1
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Guerrero Zuniga A, Aikin TJ, McKenney C, Lendner Y, Phung A, Hook PW, Meltzer A, Timp W, Regot S. Sustained ERK signaling promotes G2 cell cycle exit and primes cells for whole-genome duplication. Dev Cell 2024; 59:1724-1736.e4. [PMID: 38640927 PMCID: PMC11233237 DOI: 10.1016/j.devcel.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Whole-genome duplication (WGD) is a frequent event in cancer evolution that fuels chromosomal instability. WGD can result from mitotic errors or endoreduplication, yet the molecular mechanisms that drive WGD remain unclear. Here, we use live single-cell analysis to characterize cell-cycle dynamics upon aberrant Ras-ERK signaling. We find that sustained ERK signaling in human cells leads to reactivation of the APC/C in G2, resulting in tetraploid G0-like cells that are primed for WGD. This process is independent of DNA damage or p53 but dependent on p21. Transcriptomics analysis and live-cell imaging showed that constitutive ERK activity promotes p21 expression, which is necessary and sufficient to inhibit CDK activity and which prematurely activates the anaphase-promoting complex (APC/C). Finally, either loss of p53 or reduced ERK signaling allowed for endoreduplication, completing a WGD event. Thus, sustained ERK signaling-induced G2 cell cycle exit represents an alternative path to WGD.
Collapse
Affiliation(s)
- Adler Guerrero Zuniga
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Timothy J Aikin
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yovel Lendner
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alain Phung
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul W Hook
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amy Meltzer
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Hussain S, Mursal M, Verma G, Hasan SM, Khan MF. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur J Pharmacol 2024; 970:176484. [PMID: 38467235 DOI: 10.1016/j.ejphar.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Protein kinases play pivotal roles in various biological functions, influencing cell differentiation, promoting survival, and regulating the cell cycle. The disruption of protein kinase activity is intricately linked to pathways in tumor development. This manuscript explores the transformative impact of protein kinase inhibitors on cancer therapy, particularly their efficacy in cases driven by targeted mutations. Focusing on key tyrosine kinase inhibitors (TKIs) like Bcr-Abl, Epidermal Growth Factor Receptor (EGFR), and Vascular Endothelial Growth Factor Receptor (VEGFR), it targets critical kinase families in cancer progression. Clinical trial details of these TKIs offer insights into their therapeutic potentials. Learning from FDA-approved kinase inhibitors, the review dissects trends in kinase drug development since imatinib's paradigm-shifting approval in 2001. TKIs have evolved into pivotal drugs, extending beyond oncology. Ongoing clinical trials explore novel kinase targets, revealing the vast potential within the human kinome. The manuscript provides a detailed analysis of advancements until 2022, discussing the roles of specific oncogenic protein kinases in cancer development and carcinogenesis. Our exploration on PubMed for relevant and significant TKIs undergoing pre-FDA approval phase III clinical trials enriches the discussion with valuable findings. While kinase inhibitors exhibit lower toxicity than traditional chemotherapy in cancer treatment, challenges like resistance and side effects emphasize the necessity of understanding resistance mechanisms, prompting the development of novel inhibitors like osimertinib targeting specific mutant proteins. The review advocates thorough research on effective combination therapies, highlighting the future development of more selective RTKIs to optimize patient-specific cancer treatment and reduce adverse events.
Collapse
Affiliation(s)
- Sahil Hussain
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohd Mursal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Garima Verma
- RWE Specialist, HealthPlix Technologies, Bengaluru, Karnataka 560103, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohemmed Faraz Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
4
|
Adamopoulos C, Papavassiliou KA, Poulikakos PI, Papavassiliou AG. RAF and MEK Inhibitors in Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:4633. [PMID: 38731852 PMCID: PMC11083651 DOI: 10.3390/ijms25094633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Planchard D, Sanborn RE, Negrao MV, Vaishnavi A, Smit EF. BRAF V600E-mutant metastatic NSCLC: disease overview and treatment landscape. NPJ Precis Oncol 2024; 8:90. [PMID: 38627602 PMCID: PMC11021522 DOI: 10.1038/s41698-024-00552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 04/19/2024] Open
Abstract
In this review, we cover the current understanding of BRAF mutations and associated clinical characteristics in patients with metastatic NSCLC, approved and emerging treatment options, BRAF sequencing approaches, and unmet needs. The BRAFV600E mutation confers constitutive activity of the MAPK pathway, leading to enhanced growth, proliferation, and survival of tumor cells. Testing for BRAF mutations enables patients to be treated with therapies that directly target BRAFV600E and the MAPK pathway, but BRAF testing lags behind other oncogene testing in metastatic NSCLC. Additional therapies targeting BRAFV600E mutations provide options for patients with metastatic NSCLC. Emerging therapies and combinations under investigation could potentially overcome issues of resistance and target non-V600E mutations. Therefore, because targeted therapies with enhanced efficacy are on the horizon, being able to identify BRAF mutations in metastatic NSCLC may become even more important.
Collapse
Affiliation(s)
- David Planchard
- Thoracic Cancer Group, Department of Medical Oncology, Gustave Roussy, Villejuif, France.
| | - Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aria Vaishnavi
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Egbert F Smit
- Department of Pulmonary Disease, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
6
|
Friedlaender A, Perol M, Banna GL, Parikh K, Addeo A. Oncogenic alterations in advanced NSCLC: a molecular super-highway. Biomark Res 2024; 12:24. [PMID: 38347643 PMCID: PMC10863183 DOI: 10.1186/s40364-024-00566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer ranks among the most common cancers world-wide and is the first cancer-related cause of death. The classification of lung cancer has evolved tremendously over the past two decades. Today, non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma, comprises a multitude of molecular oncogenic subsets that change both the prognosis and management of disease.Since the first targeted oncogenic alteration identified in 2004, with the epidermal growth factor receptor (EGFR), there has been unprecedented progress in identifying and targeting new molecular alterations. Almost two decades of experience have allowed scientists to elucidate the biological function of oncogenic drivers and understand and often overcome the molecular basis of acquired resistance mechanisms. Today, targetable molecular alterations are identified in approximately 60% of lung adenocarcinoma patients in Western populations and 80% among Asian populations. Oncogenic drivers are largely enriched among non-smokers, east Asians, and younger patients, though each alteration has its own patient phenotype.The current landscape of druggable molecular targets includes EGFR, anaplastic lymphoma kinase (ALK), v-raf murine sarcoma viral oncogene homolog B (BRAF), ROS proto-oncogene 1 (ROS1), Kirstin rat sarcoma virus (KRAS), human epidermal receptor 2 (HER2), c-MET proto-oncogene (MET), neurotrophic receptor tyrosine kinase (NTRK), rearranged during transfection (RET), neuregulin 1 (NRG1). In addition to these known targets, others including Phosphoinositide 3-kinases (PI3K) and fibroblast growth factor receptor (FGFR) have garnered significant attention and are the subject of numerous ongoing trials.In this era of personalized, precision medicine, it is of paramount importance to identify known or potential oncogenic drivers in each patient. The development of targeted therapy is mirrored by diagnostic progress. Next generation sequencing offers high-throughput, speed and breadth to identify molecular alterations in entire genomes or targeted regions of DNA or RNA. It is the basis for the identification of the majority of current druggable alterations and offers a unique window into novel alterations, and de novo and acquired resistance mechanisms.In this review, we discuss the diagnostic approach in advanced NSCLC, focusing on current oncogenic driver alterations, through their pathophysiology, management, and future perspectives. We also explore the shortcomings and hurdles encountered in this rapidly evolving field.
Collapse
Affiliation(s)
- Alex Friedlaender
- Clinique Générale Beaulieu, Geneva, Switzerland
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland
| | - Maurice Perol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Giuseppe Luigi Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland.
| |
Collapse
|
7
|
Baygin RC, Yilmaz KC, Acar A. Characterization of dabrafenib-induced drug insensitivity via cellular barcoding and collateral sensitivity to second-line therapeutics. Sci Rep 2024; 14:286. [PMID: 38167959 PMCID: PMC10762103 DOI: 10.1038/s41598-023-50443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Drug insensitivity is arguably one of the biggest challenges in cancer therapeutics. Although effective therapeutic solutions in cancer are limited due to the emergence of drug insensitivity, exploiting evolutionary understanding in this context can provide potential second-line therapeutics sensitizing the drug insensitive populations. Targeted therapeutic agent dabrafenib is used to treat CRC patients with BRAF V600E genotype and insensitivity to dabrafenib is often observed. Understanding underlying clonal architecture of dabrafenib-induced drug insensitivity and identification of potential second-line therapeutics that could sensitize dabrafenib insensitive populations remain to be elucidated. For this purpose, we utilized cellular barcoding technology to decipher dabrafenib-induced clonal evolution in BRAF V600E mutant HT-29 cells. This approach revealed the detection of both pre-existing and de novo barcodes with increased frequencies as a result of dabrafenib insensitivity. Furthermore, our longitudinal monitoring of drug insensitivity based on barcode detection from floating DNA within used medium enabled to identify temporal dynamics of pre-existing and de novo barcodes in relation to dabrafenib insensitivity in HT-29 cells. Moreover, whole-exome sequencing analysis exhibited possible somatic CNVs and SNVs contributing to dabrafenib insensitivity in HT-29 cells. Last, collateral drug sensitivity testing demonstrated oxaliplatin and capecitabine, alone or in combination, as successful second-like therapeutics in inducing collateral sensitivity in dabrafenib-insensitive HT-29 cells. Overall, our findings demonstrate clonal dynamics of dabrafenib-insensitivity in HT-29 cells. In addition, oxaliplatin and capecitabine, alone or in combination, were successful second-line therapeutics in inducing collateral sensitivity in dabrafenib-insensitive HT-29 cells.
