1
|
Tao R, Han K, Wu SC, Friske JD, Roussel MF, Northcott PA. Arrested development: the dysfunctional life history of medulloblastoma. Genes Dev 2025; 39:4-17. [PMID: 39231614 PMCID: PMC11789489 DOI: 10.1101/gad.351936.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Medulloblastoma is a heterogeneous embryonal tumor of the cerebellum comprised of four distinct molecular subgroups that differ in their developmental origins, genomic landscapes, clinical presentation, and survival. Recent characterization of the human fetal cerebellum at single-cell resolution has propelled unprecedented insights into the cellular origins of medulloblastoma subgroups, including those underlying previously elusive groups 3 and 4. In this review, the molecular pathogenesis of medulloblastoma is examined through the lens of cerebellar development. In addition, we discuss how enhanced understanding of medulloblastoma origins has the potential to refine disease modeling for the advancement of treatment and outcomes.
Collapse
Affiliation(s)
- Ran Tao
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Katie Han
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jake D Friske
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
2
|
Li M, Han Y, Wang C, Kang W, Jiang W, Zhang L, Tang Y. Dissecting super-enhancer driven transcriptional dependencies reveals novel therapeutic strategies and targets for group 3 subtype medulloblastoma. J Exp Clin Cancer Res 2022; 41:311. [PMID: 36273157 PMCID: PMC9587669 DOI: 10.1186/s13046-022-02506-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medulloblastoma is the most common malignant pediatric brain tumor and group 3 subtype medulloblastoma (G3-MB) exhibits the worst prognosis. Super enhancers (SEs) are large clusters of enhancers that play important roles in cancer through transcriptional control of cell identity genes, oncogenes and tumor-dependent genes. Dissecting SE-driven transcriptional dependencies of cancer leads to identification of novel oncogenic mechanisms, therapeutic strategies and targets. METHODS Integrative SE analyses of primary tissues and patient-derived tumor cell lines of G3-MB were performed to extract the conserved SE-associated gene signatures and their oncogenic potentials were evaluated by gene expression, tumor-dependency and patient prognosis analyses. SE-associated subtype-specific upregulated tumor-dependent genes, which were revealed as members of SE-driven core transcriptional regulatory network of G3-MB, were then subjected to functional validation and mechanistic investigation. SE-associated therapeutic potential was further explored by genetic or pharmaceutical targeting of SE complex components or SE-associated subtype-specific upregulated tumor-dependent genes individually or in combination, and the underlying therapeutic mechanisms were also examined. RESULTS The identified conserved SE-associated transcripts of G3-MB tissues and cell lines were enriched of subtype-specifically upregulated tumor-dependent genes and MB patients harboring enrichment of those transcripts exhibited worse prognosis. Fourteen such conserved SE-associated G3-MB-specific upregulated tumor-dependent genes were identified to be members of SE-driven core transcriptional regulatory network of G3-MB, including three well-recognized TFs (MYC, OTX2 and CRX) and eleven newly identified downstream effector genes (ARL4D, AUTS2, BMF, IGF2BP3, KIF21B, KLHL29, LRP8, MARS1, PSMB5, SDK2 and SSBP3). An OTX2-SE-ARL4D regulatory axis was further revealed to represent a subtype-specific tumor dependency and therapeutic target of G3-MB via contributing to maintaining cell cycle progression and inhibiting neural differentiation of tumor cells. Moreover, BET inhibition with CDK7 inhibition or proteasome inhibition, two combinatory strategies of targeting SE complex components (BRD4, CDK7) or SE-associated effector gene (PSMB5), were shown to exhibit synergistic therapeutic effects against G3-MB via stronger suppression of SE-associated transcription or higher induction of ER stress, respectively. CONCLUSIONS Our study verifies the oncogenic role and therapeutic potential of SE-driven transcriptional dependencies of G3-MB, resulting in better understanding of its tumor biology and identification of novel SE-associated therapeutic strategies and targets.
Collapse
Affiliation(s)
- Meng Li
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Yujie Han
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Chaochen Wang
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, People’s Republic of China
| | - Wenfeng Kang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Wenyan Jiang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Lei Zhang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Yujie Tang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
3
|
Yue J, Hou X, Liu X, Wang L, Gao H, Zhao F, Shi L, Shi L, Yan H, Deng T, Gong J, Wang L, Zhang L. The landscape of chromatin accessibility in skeletal muscle during embryonic development in pigs. J Anim Sci Biotechnol 2021; 12:56. [PMID: 33934724 PMCID: PMC8091695 DOI: 10.1186/s40104-021-00577-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The development of skeletal muscle in pigs during the embryonic stage is precisely regulated by transcriptional mechanisms, which depend on chromatin accessibility. However, how chromatin accessibility plays a regulatory role during embryonic skeletal muscle development in pigs has not been reported. To gain insight into the landscape of chromatin accessibility and the associated genome-wide transcriptome during embryonic muscle development, we performed ATAC-seq and RNA-seq analyses of skeletal muscle from pig embryos at 45, 70 and 100 days post coitus (dpc). RESULTS In total, 21,638, 35,447 and 60,181 unique regions (or peaks) were found across the embryos at 45 dpc (LW45), 70 dpc (LW70) and 100 dpc (LW100), respectively. More than 91% of the peaks were annotated within - 1 kb to 100 bp of transcription start sites (TSSs). First, widespread increases in specific accessible chromatin regions (ACRs) from embryos at 45 to 100 dpc suggested that the regulatory mechanisms became increasingly complicated during embryonic development. Second, the findings from integrated ATAC-seq and RNA-seq analyses showed that not only the numbers but also the intensities of ACRs could control the expression of associated genes. Moreover, the motif screening of stage-specific ACRs revealed some transcription factors that regulate muscle development-related genes, such as MyoG, Mef2c, and Mef2d. Several potential transcriptional repressors, including E2F6, OTX2 and CTCF, were identified among the genes that exhibited different regulation trends between the ATAC-seq and RNA-seq data. CONCLUSIONS This work indicates that chromatin accessibility plays an important regulatory role in the embryonic muscle development of pigs and regulates the temporal and spatial expression patterns of key genes in muscle development by influencing the binding of transcription factors. Our results contribute to a better understanding of the regulatory dynamics of genes involved in pig embryonic skeletal muscle development.
