1
|
Ma X, Sun C, Ding X, Xu J, Zhang Y, Deng T, Wang Y, Yang H, Ding R, Li H, Wang D, Zheng M. Mechanism analysis and targeted therapy of IDH gene mutation in glioma. Am J Cancer Res 2025; 15:248-270. [PMID: 39949933 PMCID: PMC11815359 DOI: 10.62347/nsxc2205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Isocitrate dehydrogenase (IDH) is a pivotal enzyme responsible for catalyzing the oxidative decarboxylation of isocitrate into α-ketoglutarate (α-KG). This enzyme serves as a crucial regulator in the tricarboxylic acid cycle (TCA cycle), acting as a rate-limiting step. Its role extends beyond mere metabolic function, influencing cellular homeostasis and overall cell function. In the past decade, prominent research in cancer genetics has revealed that genes responsible for encoding isocitrate dehydrogenase are commonly mutated across various human malignancies. Significant research in the field has shown that these mutations are commonly found in diseases like glioma, acute myeloid leukemia (AML), cholangiocarcinoma (CCA), chondrosarcoma, and thyroid cancer (TC). As research on IDH progresses, deeper insights into the biological effects of IDH mutations have been gained, unveiling their potential role in tumorigenesis. In addition, IDH mutants' unique activities creates new pathways in tumor metabolism, gene rearrangement, and therapeutic resistance. Currently, innovative molecular targeting strategies for genes bearing mutations in IDH have been devised to enhance the therapeutic efficacy against cancers harboring IDH mutations. These methods represent a promising avenue for improving treatment outcomes in IDH-mutated malignancies. This article mainly summarizes the related research on glioma caused by IDH mutation, and focuses on the biological characteristics and transformation of IDH.
Collapse
Affiliation(s)
- Xingyuan Ma
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Chao Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing 100070, China
| | - Xiao Ding
- The Third Department of Surgery, Armed Police Hospital of TianjinTianjin 300163, China
| | - Jiaqi Xu
- Edinburgh Medical School, The University of EdinburghEdinburgh EH16 4SB, Scotland, UK
| | - Yuhang Zhang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Haijun Yang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Haotian Li
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Dawen Wang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| |
Collapse
|
2
|
Deng R, Qin J, Wang L, Li H, Wen N, Qin K, Dong J, Wu J, Zhu D, Sun X. Energy metabolism-related GLUD1 contributes to favorable clinical outcomes of IDH-mutant glioma. BMC Neurol 2024; 24:344. [PMID: 39272024 PMCID: PMC11395857 DOI: 10.1186/s12883-024-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Glioma is the most common brain tumor. IDH mutations occur frequently in glioma, indicating a more favorable prognosis. We aimed to explore energy metabolism-related genes in glioma to promote the research and treatment. METHODS Datasets were obtained from TCGA and GEO databases. Candidate genes were screened by differential gene expression analysis, then functional enrichment analysis was conducted on the candidate genes. PPI was also carried out to help determine the target gene. GSEA and DO analysis were conducted in the different expression level groups of the target gene. Survival analysis and immune cell infiltrating analysis were performed as well. RESULTS We screened 34 candidate genes and selected GLUD1 as the target gene. All candidate genes were significantly enriched in 10 KEGG pathways and 330 GO terms. GLUD1 expression was higher in IDH-mutant samples than IDH-wildtype samples, and higher in normal samples than tumor samples. Low GLUD1 expression was related to poor prognosis according to survival analysis. Most types of immune cells were negatively related to GLUD1 expression, but monocytes and activated mast cells exhibited significantly positive correlation with GLUD1 expression. GLUD1 expression was significantly related to 119 drugs and 6 immune checkpoint genes. GLUD1 was able to serve as an independent prognostic indicator of IDH-mutant glioma. CONCLUSION In this study, we identified an energy metabolism-related gene GLUD1 potentially contributing to favorable clinical outcomes of IDH-mutant glioma. In glioma, GLUD1 related clinical outcomes and immune landscape were clearer, and more valuable information was provided for immunotherapy.
Collapse
Affiliation(s)
- Renzhi Deng
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Jianying Qin
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Lei Wang
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Haibin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Ke Qin
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Jianhui Dong
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Jihua Wu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Dandan Zhu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China
| | - Xuyong Sun
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, No.166 Daxuedong Road, Nanning, Guangxi, 530007, P.R. China.
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, 530007, P.R. China.
