1
|
Liu D, van der Zalm AP, Koster J, Bootsma S, Oyarce C, van Laarhoven HWM, Bijlsma MF. Predictive biomarkers for response to TGF- β inhibition in resensitizing chemo(radiated) esophageal adenocarcinoma. Pharmacol Res 2024; 207:107315. [PMID: 39059615 DOI: 10.1016/j.phrs.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Epithelial-mesenchymal transition (EMT) has been identified as a driver of therapy resistance, particularly in esophageal adenocarcinoma (EAC), where transforming growth factor beta (TGF-β) can induce this process. Inhibitors of TGF-β may counteract the occurrence of mesenchymal, resistant tumor cell populations following chemo(radio)therapy and improve treatment outcomes in EAC. Here, we aimed to identify predictive biomarkers for the response to TGF-β targeting. In vitro approximations of neoadjuvant treatment were applied to publicly available primary EAC cell lines. TGF-β inhibitors fresolimumab and A83-01 were employed to inhibit EMT, and mesenchymal markers were quantified via flow cytometry to assess efficacy. Our results demonstrated a robust induction of mesenchymal cell states following chemoradiation, with TGF-β inhibition leading to variable reductions in mesenchymal markers. The cell lines were clustered into responders and non-responders. Genomic expression profiles were obtained through RNA-seq analysis. Differentially expressed gene (DEG) analysis identified 10 positively- and 23 negatively-associated hub genes, which were bioinformatically identified. Furthermore, the correlation of DEGs with response to TGF-β inhibition was examined using public pharmacogenomic databases, revealing 9 positively associated and 11 negatively associated DEGs. Among these, ERBB2, EFNB1, and TNS4 were the most promising candidates. Our findings reveal a distinct gene expression pattern associated with the response to TGF-β inhibition in chemo(radiated) EAC. The identified DEGs and predictive markers may assist patient selection in clinical studies investigating TGF-β targeting.
Collapse
Affiliation(s)
- Dajia Liu
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Amber P van der Zalm
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Cesar Oyarce
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Xiang C, Wu J, Yu L. Construction of three-gene-based prognostic signature and analysis of immune cells infiltration in children and young adults with B-acute lymphoblastic leukemia. Mol Genet Genomic Med 2022; 10:e1964. [PMID: 35603962 PMCID: PMC9266608 DOI: 10.1002/mgg3.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Although B‐acute lymphoblastic leukemia (B‐ALL) patients' survival has been improved dramatically, some cases still relapse. This study aimed to explore the prognosis‐related novel differentially expressed genes (DEGs) for predicting the overall survival (OS) of children and young adults (CAYAs) with B‐ALL and analyze the immune‐related factors contributing to poor prognosis. Methods GSE48558 and GSE79533 from Gene Expression Omnibus (GEO) and clinical sample information and mRNA‐seq from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were retrieved. Prognosis‐related key genes were enrolled to build a Cox proportional model using multivariate Cox regression. Five‐year OS of patients, clinical characteristic relevance and clinical independence were assessed based on the model. The mRNA levels of prognosis‐related genes were validated in our samples and the difference of immune cells composition between high‐risk and low‐risk patients were compared. Results One hundred and twelve DEGs between normal B cells and B‐ALL cells were identified based on GSE datasets. They were mainly participated in protein binding and HIF‐1 signaling pathway. One hundred and eighty‐nine clinical samples were enrolled in the study, both Kaplan–Meier (KM) analysis and univariate Cox regression analysis showed that CYBB, BCL2A1, IFI30, and EFNB1 were associated with prognosis, CYBB, BCL2A1, and EFNB1 were used to construct prognostic risk model. Moreover, compared to clinical indicators, the three‐gene signature was an independent prognostic factor for CAYAs with B‐ALL. Finally, the mRNA levels of CYBB, BCL2A1, and EFNB1 were significantly lower in B‐ALL group as compared to controls. The high‐risk group had a significantly higher percentage of infiltrated immune cells. Conclusion We constructed a novel three‐gene signature with independent prognostic factor for predicting 5‐year OS of CAYAs with B‐ALL. Additionally, we discovered the difference of immune cells composition between high‐risk and low‐risk groups. This study may help to customize individual treatment and improve prognosis of CAYAs with B‐ALL.