Collapse
Affiliation(s)
- Rana Can Baygin
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, Çankaya, 06800, Ankara, Turkey
| | - Kubra Celikbas Yilmaz
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, Çankaya, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, Çankaya, 06800, Ankara, Turkey.
| |
Collapse
|
8
|
Zhu EY, Schillo JL, Murray SD, Riordan JD, Dupuy AJ. Understanding cancer drug resistance with Sleeping Beauty functional genomic screens: Application to MAPK inhibition in cutaneous melanoma. iScience 2023; 26:107805. [PMID: 37860756 PMCID: PMC10582486 DOI: 10.1016/j.isci.2023.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023] Open
Abstract
Combined BRAF and MEK inhibition is an effective treatment for BRAF-mutant cutaneous melanoma. However, most patients progress on this treatment due to drug resistance. Here, we applied the Sleeping Beauty transposon system to understand how melanoma evades MAPK inhibition. We found that the specific drug resistance mechanisms differed across melanomas in our genetic screens of five cutaneous melanoma cell lines. While drivers that reactivated MAPK were highly conserved, many others were cell-line specific. One such driver, VAV1, activated a de-differentiated transcriptional program like that of hyperactive RAC1, RAC1P29S. To target this mechanism, we showed that an inhibitor of SRC, saracatinib, blunts the VAV1-induced transcriptional reprogramming. Overall, we highlighted the importance of accounting for melanoma heterogeneity in treating cutaneous melanoma with MAPK inhibitors. Moreover, we demonstrated the utility of the Sleeping Beauty transposon system in understanding cancer drug resistance.
Collapse
Affiliation(s)
- Eliot Y. Zhu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jacob L. Schillo
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D. Murray
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jesse D. Riordan
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
10
|
Bravo AI, Aris M, Panouillot M, Porto M, Dieu-Nosjean MC, Teillaud JL, Barrio MM, Mordoh J. HEV-associated dendritic cells are observed in metastatic tumor-draining lymph nodes of cutaneous melanoma patients with longer distant metastasis-free survival after adjuvant immunotherapy. Front Immunol 2023; 14:1231734. [PMID: 37691949 PMCID: PMC10485604 DOI: 10.3389/fimmu.2023.1231734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Tissue biomarkers that aid in identifying cutaneous melanoma (CM) patients who will benefit from adjuvant immunotherapy are of crucial interest. Metastatic tumor-draining lymph nodes (mTDLN) are the first encounter site between the metastatic CM cells and an organized immune structure. Therefore, their study may reveal mechanisms that could influence patients´ outcomes. Methods Twenty-nine stage-III CM patients enrolled in clinical trials to study the vaccine VACCIMEL were included in this retrospective study. After radical mTDLN dissection, patients were treated with VACCIMEL (n=22) or IFNα-2b (n=6), unless rapid progression (n=1). Distant Metastasis-Free Survival (DMFS) was selected as an end-point. Two cohorts of patients were selected: one with a good outcome (GO) (n=17; median DMFS 130.0 months), and another with a bad outcome (BO) (n=12; median DMFS 8.5 months). We analyzed by immunohistochemistry and immunofluorescence the expression of relevant biomarkers to tumor-cell biology and immune cells and structures in mTDLN, both in the tumor and peritumoral areas. Results In BO patients, highly replicating Ki-67+ tumor cells, low tumor HLA-I expression and abundant FoxP3+ lymphocytes were found (p=0.037; p=0.056 and p=0.021). In GO patients, the most favorable biomarkers for prolonged DMFS were the abundance of peri- and intra-tumoral CD11c+ cells (p=0.0002 and p=0.001), peri-tumoral DC-LAMP+ dendritic cells (DCs) (p=0.001), and PNAd+ High Endothelial Venules (HEVs) (p=0.004). Most strikingly, we describe in GO patients a peculiar, heterogeneous structure that we named FAPS (Favoring Antigen-Presenting Structure), a triad composed of DC, HEV and CD62L+ naïve lymphocytes, whose postulated role would be to favor tumor antigen (Ag) priming of incoming naïve lymphocytes. We also found in GO patients a preferential tumor infiltration of CD8+ and CD20+ lymphocytes (p=0.004 and p=0.027), as well as peritumoral CD20+ aggregates, with no CD21+ follicular dendritic cells detected (p=0.023). Heterogeneous infiltration with CD64+CD68-CD163-, CD64+CD68+CD163- and CD64+CD68+CD163+ macrophages were observed in both cohorts. Discussion The analysis of mTDLN in GO and BO patients revealed marked differences. This work highlights the importance of analyzing resected mTDLN from CM patients and suggests a correlation between tumor and immune characteristics that may be associated with a spontaneous or vaccine-induced long DMFS. These results should be confirmed in prospective studies.
Collapse
Affiliation(s)
- Alicia Inés Bravo
- Laboratorio de Cancerología, Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Unidad de Inmunopatología, Hospital HIGA Eva Perón, Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Marylou Panouillot
- Sorbonne University, Faculty of Medicine, UMRS 1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Inserm U.1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Martina Porto
- Laboratorio de Cancerología, Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University, Faculty of Medicine, UMRS 1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Inserm U.1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Jean-Luc Teillaud
- Sorbonne University, Faculty of Medicine, UMRS 1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Inserm U.1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - José Mordoh
- Laboratorio de Cancerología, Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires (CABA), Argentina
| |
Collapse
|
11
|
Puri M, Gawri K, Dawar R. Therapeutic strategies for BRAF mutation in non-small cell lung cancer: a review. Front Oncol 2023; 13:1141876. [PMID: 37645429 PMCID: PMC10461310 DOI: 10.3389/fonc.2023.1141876] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer related deaths. Among the two broad types of lung cancer, non-small cell lung cancer accounts for 85% of the cases. The study of the genetic alteration has facilitated the development of targeted therapeutic interventions. Some of the molecular alterations which are important targets for drug therapy include Kirsten rat sarcoma (KRAS), Epidermal Growth Factor Receptor (EGFR), V-RAF murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase gene (ALK). In the setting of extensive on-going clinical trials, it is imperative to periodically review the advancements and the newer drug therapies being available. Among all mutations, BRAF mutation is common with incidence being 8% overall and 1.5 - 4% in NSCLC. Here, we have summarized the BRAF mutation types and reviewed the various drug therapy available - for both V600 and nonV600 group; the mechanism of resistance to BRAF inhibitors and strategies to overcome it; the significance of comprehensive profiling of concurrent mutations, and the role of immune checkpoint inhibitor in BRAF mutated NSCLC. We have also included the currently ongoing clinical trials and recent advancements including combination therapy that would play a role in improving the overall survival and outcome of NSCLC.
Collapse
Affiliation(s)
- Megha Puri
- Department of Internal Medicine, Saint Peter’s University Hospital, New Brunswick, NJ, United States
| | - Kunal Gawri
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Buffalo, Buffalo, NY, United States
| | - Richa Dawar
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
| |
Collapse
|
12
|
Bukkuri A, Pienta KJ, Hockett I, Austin RH, Hammarlund EU, Amend SR, Brown JS. Modeling cancer's ecological and evolutionary dynamics. Med Oncol 2023; 40:109. [PMID: 36853375 PMCID: PMC9974726 DOI: 10.1007/s12032-023-01968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023]
Abstract
In this didactic paper, we present a theoretical modeling framework, called the G-function, that integrates both the ecology and evolution of cancer to understand oncogenesis. The G-function has been used in evolutionary ecology, but has not been widely applied to problems in cancer. Here, we build the G-function framework from fundamental Darwinian principles and discuss how cancer can be seen through the lens of ecology, evolution, and game theory. We begin with a simple model of cancer growth and add on components of cancer cell competition and drug resistance. To aid in exploration of eco-evolutionary modeling with this approach, we also present a user-friendly software tool. By the end of this paper, we hope that readers will be able to construct basic G function models and grasp the usefulness of the framework to understand the games cancer plays in a biologically mechanistic fashion.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Ian Hockett
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
13
|
Capogiri M, De Micheli AJ, Lassaletta A, Muñoz DP, Coppé JP, Mueller S, Guerreiro Stucklin AS. Response and resistance to BRAF V600E inhibition in gliomas: Roadblocks ahead? Front Oncol 2023; 12:1074726. [PMID: 36698391 PMCID: PMC9868954 DOI: 10.3389/fonc.2022.1074726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
BRAFV600E represents the most common BRAF mutation in all human cancers. Among central nervous system (CNS) tumors, BRAFV600E is mostly found in pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas brought a paradigm shift to clinical care. However, not all patients benefit from treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining predictors of response, as well as developing strategies to prevent resistance to BRAFi and overcome post-BRAFi tumor progression/rebound growth are some of the main challenges at present in the field. In this review, we outline current achievements and limitations of BRAF inhibition in gliomas, with a special focus on potential mechanisms of resistance. We discuss future directions of targeted therapy for BRAFV600E mutated gliomas, highlighting how insights into resistance to BRAFi could be leveraged to improve outcomes.
