1
|
Vens C, van Luijk P, Vogelius RI, El Naqa I, Humbert-Vidan L, von Neubeck C, Gomez-Roman N, Bahn E, Brualla L, Böhlen TT, Ecker S, Koch R, Handeland A, Pereira S, Possenti L, Rancati T, Todor D, Vanderstraeten B, Van Heerden M, Ullrich W, Jackson M, Alber M, Marignol L. A joint physics and radiobiology DREAM team vision - Towards better response prediction models to advance radiotherapy. Radiother Oncol 2024; 196:110277. [PMID: 38670264 DOI: 10.1016/j.radonc.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines.
Collapse
Affiliation(s)
- C Vens
- School of Cancer Science, University of Glasgow, Glasgow, UK; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - P van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - R I Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - I El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, United States.
| | - L Humbert-Vidan
- University of Texas MD Anderson Cancer Centre, Houston, TX, United States; Department of MedicalPhysics, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, King's College London, London, UK
| | - C von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - N Gomez-Roman
- Strathclyde Institute of Phrmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - E Bahn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Brualla
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; Faculty of Medicine, University of Duisburg-Essen, Germany
| | - T T Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - S Ecker
- Department of Radiation Oncology, Medical University of Wien, Austria
| | - R Koch
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - A Handeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - S Pereira
- Neolys Diagnostics, 7 Allée de l'Europe, 67960 Entzheim, France
| | - L Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - T Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - D Todor
- Department of Radiation Oncology, Virginia Commonwealth University, United States
| | - B Vanderstraeten
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium; Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - M Van Heerden
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | | | - M Jackson
- School of Cancer Science, University of Glasgow, Glasgow, UK
| | - M Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Moarefian M, Davalos RV, Tafti DK, Achenie LE, Jones CN. Modeling iontophoretic drug delivery in a microfluidic device. LAB ON A CHIP 2020; 20:3310-3321. [PMID: 32869052 PMCID: PMC8272289 DOI: 10.1039/d0lc00602e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Iontophoresis employs low-intensity electrical voltage and continuous constant current to direct a charged drug into a tissue. Iontophoretic drug delivery has recently been used as a novel method for cancer treatment in vivo. There is an urgent need to precisely model the low-intensity electric fields in cell culture systems to optimize iontophoretic drug delivery to tumors. Here, we present an iontophoresis-on-chip (IOC) platform to precisely quantify carboplatin drug delivery and its corresponding anti-cancer efficacy under various voltages and currents. In this study, we use an in vitro heparin-based hydrogel microfluidic device to model the movement of a charged drug across an extracellular matrix (ECM) and in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Transport of the drug through the hydrogel was modeled based on diffusion and electrophoresis of charged drug molecules in the direction of an oppositely charged electrode. The drug concentration in the tumor extracellular matrix was computed using finite element modeling of transient drug transport in the heparin-based hydrogel. The model predictions were then validated using the IOC platform by comparing the predicted concentration of a fluorescent cationic dye (Alexa Fluor 594®) to the actual concentration in the microfluidic device. Alexa Fluor 594® was used because it has a molecular weight close to paclitaxel, the gold standard drug for treating TNBC, and carboplatin. Our results demonstrated that a 50 mV DC electric field and a 3 mA electrical current significantly increased drug delivery and tumor cell death by 48.12% ± 14.33 and 39.13% ± 12.86, respectively (n = 3, p-value <0.05). The IOC platform and mathematical drug delivery model of iontophoresis are promising tools for precise delivery of chemotherapeutic drugs into solid tumors. Further improvements to the IOC platform can be made by adding a layer of epidermal cells to model the skin.