Collapse
Affiliation(s)
- Chunli Xiang
- Department of Hematology, Huai'an First People's Hospital Affiliated to Nanjing Medical University, Huai'an, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Liang Yu
- Department of Hematology, Huai'an First People's Hospital Affiliated to Nanjing Medical University, Huai'an, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Pang Z, Dong X, Deng H, Wang C, Liao X, Liao C, Liao Y, Tian W, Cheng J, Chen G, Yi H, Huang L. MUC1 triggers lineage plasticity of Her2 positive mammary tumors. Oncogene 2022; 41:3064-3078. [DOI: 10.1038/s41388-022-02320-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022]
|
4
|
EFNB1 Acts as a Novel Prognosis Marker in Glioblastoma through Bioinformatics Methods and Experimental Validation. JOURNAL OF ONCOLOGY 2021; 2021:4701680. [PMID: 34824583 PMCID: PMC8610726 DOI: 10.1155/2021/4701680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Purpose Ephrin B1 (EFNB1), the Eph-associated receptor tyrosine kinase ligand, is suggested to have an important function in neurodevelopment. However, its contribution to glioblastoma multiforme (GBM) remains uncertain. This study aimed to determine the prognostic power and immune implication of EFNB1 in GBM. Methods We first identified differentially coexpressed genes within GBM relative to noncarcinoma samples from GEO and TCGA databases by WGCNA. The STRING online database and the maximum cluster centrality (MCC) algorithm in Cytoscape software were used to design for predicting protein-protein interactions (PPI) and calculating pivot nodes, respectively. The expression of hub genes in cancer and noncancer tissues was verified by an online tool gene expression profile interactive analysis (GEPIA). Thereafter, the TISIDB online tool with Cox correlation regression method was employed to screen for immunomodulators associated with EFNB1 and to model the risk associated with immunomodulators. Results Altogether 201 differentially expressed genes (DEGs) were discovered. After that, 10 hub genes (CALB2, EFNB1, ENO2, EPHB4, NES, OBSCN, RAB9B, RPL23A, STMN2, and THY1) were incorporated to construct the PPI network. As revealed by survival analysis, EFNB1 upregulation predicted poor overall survival (OS) for GBM cases. Furthermore, we developed a prognostic risk signature according to the EFNB1-associated immunomodulators. Kaplan-Meier survival analysis and receiver operating characteristic method were adopted for analysis, which revealed that our signature showed favorable accuracy of prognosis prediction. Finally, EFNB1 inhibition was found to block cell proliferation and migration in GBM cells. Conclusion The above results indicate that EFNB1 participates in cancer immunity and progression, which is the candidate biomarker for GBM.
Collapse
|
5
|
Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer. Biomolecules 2020; 10:biom10121659. [PMID: 33322542 PMCID: PMC7763032 DOI: 10.3390/biom10121659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
In this review article, we present the current knowledge on PTPN13, a class I non-receptor protein tyrosine phosphatase identified in 1994. We focus particularly on its role in cancer, where PTPN13 acts as an oncogenic protein and also a tumor suppressor. To try to understand these apparent contradictory functions, we discuss PTPN13 implication in the FAS and oncogenic tyrosine kinase signaling pathways and in the associated biological activities, as well as its post-transcriptional and epigenetic regulation. Then, we describe PTPN13 clinical significance as a prognostic marker in different cancer types and its impact on anti-cancer treatment sensitivity. Finally, we present future research axes following recent findings on its role in cell junction regulation that implicate PTPN13 in cell death and cell migration, two major hallmarks of tumor formation and progression.