Collapse
Affiliation(s)
- Jingwei Yue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinhua Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ligang Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lijun Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangyu Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hua Yan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianyu Deng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianfei Gong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixian Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Longchao Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Kerschner JL, Paranjapye A, NandyMazumdar M, Yin S, Leir SH, Harris A. OTX2 regulates CFTR expression during endoderm differentiation and occupies 3' cis-regulatory elements. Dev Dyn 2021; 250:684-700. [PMID: 33386644 PMCID: PMC11227118 DOI: 10.1002/dvdy.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cell-specific and developmental mechanisms contribute to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however, its developmental regulation is poorly understood. Here we use human induced pluripotent stem cells differentiated into pseudostratified airway epithelial cells to study these mechanisms. RESULTS Changes in gene expression and open chromatin profiles were investigated by RNA-seq and ATAC-seq, and revealed that alterations in CFTR expression are associated with differences in stage-specific open chromatin. Additionally, two novel open chromatin regions, at +19.6 kb and +22.6 kb 3' to the CFTR translational stop signal, were observed in definitive endoderm (DE) cells, prior to an increase in CFTR expression in anterior foregut endoderm (AFE) cells. Chromatin studies in DE and AFE cells revealed enrichment of active enhancer marks and occupancy of OTX2 at these sites in DE cells. Loss of OTX2 in DE cells alters histone modifications across the CFTR locus and results in a 2.5-fold to 5-fold increase in CFTR expression. However, deletion of the +22.6 kb site alone does not affect CFTR expression in DE or AFE cells. CONCLUSIONS These results suggest that a network of interacting cis-regulatory elements recruit OTX2 to the locus to impact CFTR expression during early endoderm differentiation.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monali NandyMazumdar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Trombetta-Lima M, Assis-Ribas T, Cintra RC, Campeiro JD, Guerreiro JR, Winnischofer SMB, Nascimento ICC, Ulrich H, Hayashi MAF, Sogayar MC. Impact of Reck expression and promoter activity in neuronal in vitro differentiation. Mol Biol Rep 2021; 48:1985-1994. [PMID: 33619662 DOI: 10.1007/s11033-021-06175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Thais Assis-Ribas
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ricardo C Cintra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil
| | - Juliano R Guerreiro
- Faculdade de Farmácia, Universidade Paulista (UNIP), São Paulo, SP, 05347-020, Brazil
| | - Sheila M B Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
| | - Isis C C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil.
| | - Mari C Sogayar
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
Ferrucci V, de Antonellis P, Pennino FP, Asadzadeh F, Virgilio A, Montanaro D, Galeone A, Boffa I, Pisano I, Scognamiglio I, Navas L, Diana D, Pedone E, Gargiulo S, Gramanzini M, Brunetti A, Danielson L, Carotenuto M, Liguori L, Verrico A, Quaglietta L, Errico ME, Del Monaco V, D'Argenio V, Tirone F, Mastronuzzi A, Donofrio V, Giangaspero F, Picard D, Remke M, Garzia L, Daniels C, Delattre O, Swartling FJ, Weiss WA, Salvatore F, Fattorusso R, Chesler L, Taylor MD, Cinalli G, Zollo M. Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1-TGF-β-OTX2-SNAIL via PTEN inhibition. Brain 2019; 141:1300-1319. [PMID: 29490009 DOI: 10.1093/brain/awy039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023] Open
Abstract
Genetic modifications during development of paediatric groups 3 and 4 medulloblastoma are responsible for their highly metastatic properties and poor patient survival rates. PRUNE1 is highly expressed in metastatic medulloblastoma group 3, which is characterized by TGF-β signalling activation, c-MYC amplification, and OTX2 expression. We describe the process of activation of the PRUNE1 signalling pathway that includes its binding to NME1, TGF-β activation, OTX2 upregulation, SNAIL (SNAI1) upregulation, and PTEN inhibition. The newly identified small molecule pyrimido-pyrimidine derivative AA7.1 enhances PRUNE1 degradation, inhibits this activation network, and augments PTEN expression. Both AA7.1 and a competitive permeable peptide that impairs PRUNE1/NME1 complex formation, impair tumour growth and metastatic dissemination in orthotopic xenograft models with a metastatic medulloblastoma group 3 cell line (D425-Med cells). Using whole exome sequencing technology in metastatic medulloblastoma primary tumour cells, we also define 23 common 'non-synonymous homozygous' deleterious gene variants as part of the protein molecular network of relevance for metastatic processes. This PRUNE1/TGF-β/OTX2/PTEN axis, together with the medulloblastoma-driver mutations, is of relevance for future rational and targeted therapies for metastatic medulloblastoma group 3.10.1093/brain/awy039_video1awy039media15742053534001.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy
| | - Pasqualino de Antonellis
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Ontario, Canada
| | - Francesco Paolo Pennino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Ida Pisano
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Luigi Navas
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale della Ricerca, Naples, Italy
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale della Ricerca, Naples, Italy
| | - Sara Gargiulo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale della Ricerca, Naples, Italy
| | - Matteo Gramanzini
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale della Ricerca, Naples, Italy
| | - Arturo Brunetti
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Laura Danielson
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
| | - Marianeve Carotenuto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Antonio Verrico
- Paediatric Neurosurgery, Ospedale Santobono-Pausilipon, Naples, Italy
| | - Lucia Quaglietta
- Paediatric Neurosurgery, Ospedale Santobono-Pausilipon, Naples, Italy
| | | | | | - Valeria D'Argenio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Felice Tirone
- Genetic Control of Development-URT, Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Angela Mastronuzzi
- Dipartimento di Onco-Ematologia, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Felice Giangaspero
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Università La Sapienza, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Daniel Picard
- German Cancer Consortium (DKTK), Department of Paediatric Oncology, Haematology, and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- German Cancer Consortium (DKTK), Department of Paediatric Oncology, Haematology, and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Livia Garzia
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, Canada
| | - Craig Daniels
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Ontario, Canada
| | - Olivier Delattre
- PSL Research University, Inserm U830, Equipe Labellisée Ligue contre le Cancer, Institut Curie, Paris, France
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Francesco Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Caserta, Italy
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, Canada
| | - Giuseppe Cinalli
- Paediatric Neurosurgery, Ospedale Santobono-Pausilipon, Naples, Italy
| | - Massimo Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy.,DAI-Medicina Trasfusionale-Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| |
Collapse
|
7
|
Abstract
Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.
Collapse
|
8
|
Martirosian V, Neman J. Medulloblastoma: Challenges and advances in treatment and research. Cancer Rep (Hoboken) 2018; 2:e1146. [PMCID: PMC7941576 DOI: 10.1002/cnr2.1146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/03/2023] Open
Abstract
Background Medulloblastoma (MB) is a pediatric brain tumor occurring in the posterior fossa. MB is a highly heterogeneous tumor, which can be grouped into four main subgroups: WNT, SHH, Group 3, and Group 4. Each subgroup is different both in its implicated pathways and pathology, as well as how they are treated in the clinic. Recent Findings Standard protocol for MB treatment consists of maximal safe resection, followed by craniospinal radiation (in patients 3 years and older) and adjuvant chemotherapy. Advances in clinical stratification of this tumor have allowed establishment of treatment de‐escalation trials aimed at reducing long‐term side effects. However, there have been few advances in identifying novel therapeutic strategies for MB patients due to difficulties in creating chemotherapeutics that can bypass the blood‐brain‐barrier—among other factors. On the other hand, with the help of whole genome sequencing technologies, molecular pathways involved in MB pathogenesis have become clearer and have helped drive MB research. Regardless, this advance in research has yet to translate to the clinic, which may be due to the inability of current in vivo and in vitro models to accurately recapitulate this heterogeneous tumor in humans. Conclusions There have been significant advances in knowledge and treatment of medulloblastoma over the last few decades. Whole genome sequencing has helped elucidate clear differences between the subgroups of MB, allowing physicians to better tailor treatments to each patient in an effort to reduce long‐term sequelae. However, there are still many more obstacles to overcome, including less cytotoxic therapies in the clinic and better modeling systems to accurately replicate this disease in the laboratory. Scientists and physicians must work in a more cohesive manner to create translatable results from the laboratory to the clinic—helping improve therapies for medulloblastoma patients.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Otx2 promotes granule cell precursor proliferation and Shh-dependent medulloblastoma maintenance in vivo. Oncogenesis 2018; 7:60. [PMID: 30100614 PMCID: PMC6087714 DOI: 10.1038/s41389-018-0070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023] Open
Abstract
The developmental gene OTX2 is expressed by cerebellar granule cell precursors (GCPs), a cell population which undergoes massive expansion during the early postnatal period in response to sonic hedgehog (Shh). GCPs are thought to be at the origin of most medulloblastomas, a devastating paediatric cancer that arises in the developing cerebellum. OTX2 is overexpressed in all types of medulloblastomas, except in Shh-dependent type 2 medulloblastomas, although it has GCPs as cell-of-origin. This has led to the current view that OTX2 is not involved in tumorigenesis of this subgroup. How OTX2 might contribute to normal or tumoral GCP development in vivo remains unresolved. Here, we have investigated, for the first time, the physiological function of this factor in regulating proliferation and tumorigenesis in the developing mouse cerebellum. We first characterized Otx2-expressing cells in the early postnatal cerebellum and showed that they represent a unique subpopulation of highly proliferative GCPs. We next performed in vivo loss-of-function analysis to dissect out the role of Otx2 in these cells and identified a novel, Shh-independent, function for this factor in controlling postnatal GCP proliferation and cerebellum morphogenesis. Finally, we addressed the function of Otx2 in the context of type 2 medulloblastomas by directing Shh-dependent tumour formation in Otx2+ cells of the developing cerebellum and assessing the effects of Otx2 ablation in this context. We unravel an unexpected, mandatory function for Otx2 in sustaining cell proliferation and long-term maintenance of these tumours in vivo, therefore bringing unpredicted insight into the mechanisms of type 2 medulloblastoma subsistence. Together, these data pinpoint, for the first time, a crucial Shh-independent role for Otx2 in the control of proliferation of normal and tumoral granule cell precursors in vivo and make it an attractive candidate for targeted therapy in Shh-dependent medulloblastomas.