Collapse
Affiliation(s)
- Monica Capogiri
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Alvaro Lassaletta
- Department of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Denise P. Muñoz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Jean-Philippe Coppé
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Sabine Mueller
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, United States
| | - Ana S. Guerreiro Stucklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,*Correspondence: Ana S. Guerreiro Stucklin,
| |
Collapse
|
14
|
BRAF gene as a potential target to attenuate drug resistance and treat cancer. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Liu Z, Li H, Dang Q, Weng S, Duo M, Lv J, Han X. Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy. Cell Mol Life Sci 2022; 79:577. [DOI: 10.1007/s00018-022-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2022]
|
16
|
Knockdown of 15-bp Deletion-Type v-raf Murine Sarcoma Viral Oncogene Homolog B1 mRNA in Pancreatic Ductal Adenocarcinoma Cells Repressed Cell Growth In Vitro and Tumor Volume In Vivo. Cancers (Basel) 2022; 14:cancers14133162. [PMID: 35804932 PMCID: PMC9264874 DOI: 10.3390/cancers14133162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The v-raf murine sarcoma viral oncogene homolog B1 (BRAF) gene containing a 15-base pair (bp) deletion at L485-P490 is the cause of several cancers. We generated siRNA to specifically knock down BRAF mRNA containing the 15-bp deletion. This siRNA suppressed the expression of BRAF, harboring the deletion without affecting wild-type BRAF expression in BxPC-3 pancreatic ductal adenocarcinoma cells in vitro and in vivo. Cell growth and phosphorylation of downstream extracellular-signal-regulated kinase proteins were also repressed. An off-target effect is the most common side effect of siRNA therapy. In this study, we reveal that siRNA with a 2′-O-methyl chemical modification in the seed region of the siRNA guide strand reduced seed-dependent off-target effects. Abstract Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second-most common cause of death within the next 10 years. Due to the limited efficacy of available therapies, the survival rate of PDAC patients is very low. Oncogenic BRAF mutations are one of the major causes of PDAC, specifically the missense V600E and L485–P490 15-bp deletion mutations. Drugs targeting the V600E mutation have already been approved by the United States Food and Drug Administration. However, a drug targeting the deletion mutation at L485–P490 of the BRAF gene has not been developed to date. The BxPC-3 cell line is a PDAC-derived cell line harboring wild-type KRAS and L485–P490 deleted BRAF genes. These cells are heterozygous for BRAF, harboring both wild-type BRAF and BRAF with the 15-bp deletion. In this study, siRNA was designed for the targeted knockdown of 15-bp deletion-type BRAF mRNA. This siRNA repressed the phosphorylation of extracellular-signal-regulated kinase proteins downstream of BRAF and suppressed cell growth in vitro and in vivo. Furthermore, siRNAs with 2′-O-methyl modifications at positions 2–5 reduce the seed-dependent off-target effects, as confirmed by reporter and microarray analyses. Thus, such siRNA is a promising candidate therapy for 15-bp deletion-type BRAF-induced tumorigenesis.
Collapse
|
17
|
Reddi KK, Guruvaiah P, Edwards YJK, Gupta R. Changes in the Transcriptome and Chromatin Landscape in BRAFi-Resistant Melanoma Cells. Front Oncol 2022; 12:937831. [PMID: 35785205 PMCID: PMC9247198 DOI: 10.3389/fonc.2022.937831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022] Open
Abstract
Metastatic and drug-resistant melanoma are leading causes of skin cancer-associated death. Mitogen-associated protein kinase (MAPK) pathway inhibitors and immunotherapies have provided substantial benefits to patients with melanoma. However, long-term therapeutic efficacy has been limited due to emergence of treatment resistance. Despite the identification of several molecular mechanisms underlying the development of resistant phenotypes, significant progress has still not been made toward the effective treatment of drug-resistant melanoma. Therefore, the identification of new targets and mechanisms driving drug resistance in melanoma represents an unmet medical need. In this study, we performed unbiased RNA-sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq) to identify new targets and mechanisms that drive resistance to MAPK pathway inhibitors targeting BRAF and MAPK kinase (MEK) in BRAF-mutant melanoma cells. An integrative analysis of ATAC-seq combined with RNA-seq showed that global changes in chromatin accessibility affected the mRNA expression levels of several known and novel genes, which consequently modulated multiple oncogenic signaling pathways to promote resistance to MAPK pathway inhibitors in melanoma cells. Many of these genes were also associated with prognosis predictions in melanoma patients. This study resulted in the identification of new genes and signaling pathways that might be targeted to treat MEK or BRAF inhibitors resistant melanoma patients. The present study applied new and advanced approaches to identify unique changes in chromatin accessibility regions that modulate gene expression associated with pathways to promote the development of resistance to MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Kiran Kumar Reddi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Praveen Guruvaiah
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yvonne J. K. Edwards
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Abstract
B-Raf is a protein kinase participating to the regulation of many biological processes in cells. Several studies have demonstrated that this protein is frequently upregulated in human cancers, especially when it bears activating mutations. In the last years, few ATP-competitive inhibitors of B-Raf have been marketed for the treatment of melanoma and are currently under clinical evaluation on a variety of other types of cancer. Although the introduction of drugs targeting B-Raf has provided significant advances in cancer treatment, responses to ATP-competitive inhibitors remain limited, mainly due to selectivity issues, side effects, narrow therapeutic windows, and the insurgence of drug resistance. Impressive research efforts have been made so far towards the identification of novel ATP-competitive modulators with improved efficacy against cancers driven by mutant Raf monomers and dimers, some of them showing good promises. However, several limitations could still be envisioned for these compounds, according to literature data. Besides, increased attentions have arisen around approaches based on the design of allosteric modulators, polypharmacology, proteolysis targeting chimeras (PROTACs) and drug repurposing for the targeting of B-Raf proteins. The design of compounds acting through such innovative mechanisms is rather challenging. However, valuable therapeutic opportunities can be envisioned on these drugs, as they act through innovative mechanisms in which limitations typically observed for approved ATP-competitive B-Raf inhibitors are less prone to emerge. In this article, current approaches adopted for the design of non-ATP competitive inhibitors targeting B-Raf are described, discussing also on the possibilities, ligands acting through such innovative mechanisms could provide for the obtainment of more effective therapies.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| |
Collapse
|
19
|
Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Yan N, Guo S, Zhang H, Zhang Z, Shen S, Li X. BRAF-Mutated Non-Small Cell Lung Cancer: Current Treatment Status and Future Perspective. Front Oncol 2022; 12:863043. [PMID: 35433454 PMCID: PMC9008712 DOI: 10.3389/fonc.2022.863043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
V-Raf murine sarcoma viral oncogene homolog B (BRAF) kinase, which was encoded by BRAF gene, plays critical roles in cell signaling, growth, and survival. Mutations in BRAF gene will lead to cancer development and progression. In non-small cell lung cancer (NSCLC), BRAF mutations commonly occur in never-smokers, women, and aggressive histological types and accounts for 1%-2% of adenocarcinoma. Traditional chemotherapy presents limited efficacy in BRAF-mutated NSCLC patients. However, the advent of targeted therapy and immune checkpoint inhibitors (ICIs) have greatly altered the treatment pattern of NSCLC. However, ICI monotherapy presents limited activity in BRAF-mutated patients. Hence, the current standard treatment of choice for advanced NSCLC with BRAF mutations are BRAF-targeted therapy. However, intrinsic or extrinsic mechanisms of resistance to BRAF-directed tyrosine kinase inhibitors (TKIs) can emerge in patients. Hence, there are still some problems facing us regarding BRAF-mutated NSCLC. In this review, we summarized the BRAF mutation types, the diagnostic challenges that BRAF mutations present, the strategies to treatment for BRAF-mutated NSCLC, and resistance mechanisms of BRAF-targeted therapy.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | - Xingya Li
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Sasame J, Ikegaya N, Kawazu M, Natsumeda M, Hayashi T, Isoda M, Satomi K, Tomiyama A, Oshima A, Honma H, Miyake Y, Takabayashi K, Nakamura T, Ueno T, Matsushita Y, Iwashita H, Kanemaru Y, Murata H, Ryo A, Terashima K, Yamanaka S, Fujii Y, Mano H, Komori T, Ichimura K, Cahill DP, Wakimoto H, Yamamoto T, Tateishi K. HSP90 inhibition overcomes resistance to molecular targeted therapy in BRAFV600E mutant high-grade glioma. Clin Cancer Res 2022; 28:2425-2439. [PMID: 35344043 DOI: 10.1158/1078-0432.ccr-21-3622] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular targeted therapy using BRAF and/or MEK inhibitors has been applied to BRAFV600E mutant high-grade gliomas (HGGs); however, the therapeutic effect is limited by the emergence of drug resistance. EXPERIMENTAL DESIGN We established multiple paired BRAFV600E mutant HGG patient-derived xenograft (PDX) models based on tissues collected prior to and at relapse after molecular targeted therapy. Using these models, we dissected treatment resistant mechanisms for molecular targeted therapy and explored therapeutic targets to overcome resistance in BRAFV600E HGG models in vitro and in vivo. RESULTS We found that, despite causing no major genetic and epigenetic changes, BRAF and/or MEK inhibitor treatment deregulated multiple negative feedback mechanisms, which led to the re-activation of the MAPK pathway through c-Raf and AKT signaling. This altered oncogenic signaling primarily mediated resistance to molecular targeted therapy in BRAFV600E mutant HGG. To overcome this resistance mechanism, we performed a high-throughput drug screening to identify therapeutic agents that potently induce additive cytotoxicity with BRAF and MEK inhibitors. We discovered that HSP90 inhibition combined with BRAF/MEK inhibition coordinately deactivated the MAPK and AKT/mTOR pathways, and subsequently induced apoptosis via dephosphorylation of GSK3β (Ser9) and inhibition of Bcl-2 family proteins. This mediated potent cytotoxicity in vitro and in vivo in refractory models with acquired resistance to molecular-targeted therapy. CONCLUSIONS The combination of an HSP90 inhibitor with BRAF or MEK inhibitors can overcome the limitations of the current therapeutic strategies for BRAFV600E mutant HGG.