Collapse
Affiliation(s)
- Maryam Moarefian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
3
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Hamis S, Powathil GG, Chaplain MAJ. Blackboard to Bedside: A Mathematical Modeling Bottom-Up Approach Toward Personalized Cancer Treatments. JCO Clin Cancer Inform 2020; 3:1-11. [PMID: 30742485 DOI: 10.1200/cci.18.00068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancers present with high variability across patients and tumors; thus, cancer care, in terms of disease prevention, detection, and control, can highly benefit from a personalized approach. For a comprehensive personalized oncology practice, this personalization should ideally consider data gathered from various information levels, which range from the macroscale population level down to the microscale tumor level, without omission of the central patient level. Appropriate data mined from each of these levels can significantly contribute in devising personalized treatment plans tailored to the individual patient and tumor. Mathematical models of solid tumors, combined with patient-specific tumor profiles, present a unique opportunity to personalize cancer treatments after detection using a bottom-up approach. Here, we discuss how information harvested from mathematical models and from corresponding in silico experiments can be implemented in preclinical and clinical applications. To conceptually illustrate the power of these models, one such model is presented, and various pertinent tumor and treatment scenarios are demonstrated in silico. The presented model, specifically a multiscale, hybrid cellular automaton, has been fully validated in vitro using multiple cell-line-specific data. We discuss various insights provided by this model and other models like it and their role in designing predictive tools that are both patient, and tumor specific. After refinement and parametrization with appropriate data, such in silico tools have the potential to be used in a clinical setting to aid in treatment protocols and decision making.
Collapse
Affiliation(s)
- Sara Hamis
- Swansea University, Swansea, Wales, United Kingdom
| | | | | |
Collapse
|
5
|
Gao Y, Shi Y, Wang L, Kong S, Du J, Lin G, Feng Y. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105106. [PMID: 31670178 DOI: 10.1016/j.cmpb.2019.105106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The process of nanoparticles (NPs) entering blood circulation to actively target tumor cells involves four stages-the transport of NPs in blood vessels, transvascular transport of NPs, transport of NPs in the tumor interstitial matrix and entry of NPs into tumor cells. These four stages are a complex process involving mechanical, physical, biochemical, and biophysical factors, the tumor microenvironment (TME) and properties of NPs play important roles in this process. Because this process involves a large number of factors and is very complex, it is difficult to study with conventional methods. METHODS Using mathematical models for simulation is suitable for addressing this complex situation and can describe the complexity well. RESULTS This work focuses on the theoretical simulation of NPs that target tumor cells to illustrate the effects of the abnormal microenvironment of tumors and properties of NPs on the transport process. Mathematical models constructed by different methods are enumerated. Through studying these mathematical models, different methods to overcome nanoparticle (NP) transport obstacles are illustrated. CONCLUSIONS It is necessary to construct a theoretical model of active targeting nanodrug delivery under the coupling of micro-flow field and specific binding force field, and to simulate and analyze the delivery process at mesoscopic scale using computational fluid dynamics (CFD) method, so as to reveal the law and characteristics of drug delivery and cell uptake in the micro-environment of tumors in vivo. The methods and techniques discussed can serve as the basis for systematic studies of active targeting of functional nanoparticles to tumor cells.
Collapse
Affiliation(s)
- Yan Gao
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shengli Kong
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Du
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Yihua Feng
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Heidbuechel JPW, Abate-Daga D, Engeland CE, Enderling H. Mathematical Modeling of Oncolytic Virotherapy. Methods Mol Biol 2020; 2058:307-320. [PMID: 31486048 DOI: 10.1007/978-1-4939-9794-7_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mathematical modeling in biology has a long history as it allows the analysis and simulation of complex dynamic biological systems at little cost. A mathematical model trained on experimental or clinical data can be used to generate and evaluate hypotheses, to ask "what if" questions, and to perform in silico experiments to guide future experimentation and validation. Such models may help identify and provide insights into the mechanisms that drive changes in dynamic systems. While a mathematical model may never replace actual experiments, it can synergize with experiments to save time and resources by identifying experimental conditions that are unlikely to yield favorable outcomes, and by using optimization principles to identify experiments that are most likely to be successful. Over the past decade, numerous models have also been developed for oncolytic virotherapy, ranging from merely theoretic frameworks to fully integrated studies that utilize experimental data to generate actionable hypotheses. Here we describe how to develop such models for specific oncolytic virotherapy experimental setups, and which questions can and cannot be answered using integrated mathematical oncology.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
7
|