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi, 530007, P.R. China.
| |
Collapse
|
3
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
4
|
Rahman R, Shi DD, Reitman ZJ, Hamerlik P, de Groot JF, Haas-Kogan DA, D’Andrea AD, Sulman EP, Tanner K, Agar NYR, Sarkaria JN, Tinkle CL, Bindra RS, Mehta MP, Wen PY. DNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology. Neuro Oncol 2024; 26:1367-1387. [PMID: 38770568 PMCID: PMC11300028 DOI: 10.1093/neuonc/noae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana D Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Petra Hamerlik
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University, New York, New York, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Minesh P Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Chen WF, Chuang JMJ, Yang SN, Chen NF, Bhattacharya M, Liu HT, Dhama K, Chakraborty C, Wen ZH. Gene expression profiling and the isocitrate dehydrogenase mutational landscape of temozolomide‑resistant glioblastoma. Oncol Lett 2024; 28:378. [PMID: 38939621 PMCID: PMC11209862 DOI: 10.3892/ol.2024.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/09/2024] [Indexed: 06/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer that occurs more frequently than other brain tumors. The present study aimed to reveal a novel mechanism of temozolomide resistance in GBM using bioinformatics and wet lab analyses, including meta-Z analysis, Kaplan-Meier survival analysis, protein-protein interaction (PPI) network establishment, cluster analysis of co-expressed gene networks, and hierarchical clustering of upregulated and downregulated genes. Next-generation sequencing and quantitative PCR analyses revealed downregulated [tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 1 (TIE1), calcium voltage-gated channel auxiliary subunit α2Δ1 (CACNA2D1), calpain 6 (CAPN6) and a disintegrin and metalloproteinase with thrombospondin motifs 6 (ADAMTS6)] and upregulated [serum amyloid (SA)A1, SAA2, growth differentiation factor 15 (GDF15) and ubiquitin specific peptidase 26 (USP26)] genes. Different statistical models were developed for these genes using the Z-score for P-value conversion, and Kaplan-Meier plots were constructed using several patient cohorts with brain tumors. The highest number of nodes was observed in the PPI network was for ADAMTS6 and TIE1. The PPI network model for all genes contained 35 nodes and 241 edges. Immunohistochemical staining was performed using isocitrate dehydrogenase (IDH)-wild-type or IDH-mutant GBM samples from patients and a significant upregulation of TIE1 (P<0.001) and CAPN6 (P<0.05) protein expression was demonstrated in IDH-mutant GBM in comparison with IDH-wild-type GBM. Structural analysis revealed an IDH-mutant model demonstrating the mutant residues (R132, R140 and R172). The findings of the present study will help the future development of novel biomarkers and therapeutics for brain tumors.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Jimmy Ming-Jung Chuang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - San-Nan Yang
- Department of Pediatrics, E-DA Hospital, School of Medicine, College of Medicine I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan, R.O.C
| | | | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan, R.O.C
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agriculture Research-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
6
|
Kitagawa Y, Kobayashi A, Cahill DP, Wakimoto H, Tanaka S. Molecular biology and novel therapeutics for IDH mutant gliomas: The new era of IDH inhibitors. Biochim Biophys Acta Rev Cancer 2024; 1879:189102. [PMID: 38653436 DOI: 10.1016/j.bbcan.2024.189102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gliomas with Isocitrate dehydrogenase (IDH) mutation represent a discrete category of primary brain tumors with distinct and unique characteristics, behaviors, and clinical disease outcomes. IDH mutations lead to aberrant high-level production of the oncometabolite D-2-hydroxyglutarate (D-2HG), which act as a competitive inhibitor of enzymes regulating epigenetics, signaling pathways, metabolism, and various other processes. This review summarizes the significance of IDH mutations, resulting upregulation of D-2HG and the associated molecular pathways in gliomagenesis. With the recent finding of clinically effective IDH inhibitors in these gliomas, this article offers a comprehensive overview of the new era of innovative therapeutic approaches based on mechanistic rationales, encompassing both completed and ongoing clinical trials targeting gliomas with IDH mutations.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655 Bunkyo-ku, Tokyo, Japan
| | - Ami Kobayashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA.
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 7008558, Okayama, Japan
| |
Collapse
|
7
|
Núñez FJ, Banerjee K, Mujeeb AA, Mauser A, Tronrud CE, Zhu Z, Taher A, Kadiyala P, Carney SV, Garcia-Fabiani MB, Comba A, Alghamri MS, McClellan BL, Faisal SM, Nwosu ZC, Hong HS, Qin T, Sartor MA, Ljungman M, Cheng SY, Appelman HD, Lowenstein PR, Lahann J, Lyssiotis CA, Castro MG. Epigenetic Reprogramming of Autophagy Drives Mutant IDH1 Glioma Progression and Response to Radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584091. [PMID: 38559270 PMCID: PMC10979892 DOI: 10.1101/2024.03.08.584091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.