Collapse
Affiliation(s)
- Jo Sasame
- Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Toshihide Ueno
- National Cancer Center Research Institute, Tokyo, Tokyo, Japan
| | | | | | | | | | | | - Keita Terashima
- National Center For Child Health and Development, Tokyo, Japan
| | | | - Yukihiko Fujii
- Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | | | | | | | - Daniel P Cahill
- Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Hiroaki Wakimoto
- Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | | | | |
Collapse
|
22
|
Wang D, Fu Z, Gao L, Zeng J, Xiang Y, Zhou L, Tong X, Wang XQ, Lu J. Increased IRF9-STAT2 signaling leads to adaptive resistance toward targeted therapy in melanoma by restraining GSDME-dependent pyroptosis. J Invest Dermatol 2022; 142:2476-2487.e9. [PMID: 35148998 DOI: 10.1016/j.jid.2022.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022]
Abstract
Melanoma is the leading cause of cutaneous malignancy death. BRAF inhibitors (BRAFis) have been developed as target therapies because nearly half of melanoma patients have activating mutations in the BRAF oncogene. However, the fast-developed resistance of BRAFis limits its treatment efficacy. Understanding the molecular mechanism of resistance is vital to increase the success of clinical treatment. We searched three datasets (GSE42872, GSE52882, and GSE106321) from the Gene Expression Omnibus (GEO), which analyzed the mRNA expression profile in melanoma cells under BRAFis treatment, and the differentially expressed genes (DEGs) were identified. Among all the DEGs, increased expression of IRF9 and STAT2 was distinguished and verified to be upregulated in BRAFis-treated melanoma cells. Furthermore, IRF9 or STAT2 overexpression led to less sensitivity, while IRF9 or STAT2 knockdown increased sensitivity to BRAFis treatment. In a subcutaneous xenograft tumor model, we demonstrated that IRF9 or STAT2 overexpression slowed BRAFis-induced tumor shrank, but IRF9 or STAT2 knockdown led to BRAFis-induced tumor shrank more quickly. More interestingly, we discovered that IRF9-STAT2 signaling controlled GSDME-dependent pyroptosis by restoring GSDME transcription. These results suggest that targeting IRF9/STAT2 may lead to more promising effective treatments to prevent melanoma resistance to BRAFis by inducing pyroptosis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Zhibing Fu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Lihua Gao
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Yaping Xiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Xiao-Qi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China.
| |
Collapse
|
23
|
Lin YF, Liu JJ, Chang YJ, Yu CS, Yi W, Lane HY, Lu CH. Predicting Anticancer Drug Resistance Mediated by Mutations. Pharmaceuticals (Basel) 2022; 15:ph15020136. [PMID: 35215249 PMCID: PMC8878306 DOI: 10.3390/ph15020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer drug resistance presents a challenge for precision medicine. Drug-resistant mutations are always emerging. In this study, we explored the relationship between drug-resistant mutations and drug resistance from the perspective of protein structure. By combining data from previously identified drug-resistant mutations and information of protein structure and function, we used machine learning-based methods to build models to predict cancer drug resistance mutations. The performance of our combined model achieved an accuracy of 86%, a Matthews correlation coefficient score of 0.57, and an F1 score of 0.66. We have constructed a fast, reliable method that predicts and investigates cancer drug resistance in a protein structure. Nonetheless, more information is needed concerning drug resistance and, in particular, clarification is needed about the relationships between the drug and the drug resistance mutations in proteins. Highly accurate predictions regarding drug resistance mutations can be helpful for developing new strategies with personalized cancer treatments. Our novel concept, which combines protein structure information, has the potential to elucidate physiological mechanisms of cancer drug resistance.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Jia-Jun Liu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Chin-Sheng Yu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40201, Taiwan;
| | - Wei Yi
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Psychiatry, China Medical University Hospital, Taichung 40402, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl ester as ATP-competitive inhibitors of BRAF: A bioinformatics study. Curr Res Struct Biol 2022; 3:301-311. [PMID: 35028596 PMCID: PMC8714769 DOI: 10.1016/j.crstbi.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Serine/threonine-protein kinase B-raf (BRAF) plays a significant role in regulating cell division and proliferation through MAPK/ERK pathway. The constitutive expression of wild-type BRAF (BRAFWT) and its mutant forms, especially V600E (BRAFV600E), has been linked to multiple cancers. Various synthetic drugs have been approved and are in clinical trials, but most of them are reported to become ineffective within a short duration. Therefore, combinational therapy involving multiple drugs are often recruited for cancer treatment. However, they lead to toxicity and adverse side effects. In this computational study, we have investigated three natural compounds, namely Withaferin-A (Wi-A), Withanone (Wi-N) and Caffeic Acid Phenethyl ester (CAPE) for anti-BRAFWT and anti-BRAFV600E activity. We found that these compounds could bind stably at ATP-binding site in both BRAFWT and BRAFV600E proteins. In-depth analysis revealed that these compounds maintained the active conformation of wild-type BRAF protein by inducing αC-helix-In, DFG-In, extended activation segment and well-aligned R-spine residues similar to already known drugs Vemurafenib (VEM), BGB283 and Ponatinib. In terms of binding energy, among the natural compounds, CAPE showed better affinity towards both wild-type and V600E mutant proteins than the other two compounds. These data suggested that CAPE, Wi-A and Wi-N have potential to block constitutive autophosphorylation of BRAF and hence warrant in vitro and in vivo experimental validation. Out of all the human cancers approximately 8% involve BRAF mutations. The 40–50% of the commercialized drugs in the market are from the natural sources or inspired by it. Three natural compounds Withaferin-A , Withanone and Caffeic acid phenethyl ester (CAPE) have been studied against BRAF. CAPE binds with higher binding affinity with BRAF wild type protein and BRAF V600E mutant protein than other natural compounds.
Collapse
|
25
|
Enhancing Therapeutic Approaches for Melanoma Patients Targeting Epigenetic Modifiers. Cancers (Basel) 2021; 13:cancers13246180. [PMID: 34944799 PMCID: PMC8699560 DOI: 10.3390/cancers13246180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Melanoma is the least common but deadliest type of skin cancer. Melanomagenesis is driven by a series of mutations and epigenetic alterations in oncogenes and tumor suppressor genes that allow melanomas to grow, evolve, and metastasize. Epigenetic alterations can also lead to immune evasion and development of resistance to therapies. Although the standard of care for melanoma patients includes surgery, targeted therapies, and immune checkpoint blockade, other therapeutic approaches like radiation therapy, chemotherapy, and immune cell-based therapies are used for patients with advanced disease or unresponsive to the conventional first-line therapies. Targeted therapies such as the use of BRAF and MEK inhibitors and immune checkpoint inhibitors such as anti-PD-1 and anti-CTLA4 only improve the survival of a small subset of patients. Thus, there is an urgent need to identify alternative standalone or combinatorial therapies. Epigenetic modifiers have gained attention as therapeutic targets as they modulate multiple cellular and immune-related processes. Due to melanoma's susceptibility to extrinsic factors and reversible nature, epigenetic drugs are investigated as a therapeutic avenue and as adjuvants for targeted therapies and immune checkpoint inhibitors, as they can sensitize and/or reverse resistance to these therapies, thus enhancing their therapeutic efficacy. This review gives an overview of the role of epigenetic changes in melanoma progression and resistance. In addition, we evaluate the latest advances in preclinical and clinical research studying combinatorial therapies and discuss the use of epigenetic drugs such as HDAC and DNMT inhibitors as potential adjuvants for melanoma patients.
Collapse
|
26
|
Bhattarai PY, Kim G, Poudel M, Lim SC, Choi HS. METTL3 induces PLX4032 resistance in melanoma by promoting m 6A-dependent EGFR translation. Cancer Lett 2021; 522:44-56. [PMID: 34530048 DOI: 10.1016/j.canlet.2021.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Acquired resistance often limits therapeutic efficacy of the BFAF (V600E) kinase inhibitor PLX4032 in patients with advanced melanoma. Epitranscriptomic modification of mRNAs by N6-methyladenosine (m6A) modification contributes to melanoma pathogenesis; however, its role in acquired PLX4032 resistance remains unexplored. Here, we showed that m6A methyltransferase METTL3 expression is upregulated in A375R cells, a PLX4032-resistant subline of A375 melanoma cells, compared with the parental cells. Moreover, METTL3 increased the m6A modification of epidermal growth factor receptor (EGFR) mRNA in A375R cells, which promoted its translation efficiency. In turn, increased EGFR expression facilitated rebound activation of the RAF/MEK/ERK pathway in A375R cells, inducing PLX4032 resistance. In contrast, knockout of METTL3 in A375R cells reduced EGFR expression and restored PLX4032 sensitivity. PLX4032 treatment following METTL3 knockout induced apoptosis and reduced colony formation in A375R cells and reduced A375R cell-derived tumor growth in BALB/c nude mice. These findings indicate that METTL3 promotes rebound activation of the RAF/MEK/ERK pathway through EGFR upregulation and highlight a critical role for METTL3-induced m6A modification in acquired PLX4032 resistance in melanoma, implicating METTL3 as a potential candidate for targeted chemotherapy.
