. Gaining a better mechanistic understanding of the mode of action of anti-inflammatory agents and designing more effective treatment combinations would advance the clinical application of this therapeutic approach.
Collapse
Affiliation(s)
- Jiajie Hou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Liver Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
41
|
Kusnik A, Hunter N, Rasbach E, Miethke T, Reissfelder C, Ebert MP, Teufel A. Co-Medication and Nutrition in Hepatocellular Carcinoma: Potentially Preventative Strategies in Hepatocellular Carcinoma. Dig Dis 2021; 39:526-533. [PMID: 33429390 DOI: 10.1159/000514277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, with about 841,000 new cases and 782,000 deaths annually. Given the clearly defined population at risk, mostly patients with liver cirrhosis, prevention of HCC could be highly effective. SUMMARY Besides regular ultrasound surveillance, numerous publications have suggested protective effects of diverse drugs and nutrients. However, none of those preventive options has made it into clinical routine or practice guidelines. We therefore summarize the current status of preventive effects of drugs such as statins, acetylsalicylic acid (ASA), and metformin, but also dietary aspects and nutrients such as coffee, tea, and vitamin D supplementation. A successful implementation of some of these strategies may potentially lead to improved prevention of HCC development in patients with liver cirrhosis. Key Messages: Accumulating data suggest that particularly ASA, antidiabetic therapies, and statins may substantially decrease HCC incidence in patients at risk.
Collapse
Affiliation(s)
- Alexander Kusnik
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Hunter
- Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erik Rasbach
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Miethke
- Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
42
|
Juarez D, Fruman DA. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021; 7:525-540. [PMID: 33358111 DOI: 10.1016/j.trecan.2020.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The mevalonate synthesis inhibitors, statins, are mainstay therapeutics for cholesterol management and cardiovascular health. Thirty years of research have uncovered supportive roles for the mevalonate pathway in numerous cellular processes that support oncogenesis, most recently macropinocytosis. Central to the diverse mechanisms of statin sensitivity is an acquired dependence on one mevalonate pathway output, protein geranylgeranylation. New chemical prenylation probes and the discovery of a novel geranylgeranyl transferase hold promise to deepen our understanding of statin mechanisms of action. Further, insights into statin selection and the counterproductive role of dietary geranylgeraniol highlight how we should assess statins in the clinic. Lastly, rational combination strategies preview how statins will enter the oncology toolbox.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
43
|
Li S, Saviano A, Erstad DJ, Hoshida Y, Fuchs BC, Baumert T, Tanabe KK. Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. J Clin Med 2020; 9:E3817. [PMID: 33255794 PMCID: PMC7760293 DOI: 10.3390/jcm9123817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality globally. Given the limited therapeutic efficacy in advanced HCC, prevention of HCC carcinogenesis could serve as an effective strategy. Patients with chronic fibrosis due to viral or metabolic etiologies are at a high risk of developing HCC. Primary prevention seeks to eliminate cancer predisposing risk factors while tertiary prevention aims to prevent HCC recurrence. Secondary prevention targets patients with baseline chronic liver disease. Various epidemiological and experimental studies have identified candidates for secondary prevention-both etiology-specific and generic prevention strategies-including statins, aspirin, and anti-diabetic drugs. The introduction of multi-cell based omics analysis along with better characterization of the hepatic microenvironment will further facilitate the identification of targets for prevention. In this review, we will summarize HCC risk factors, pathogenesis, and discuss strategies of HCC prevention. We will focus on secondary prevention and also discuss current challenges in translating experimental work into clinical practice.