Collapse
|
8
|
Frank D, Patnana PK, Vorwerk J, Mao L, Gopal LM, Jung N, Hennig T, Ruhnke L, Frenz JM, Kuppusamy M, Autry R, Wei L, Sun K, Mohammed Ahmed HM, Künstner A, Busch H, Müller H, Hutter S, Hoermann G, Liu L, Xie X, Al-Matary Y, Nimmagadda SC, Cano FC, Heuser M, Thol F, Göhring G, Steinemann D, Thomale J, Leitner T, Fischer A, Rad R, Röllig C, Altmann H, Kunadt D, Berdel WE, Hüve J, Neumann F, Klingauf J, Calderon V, Opalka B, Dührsen U, Rosenbauer F, Dugas M, Varghese J, Reinhardt HC, von Bubnoff N, Möröy T, Lenz G, Batcha AMN, Giorgi M, Selvam M, Wang E, McWeeney SK, Tyner JW, Stölzel F, Mann M, Jayavelu AK, Khandanpour C. Germ line variant GFI1-36N affects DNA repair and sensitizes AML cells to DNA damage and repair therapy. Blood 2023; 142:2175-2191. [PMID: 37756525 PMCID: PMC10733838 DOI: 10.1182/blood.2022015752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
ABSTRACT Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
Collapse
Affiliation(s)
- Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Lianghao Mao
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Lavanya Mokada Gopal
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Noelle Jung
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Leo Ruhnke
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Maithreyan Kuppusamy
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Robert Autry
- Hopp Children’s Cancer Center, Heidelberg, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Kaiyan Sun
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Helal Mohammed Mohammed Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Fiorella Charles Cano
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jürgen Thomale
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Theo Leitner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Refined Laser Systems GmbH, Münster, Germany
| | - Jürgen Klingauf
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Virginie Calderon
- Bioinformatic Core Facility, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Aarif M. N. Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
- Data Integration for Future Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Marianna Giorgi
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Murugan Selvam
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Eunice Wang
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Department of Medicine II, Division for Stem Cell Transplantation and Cellular Immunotherapy, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein Kiel, Christian Albrecht University Kiel, Kiel, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- Hopp Children’s Cancer Center, Heidelberg, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
10
|
Panda A, Suvakov M, Mariani J, Drucker KL, Park Y, Jang Y, Kollmeyer TM, Sarkar G, Bae T, Kim JJ, Yoon WH, Jenkins RB, Vaccarino FM, Abyzov A. Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic. CRISPR J 2023; 6:176-182. [PMID: 37071670 PMCID: PMC10123805 DOI: 10.1089/crispr.2022.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.
Collapse
Affiliation(s)
- Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Kristen L. Drucker
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yohan Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas M. Kollmeyer
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gobinda Sarkar
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean J. Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Robert B. Jenkins
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Fortin Ensign SP, Jenkins RB, Giannini C, Sarkaria JN, Galanis E, Kizilbash SH. Translational significance of CDKN2A/B homozygous deletion in isocitrate dehydrogenase-mutant astrocytoma. Neuro Oncol 2023; 25:28-36. [PMID: 35973817 PMCID: PMC9825307 DOI: 10.1093/neuonc/noac205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/26/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) 1 or 2 mutations confer a favorable prognosis compared to IDH-wildtype in astrocytoma, frequently denoting a lower grade malignancy. However, recent molecular profiling has identified specific aggressive tumor subgroups with clear clinical prognostic implications that are independent of histologic grading. The homozygous deletion of CDKN2A/B is the strongest implicated independent indicator of the poor prognosis within IDH-mutant astrocytoma, and the identification of this alteration in these lower histologic grade tumors transforms their biology toward an aggressive grade 4 phenotype clinically. CDKN2A/B homozygous deletion is now sufficient to define a grade 4 tumor in IDH-mutant astrocytomas regardless of histologic appearance, yet there are currently no effective molecularly informed targeted therapies for these tumors. The biological impact of CDKN2A/B homozygous deletion in IDH-mutant tumors and the optimal treatment strategy for this molecular subgroup remains insufficiently explored. Here we review the current understanding of the translational significance of homozygous deletion of CDKN2A/B gene expression in IDH-mutant astrocytoma and associated diagnostic and therapeutic implications.