Collapse
|
10
|
Colafati GS, Voicu IP, Carducci C, Miele E, Carai A, Di Loreto S, Marrazzo A, Cacchione A, Cecinati V, Tornesello A, Mastronuzzi A. MRI features as a helpful tool to predict the molecular subgroups of medulloblastoma: state of the art. Ther Adv Neurol Disord 2018; 11:1756286418775375. [PMID: 29977341 PMCID: PMC6024494 DOI: 10.1177/1756286418775375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor. Medulloblastoma should not be viewed as a single disease, but as a heterogeneous mixture of various subgroups with distinct characteristics. Based on genomic profiles, four distinct molecular subgroups are identified: Wingless (WNT), Sonic Hedgehog (SHH), Group 3 and Group 4. Each of these subgroups are associated with specific genetic aberrations, typical age of onset as well as survival prognosis. Magnetic resonance imaging (MRI) is performed for all patients with brain tumors, and has a key role in the diagnosis, surgical guidance and follow up of patients with medulloblastoma. Several studies indicate MRI as a promising tool for early detection of medulloblastoma subgroups. The early identification of the subgroup can influence the extent of surgical resection, radiotherapy and chemotherapy targeted treatments. In this article, we review the state of the art in MRI-facilitated medulloblastoma subgrouping, with a summary of the main MRI features in medulloblastoma and a brief discussion on molecular characterization of medulloblastoma subgroups. The main focus of the article is MRI features that correlate with medulloblastoma subtypes, as well as features suggestive of molecular subgroups. Finally, we briefly discuss the latest trends in MRI studies and latest developments in molecular characterization.
Collapse
Affiliation(s)
| | - Ioan Paul Voicu
- Department of Imaging, Neuroradiology Unit and Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Chiara Carducci
- Department of Imaging, Neuroradiology Unit, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Evelina Miele
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Simona Di Loreto
- Dipartimento di Pediatria, Università degli studi di Chieti, Chieti, Italy
| | - Antonio Marrazzo
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Cacchione
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valerio Cecinati
- Pediatric Hematology and Oncology Unit, Department of Hematology, Transfusion Medicine and Biotechnology, Pescara, Italy
| | | | - Angela Mastronuzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
11
|
Stromecki M, Tatari N, Morrison LC, Kaur R, Zagozewski J, Palidwor G, Ramaswamy V, Skowron P, Wölfl M, Milde T, Del Bigio MR, Taylor MD, Werbowetski-Ogilvie TE. Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma. Mol Oncol 2018; 12:495-513. [PMID: 29377567 PMCID: PMC5891039 DOI: 10.1002/1878-0261.12177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 01/06/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant primary pediatric brain cancer. Among the most aggressive subtypes, Group 3 and Group 4 originate from stem/progenitor cells, frequently metastasize, and often display the worst prognosis, yet we know the least about the molecular mechanisms driving their progression. Here, we show that the transcription factor orthodenticle homeobox 2 (OTX2) promotes self-renewal while inhibiting differentiation in vitro and increases tumor initiation from MB stem/progenitor cells in vivo. To determine how OTX2 contributes to these processes, we employed complementary bioinformatic approaches to characterize the OTX2 regulatory network and identified novel relationships between OTX2 and genes associated with neuronal differentiation and axon guidance signaling in Group 3 and Group 4 MB stem/progenitor cells. In particular, OTX2 levels were negatively correlated with semaphorin (SEMA) signaling, as expression of 9 SEMA pathway genes is upregulated following OTX2 knockdown with some being potential direct OTX2 targets. Importantly, this negative correlation was also observed in patient samples, with lower expression of SEMA4D associated with poor outcome specifically in Group 4 tumors. Functional proof-of-principle studies demonstrated that increased levels of select SEMA pathway genes are associated with decreased self-renewal and growth in vitro and in vivo and that RHO signaling, known to mediate the effects of SEMA genes, is contributing to the OTX2 KD phenotype. Our study provides mechanistic insight into the networks controlled by OTX2 in MB stem/progenitor cells and reveals novel roles for axon guidance genes and their downstream effectors as putative tumor suppressors in MB.
Collapse
Affiliation(s)
- Margaret Stromecki
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Nazanin Tatari
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Ludivine Coudière Morrison
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Ravinder Kaur
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Jamie Zagozewski
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Gareth Palidwor
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Canada.,Division of Haematology/Oncology, University of Toronto and The Hospital for Sick Children, Canada.,Program in Neuroscience and Mental Health and Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Patryk Skowron
- Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Matthias Wölfl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Germany
| | - Till Milde
- Center for Individualized Pediatric Oncology (ZIPO) and Brain Tumors, Translational Program, Hopp-Children's Cancer Center at the NCT (KiTZ), Heidelberg, Germany.,CCU Pediatric Oncology (G340), German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba and The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Tamra E Werbowetski-Ogilvie
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Characterization of brain tumor initiating cells isolated from an animal model of CNS primitive neuroectodermal tumors. Oncotarget 2018; 9:13733-13747. [PMID: 29568390 PMCID: PMC5862611 DOI: 10.18632/oncotarget.24460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/30/2018] [Indexed: 01/17/2023] Open
Abstract
CNS Primitive Neuroectodermal tumors (CNS-PNETs) are members of the embryonal family of malignant childhood brain tumors, which remain refractory to current therapeutic treatments. Current paradigm of brain tumorigenesis implicates brain tumor-initiating cells (BTIC) in the onset of tumorigenesis and tumor maintenance. However, despite their significance, there is currently no comprehensive characterization of CNS-PNETs BTICs. Recently, we described an animal model of CNS-PNET generated by orthotopic transplantation of human Radial Glial (RG) cells - the progenitor cells for adult neural stem cells (NSC) - into NOD-SCID mice brain and proposed that BTICs may play a role in the maintenance of these tumors. Here we report the characterization of BTIC lines derived from this CNS-PNET animal model. BTIC’s orthotopic transplantation generated highly aggressive tumors also characterized as CNS-PNETs. The BTICs have the hallmarks of NSCs as they demonstrate self-renewing capacity and have the ability to differentiate into astrocytes and early migrating neurons. Moreover, the cells demonstrate aberrant accumulation of wild type tumor-suppressor protein p53, indicating its functional inactivation, highly up-regulated levels of onco-protein cMYC and the BTIC marker OCT3/4, along with metabolic switch to glycolysis - suggesting that these changes occurred in the early stages of tumorigenesis. Furthermore, based on RNA- and DNA-seq data, the BTICs did not acquire any transcriptome-changing genomic alterations indicating that the onset of tumorigenesis may be epigenetically driven. The study of these BTIC self-renewing cells in our model may enable uncovering the molecular alterations that are responsible for the onset and maintenance of the malignant PNET phenotype.