Collapse
|
6
|
Madeo M, Colbert PL, Vermeer DW, Lucido CT, Cain JT, Vichaya EG, Grossberg AJ, Muirhead D, Rickel AP, Hong Z, Zhao J, Weimer JM, Spanos WC, Lee JH, Dantzer R, Vermeer PD. Cancer exosomes induce tumor innervation. Nat Commun 2018; 9:4284. [PMID: 30327461 PMCID: PMC6191452 DOI: 10.1038/s41467-018-06640-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with densely innervated tumors suffer with increased metastasis and decreased survival as compared to those with less innervated tumors. We hypothesize that in some tumors, nerves are acquired by a tumor-induced process, called axonogenesis. Here, we use PC12 cells as an in vitro neuronal model, human tumor samples and murine in vivo models to test this hypothesis. When appropriately stimulated, PC12 cells extend processes, called neurites. We show that patient tumors release vesicles, called exosomes, which induce PC12 neurite outgrowth. Using a cancer mouse model, we show that tumors compromised in exosome release are less innervated than controls. Moreover, in vivo pharmacological blockade of exosome release similarly attenuates tumor innervation. We characterize these nerves as sensory in nature and demonstrate that axonogenesis is potentiated by the exosome-packaged axonal guidance molecule, EphrinB1. These findings indicate that tumor released exosomes induce tumor innervation and exosomes containing EphrinB1 potentiate this activity.
Collapse
Affiliation(s)
- Marianna Madeo
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Elisabeth G Vichaya
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Aaron J Grossberg
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
- Department of Radiation Medicine, Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 SW Moody Ave KR-CEDR, Portland, OR, 97201, USA
| | - DesiRae Muirhead
- Sanford Health Pathology Clinic, Sanford Health, 1305 West 18th St, Sioux Falls, SD, 57105, USA
| | - Alex P Rickel
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Zhongkui Hong
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Jing Zhao
- Population Health Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
- Sanford Ears, Nose and Throat, 1310 West 22nd St, Sioux Falls, SD, 57105, USA
| | - John H Lee
- NantKwest, 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
7
|
Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget 2018; 7:24194-207. [PMID: 27013584 PMCID: PMC5029694 DOI: 10.18632/oncotarget.8254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/06/2016] [Indexed: 11/25/2022] Open
Abstract
Human papillomavirus induced (HPV+) cancer incidence is rapidly rising, comprising 60–80% of oropharyngeal squamous cell carcinomas (OPSCCs); while rare, recurrent/metastatic disease accounts for nearly all related deaths. An in vivo pre-clinical model for these invasive cancers is necessary for testing new therapies. We characterize an immune competent recurrent/metastatic HPV+ murine model of OPSSC which consists of four lung metastatic (MLM) cell lines isolated from an animal with HPV+ OPSCC that failed cisplatin/radiation treatment. These individual metastatic clonal cell lines were tested to verify their origin (parental transgene expression and define their physiological properties: proliferation, metastatic potential, heterogeneity and sensitivity/resistance to cisplatin and radiation. All MLMs retain expression of parental HPV16 E6 and E7 and degrade P53 yet are heterogeneous from one another and from the parental cell line as defined by Illumina expression microarray. Consistent with this, reverse phase protein array defines differences in protein expression/activation between MLMs as well as the parental line. While in vitro growth rates of MLMs are slower than the parental line, in vivo growth of MLM clones is greatly enhanced. Moreover, in vivo resistance to standard therapies is dramatically increased in 3 of the 4 MLMs. Lymphatic and/or lung metastasis occurs 100% of the time in one MLM line. This recurrent/metastatic model of HPV+ OPSCC retains the characteristics evident in refractory human disease (heterogeneity, resistance to therapy, metastasis in lymph nodes/lungs) thus serving as an ideal translational system to test novel therapeutics. Moreover, this system may provide insights into the molecular mechanisms of metastasis.