Collapse
Affiliation(s)
| | - Garam Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Muna Poudel
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
27
|
Huang C, Radi RH, Arbiser JL. Mitochondrial Metabolism in Melanoma. Cells 2021; 10:cells10113197. [PMID: 34831420 PMCID: PMC8618235 DOI: 10.3390/cells10113197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma and its associated alterations in cellular pathways have been growing areas of interest in research, especially as specific biological pathways are being elucidated. Some of these alterations include changes in the mitochondrial metabolism in melanoma. Many mitochondrial metabolic changes lead to differences in the survivability of cancer cells and confer resistance to targeted therapies. While extensive work has gone into characterizing mechanisms of resistance, the role of mitochondrial adaptation as a mode of resistance is not completely understood. In this review, we wish to explore mitochondrial metabolism in melanoma and how it impacts modes of resistance. There are several genes that play a major role in melanoma mitochondrial metabolism which require a full understanding to optimally target melanoma. These include BRAF, CRAF, SOX2, MCL1, TRAP1, RHOA, SRF, SIRT3, PTEN, and AKT1. We will be discussing the role of these genes in melanoma in greater detail. An enhanced understanding of mitochondrial metabolism and these modes of resistance may result in novel combinatorial and sequential therapies that may lead to greater therapeutic benefit.
Collapse
Affiliation(s)
- Christina Huang
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Rakan H. Radi
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Jack L. Arbiser
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-(404)-727-5063; Fax: +1-(404)-727-0923
| |
Collapse
|
28
|
Bouchè V, Aldegheri G, Donofrio CA, Fioravanti A, Roberts-Thomson S, Fox SB, Schettini F, Generali D. BRAF Signaling Inhibition in Glioblastoma: Which Clinical Perspectives? Front Oncol 2021; 11:772052. [PMID: 34804975 PMCID: PMC8595319 DOI: 10.3389/fonc.2021.772052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
IDH-wild type (wt) glioblastoma (GB) accounts for approximately 90% of all GB and has a poor outcome. Surgery and adjuvant therapy with temozolomide and radiotherapy is the main therapeutic approach. Unfortunately, after relapse and progression, which occurs in most cases, there are very limited therapeutic options available. BRAF which plays a role in the oncogenesis of several malignant tumors, is also involved in a small proportion of IDH-wt GB. Previous successes with anti-B-Raf targeted therapy in tumors with V600E BRAF mutation like melanoma, combined with the poor prognosis and paucity of therapeutic options for GB patients is leading to a growing interest in the potential efficacy of this approach. This review is thus focused on dissecting the state of the art and future perspectives on BRAF pathway inhibition in IDH-wt GB. Overall, clinical efficacy is mostly described within case reports and umbrella trials, with promising but still insufficient results to draw more definitive conclusions. Further studies are needed to better define the molecular and phenotypic features that predict for a favorable response to treatment. In addition, limitations of B-Raf-inhibitors, in monotherapy or in combination with other therapeutic partners, to penetrate the blood-brain barrier and the development of acquired resistance mechanisms responsible for tumor progression need to be addressed.
Collapse
Affiliation(s)
- Victoria Bouchè
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Giovanni Aldegheri
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Carmine Antonio Donofrio
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Antonio Fioravanti
- Medical Oncology and Translational Research Unit, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| | | | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
- Unit of Neurosurgery, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| |
Collapse
|
29
|
Cai C, Yunusa I, Tarhini A. Estimated Cost-effectiveness of Atezolizumab Plus Cobimetinib and Vemurafenib for Treatment of BRAF V600 Variation Metastatic Melanoma. JAMA Netw Open 2021; 4:e2132262. [PMID: 34762112 PMCID: PMC8586909 DOI: 10.1001/jamanetworkopen.2021.32262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPORTANCE In the IMspire150 trial, triplet treatment with atezolizumab and vemurafenib plus cobimetinib significantly improved progression-free survival (PFS) compared with vemurafenib plus cobimetinib alone for treatment of BRAF V600 variation metastatic melanoma. However, considering high cost of this combination, it is unclear if the incremental cost is worth the additional survival benefit. OBJECTIVE To evaluate the cost-effectiveness of atezolizumab and vemurafenib plus cobimetinib vs vemurafenib plus cobimetinib alone in patients with newly diagnosed unresectable BRAF V600 variation metastatic melanoma from the US health care perspective. DESIGN, SETTING, AND PARTICIPANTS This economic evaluation study used a 3-state partitioned survival model to assess the cost-effectiveness of the combination of atezolizumab with vemurafenib plus cobimetinib vs vemurafenib plus cobimetinib alone. The observed Kaplan-Meier curves for overall survival and PFS were digitized from the IMspire150 trial (January 2017-April 2018) and the long-term survivals (over a lifetime horizon) beyond the end of the trial were extrapolated using 7 different survival models. The cost and health preference data were collected from a literature review. This study was performed from March 2021 through June 2021. MAIN OUTCOMES AND MEASURES The outcomes of interest were expected life-years (LYs) gained and quality-adjusted life-years (QALYs), costs, and incremental cost-effectiveness ratio (ICER), expressed as cost per LYs and per QALYs saved. RESULTS Adding atezolizumab to vemurafenib and cobimetinib provided an additional 3.267 QALYs compared with the doublet regimen of vemurafenib plus cobimetinib, at an ICER of $271 669 per QALY, which is not considered cost-effective at the willingness-to-pay threshold of $150 000 per QALY. However, the scenario analyses found that atezolizumab combined with vemurafenib plus cobimetinib could be cost-effective at 20-year (ICER, $121 432 per QALY) and 30-year ($98 092 per QALY) time horizons when both strategies were stopped after 2 years of treatments, and over a lifetime horizon ($122 220 per QALY) when only immunotherapy with atezolizumab was stopped after 2 years of treatment. CONCLUSIONS AND RELEVANCE These findings suggest that the atezolizumab and vemurafenib plus cobimetinib regimen provides significant survival benefits over vemurafenib plus cobimetinib alone, and a price reduction would be encouraged to maximize the value of its survival gain.
Collapse
Affiliation(s)
- Chao Cai
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia
| | - Ismaeel Yunusa
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia
| | - Ahmad Tarhini
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Immunology, Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
30
|
Motwani J, Eccles MR. Genetic and Genomic Pathways of Melanoma Development, Invasion and Metastasis. Genes (Basel) 2021; 12:1543. [PMID: 34680938 PMCID: PMC8535311 DOI: 10.3390/genes12101543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Melanoma is a serious form of skin cancer that accounts for 80% of skin cancer deaths. Recent studies have suggested that melanoma invasiveness is attributed to phenotype switching, which is a reversible type of cell behaviour with similarities to epithelial to mesenchymal transition. Phenotype switching in melanoma is reported to be independent of genetic alterations, whereas changes in gene transcription, and epigenetic alterations have been associated with invasiveness in melanoma cell lines. Here, we review mutational, transcriptional, and epigenomic alterations that contribute to tumour heterogeneity in melanoma, and their potential to drive melanoma invasion and metastasis. We also discuss three models that are hypothesized to contribute towards aspects of tumour heterogeneity and tumour progression in melanoma, namely the clonal evolution model, the cancer stem cell model, and the phenotype switching model. We discuss the merits and disadvantages of each model in explaining tumour heterogeneity in melanoma, as a precursor to invasion and metastasis.
Collapse
Affiliation(s)
- Jyoti Motwani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand;
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
31
|
Oncolytic Virotherapy for Melanoma Brain Metastases, a Potential New Treatment Paradigm? Brain Sci 2021; 11:brainsci11101260. [PMID: 34679325 PMCID: PMC8534242 DOI: 10.3390/brainsci11101260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Melanoma brain metastases remain a devastating disease process with poor prognosis. Recently, there has been a surge in studies demonstrating the efficacy of oncolytic virotherapy for brain tumor treatment. Given their specificity and amenability to genetic modification, the authors explore the possible role of oncolytic virotherapy as a potential treatment option for patients with melanoma brain metastases. METHODS A comprehensive literature review including both preclinical and clinical evidence of oncolytic virotherapy for the treatment of melanoma brain metastasis was performed. RESULTS Oncolytic virotherapy, specifically T-VEC (Imlygic™), was approved for the treatment of melanoma in 2015. Recent clinical trials demonstrate promising anti-tumor changes in patients who have received T-VEC; however, there is little evidence for its use in metastatic brain disease based on the existing literature. To date, only two single cases utilizing virotherapy in patients with metastatic brain melanoma have been reported, specifically in patients with treatment refractory disease. Currently, there is not sufficient data to support the use of T-VEC or other viruses for intracranial metastatic melanoma. In developing a virotherapy treatment paradigm for melanoma brain metastases, several factors must be considered, including route of administration, need to bypass the blood-brain barrier, viral tumor infectivity, and risk of adverse events. CONCLUSIONS Evidence for oncolytic virotherapy treatment of melanoma is limited primarily to T-VEC, with a noticeable paucity of data in the literature with respect to brain tumor metastasis. Given the promising findings of virotherapy for other brain tumor types, oncolytic virotherapy has great potential to offer benefits to patients afflicted with melanoma brain metastases and warrants further investigation.