Collapse
|
13
|
Abdalla-Elsayed MEA, Schatz P, Neuhaus C, Khan AO. Heterozygous mutation in OTX2 associated with early-onset retinal dystrophy with atypical maculopathy. Mol Vis 2017; 23:778-784. [PMID: 29204067 PMCID: PMC5693023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/10/2017] [Indexed: 10/26/2022] Open
Abstract
Purpose Heterozygous mutations in OTX2 have been associated with a range of ocular and pituitary abnormalities. We report a novel heterozygous deletion in OTX2 underlying early-onset retinal dystrophy with atypical maculopathy. Methods Clinical examination included electroretinography and multimodal retinal imaging. Molecular genetic testing was composed of next-generation sequencing of a panel of retinal dystrophy genes. Results A now 17-year-old boy presented 12 years earlier with a history of progressively poor vision since birth, nyctalopia, and early-onset retinal dystrophy with atypical maculopathy. He also had bilateral microphthalmos and a slim prepubertal appearance; growth hormone levels were within normal ranges. Next-generation sequencing of a retinal dystrophy gene panel revealed a heterozygous deletion c.485delC (p.Pro162G.Infs*24) in exon 5 of OTX2. Conclusions This second report of maculopathy associated with a heterozygous mutation in OTX2 confirms that mutations in OTX2 should be considered in the differential diagnosis of atypical hereditary maculopathy, with or without rod-cone dystrophy.
Collapse
Affiliation(s)
| | - Patrik Schatz
- King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia,Department of Ophthalmology, Clinical Sciences, Skane County University Hospital, University of Lund, Lund, Sweden
| | | | - Arif O. Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Lu Y, Labak CM, Jain N, Purvis IJ, Guda MR, Bach SE, Tsung AJ, Asuthkar S, Velpula KK. OTX2 expression contributes to proliferation and progression in Myc-amplified medulloblastoma. Am J Cancer Res 2017; 7:647-656. [PMID: 28401018 PMCID: PMC5385649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 06/07/2023] Open
Abstract
Medulloblastoma is one of the most prevalent pediatric brain malignancies, accounting for approximately 20% of all primary CNS tumors in children under the age of 19. OTX2 is the member of a highly conserved family of bicoid-like homeodomain transcription factors responsible for the regulation of cerebellar development and of current investigational interest in the tumorigenesis of medulloblastoma. Recent studies have revealed that Group 3 and Group 4 medulloblastomas show marked overexpression of OTX2 with a concurrent amplification of the MYC and MYCN oncogenes, respectively, correlating with anaplasticity and unfavorable patient outcomes. More recent attempts at elucidating the mechanism of OTX2-driven oncogenesis at the cellular level has also revealed that OTX2 may confer stem-cell like properties to tumor cells via epigenetic regulation. The review seeks to define the interaction pathways and binding partners involved in OTX2 function, its usefulness as a molecular marker for risk stratification and prognosis, and the mechanism by which it drives tumor maintenance. Additionally, it will preview unpublished data by our group highlighting the unanticipated involvement of OTX2 in the control of cellular metabolism.
Collapse
Affiliation(s)
- Yining Lu
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| | - Collin M Labak
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| | - Neha Jain
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| | - Ian J Purvis
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| | - Sarah E Bach
- Department of Pathology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
- Department of Neurosurgery, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
- Illinois Neurological InstitutePeoria 61656, IL, U. S. A.
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
- Department of Neurosurgery, College of Medicine, University of IllinoisPeoria 61656, IL, U. S. A.
| |
Collapse
|
15
|
Boulay G, Awad ME, Riggi N, Archer TC, Iyer S, Boonseng WE, Rossetti NE, Naigles B, Rengarajan S, Volorio A, Kim JC, Mesirov JP, Tamayo P, Pomeroy SL, Aryee MJ, Rivera MN. OTX2 Activity at Distal Regulatory Elements Shapes the Chromatin Landscape of Group 3 Medulloblastoma. Cancer Discov 2017; 7:288-301. [PMID: 28213356 DOI: 10.1158/2159-8290.cd-16-0844] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as WNT, SHH, Group 3, and Group 4. Here, we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2-bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes, we identified the kinase NEK2, whose knockdown and pharmacologic inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes.Significance: The gene regulation mechanisms that drive medulloblastoma are not well understood. Using chromatin profiling, we find that the transcription factor OTX2 acts as a pioneer factor and, in cooperation with NEUROD1, controls the Group 3 medulloblastoma active enhancer landscape. OTX2 itself or its target genes, including the mitotic kinase NEK2, represent attractive targets for future therapies. Cancer Discov; 7(3); 288-301. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Mary E Awad
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicolo Riggi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tenley C Archer
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sowmya Iyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wannaporn E Boonseng
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nikki E Rossetti
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Beverly Naigles
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shruthi Rengarajan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Angela Volorio
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - James C Kim
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jill P Mesirov
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Pablo Tamayo
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Scott L Pomeroy
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin J Aryee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Miguel N Rivera
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
16
|
Staal JA, Pei Y, Rood BR. A Proteogenomic Approach to Understanding MYC Function in Metastatic Medulloblastoma Tumors. Int J Mol Sci 2016; 17:ijms17101744. [PMID: 27775567 PMCID: PMC5085772 DOI: 10.3390/ijms17101744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Brain tumors are the leading cause of cancer-related deaths in children, and medulloblastoma is the most prevalent malignant childhood/pediatric brain tumor. Providing effective treatment for these cancers, with minimal damage to the still-developing brain, remains one of the greatest challenges faced by clinicians. Understanding the diverse events driving tumor formation, maintenance, progression, and recurrence is necessary for identifying novel targeted therapeutics and improving survival of patients with this disease. Genomic copy number alteration data, together with clinical studies, identifies c-MYC amplification as an important risk factor associated with the most aggressive forms of medulloblastoma with marked metastatic potential. Yet despite this, very little is known regarding the impact of such genomic abnormalities upon the functional biology of the tumor cell. We discuss here how recent advances in quantitative proteomic techniques are now providing new insights into the functional biology of these aggressive tumors, as illustrated by the use of proteomics to bridge the gap between the genotype and phenotype in the case of c-MYC-amplified/associated medulloblastoma. These integrated proteogenomic approaches now provide a new platform for understanding cancer biology by providing a functional context to frame genomic abnormalities.