Collapse
Affiliation(s)
- Shen Li
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Antonio Saviano
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Derek J. Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Yujin Hoshida
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Department of Internal Medicine, Dallas, TX 75390, USA;
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Thomas Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| |
Collapse
|
44
|
Jia J, Che L, Cigliano A, Wang X, Peitta G, Tao J, Zhong S, Ribback S, Evert M, Chen X, Calvisi DF. Pivotal Role of Fatty Acid Synthase in c-MYC Driven Hepatocarcinogenesis. Int J Mol Sci 2020; 21:ijms21228467. [PMID: 33187130 PMCID: PMC7696085 DOI: 10.3390/ijms21228467] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly form of liver malignancy with limited treatment options. Amplification and/or overexpression of c-MYC is one of the most frequent genetic events in human HCC. The mammalian target of Rapamycin Complex 1 (mTORC1) is a major functional axis regulating various aspects of cellular growth and metabolism. Recently, we demonstrated that mTORC1 is necessary for c-Myc driven hepatocarcinogenesis as well as for HCC cell growth in vitro. Among the pivotal downstream effectors of mTORC1, upregulation of Fatty Acid Synthase (FASN) and its mediated de novo lipogenesis is a hallmark of human HCC. Here, we investigated the importance of FASN on c-Myc-dependent hepatocarcinogenesis using in vitro and in vivo approaches. In mouse and human HCC cells, we found that FASN suppression by either gene silencing or soluble inhibitors more effectively suppressed proliferation and induced apoptosis in the presence of high c-MYC expression. In c-Myc/Myeloid cell leukemia 1 (MCL1) mouse liver tumor lesions, FASN expression was markedly upregulated. Most importantly, genetic ablation of Fasn profoundly delayed (without abolishing) c-Myc/MCL1 induced HCC formation. Liver tumors developing in c-Myc/MCL1 mice depleted of Fasn showed a reduction in proliferation and an increase in apoptosis when compared with corresponding lesions from c-Myc/MCL1 mice with an intact Fasn gene. In human HCC samples, a significant correlation between the levels of c-MYC transcriptional activity and the expression of FASN mRNA was detected. Altogether, our study indicates that FASN is an important effector downstream of mTORC1 in c-MYC induced HCC. Targeting FASN may be helpful for the treatment of human HCC, at least in the tumor subset displaying c-MYC amplification or activation.
Collapse
Affiliation(s)
- Jiaoyuan Jia
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (J.J.); (L.C.); (J.T.); (S.Z.)
- Department of Oncology and Hematology, the Second Hospital, Jilin University, Changchun 130041, China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (J.J.); (L.C.); (J.T.); (S.Z.)
- Legend Biotech USA R&D Center, Piscataway, NJ 08854, USA
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (A.C.); (G.P.); (M.E.)
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA;
| | - Graziella Peitta
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (A.C.); (G.P.); (M.E.)
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (J.J.); (L.C.); (J.T.); (S.Z.)
| | - Sheng Zhong
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (J.J.); (L.C.); (J.T.); (S.Z.)
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, 17475 Greifswald, Germany;
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (A.C.); (G.P.); (M.E.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (J.J.); (L.C.); (J.T.); (S.Z.)
- Correspondence: (X.C.); (D.F.C.); Tel.: +1-415-502-6526 (X.C.); +39-079-228306 (D.F.C.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (X.C.); (D.F.C.); Tel.: +1-415-502-6526 (X.C.); +39-079-228306 (D.F.C.)
| |
Collapse
|
45
|
Simon TG, Chan AT. Lifestyle and Environmental Approaches for the Primary Prevention of Hepatocellular Carcinoma. Clin Liver Dis 2020; 24:549-576. [PMID: 33012445 PMCID: PMC7536356 DOI: 10.1016/j.cld.2020.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with chronic liver disease are at increased risk of developing hepatocellular carcinoma (HCC). Most patients diagnosed with HCC have limited treatment options and a poor overall prognosis, with a 5-year survival less than 15%. Preventing the development of HCC represents the most important strategy. However, current guidelines lack specific recommendations for primary prevention. Lifestyle factors may be central in the pathogenesis of HCC, and primary prevention strategies focused on lifestyle modification could represent an important approach to the prevention of HCC. Both experimental and epidemiologic studies have identified promising chemopreventive agents for the primary prevention of HCC.