Collapse
|
32
|
Lin CL, Tsai ML, Chen YH, Liu WN, Lin CY, Hsu KW, Huang CY, Chang YJ, Wei PL, Chen SH, Huang LC, Lee CH. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul) 2021; 29:551-561. [PMID: 34031270 PMCID: PMC8411021 DOI: 10.4062/biomolther.2020.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/27/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. Patients with well-differentiated thyroid cancers, such as papillary and follicular cancers, have a favorable prognosis. However, poorly differentiated thyroid cancers, such as medullary, squamous and anaplastic advanced thyroid cancers, are very aggressive and insensitive to radioiodine treatment. Thus, novel therapies that attenuate metastasis are urgently needed. We found that both PDGFC and PDGFRA are predominantly expressed in thyroid cancers and that the survival rate is significantly lower in patients with high PDGFRA expression. This finding indicates the important role of PDGF/PDGFR signaling in thyroid cancer development. Next, we established a SW579 squamous thyroid cancer cell line with 95.6% PDGFRA gene insertion and deletions (indels) through CRISPR/Cas9. Protein and invasion analysis showed a dramatic loss in EMT marker expression and metastatic ability. Furthermore, xenograft tumors derived from PDGFRA gene-edited SW579 cells exhibited a minor decrease in tumor growth. However, distant lung metastasis was completely abolished upon PDGFRA gene editing, implying that PDGFRA could be an effective target to inhibit distant metastasis in advanced thyroid cancers. To translate this finding to the clinic, we used the most relevant multikinase inhibitor, imatinib, to inhibit PDGFRA signaling. The results showed that imatinib significantly suppressed cell growth, induced cell cycle arrest and cell death in SW579 cells. Our developed noninvasive apoptosis detection sensor (NIADS) indicated that imatinib induced cell apoptosis through caspase-3 activation. In conclusion, we believe that developing a specific and selective targeted therapy for PDGFRA would effectively suppress PDGFRA-mediated cancer aggressiveness in advanced thyroid cancers.
Collapse
Affiliation(s)
- Ching-Ling Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan.,Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei 10630, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Lin Tsai
- Department of General Surgery, Cathay General Hospital, Taipei 10630, Taiwan
| | - Yu-Hsin Chen
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan.,Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei 10630, Taiwan.,Department of Cytology, Cathay General Hospital, Taipei 10630, Taiwan
| | - Wei-Ni Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kai-Wen Hsu
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan.,Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Shu-Huey Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Li-Chi Huang
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan.,Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei 10630, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Ph. D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
33
|
Yang Z, Ho YY. Modeling dynamic correlation in zero-inflated bivariate count data with applications to single-cell RNA sequencing data. Biometrics 2021; 78:766-776. [PMID: 33720414 PMCID: PMC8477913 DOI: 10.1111/biom.13457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Interactions between biological molecules in a cell are tightly coordinated and often highly dynamic. As a result of these varying signaling activities, changes in gene coexpression patterns could often be observed. The advancements in next‐generation sequencing technologies bring new statistical challenges for studying these dynamic changes of gene coexpression. In recent years, methods have been developed to examine genomic information from individual cells. Single‐cell RNA sequencing (scRNA‐seq) data are count‐based, and often exhibit characteristics such as overdispersion and zero inflation. To explore the dynamic dependence structure in scRNA‐seq data and other zero‐inflated count data, new approaches are needed. In this paper, we consider overdispersion and zero inflation in count outcomes and propose a ZEro‐inflated negative binomial dynamic COrrelation model (ZENCO). The observed count data are modeled as a mixture of two components: success amplifications and dropout events in ZENCO. A latent variable is incorporated into ZENCO to model the covariate‐dependent correlation structure. We conduct simulation studies to evaluate the performance of our proposed method and to compare it with existing approaches. We also illustrate the implementation of our proposed approach using scRNA‐seq data from a study of minimal residual disease in melanoma.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Statistics, University of South Carolina, Columbia, South Carolina, USA
| | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
34
|
Hao X, Falo Iii LD, Chen G, Zhang J, Carey CD, Storkus WJ, Falo LD, You Z. Skin immunization for effective treatment of multifocal melanoma refractory to PD1 blockade and Braf inhibitors. J Immunother Cancer 2021; 9:jitc-2020-001179. [PMID: 33408093 PMCID: PMC7789470 DOI: 10.1136/jitc-2020-001179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background Despite the remarkable benefits associated with the interventional treatment of melanomas (and other solid cancers) with immune checkpoint and Braf inhibitors (Brafi), most patients ultimately progress on therapy. The presence of multifocal/disseminated disease in patients increases their mortality risk. Hence, the development of novel strategies to effectively treat patients with melanomas that are resistant to anti-PD1 mAb (αPD1) and/or Brafi, particularly those with multifocal/disseminated disease remains a major unmet clinical need. Methods Mice developing induced/spontaneous BrafV600E/Pten−/− melanomas were treated by cutaneous immunization with a DNA vaccine encoding the melanoma-associated antigen TRP2, with Brafi or αPD1 alone, or with a combination of these treatments. Tumor progression, tumor-infiltration by CD4+ and CD8+ T cells, and the development of TRP2-specific CD8+ T cells were then monitored over time. Results Vaccination led to durable antitumor immunity against PD1/Brafi-resistant melanomas in both single lesion and multifocal disease models, and it sensitized PD1-resistant melanomas to salvage therapy with αPD1. The therapeutic efficacy of the vaccine was associated with host skin-resident cells, the induction of a systemic, broadly reactive IFNγ+CD8+ T cell repertoire, increased frequencies of CD8+ TIL and reduced levels of PD1hi/intCD8+ T cells. Extended survival was associated with improved TIL functionality, exemplified by the presence of enhanced levels of IFNγ+CD8+ TIL and IL2+CD4+ TIL. Conclusions These data support the use of a novel genetic vaccine for the effective treatment of localized or multifocal melanoma refractory to conventional αPD1-based and/or Brafi-based (immune)therapy.
Collapse
Affiliation(s)
- Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Louis D Falo Iii
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Guo Chen
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA.,The University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, Pennsylvania, USA.,The University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoyang You
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Babbitt GA, Lynch ML, McCoy M, Fokoue EP, Hudson AO. Function and evolution of B-Raf loop dynamics relevant to cancer recurrence under drug inhibition. J Biomol Struct Dyn 2020; 40:468-483. [DOI: 10.1080/07391102.2020.1815578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Miranda L. Lynch
- Hauptmann-Woodward Medical Research Institute, Buffalo, New York, USA
| | - Matthew McCoy
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - Ernest P. Fokoue
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
36
|
Autocrine Signaling of NRP1 Ligand Galectin-1 Elicits Resistance to BRAF-Targeted Therapy in Melanoma Cells. Cancers (Basel) 2020; 12:cancers12082218. [PMID: 32784465 PMCID: PMC7463444 DOI: 10.3390/cancers12082218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma cells addicted to mutated BRAF oncogene activity can be targeted by specific kinase inhibitors until they develop resistance to therapy. We observed that the expression of Galectin-1 (Gal-1), a soluble ligand of Neuropilin-1 (NRP1), is upregulated in melanoma tumor samples and melanoma cells resistant to BRAF-targeted therapy. We then demonstrated that Gal-1 is a novel driver of resistance to BRAF inhibitors in melanoma and that its activity is linked to the concomitant upregulation of the NRP1 receptor observed in drug-resistant cells. Mechanistically, Gal-1 sustains increased expression of NRP1 and EGFR in drug-resistant melanoma cells. Moreover, consistent with its role as a NRP1 ligand, Gal-1 negatively controls p27 levels, a mechanism previously found to enable EGFR upregulation in cancer cells. Finally, the combined treatment with a Gal-1 inhibitor and a NRP1 blocking drug enabled resistant melanoma cell resensitization to BRAF-targeted therapy. In summary, we found that the activation of Galectin-1/NRP1 autocrine signaling is a new mechanism conferring independence from BRAF kinase activity to oncogene-addicted melanoma cells.
Collapse
|
37
|
Bugide S, Parajuli KR, Chava S, Pattanayak R, Manna DLD, Shrestha D, Yang ES, Cai G, Johnson DB, Gupta R. Loss of HAT1 expression confers BRAFV600E inhibitor resistance to melanoma cells by activating MAPK signaling via IGF1R. Oncogenesis 2020; 9:44. [PMID: 32371878 PMCID: PMC7200761 DOI: 10.1038/s41389-020-0228-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
BRAF inhibitors (BRAFi) have been approved for the clinical treatment of BRAF-mutant metastatic melanoma. Although initial responses to BRAFi are generally favorable, acquired BRAFi resistance emerges rapidly, resulting in treatment failure. Only some of the underlying mechanisms responsible for BRAFi resistance are currently understood. Here, we showed that the genetic inhibition of histone acetyltransferase 1 (HAT1) in BRAF-mutant melanoma cells resulted in BRAFi resistance. Using quantitative immunofluorescence analysis of patient sample pairs, consisting of pre-treatment along with matched progressed BRAFi + MEKi-treated melanoma samples, HAT1 downregulation was observed in 7/11 progressed samples (~63%) in comparison with pre-treated samples. Employing NanoString-based nCounter PanCancer Pathway Panel-based gene expression analysis, we identified increased MAPK, Ras, transforming growth factor (TGF)-β, and Wnt pathway activation in HAT1 expression inhibited cells. We further found that MAPK pathway activation following the loss of HAT1 expression was partially driven by increased insulin growth factor 1 receptor (IGF1R) signaling. We showed that both MAPK and IGF1R pathway inhibition, using the ERK inhibitor SCH772984 and the IGF1R inhibitor BMS-754807, respectively, restored BRAFi sensitivity in melanoma cells lacking HAT1. Collectively, we show that the loss of HAT1 expression confers acquired BRAFi resistance by activating the MAPK signaling pathway via IGF1R.
Collapse
Affiliation(s)
- Suresh Bugide
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Keshab Raj Parajuli
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Suresh Chava
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Rudradip Pattanayak
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Deborah L. Della Manna
- grid.265892.20000000106344187Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Deepmala Shrestha
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Eddy S. Yang
- grid.265892.20000000106344187Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Guoping Cai
- grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Douglas B. Johnson
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240 USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35322, USA.
| |
Collapse
|
38
|
Hastings JF, O'Donnell YEI, Fey D, Croucher DR. Applications of personalised signalling network models in precision oncology. Pharmacol Ther 2020; 212:107555. [PMID: 32320730 DOI: 10.1016/j.pharmthera.2020.107555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
As our ability to provide in-depth, patient-specific characterisation of the molecular alterations within tumours rapidly improves, it is becoming apparent that new approaches will be required to leverage the power of this data and derive the full benefit for each individual patient. Systems biology approaches are beginning to emerge within this field as a potential method of incorporating large volumes of network level data and distilling a coherent, clinically-relevant prediction of drug response. However, the initial promise of this developing field is yet to be realised. Here we argue that in order to develop these precise models of individual drug response and tailor treatment accordingly, we will need to develop mathematical models capable of capturing both the dynamic nature of drug-response signalling networks and key patient-specific information such as mutation status or expression profiles. We also review the modelling approaches commonly utilised within this field, and outline recent examples of their use in furthering the application of systems biology for a precision medicine approach to cancer treatment.