Collapse
Affiliation(s)
- Jerome A Staal
- Multiple Sclerosis Department, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia.
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Brian R Rood
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
17
|
Staedtke V, Bai RY, Sun W, Huang J, Kibler KK, Tyler BM, Gallia GL, Kinzler K, Vogelstein B, Zhou S, Riggins GJ. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget 2016; 6:5536-46. [PMID: 25849940 PMCID: PMC4467385 DOI: 10.18632/oncotarget.3627] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that is especially difficult to treat. The tumor's ability to withstand hypoxia leads to enhanced cancer cell survival and therapy resistance, but also yields a microenvironment that is in many aspects unique within the human body, thus offering potential therapeutic opportunities. The spore-forming anaerobic bacterium Clostridium novyi-NT(C. novyi-NT) has the ability to propagate in tumor-generated hypoxia, leading to oncolysis. Here, we show that intravenously injected spores of C. novyi-NT led to dramatic tumor destructions and significant survival increases in implanted, intracranial syngeneic F98 and human xenograft 060919 rat GBM models. C. novyi-NT germination was specific and confined to the neoplasm, with sparing of the normal brain parenchyma. All animals tolerated the bacteriolytic treatment, but edema and increased intracranial pressure could quickly be lethal if not monitored and medically managed with hydration and antibiotics. These results provide pre-clinical data supporting the development of this therapeutic approach for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ren-Yuan Bai
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiyun Sun
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Huang
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Betty M Tyler
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gary L Gallia
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth Kinzler
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory J Riggins
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Skowron P, Ramaswamy V, Taylor MD. Genetic and molecular alterations across medulloblastoma subgroups. J Mol Med (Berl) 2015; 93:1075-84. [PMID: 26350064 PMCID: PMC4599700 DOI: 10.1007/s00109-015-1333-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is the most common malignant brain tumour diagnosed in children. Over the last few decades, advances in radiation and chemotherapy have significantly improved the odds of survival. Nevertheless, one third of all patients still succumb to their disease, and many long-term survivors are afflicted with neurocognitive sequelae. Large-scale multi-institutional efforts have provided insight into the transcriptional and genetic landscape of medulloblastoma. Four distinct subgroups of medulloblastoma have been identified, defined by distinct transcriptomes, genetics, demographics and outcomes. Integrated genomic profiling of each of these subgroups has revealed distinct genetic alterations, driving pathways and in some instances cells of origin. In this review, we highlight, in a subgroup-specific manner, our current knowledge of the genetic and molecular alterations in medulloblastoma and underscore the possible avenues for future therapeutic intervention.
Collapse
Affiliation(s)
- Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, 555, University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| |
Collapse
|
19
|
Vendrell V, López-Hernández I, Durán Alonso MB, Feijoo-Redondo A, Abello G, Gálvez H, Giráldez F, Lamonerie T, Schimmang T. Otx2 is a target of N-myc and acts as a suppressor of sensory development in the mammalian cochlea. Development 2015; 142:2792-800. [PMID: 26160903 DOI: 10.1242/dev.122465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/29/2015] [Indexed: 12/30/2022]
Abstract
Transcriptional regulatory networks are essential during the formation and differentiation of organs. The transcription factor N-myc is required for proper morphogenesis of the cochlea and to control correct patterning of the organ of Corti. We show here that the Otx2 gene, a mammalian ortholog of the Drosophila orthodenticle homeobox gene, is a crucial target of N-myc during inner ear development. Otx2 expression is lost in N-myc mouse mutants, and N-myc misexpression in the chick inner ear leads to ectopic expression of Otx2. Furthermore, Otx2 enhancer activity is increased by N-myc misexpression, indicating that N-myc may directly regulate Otx2. Inactivation of Otx2 in the mouse inner ear leads to ectopic expression of prosensory markers in non-sensory regions of the cochlear duct. Upon further differentiation, these domains give rise to an ectopic organ of Corti, together with the re-specification of non-sensory areas into sensory epithelia, and the loss of Reissner's membrane. Therefore, the Otx2-positive domain of the cochlear duct shows a striking competence to develop into a mirror-image copy of the organ of Corti. Taken together, these data show that Otx2 acts downstream of N-myc and is essential for patterning and spatial restriction of the sensory domain of the mammalian cochlea.
Collapse
Affiliation(s)
- Victor Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - Iris López-Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - María Beatriz Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - Ana Feijoo-Redondo
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| | - Gina Abello
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona E-08003, Spain
| | - Héctor Gálvez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona E-08003, Spain
| | - Fernando Giráldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona E-08003, Spain
| | - Thomas Lamonerie
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, UMR UNS/CNRS 7277/INSERM 1091, Nice F-06108, France
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid E-47003, Spain
| |
Collapse
|
20
|
Wong L, Power N, Miles A, Tropepe V. Mutual antagonism of the paired-type homeobox genes, vsx2 and dmbx1, regulates retinal progenitor cell cycle exit upstream of ccnd1 expression. Dev Biol 2015; 402:216-28. [PMID: 25872183 DOI: 10.1016/j.ydbio.2015.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023]
Abstract
Understanding the mechanisms that regulate the transition between the proliferative and a post-mitotic state of retinal progenitor cells (RPCs) is key to advancing our knowledge of retinal growth and maturation. In the present study we determined that during zebrafish embryonic retinal neurogenesis, two paired-type homeobox genes - vsx2 and dmbx1 - function in a mutually antagonistic manner. We demonstrate that vsx2 gene expression requires active Fgf signaling and that this in turn suppresses dmbx1 expression and maintains cells in an undifferentiated, proliferative RPC state. This vsx2-dependent RPC state can be prolonged cell-autonomously by knockdown of dmbx1, or it can be suppressed prematurely by the over-expression of dmbx1, which we show can inhibit vsx2 expression and lead to precocious neuronal differentiation. dmbx1 loss of function also results in altered expression of canonical cell cycle genes, and in particular up-regulation of ccnd1, which correlates with our previous finding of a prolonged RPC cell cycle. By knocking down ccnd1 and dmbx1 simultaneously, we show that RPCs can overcome this phenotype to exit the cell cycle on time and differentiate normally into retinal neurons. Collectively, our data provide novel insight into the mechanism that enables RPCs to exit the cell cycle through a previously unrecognized antagonistic interaction of two paired-type homeobox genes that are central regulators of an Fgf-vsx2-dmbx1-ccnd1 signaling axis.