Spring BQ, Lang RT, Kercher EM, Rizvi I, Wenham RM, Conejo-Garcia JR, Hasan T, Gatenby RA, Enderling H. Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies. FRONTIERS IN PHYSICS 2019; 7:46. [PMID: 31123672 PMCID: PMC6529192 DOI: 10.3389/fphy.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations. The challenge of dosimetry is perhaps greater for photomedicine than many standard therapies given the complexity of light delivery and light-tissue interactions as well as the resulting photochemistry responsible for tumor damage and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An emerging multidisciplinary approach in oncology utilizes mathematical and computational models to iteratively and quantitively analyze complex dosimetry, and biological response parameters. These models are parameterized by preclinical and clinical observations and then tested against previously unseen data. Such calibrated and validated models can be deployed to simulate treatment doses, protocols, and combinations that have not yet been experimentally or clinically evaluated and can provide testable optimal treatment outcomes in a practical workflow. Here, we foresee the utility of these computational approaches to guide adaptive therapy, and how mathematical models might be further developed and integrated as a novel methodology to guide precision photomedicine.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ryan T. Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Eric M. Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert M. Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert A. Gatenby
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
8
|
Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. J R Soc Interface 2018; 14:rsif.2017.0150. [PMID: 28659410 DOI: 10.1098/rsif.2017.0150] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The goal of cancer immunotherapy is to boost a patient's immune response to a tumour. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumour microenvironment, immune-modulating effects of conventional treatments and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modelling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumour classification, optimal treatment scheduling and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modellers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumour-immune biology. We conclude the review with recommendations for modellers both with respect to methodology and biological direction that might help keep modellers at the forefront of cancer immunotherapy development.
Collapse
Affiliation(s)
- Anna Konstorum
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA
| | | | - Adam J Adler
- Department of Immunology, UConn Health, Farmington, CT, USA
| | - Reinhard C Laubenbacher
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA .,Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| |
Collapse
|
9
|
Santiago DN, Heidbuechel JPW, Kandell WM, Walker R, Djeu J, Engeland CE, Abate-Daga D, Enderling H. Fighting Cancer with Mathematics and Viruses. Viruses 2017; 9:E239. [PMID: 28832539 PMCID: PMC5618005 DOI: 10.3390/v9090239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.
Collapse
Affiliation(s)
- Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | | | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA.
| | - Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Julie Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Christine E Engeland
- German Cancer Research Center, Heidelberg University, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, Department of Translational Oncology, Department of Medical Oncology, 69120 Heidelberg, Germany.
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Abstract
Metronomic dosing of chemotherapy-defined as frequent administration at lower doses-has been shown to be more efficacious than maximum tolerated dose treatment in preclinical studies, and is currently being tested in the clinic. Although multiple mechanisms of benefit from metronomic chemotherapy have been proposed, how these mechanisms are related to one another and which one is dominant for a given tumor-drug combination is not known. To this end, we have developed a mathematical model that incorporates various proposed mechanisms, and report here that improved function of tumor vessels is a key determinant of benefit from metronomic chemotherapy. In our analysis, we used multiple dosage schedules and incorporated interactions among cancer cells, stem-like cancer cells, immune cells, and the tumor vasculature. We found that metronomic chemotherapy induces functional normalization of tumor blood vessels, resulting in improved tumor perfusion. Improved perfusion alleviates hypoxia, which reprograms the immunosuppressive tumor microenvironment toward immunostimulation and improves drug delivery and therapeutic outcomes. Indeed, in our model, improved vessel function enhanced the delivery of oxygen and drugs, increased the number of effector immune cells, and decreased the number of regulatory T cells, which in turn killed a larger number of cancer cells, including cancer stem-like cells. Vessel function was further improved owing to decompression of intratumoral vessels as a result of increased killing of cancer cells, setting up a positive feedback loop. Our model enables evaluation of the relative importance of these mechanisms, and suggests guidelines for the optimal use of metronomic therapy.
Collapse
|
11
|
A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy- PGJ2. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:3628124. [PMID: 28044089 PMCID: PMC5156871 DOI: 10.1155/2016/3628124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G1, S, G2/M) as well as quiescent (Q) and necrotic (N) cells. Monolayer treatment data for 15-deoxy-PGJ2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment.