Collapse
Affiliation(s)
- Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
39
|
Madorsky Rowdo FP, Barón A, Gallagher SJ, Hersey P, Emran AA, Von Euw EM, Barrio MM, Mordoh J. Epigenetic inhibitors eliminate senescent melanoma BRAFV600E cells that survive long‑term BRAF inhibition. Int J Oncol 2020; 56:1429-1441. [PMID: 32236593 PMCID: PMC7170042 DOI: 10.3892/ijo.2020.5031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
It is estimated that ~50% of patients with melanoma harbour B‑Raf (BRAF)V600 driver mutations, with the most common of these being BRAFV600E, which leads to the activation of mitogen‑activated protein kinase proliferative and survival pathways. BRAF inhibitors are used extensively to treat BRAF‑mutated metastatic melanoma; however, acquired resistance occurs in the majority of patients. The effects of long‑term treatment with PLX4032 (BRAFV600 inhibitor) were studied in vitro on sensitive V600E BRAF‑mutated melanoma cell lines. After several weeks of treatment with PLX4032, the majority of the melanoma cells died; however, a proportion of cells remained viable and quiescent, presenting senescent cancer stem cell‑like characteristics. This surviving population was termed SUR cells, as discontinuing treatment allowed the population to regrow while retaining equal drug sensitivity to that of parental cells. RNA sequencing analysis revealed that SUR cells exhibit changes in the expression of 1,415 genes (P<0.05) compared with parental cells. Changes in the expression levels of a number of epigenetic regulators were also observed. These changes and the reversible nature of the senescence state were consistent with epigenetic regulation; thus, it was investigated as to whether the senescent state could be reversed by epigenetic inhibitors. It was found that both parental and SUR cells were sensitive to different histone deacetylase (HDAC) inhibitors, such as SAHA and MGCD0103, and to the cyclin‑dependent kinase (CDK)9 inhibitor, CDKI‑73, which induced apoptosis and reduced proliferation both in the parental and SUR populations. The results suggested that the combination of PLX4032 with HDAC and CDK9 inhibitors may achieve complete elimination of SUR cells that persist after BRAF inhibitor treatment, and reduce the development of resistance to BRAF inhibitors.
Collapse
Affiliation(s)
- Florencia Paula Madorsky Rowdo
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| | - Antonela Barón
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| | - Stuart John Gallagher
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Erika M Von Euw
- Department of Medicine, Division of Hematology‑Oncology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA
| | - María Marcela Barrio
- Oncology Research Center‑Cancer Foundation (FUCA), Buenos Aires C1426 ANZ, Argentina
| | - José Mordoh
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| |
Collapse
|
40
|
Friedman A, Siewe N. Overcoming Drug Resistance to BRAF Inhibitor. Bull Math Biol 2020; 82:8. [PMID: 31933021 DOI: 10.1007/s11538-019-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022]
Abstract
One of the most frequently found mutations in human melanomas is in the B-raf gene, making its protein BRAF a key target for therapy. However, in patients treated with BRAF inhibitor (BRAFi), although the response is very good at first, relapse occurs within 6 months, on the average. In order to overcome this drug resistance to BRAFi, various combinations of BRAFi with other drugs have been explored, and some are being applied clinically, such as a combination of BRAF and MEK inhibitors. Experimental data for melanoma in mice show that under continuous treatment with BRAFi, the pro-cancer MDSCs and chemokine CCL2 initially decrease but eventually increase to above their original level, while the anticancer T cells continuously decrease. In this paper, we develop a mathematical model that explains these experimental results. The model is used to explore the efficacy of combinations of BRAFi with anti-CCL2, anti-PD-1 and anti-CTLA-4, with the aim of eliminating or reducing drug resistance to BRAFi.
Collapse
Affiliation(s)
- Avner Friedman
- Mathematical Biosciences Institute & Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nourridine Siewe
- Department of Mathematics, The University of British Columbia Okanagan, Kelowna, BC, Canada.
| |
Collapse
|
41
|
Al-Bedeary S, Getta H, Al-Sharafi D. The hallmarks of cancer and their therapeutic targeting in current use and clinical trials. IRAQI JOURNAL OF HEMATOLOGY 2020. [DOI: 10.4103/ijh.ijh_24_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Jin XY, Chen H, Li DD, Li AL, Wang WY, Gu W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J Enzyme Inhib Med Chem 2019; 34:955-972. [PMID: 31072147 PMCID: PMC6522941 DOI: 10.1080/14756366.2019.1605364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
In this article, a series of novel quinoline derivatives of ursolic acid (UA) bearing hydrazide, oxadiazole, or thiadiazole moieties were designed, synthesised, and screened for their in vitro antiproliferative activities against three cancer cell lines (MDA-MB-231, HeLa, and SMMC-7721). A number of compounds showed significant activity against at least one cell line. Among them, compound 4d exhibited the most potent activity against three cancer cell lines with IC50 values of 0.12 ± 0.01, 0.08 ± 0.01, and 0.34 ± 0.03 μM, respectively. In particular, compound 4d could induce the apoptosis of HeLa cells, arrest cell cycle at the G0/G1 phase, elevate intracellular reactive oxygen species level, and decrease mitochondrial membrane potential. In addition, compound 4d could significantly inhibit MEK1 kinase activity and impede Ras/Raf/MEK/ERK transduction pathway. Therefore, compound 4d may be a potential anticancer agent and a promising lead worthy of further investigation.
Collapse
Affiliation(s)
- Xiao-Yan Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Dong-Dong Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
43
|
ERK Inhibitor LY3214996 Targets ERK Pathway–Driven Cancers: A Therapeutic Approach Toward Precision Medicine. Mol Cancer Ther 2019; 19:325-336. [DOI: 10.1158/1535-7163.mct-19-0183] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022]
|
44
|
Gupta S, Bi WL, Giantini Larsen A, Al-Abdulmohsen S, Abedalthagafi M, Dunn IF. Craniopharyngioma: a roadmap for scientific translation. Neurosurg Focus 2019; 44:E12. [PMID: 29852761 DOI: 10.3171/2018.3.focus1861] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Craniopharyngiomas are among the most challenging of intracranial tumors to manage because of their pattern of growth, associated morbidities, and high recurrence rate. Complete resection on initial encounter can be curative, but it may be impeded by the risks posed by the involved neurovascular structures. Recurrent craniopharyngiomas, in turn, are frequently refractory to additional surgery and adjuvant radiation or chemotherapy. METHODS The authors conducted a review of primary literature. RESULTS Recent advances in the understanding of craniopharyngioma biology have illuminated potential oncogenic targets for pharmacotherapy. Specifically, distinct molecular profiles define two histological subtypes of craniopharyngioma: adamantinomatous and papillary. The discovery of overactive B-Raf signaling in the adult papillary subtype has led to reports of targeted inhibitors, with a growing acceptance for refractory cases. An expanding knowledge of the biological underpinnings of craniopharyngioma will continue to drive development of targeted therapies and immunotherapies that are personalized to the molecular signature of each individual tumor. CONCLUSIONS The rapid translation of genomic findings to medical therapies for recurrent craniopharyngiomas serves as a roadmap for other challenging neurooncological diseases.
Collapse
Affiliation(s)
- Saksham Gupta
- 1Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Wenya Linda Bi
- 1Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Alexandra Giantini Larsen
- 1Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sally Al-Abdulmohsen
- 1Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Malak Abedalthagafi
- 2Saudi Human Genome Laboratory, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ian F Dunn
- 1Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
45
|
Keshava N, Toh TS, Yuan H, Yang B, Menden MP, Wang D. Defining subpopulations of differential drug response to reveal novel target populations. NPJ Syst Biol Appl 2019; 5:36. [PMID: 31602313 PMCID: PMC6776548 DOI: 10.1038/s41540-019-0113-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023] Open
Abstract
Personalised medicine has predominantly focused on genetically altered cancer genes that stratify drug responses, but there is a need to objectively evaluate differential pharmacology patterns at a subpopulation level. Here, we introduce an approach based on unsupervised machine learning to compare the pharmacological response relationships between 327 pairs of cancer therapies. This approach integrated multiple measures of response to identify subpopulations that react differently to inhibitors of the same or different targets to understand mechanisms of resistance and pathway cross-talk. MEK, BRAF, and PI3K inhibitors were shown to be effective as combination therapies for particular BRAF mutant subpopulations. A systematic analysis of preclinical data for a failed phase III trial of selumetinib combined with docetaxel in lung cancer suggests potential indications in pancreatic and colorectal cancers with KRAS mutation. This data-informed study exemplifies a method for stratified medicine to identify novel cancer subpopulations, their genetic biomarkers, and effective drug combinations.