Collapse
|
8
|
Shen Y, Yao H, Li A, Wang M. CSCdb: a cancer stem cells portal for markers, related genes and functional information. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw023. [PMID: 26989154 PMCID: PMC4795926 DOI: 10.1093/database/baw023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/14/2016] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs), which have the ability to self-renew and differentiate into various tumor cell types, are a special class of tumor cells. Characterizing the genes involved in CSCs regulation is fundamental to understand the mechanisms underlying the biological process and develop treatment methods for tumor therapy. Recently, much effort has been expended in the study of CSCs and a large amount of data has been generated. However, to the best of our knowledge, database dedicated to CSCs is not available until now. We have thus developed a CSCs database (CSCdb), which includes marker genes, CSCs-related genes/microRNAs and functional annotations. The information in the CSCdb was manual collected from about 13 000 articles. The CSCdb provides detailed information of 1769 genes that have been reported to participate in the functional regulation of CSCs and 74 marker genes that can be used for identification or isolation of CSCs. The CSCdb also provides 9475 annotations about 13 CSCs-related functions, such as oncogenesis, radio resistance, tumorigenesis, differentiation, etc. Annotations of the identified genes, which include protein function description, post-transcription modification information, related literature, Gene Ontology (GO), protein-protein interaction (PPI) information and regulatory relationships, are integrated into the CSCdb to help users get information more easily. CSCdb provides a comprehensive resource for CSCs research work, which would assist in finding new CSCs-related genes and would be a useful tool for biologists. Database URL:http://bioinformatics.ustc.edu.cn/cscdb
Collapse
Affiliation(s)
- Yi Shen
- School of Information Science and Technology
| | | | - Ao Li
- School of Information Science and Technology Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AH230027, China
| | - Minghui Wang
- School of Information Science and Technology Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, AH230027, China
| |
Collapse
|
9
|
Osei-Sarfo K, Urvalek AM, Tang XH, Scognamiglio T, Gudas LJ. Initiation of esophageal squamous cell carcinoma (ESCC) in a murine 4-nitroquinoline-1-oxide and alcohol carcinogenesis model. Oncotarget 2016; 6:6040-52. [PMID: 25714027 PMCID: PMC4467420 DOI: 10.18632/oncotarget.3339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/04/2015] [Indexed: 01/14/2023] Open
Abstract
Esophageal squamous cell carcinomas (ESCCs) are very common, aggressive tumors, and are often associated with alcohol and tobacco abuse. Because ESCCs exhibit high recurrence rates and are diagnosed at late stages, identification of prognostic and drug targets for prevention and treatment is critical. We used the 4-nitroquinoline-1-oxide (4-NQO) murine model of oral carcinogenesis and the Meadows-Cook model of alcohol abuse to assess changes in the expression of molecular markers during the initial stages of ESCC. Combining these two models, which mimic chronic alcohol and tobacco abuse in humans, we detected increased cellular proliferation (EGFR and Ki67 expression), increased canonical Wnt signaling and downstream elements (β-catenin, FoxM1, and S100a4 protein levels), changes in cellular adhesive properties (reduced E-cadherin in the basal layer of the esophageal epithelium), and increased levels of phosphorylated ERK1/2 and p38. Additionally, we found that treatment with ethanol alone increased the numbers of epithelial cells expressing solute carrier family 2 (facilitated glucose transporter, member 1) (SLC2A1) and carbonic anhydrase IX (CAIX), and increased the phosphorylation of p38. Thus, we identified both 4-NQO- and ethanol-specific targets in the initial stages of esophageal carcinogenesis, which should lead to the development of potential markers and therapeutic targets for human ESCC.
Collapse
Affiliation(s)
- Kwame Osei-Sarfo
- Department of Pharmacology, Weill Cornell Medical College, New York, USA
| | - Alison M Urvalek
- Department of Pharmacology, Weill Cornell Medical College, New York, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, New York, USA
| | | | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, USA.,The Meyer Cancer Center, Weill Cornell Medical College, New York, USA
| |
Collapse
|
10
|
Colbert PL, Vermeer DW, Wieking BG, Lee JH, Vermeer PD. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity. Oncotarget 2015; 6:953-68. [PMID: 25436983 PMCID: PMC4359267 DOI: 10.18632/oncotarget.2823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022] Open
Abstract
Microtubules (MTs) are components of the cytoskeleton made up of polymerized alpha and beta tubulin dimers. MT structure and function must be maintained throughout the cell cycle to ensure proper execution of mitosis and cellular homeostasis. The protein tyrosine phosphatase, PTPN13, localizes to distinct compartments during mitosis and cytokinesis. We have previously demonstrated that the HPV16 E6 oncoprotein binds PTPN13 and leads to its degradation. Thus, we speculated that HPV infection may affect cellular proliferation by altering the localization of a PTPN13 phosphatase substrate, EphrinB1, during mitosis. Here we report that EphrinB1 co-localizes with MTs during all phases of the cell cycle. Specifically, a cleaved, unphosphorylated EphrinB1 fragment directly binds tubulin, while its phosphorylated form lacks MT binding capacity. These findings suggest that EphrinB1 is a novel microtubule associated protein (MAP). Importantly, we show that in the context of HPV16 E6 expression, EphrinB1 affects taxane response in vitro. We speculate that this reflects PTPN13's modulation of EphrinB1 phosphorylation and suggest that EphrinB1 is an important contributor to taxane sensitivity/resistance phenotypes in epithelial cancers. Thus, HPV infection or functional mutations of PTPN13 in non-viral cancers may predict taxane sensitivity.