Collapse
Affiliation(s)
- Loksum Wong
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Namita Power
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada M5T 3A9; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.
| |
Collapse
|
21
|
Panwalkar P, Moiyadi A, Goel A, Shetty P, Goel N, Sridhar E, Shirsat N. MiR-206, a Cerebellum Enriched miRNA Is Downregulated in All Medulloblastoma Subgroups and Its Overexpression Is Necessary for Growth Inhibition of Medulloblastoma Cells. J Mol Neurosci 2015; 56:673-80. [PMID: 25859932 DOI: 10.1007/s12031-015-0548-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/19/2015] [Indexed: 02/03/2023]
Abstract
Medulloblastoma is the most common and a highly malignant pediatric brain tumor located in the cerebellar region of the brain. Medulloblastomas have recently been shown to consist of four distinct molecular subgroups, viz., WNT, SHH, group 3, and group 4. MiR-206, a miRNA first identified as a myomiR due to its enriched expression in skeletal muscle was found to be expressed specifically in the cerebellum, the site of medulloblastoma occurrence. MiR-206 expression was found to be downregulated in medulloblastomas belonging to all the four molecular subgroups as well as in established medulloblastoma cell lines. Further, the expression of murine homolog of miR-206 was also found to be downregulated in SHH subgroup medulloblastomas from the Smo (+/+) transgenic mice and the Ptch1 (+/-) knockout mice. MiR-206 downregulation in all the four medulloblastoma subgroups suggests tumor-suppressive role for miR-206 in medulloblastoma pathogenesis. The effect of miR-206 expression was analyzed in three established medulloblastoma cell lines, viz., Daoy, D425, and D283 belonging to distinct molecular subgroups. Restoration of miR-206 expression to the levels comparable to those in the normal cerebellum, however, was found to be insufficient to inhibit the growth of established medulloblastoma cell lines. OTX2, an oncogenic miR-206 target, overexpressed in all non-SHH medulloblastomas, is known to inhibit myogenic differentiation of medulloblastoma cells. Overexpression of miR-206 was necessary to downregulate OTX2 expression and inhibit growth of medulloblastoma cell lines.
Collapse
Affiliation(s)
- Pooja Panwalkar
- Shirsat Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Bai RY, Staedtke V, Wanjiku T, Rudek MA, Joshi A, Gallia GL, Riggins GJ. Brain Penetration and Efficacy of Different Mebendazole Polymorphs in a Mouse Brain Tumor Model. Clin Cancer Res 2015; 21:3462-3470. [PMID: 25862759 DOI: 10.1158/1078-0432.ccr-14-2681] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/27/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Mebendazole (MBZ), first used as an antiparasitic drug, shows preclinical efficacy in models of glioblastoma and medulloblastoma. Three different mebendazole polymorphs (A, B, and C) exist, and a detailed assessment of the brain penetration, pharmacokinetics, and antitumor properties of each individual mebendazole polymorph is necessary to improve mebendazole-based brain cancer therapy. EXPERIMENTAL DESIGN AND RESULTS In this study, various marketed and custom-formulated mebendazole tablets were analyzed for their polymorph content by IR spectroscopy and subsequently tested in an orthotopic GL261 mouse glioma model for efficacy and tolerability. The pharmacokinetics and brain concentration of mebendazole polymorphs and two main metabolites were analyzed by LC/MS. We found that polymorph B and C both increased survival in a GL261 glioma model, as B exhibited greater toxicity. Polymorph A showed no benefit. Polymorph B and C both reached concentrations in the brain that exceeded the IC₅₀ in GL261 cells 29-fold. In addition, polymorph C demonstrated an AUC₀₋₂₄h brain-to-plasma (B/P) ratio of 0.82, whereas B showed higher plasma AUC and lower B/P ratio. In contrast, polymorph A presented markedly lower levels in the plasma and brain. Furthermore, the combination with elacridar was able to significantly improve the efficacy of polymorph C in GL261 glioma and D425 medulloblastoma models in mice. CONCLUSIONS Among mebendazole polymorphs, C reaches therapeutically effective concentrations in the brain tissue and tumor with fewer side effects, and is the better choice for brain cancer therapy. Its efficacy can be further enhanced by combination with elacridar.
Collapse
Affiliation(s)
- Ren-Yuan Bai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Teresia Wanjiku
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Avadhut Joshi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells. PLoS One 2015; 10:e0121707. [PMID: 25826270 PMCID: PMC4380339 DOI: 10.1371/journal.pone.0121707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence and a consensus in the field that most pediatric brain tumors originate from stem cells, of which radial glial cells constitute a subtype. Here we show that orthotopic transplantation of human radial glial (RG) cells to the subventricular zone of the 3rd ventricle - but not to other transplantation sites - of the brain in immunocompromised NOD-SCID mice, gives rise to tumors that have the hallmarks of CNS primitive neuroectodermal tumors (PNETs). The resulting mouse model strikingly recapitulates the phenotype of PNETs. Importantly, the observed tumorigenic transformation was accompanied by aspects of an epithelial to mesenchymal transition (EMT)-like process. It is also noteworthy that the tumors are highly invasive, and that they effectively recruit mouse endothelial cells for angiogenesis. These results are significant for several reasons. First, they show that malignant transformation of radial glial cells can occur in the absence of specific mutations or inherited genomic alterations. Second, they demonstrate that the same radial glial cells may either give rise to brain tumors or differentiate normally depending upon the microenvironment of the specific region of the brain to which the cells are transplanted. In addition to providing a prospect for drug screening and development of new therapeutic strategies, the resulting mouse model of PNETs offers an unprecedented opportunity to identify the cancer driving molecular alterations and the microenvironmental factors that are responsible for committing otherwise normal radial glial cells to a malignant phenotype.
Collapse
|
24
|
Abstract
Medulloblastoma is the most common malignant brain tumor in children and, as such, has been the focus of tremendous efforts to genomically characterize it. What was once thought to be a single disease has been divided into multiple, molecularly unique subgroups through gene expression profiling. Each subgroup is not only unique in its origin and pathogenesis but also in the prognosis and potential therapeutic options. Targeted therapy of malignancies has long been the goal of clinical oncology. The progress made in the classification of medulloblastoma should be used as a model for future studies. With the evolution of epigenetic and genomic sequencing, especially when used in tandem with high-throughput pharmacologic screening protocols, the potential for subgroup-specific targeting is closer than ever. This review focuses on the development of the molecular classification system and its potential use in developing prognostic models as well as for the advancement of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ayman Samkari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA; Section of Oncology, St Christopher׳s Hospital for Children, Philadelphia, PA.