Collapse
Affiliation(s)
- Tracey G. Simon
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston MA,Broad Institute, Boston MA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston MA
| |
Collapse
|
46
|
Feltrin S, Ravera F, Traversone N, Ferrando L, Bedognetti D, Ballestrero A, Zoppoli G. Sterol synthesis pathway inhibition as a target for cancer treatment. Cancer Lett 2020; 493:19-30. [DOI: 10.1016/j.canlet.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
47
|
Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. Int J Mol Sci 2020; 21:ijms21207768. [PMID: 33092251 PMCID: PMC7656306 DOI: 10.3390/ijms21207768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center—Portuguese Oncology Institute of Porto (CI-IPOP), 4200-162 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-225-570-700
| |
Collapse
|
48
|
Han TS, Hur K, Cho HS, Ban HS. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12092622. [PMID: 32937886 PMCID: PMC7565033 DOI: 10.3390/cancers12092622] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-coding RNAs such as microRNAs, long non-coding RNAs, and circular RNAs contribute to the development and progression of hepatocellular carcinoma through epigenetic association. Long non-coding RNAs and circular RNAs act as competing endogenous RNAs that contain binding sites for miRNAs and thus compete with the miRNAs, which results in promotion of miRNA target gene expression, thereby leading to proliferation and metastasis of hepatocellular carcinoma. Competing endogenous RNAs have the potential to become diagnostic biomarkers and therapeutic targets for treatment of hepatocellular carcinoma. Abstract The three major members of non-coding RNAs (ncRNAs), named microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in hepatocellular carcinoma (HCC) development. Recently, the competing endogenous RNA (ceRNA) regulation model described lncRNA/circRNA as a sponge for miRNAs to indirectly regulate miRNA downstream target genes. Accumulating evidence has indicated that ceRNA regulatory networks are associated with biological processes in HCC, including cancer cell growth, epithelial to mesenchymal transition (EMT), metastasis, and chemoresistance. In this review, we summarize recent discoveries, which are specific ceRNA regulatory networks (lncRNA/circRNA-miRNA-mRNA) in HCC and discuss their clinical significance.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| |
Collapse
|
49
|
Abstract
HMG-CoA reductase inhibitors (known as statins) are commonly prescribed worldwide for the management of coronary heart disease and the underlying dyslipidemia. This class of drugs has been shown to infer a significant decrease in the risk of cardiovascular morbidity and mortality. Only recently though have the beneficial effects of statins in other diseases such as non-alcoholic steatohepatitis been highlighted. Importantly, also, multiple studies have revealed that statin use was associated with lower cancer-associated mortality across multiple types of cancers. This work aims to review those studies with a particular focus on liver cancer. We also provide a review of the proposed mechanisms of action describing how statins can induce chemo-preventive and antitumor effects.
Collapse
Affiliation(s)
- Ghazal Alipour Talesh
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France.,Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Véronique Trézéguet
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| | - Aksam Merched
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| |
Collapse
|
50
|
Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver's seat. Signal Transduct Target Ther 2020; 5:124. [PMID: 32651356 PMCID: PMC7351732 DOI: 10.1038/s41392-020-00235-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer cells must rewire cellular metabolism to satisfy the demands of unbridled growth and proliferation. As such, most human cancers differ from normal counterpart tissues by a plethora of energetic and metabolic reprogramming. Transcription factors of the MYC family are deregulated in up to 70% of all human cancers through a variety of mechanisms. Oncogenic levels of MYC regulates almost every aspect of cellular metabolism, a recently revisited hallmark of cancer development. Meanwhile, unrestrained growth in response to oncogenic MYC expression creates dependency on MYC-driven metabolic pathways, which in principle provides novel targets for development of effective cancer therapeutics. In the current review, we summarize the significant progress made toward understanding how MYC deregulation fuels metabolic rewiring in malignant transformation.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Rongfu Tu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Hudan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Guoliang Qing
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|