Collapse
Affiliation(s)
- Paul L Colbert
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Bryant G Wieking
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - John H Lee
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paola D Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| |
Collapse
|
11
|
Lindberg JM, Newhook TE, Adair SJ, Walters DM, Kim AJ, Stelow EB, Parsons JT, Bauer TW. Co-treatment with panitumumab and trastuzumab augments response to the MEK inhibitor trametinib in a patient-derived xenograft model of pancreatic cancer. Neoplasia 2015; 16:562-71. [PMID: 25117978 PMCID: PMC4198828 DOI: 10.1016/j.neo.2014.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 12/16/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations and epidermal growth factor receptor (EGFR) family signaling are drivers of tumorigenesis in pancreatic ductal adenocarcinoma (PDAC). Previous studies have demonstrated that combinatorial treatment of PDAC xenografts with the mitogen-activated protein kinase–extracellular-signal-regulated kinase (ERK) kinase1/2 (MEK1/2) inhibitor trametinib and the dual EGFR/human epidermal growth factor receptor 2 (HER2) inhibitor lapatinib provided more effective inhibition than either treatment alone. In this study, we have used the therapeutic antibodies, panitumumab (specific for EGFR) and trastuzumab (specific for HER2), to probe the role of EGFR and HER2 signaling in the proliferation of patient-derived xenograft (PDX) tumors. We show that dual anti-EGFR and anti-HER2 therapy significantly augmented the growth inhibitory effects of the MEK1/2 inhibitor trametinib in three different PDX tumors. While significant growth inhibition was observed in both KRAS mutant xenograft groups receiving trametinib and dual antibody therapy (tumors 366 and 608), tumor regression was observed in the KRAS wild-type xenografts (tumor 738) treated in the same manner. Dual antibody therapy in conjunction with trametinib was equally or more effective at inhibiting tumor growth and with lower apparent toxicity than trametinib plus lapatinib. Together, these studies provide further support for a role for EGFR and HER2 in pancreatic cancer proliferation and underscore the importance of therapeutic intervention in both the KRAS–rapidly accelerated fibrosarcoma kinase (RAF)–MEK–ERK and EGFR-HER2 pathways to achieve maximal therapeutic efficacy in patients.
Collapse
Affiliation(s)
- James M Lindberg
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908 USA
| | - Timothy E Newhook
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908 USA
| | - Sara J Adair
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908 USA
| | - Dustin M Walters
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908 USA
| | - Alison J Kim
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908 USA
| | - Edward B Stelow
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, 22908 USA
| | - J Thomas Parsons
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908 USA
| | - Todd W Bauer
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908 USA.
| |
Collapse
|
12
|
Berasain C, Avila MA. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J Gastroenterol 2014; 49:9-23. [PMID: 24318021 DOI: 10.1007/s00535-013-0907-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 02/04/2023]
Abstract
The liver displays an outstanding wound healing and regenerative capacity unmatched by any other organ. This reparative response is governed by a complex network of inflammatory mediators, growth factors and metabolites that are set in motion in response to hepatocellular injury. However, when liver injury is chronic, these regenerative mechanisms become dysregulated, facilitating the accumulation of genetic alterations leading to unrestrained cell proliferation and the development of hepatocellular carcinoma (HCC). The epidermal growth factor receptor (EGFR or ErbB1) signaling system has been identified as a key player in all stages of the liver response to injury, from early inflammation and hepatocellular proliferation to fibrogenesis and neoplastic transformation. The EGFR system engages in extensive crosstalk with other signaling pathways, acting as a true signaling hub for other growth factors, cytokines and inflammatory mediators. Here, we briefly review essential aspects of the biology of the EGFR, the other ErbB receptors, and their ligands in liver injury, regeneration and HCC development. Some aspects of the preclinical and clinical experience with EGFR therapeutic targeting in HCC are also discussed.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy and CIBEREhd, CIMA-University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain,
| | | |
Collapse
|