Collapse
|
12
|
Pennisi M, Russo G, Di Salvatore V, Candido S, Libra M, Pappalardo F. Computational modeling in melanoma for novel drug discovery. Expert Opin Drug Discov 2016; 11:609-21. [PMID: 27046143 DOI: 10.1080/17460441.2016.1174688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is a growing body of evidence highlighting the applications of computational modeling in the field of biomedicine. It has recently been applied to the in silico analysis of cancer dynamics. In the era of precision medicine, this analysis may allow the discovery of new molecular targets useful for the design of novel therapies and for overcoming resistance to anticancer drugs. According to its molecular behavior, melanoma represents an interesting tumor model in which computational modeling can be applied. Melanoma is an aggressive tumor of the skin with a poor prognosis for patients with advanced disease as it is resistant to current therapeutic approaches. AREAS COVERED This review discusses the basics of computational modeling in melanoma drug discovery and development. Discussion includes the in silico discovery of novel molecular drug targets, the optimization of immunotherapies and personalized medicine trials. EXPERT OPINION Mathematical and computational models are gradually being used to help understand biomedical data produced by high-throughput analysis. The use of advanced computer models allowing the simulation of complex biological processes provides hypotheses and supports experimental design. The research in fighting aggressive cancers, such as melanoma, is making great strides. Computational models represent the key component to complement these efforts. Due to the combinatorial complexity of new drug discovery, a systematic approach based only on experimentation is not possible. Computational and mathematical models are necessary for bringing cancer drug discovery into the era of omics, big data and personalized medicine.
Collapse
Affiliation(s)
- Marzio Pennisi
- a Department of Mathematics and Computer Science , University of Catania , Catania , Italy
| | - Giulia Russo
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Valentina Di Salvatore
- c Researcher at National Research Council , Institute of Neurological Sciences , Catania , Italy
| | - Saverio Candido
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Massimo Libra
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | | |
Collapse
|
13
|
|
14
|
Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol 2015; 5:155. [PMID: 26258068 PMCID: PMC4507461 DOI: 10.3389/fonc.2015.00155] [Citation(s) in RCA: 483] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Transitions between epithelial and mesenchymal phenotypes – the epithelial to mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA
| | - Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Institute of Physics, University of São Paulo , São Paulo , Brazil
| | - Bin Huang
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Graduate Program in Systems, Synthetic and Physical Biology, Rice University , Houston, TX , USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; School of Physics and Astronomy, and The Sagol School of Neuroscience, Tel-Aviv University , Tel-Aviv , Israel ; Department of Biosciences, Rice University , Houston, TX , USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| |
Collapse
|
15
|
Zhang P, Brusic V. Mathematical modeling for novel cancer drug discovery and development. Expert Opin Drug Discov 2014; 9:1133-50. [PMID: 25062617 DOI: 10.1517/17460441.2014.941351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. AREAS COVERED This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. EXPERT OPINION Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.
Collapse
Affiliation(s)
- Ping Zhang
- CSIRO Computational Informatics , Marsfield, NSW , Australia
| | | |
Collapse
|
16
|
André N, Carré M, Pasquier E. Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 2014; 11:413-31. [PMID: 24913374 DOI: 10.1038/nrclinonc.2014.89] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.
Collapse
Affiliation(s)
- Nicolas André
- Service d'Hématologie & Oncologie Pédiatrique, AP-HM, 264 rue Saint Pierre, 13385 Marseille, France
| | - Manon Carré
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Eddy Pasquier
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, PO Box 81, Randwick NSW 2031, Australia
| |
Collapse
|
17
|
Kim M, Gillies RJ, Rejniak KA. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front Oncol 2013; 3:278. [PMID: 24303366 PMCID: PMC3831268 DOI: 10.3389/fonc.2013.00278] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/29/2013] [Indexed: 11/26/2022] Open
Abstract
Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.
Collapse
Affiliation(s)
- Munju Kim
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL , USA
| | | | | |
Collapse
|