| | - Jason C White
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA
| | - Roger J Packer
- Department of Neurology, School of Medicine and Health Sciences, George Washington University, Washington, DC; Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children׳s National Health System, Washington, DC
| |
Collapse
|
25
|
Hooper CM, Hawes SM, Kees UR, Gottardo NG, Dallas PB. Gene expression analyses of the spatio-temporal relationships of human medulloblastoma subgroups during early human neurogenesis. PLoS One 2014; 9:e112909. [PMID: 25412507 PMCID: PMC4239019 DOI: 10.1371/journal.pone.0112909] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022] Open
Abstract
Medulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified – WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s) of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options. To address this issue, the gene expression profiles of normal human neural tissues and cell types representing a broad neuro-developmental continuum, were compared to those of two independent cohorts of primary human medulloblastoma specimens. Clustering, co-expression network, and gene expression analyses revealed that WNT and SHH medulloblastoma may be derived from distinct neural stem cell populations during early embryonic development, while the transcriptional profiles of Group 3 and Group 4 medulloblastoma resemble cerebellar granule neuron precursors at weeks 10–15 and 20–30 of embryogenesis, respectively. Our data indicate that Group 3 medulloblastoma may arise through abnormal neuronal differentiation, whereas deregulation of synaptic pruning-associated apoptosis may be driving Group 4 tumorigenesis. Overall, these data provide significant new insight into the spatio-temporal relationships and molecular pathogenesis of the human medulloblastoma subgroups, and provide an important framework for the development of more refined model systems, and ultimately improved therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia M. Hooper
- Brain Tumour Research Program, Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
- Centre of Excellence in Computational Systems Biology, ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia, Australia
| | - Susan M. Hawes
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Ursula R. Kees
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
| | - Nicholas G. Gottardo
- Brain Tumour Research Program, Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
- Department of Paediatric Oncology and Haematology, Princess Margaret Hospital for Children, Subiaco, Western Australia, Australia
| | - Peter B. Dallas
- Brain Tumour Research Program, Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
- * E-mail:
| |
Collapse
|
26
|
Bai RY, Staedtke V, Rudin CM, Bunz F, Riggins GJ. Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro Oncol 2014; 17:545-54. [PMID: 25253417 DOI: 10.1093/neuonc/nou234] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Current standard treatments cure 40%-60% of patients, while the majority of survivors suffer long-term neurological sequelae. The identification of 4 molecular groups of medulloblastoma improved the clinical management with the development of targeted therapies; however, the tumor acquires resistance quickly. Mebendazole (MBZ) has a long safety record as antiparasitic in children and has been recently implicated in inhibition of various tyrosine kinases in vitro. Here, we investigated the efficacy of MBZ in various medulloblastoma subtypes and MBZ's impact on vascular endothelial growth factor receptor 2 (VEGFR2) and tumor angiogenesis. METHODS The inhibition of MBZ on VEGFR2 kinase was investigated in an autophosphorylation assay and a cell-free kinase assay. Mice bearing orthotopic PTCH1-mutant medulloblastoma allografts, a group 3 medulloblastoma xenograft, and a PTCH1-mutant medulloblastoma with acquired resistance to the smoothened inhibitor vismodegib were treated with MBZ. The survival benefit and the impact on tumor angiogenesis and VEGFR2 kinase function were analyzed. RESULTS We determined that MBZ interferes with VEGFR2 kinase by competing with ATP. MBZ selectively inhibited tumor angiogenesis but not the normal brain vasculatures in orthotopic medulloblastoma models and suppressed VEGFR2 kinase in vivo. MBZ significantly extended the survival of medulloblastoma models derived from different molecular backgrounds. CONCLUSION Our findings support testing of MBZ as a possible low-toxicity therapy for medulloblastomas of various molecular subtypes, including tumors with acquired vismodegib resistance. Its antitumor mechanism may be partially explained by inhibition of tumor angiogenesis.
Collapse
Affiliation(s)
- Ren-Yuan Bai
- Department of Neurosurgery (R.-Y.B., G.J.R.), Department of Neurology (V.S.); Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (F.B.); Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (C.M.R.)
| | - Verena Staedtke
- Department of Neurosurgery (R.-Y.B., G.J.R.), Department of Neurology (V.S.); Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (F.B.); Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (C.M.R.)
| | - Charles M Rudin
- Department of Neurosurgery (R.-Y.B., G.J.R.), Department of Neurology (V.S.); Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (F.B.); Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (C.M.R.)
| | - Fred Bunz
- Department of Neurosurgery (R.-Y.B., G.J.R.), Department of Neurology (V.S.); Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (F.B.); Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (C.M.R.)
| | - Gregory J Riggins
- Department of Neurosurgery (R.-Y.B., G.J.R.), Department of Neurology (V.S.); Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (F.B.); Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (C.M.R.)
| |
Collapse
|
27
|
Chlapek P, Neradil J, Redova M, Zitterbart K, Sterba J, Veselska R. The ATRA-induced differentiation of medulloblastoma cells is enhanced with LOX/COX inhibitors: an analysis of gene expression. Cancer Cell Int 2014; 14:51. [PMID: 24959102 PMCID: PMC4066709 DOI: 10.1186/1475-2867-14-51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/05/2014] [Indexed: 11/10/2022] Open
Abstract
Background A detailed analysis of the expression of 440 cancer-related genes was performed after the combined treatment of medulloblastoma cells with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). The combinations of retinoids and celecoxib as a COX-2 inhibitor were reported to be effective in some regimens of metronomic therapy of relapsed solid tumors with poor prognosis. Our previous findings on neuroblastoma cells using expression profiling showed that LOX/COX inhibitors have the capability of enhancing the differentiating action of ATRA. Presented study focused on the continuation of our previous work to confirm the possibility of enhancing ATRA-induced cell differentiation in these cell lines via the application of LOX/COX inhibitors. This study provides more detailed information concerning the mechanisms of the enhancement of the ATRA-induced differentiation of medulloblastoma cells. Methods The Daoy and D283 Med medulloblastoma cell lines were chosen for this study. Caffeic acid (an inhibitor of 5-LOX) and celecoxib (an inhibitor on COX-2) were used in combined treatment with ATRA. The expression profiling was performed using Human Cancer Oligo GEArray membranes, and the most promising results were verified using RT-PCR. Results The expression profiling of the selected cancer-related genes clearly confirmed that the differentiating effects of ATRA should be enhanced via its combined administration with caffeic acid or celecoxib. This effect was detected in both cell lines. An increased expression of the genes that encoded the proteins participating in induced differentiation and cytoskeleton remodeling was detected in both cell lines in a concentration-dependent manner. This effect was also observed for the CDKN1A gene encoding the p21 protein, which is an important regulator of the cell cycle, and for the genes encoding proteins that are associated with proteasome activity. Furthermore, our results showed that D283 Med cells are significantly more sensitive to treatment with ATRA alone than Daoy cells. Conclusions The obtained results on medulloblastoma cell lines are in accordance with our previous findings on neuroblastoma cells and confirm our hypothesis concerning the common mechanism of the enhancement of ATRA-induced cell differentiation in various types of pediatric solid tumors.
Collapse
Affiliation(s)
- Petr Chlapek
- Department of Experimental Biology - Laboratory of Tumor Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology - Laboratory of Tumor Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic ; Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Martina Redova
- Department of Experimental Biology - Laboratory of Tumor Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Karel Zitterbart
- Department of Experimental Biology - Laboratory of Tumor Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic ; Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic ; Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Renata Veselska
- Department of Experimental Biology - Laboratory of Tumor Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic ; Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic
| |
Collapse
|
28
|
LABSCH SABRINA, LIU LI, BAUER NATHALIE, ZHANG YIYAO, ALEKSANDROWICZ EWA, GLADKICH JURY, SCHÖNSIEGEL FRANK, HERR INGRID. Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int J Oncol 2014; 44:1470-80. [PMID: 24626333 PMCID: PMC4027950 DOI: 10.3892/ijo.2014.2335] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/03/2014] [Indexed: 01/31/2023] Open
Abstract
Advanced androgen-independent prostate cancer (AIPC) is an aggressive malignancy with a poor prognosis. Apoptosis-resistant cancer stem cells (CSCs) have been identified in AIPC and are not eliminated by current therapeutics. Novel therapeutic options, which are currently being evaluated in patient studies, include TRAIL and the broccoli-derived isothiocyanate sulforaphane. Although neither agent targets normal cells, TRAIL induces apoptosis in most cancer cells, and sulforaphane eliminates CSCs. In this study, the established AIPC cell lines DU145 and PC3, with enriched CSC features, and primary patient-derived prostate CSCs were treated with sulforaphane and recombinant soluble TRAIL. We examined the effects of these drugs on NF-κB activity, self-renewal and differentiation potential, and stem cell signaling via spheroid- and colony-forming assays, FACS and western blot analyses, immunohistochemistry, and an antibody protein array in vitro and after xenotransplantation. We largely found a stronger effect of sulforaphane on CSC properties compared to TRAIL, though the agents acted synergistically when applied in combination. This was associated with the inhibition of TRAIL-induced NF-κB binding; CXCR4, Jagged1, Notch 1, SOX 2, and Nanog expression; ALDH1 activity inhibition; and the elimination of differentiation and self-renewal potential. In vivo, tumor engraftment and tumor growth were strongly inhibited, without the induction of liver necrosis or other obvious side effects. These findings suggest that sulforaphane shifts the balance from TRAIL-induced survival signals to apoptosis and thus explains the observed synergistic effect. A nutritional strategy for high sulforaphane intake may target the cancer-specific activity of TRAIL in CSCs.