Collapse
Affiliation(s)
| | - Tzen S. Toh
- The Medical School, University of Sheffield, Sheffield, S10 2RX UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ UK
| | - Haobin Yuan
- Department of Computer Science, University of Sheffield, Sheffield, S1 4DP UK
| | - Bingxun Yang
- Department of Computer Science, University of Sheffield, Sheffield, S1 4DP UK
| | - Michael P. Menden
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- German Centre for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Dennis Wang
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ UK
- Department of Computer Science, University of Sheffield, Sheffield, S1 4DP UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, S10 2HQ UK
| |
Collapse
|
46
|
Li M, Liu D, Lee D, Kapoor S, Gibson-Corley KN, Quinn TP, Sagastume EA, Mott SL, Walsh SA, Acevedo MR, Johnson FL, Schultz MK. Enhancing the Efficacy of Melanocortin 1 Receptor-Targeted Radiotherapy by Pharmacologically Upregulating the Receptor in Metastatic Melanoma. Mol Pharm 2019; 16:3904-3915. [PMID: 31318566 DOI: 10.1021/acs.molpharmaceut.9b00512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanocortin 1 receptor (MC1R) is under investigation as a target for drug delivery for metastatic melanoma therapy and imaging. The purpose of this study was to determine the potential of using BRAF inhibitors (BRAFi) and histone deacetylase inhibitors (HDACi) to enhance the delivery of MC1R-targeted radiolabeled peptide ([212Pb]DOTA-MC1L) by pharmacologically upregulating the MC1R expression in metastatic melanoma cells and tumors. MC1R expression was analyzed in de-identified melanoma biopsies by immunohistochemical staining. Upregulation of MC1R expression was determined in BRAFV600E cells (A2058) and BRAF wild-type melanoma cells (MEWO) by quantitative real-time polymerase chain reaction, flow cytometry, and receptor-ligand binding assays. The role of microphthalmia-associated transcription factor (MITF) in the upregulation of MC1R was also examined in A2058 and MEWO cells. The effectiveness of [212Pb]DOTA-MC1L α-particle radiotherapy in combination with BRAFi and/or HDACi was determined in athymic nu/nu mice bearing A2058 and MEWO human melanoma xenografts. High expression of MC1R was observed in situ in clinical melanoma biopsies. BRAFi and HDACi significantly increased the MC1R expression (up to 10-fold in mRNA and 4-fold in protein levels) via MITF-dependent pathways, and this increase led to enhanced ligand binding on the cell surface. Inhibition of MITF expression antagonized the upregulation of MC1R in both BRAFV600E and BRAFWT cells. Combining [212Pb]DOTA-MC1L with BRAFi and/or HDACi improved the tumor response by increasing the delivery of 212Pb α-particle emissions to melanoma tumors via augmented MC1R expression. These data suggest that FDA-approved HDACi and BRAFi could improve the effectiveness of MC1R-targeted therapies by enhancing drug delivery via upregulated MC1R.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas P Quinn
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Edwin A Sagastume
- Viewpoint Molecular Targeting, Inc. , Coralville , Iowa 52241 , United States
| | | | | | | | - Frances L Johnson
- Viewpoint Molecular Targeting, Inc. , Coralville , Iowa 52241 , United States
| | - Michael K Schultz
- Viewpoint Molecular Targeting, Inc. , Coralville , Iowa 52241 , United States
| |
Collapse
|
47
|
Abstract
Supplemental Digital Content is available in the text. The molecular properties of benign melanocytic lesions are poorly understood. Only a few studies have been carried out on specific nevi subtypes, including common nevocellular nevi (NCN) or Spitz nevi (SN). Genomic alterations in melanoma-associated oncogenes are typically absent in SN. In the present study, mRNA expressions of 25 SN and 15 NCN were analyzed. Molecular profiling was performed using the RNA NanoString nCounter Gene Expression Platform (number of genes=770). Marker discovery was performed with a training set consisting of seven SN and seven NCN samples from the same patients, and validation was performed using a second set consisting of 18 SN and eight NCN samples. Using the training set, 197 differentially expressed genes were identified in SN versus NCN. Of these, 74 genes were validated in the validation set (false discovery rate q≤0.13). In addition, using random forest and least absolute shrinkage and selection operator feature selection, a molecular signature of SN versus NCN was identified including 15 top-ranked genes. The present study identified a distinct molecular expression profile in SN compared with NCN, even when lesions were obtained from the same patients. Gene set analysis showed upregulation of gene pathways with increased expression of transcripts related to immunomodulatory, inflammatory, and extracellular matrix interactions as well as angiogenesis-associated processes in SN. These findings strongly indicate that SN represent a distinct group of melanocytic neoplasms and evolve differentially and not sequentially from NCN.
Collapse
|
48
|
Mo X, Preston S, Zaidi MR. Macroenvironment-gene-microenvironment interactions in ultraviolet radiation-induced melanomagenesis. Adv Cancer Res 2019; 144:1-54. [PMID: 31349897 DOI: 10.1016/bs.acr.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is one of the few major cancers that continue to exhibit a positive rate of increase in the developed world. A wealth of epidemiological data has undisputedly implicated ultraviolet radiation (UVR) from sunlight and artificial sources as the major risk factor for melanomagenesis. However, the molecular mechanisms of this cause-and-effect relationship remain murky and understudied. Recent efforts on multiple fronts have brought unprecedented expansion of our knowledge base on this subject and it is now clear that melanoma is caused by a complex interaction between genetic predisposition and environmental exposure, primarily to UVR. Here we provide an overview of the effects of the macroenvironment (UVR) on the skin microenvironment and melanocyte-specific intrinsic (mostly genetic) landscape, which conspire to produce one of the deadliest malignancies.
Collapse
Affiliation(s)
- Xuan Mo
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah Preston
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
49
|
Li S, Song Y, Quach C, Guo H, Jang GB, Maazi H, Zhao S, Sands NA, Liu Q, In GK, Peng D, Yuan W, Machida K, Yu M, Akbari O, Hagiya A, Yang Y, Punj V, Tang L, Liang C. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat Commun 2019; 10:1693. [PMID: 30979895 PMCID: PMC6461621 DOI: 10.1038/s41467-019-09634-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy maintains homeostasis and is induced upon stress. Yet, its mechanistic interaction with oncogenic signaling remains elusive. Here, we show that in BRAFV600E-melanoma, autophagy is induced by BRAF inhibitor (BRAFi), as part of a transcriptional program coordinating lysosome biogenesis/function, mediated by the TFEB transcription factor. TFEB is phosphorylated and thus inactivated by BRAFV600E via its downstream ERK independently of mTORC1. BRAFi disrupts TFEB phosphorylation, allowing its nuclear translocation, which is synergized by increased phosphorylation/inactivation of the ZKSCAN3 transcriptional repressor by JNK2/p38-MAPK. Blockade of BRAFi-induced transcriptional activation of autophagy-lysosomal function in melanoma xenografts causes enhanced tumor progression, EMT-transdifferentiation, metastatic dissemination, and chemoresistance, which is associated with elevated TGF-β levels and enhanced TGF-β signaling. Inhibition of TGF-β signaling restores tumor differentiation and drug responsiveness in melanoma cells. Thus, the "BRAF-TFEB-autophagy-lysosome" axis represents an intrinsic regulatory pathway in BRAF-mutant melanoma, coupling BRAF signaling with TGF-β signaling to drive tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Shun Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ying Song
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hongrui Guo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, 611130, China
| | - Gyu-Beom Jang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shihui Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathaniel A Sands
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushan Hu Road, Hefei, 230031, China
| | - Gino K In
- Norris Comprehensive Cancer, Division of Oncology, University of Southern California, Los Angeles, CA, 90033, USA
| | - David Peng
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ashley Hagiya
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yongfei Yang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Vasu Punj
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
50
|
Cardoso C, Serafim RB, Kawakami A, Gonçalves Pereira C, Vazquez VL, Valente V, Fisher DE, Espreafico EM. The lncRNA RMEL3 protects immortalized cells from serum withdrawal-induced growth arrest and promotes melanoma cell proliferation and tumor growth. Pigment Cell Melanoma Res 2019; 32:303-314. [PMID: 30457212 PMCID: PMC6613776 DOI: 10.1111/pcmr.12751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
RMEL3 is a recently identified lncRNA associated with BRAFV600E mutation and melanoma cell survival. Here, we demonstrate strong and moderate RMEL3 upregulation in BRAF and NRAS mutant melanoma cells, respectively, compared to melanocytes. High expression is also more frequent in cutaneous than in acral/mucosal melanomas, and analysis of an ICGC melanoma dataset showed that mutations in RMEL3 locus are preponderantly C > T substitutions at dipyrimidine sites including CC > TT, typical of UV signature. RMEL3 mutation does not correlate with RMEL3 levels, but does with poor patient survival, in TCGA melanoma dataset. Accordingly, RMEL3 lncRNA levels were significantly reduced in BRAFV600E melanoma cells upon treatment with BRAF or MEK inhibitors, supporting the notion that BRAF-MEK-ERK pathway plays a role to activate RMEL3 gene transcription. RMEL3 overexpression, in immortalized fibroblasts and melanoma cells, increased proliferation and survival under serum starvation, clonogenic ability, and xenografted melanoma tumor growth. Although future studies will be needed to elucidate the mechanistic activities of RMEL3, our data demonstrate that its overexpression bypasses the need of mitogen activation to sustain proliferation/survival of non-transformed cells and suggest an oncogenic role for RMEL3.
Collapse
Affiliation(s)
- Cibele Cardoso
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rodolfo B. Serafim
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristiano Gonçalves Pereira
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vinicius L. Vazquez
- Molecular Oncology Research Center (CPOM) and Melanoma/sarcoma Surgery Department, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Valeria Valente
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, SP, 14800-903, Brazil; Center for Cell-Based Therapy CEPID/FAPESP, Ribeirão Preto, Brazil
| | - David E. Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Enilza M. Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|