Collapse
Affiliation(s)
- SABRINA LABSCH
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| | - LI LIU
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| | - NATHALIE BAUER
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| | - YIYAO ZHANG
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| | - EWA ALEKSANDROWICZ
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| | - JURY GLADKICH
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| | - FRANK SCHÖNSIEGEL
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| | - INGRID HERR
- Experimental Surgery, General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg,
Germany
| |
Collapse
|
29
|
Marshall GM, Carter DR, Cheung BB, Liu T, Mateos MK, Meyerowitz JG, Weiss WA. The prenatal origins of cancer. Nat Rev Cancer 2014; 14:277-89. [PMID: 24599217 PMCID: PMC4041218 DOI: 10.1038/nrc3679] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The concept that some childhood malignancies arise from postnatally persistent embryonal cells has a long history. Recent research has strengthened the links between driver mutations and embryonal and early postnatal development. This evidence, coupled with much greater detail on the cell of origin and the initial steps in embryonal cancer initiation, has identified important therapeutic targets and provided renewed interest in strategies for the early detection and prevention of childhood cancer.
Collapse
Affiliation(s)
- Glenn M Marshall
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; and the Children's Cancer Institute Australia for Medical Research, Lowy Cancer Centre, University of New South Wales, Randwick 2031, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Centre, University of New South Wales, Randwick 2031, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Centre, University of New South Wales, Randwick 2031, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Centre, University of New South Wales, Randwick 2031, Australia
| | - Marion K Mateos
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; and the Children's Cancer Institute Australia for Medical Research, Lowy Cancer Centre, University of New South Wales, Randwick 2031, Australia
| | - Justin G Meyerowitz
- Department of Neurology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| | - William A Weiss
- Department of Neurology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| |
Collapse
|
30
|
Ortiz-Meoz RF, Merbl Y, Kirschner MW, Walker S. Microarray discovery of new OGT substrates: the medulloblastoma oncogene OTX2 is O-GlcNAcylated. J Am Chem Soc 2014; 136:4845-8. [PMID: 24580054 PMCID: PMC3988687 DOI: 10.1021/ja500451w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
O-GlcNAc transferase (OGT) is a serine/threonine
glycosyltransferase that is essential for development and continues
to be critically important throughout life. Understanding OGT’s
complex biology requires identifying its substrates. Here we demonstrate
the utility of a microarray approach for discovering novel OGT substrates.
We also report a rapid method to validate OGT substrates that combines
in vitro transcription-translation with O-GlcNAc
mass tagging. Among the validated new OGT targets is Orthodenticle
homeobox 2 (OTX2), a transcription factor critical for brain development,
which is primarily expressed only during early embryogenesis and in
medulloblastomas, where it functions as an oncogene. We show that
endogenous OTX2 from a medulloblastoma cell line is O-GlcNAcylated at several sites. Our results demonstrate that protein
microarray technology, combined with the target validation strategy
we report, is useful for identifying biologically important OGT substrates,
including substrates not present in most tissue types or cell lines.
Collapse
Affiliation(s)
- Rodrigo F Ortiz-Meoz
- Department of Microbiology and Immunobiology, and ‡Department of Systems Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
31
|
Dey J, Dubuc AM, Pedro KD, Thirstrup D, Mecham B, Northcott PA, Wu X, Shih D, Tapscott SJ, LeBlanc M, Taylor MD, Olson JM. MyoD is a tumor suppressor gene in medulloblastoma. Cancer Res 2013; 73:6828-37. [PMID: 24092238 DOI: 10.1158/0008-5472.can-13-0730-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While medulloblastoma, a pediatric tumor of the cerebellum, is characterized by aberrations in developmental pathways, the majority of genetic determinants remain unknown. An unbiased Sleeping Beauty transposon screen revealed MyoD as a putative medulloblastoma tumor suppressor. This was unexpected, as MyoD is a muscle differentiation factor and not previously known to be expressed in cerebellum or medulloblastoma. In response to deletion of one allele of MyoD, two other Sonic hedgehog-driven mouse medulloblastoma models showed accelerated tumor formation and death, confirming MyoD as a tumor suppressor in these models. In normal cerebellum, MyoD was expressed in the proliferating granule neuron progenitors that are thought to be precursors to medulloblastoma. Similar to some other tumor suppressors that are induced in cancer, MyoD was expressed in proliferating medulloblastoma cells in three mouse models and in human medulloblastoma cases. This suggests that although expression of MyoD in a proliferating tumor is insufficient to prevent tumor progression, its expression in the cerebellum hinders medulloblastoma genesis.
Collapse
Affiliation(s)
- Joyoti Dey
- Authors' Affiliations: Molecular and Cellular Biology Program, University of Washington; Clinical Research Division, Human Biology Division, and Public Health Sciences Division, Fred Hutchinson Cancer Research Center; Presage Biosciences; Sage Bionetworks; Seattle Children's Hospital, Seattle, Washington; Arthur and Sonia Labatt Brain Tumor Research Center and Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Beby F, Lamonerie T. The homeobox gene Otx2 in development and disease. Exp Eye Res 2013; 111:9-16. [DOI: 10.1016/j.exer.2013.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 01/04/2023]
|
33
|
Nör C, Sassi FA, de Farias CB, Schwartsmann G, Abujamra AL, Lenz G, Brunetto AL, Roesler R. The histone deacetylase inhibitor sodium butyrate promotes cell death and differentiation and reduces neurosphere formation in human medulloblastoma cells. Mol Neurobiol 2013; 48:533-43. [PMID: 23516101 DOI: 10.1007/s12035-013-8441-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/08/2013] [Indexed: 01/07/2023]
Abstract
Increasing evidence suggests that alterations in epigenetic mechanisms regulating chromatin state play a role in the pathogenesis of medulloblastoma (MB), the most common malignant brain tumor of childhood. Histone deacetylase (HDAC) inhibitors, which increase chromatin relaxation, have been shown to display anticancer activities. Here we show that the HDAC inhibitor sodium butyrate (NaB) markedly increases cell death and reduces colony formation in human MB cell lines. In addition, NaB increased the mRNA expression of Gria2, a neuronal differentiation marker, in D283 and DAOY cells and reduced the number of neurospheres in D283 cell cultures. Finally, NaB reduced the viability of D283 cells when combined with etoposide. These data show that NaB displays pronounced inhibitory effects on the survival of human MB cells and suggest that NaB might potentiate the effects of etoposide. In addition, our study suggests that HDAC inhibition might promote the neuronal differentiation of MB cells and provides the first evidence that an HDAC inhibitor might suppress the expansion or survival of MB cancer stem cells.
Collapse
Affiliation(s)
- Carolina Nör
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|