Collapse
Affiliation(s)
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
12
|
Kuo YY, Ho KH, Shih CM, Chen PH, Liu AJ, Chen KC. Piperlongumine-inhibited TRIM14 signaling sensitizes glioblastoma cells to temozolomide treatment. Life Sci 2022; 309:121023. [DOI: 10.1016/j.lfs.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
13
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
14
|
Protein Tyrosine Phosphatase Receptor Type Z in Central Nervous System Disease. Int J Mol Sci 2022; 23:ijms23084414. [PMID: 35457233 PMCID: PMC9024684 DOI: 10.3390/ijms23084414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023] Open
Abstract
Gliomas are among the most common tumors of the central nervous system and include highly malignant subtypes, such as glioblastoma, which are associated with poor prognosis. Effective treatments are therefore urgently needed. Despite the recent advances in neuroimaging technologies, differentiating gliomas from other brain diseases such as multiple sclerosis remains challenging in some patients, and often requires invasive brain biopsy. Protein tyrosine phosphatase receptor type Z (PTPRZ) is a heavily glycosylated membrane protein that is highly expressed in the central nervous system. Several reports analyzing mouse tumor models suggest that PTPRZ may have potential as a therapeutic target for gliomas. A soluble cleaved form of PTPRZ (sPTPRZ) in the cerebrospinal fluid is markedly upregulated in glioma patients, making it another promising diagnostic biomarker. Intriguingly, PTPRZ is also involved in the process of remyelination in multiple sclerosis. Indeed, lowered PTPRZ glycosylation by deletion of the glycosyltransferase gene leads to reduced astrogliosis and enhanced remyelination in mouse models of demyelination. Here, we review the expression, molecular structure, and biological roles of PTPRZ. We also discuss glioma and demyelinating diseases, as well as the pathological role of PTPRZ and its application as a diagnostic marker and therapeutic target.
Collapse
|
15
|
Esemen Y, Awan M, Parwez R, Baig A, Rahman S, Masala I, Franchini S, Giakoumettis D. Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review. Int J Mol Sci 2022; 23:ijms23052607. [PMID: 35269752 PMCID: PMC8910150 DOI: 10.3390/ijms23052607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant tumour of the central nervous system. Recent appreciation of the heterogeneity amongst these tumours not only changed the WHO classification approach, but also created the need for developing novel and personalised therapies. This systematic review aims to highlight recent advancements in understanding the molecular pathogenesis of the GBM and discuss related novel treatment targets. A systematic search of the literature in the PubMed library was performed following the PRISMA guidelines for molecular pathogenesis and therapeutic advances. Original and meta-analyses studies from the last ten years were reviewed using pre-determined search terms. The results included articles relevant to GBM development focusing on the aberrancy in cell signaling pathways and intracellular events. Theragnostic targets and vaccination to treat GBM were also explored. The molecular pathophysiology of GBM is complex. Our systematic review suggests targeting therapy at the stemness, p53 mediated pathways and immune modulation. Exciting novel immune therapy involving dendritic cell vaccines, B-cell vaccines and viral vectors may be the future of treating GBM.
Collapse
Affiliation(s)
- Yagmur Esemen
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Mariam Awan
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Rabeeia Parwez
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Arsalan Baig
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Shahinur Rahman
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Ilaria Masala
- Department of Trauma and Orthopedics, The James Cook University Hospital, Middlesbrough TS4 3BW, UK;
| | - Sonia Franchini
- General Surgery Department, Queen’s Hospital, Romford, London RM7 0AG, UK;
| | - Dimitrios Giakoumettis
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
- Correspondence:
| |
Collapse
|
16
|
|
17
|
Chou FJ, Liu Y, Lang F, Yang C. D-2-Hydroxyglutarate in Glioma Biology. Cells 2021; 10:cells10092345. [PMID: 34571995 PMCID: PMC8464856 DOI: 10.3390/cells10092345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an "oncometabolite", D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.
Collapse
|
18
|
Liu Z, Zhang W, Cheng X, Wang H, Bian L, Wang J, Han Z, Wang Y, Lian X, Liu B, Ren Z, Zhang B, Jiang Z, Lin Z, Gao Y. Overexpressed XRCC2 as an independent risk factor for poor prognosis in glioma patients. Mol Med 2021; 27:52. [PMID: 34051735 PMCID: PMC8164800 DOI: 10.1186/s10020-021-00316-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background XRCC2, a homologous recombination-related gene, has been reported to be associated with a variety of cancers. However, its role in glioma has not been reported. This study aimed to find out the role of XRCC2 in glioma and reveal in which glioma-specific biological processes is XRCC2 involved based on thousands of glioma samples, thereby, providing a new perspective in the treatment and prognostic evaluation of glioma.
Methods The expression characteristics of XRCC2 in thousands of glioma samples from CGGA and TCGA databases were comprehensively analyzed. Wilcox or Kruskal test was used to analyze the expression pattern of XRCC2 in gliomas with different clinical and molecular features. The effect of XRCC2 on the prognosis of glioma patients was explored by Kaplan–Meier and Cox regression. Gene set enrichment analysis (GSEA) revealed the possible cellular mechanisms involved in XRCC2 in glioma. Connectivity map (CMap) was used to screen small molecule drugs targeting XRCC2 and the expression levels of XRCC2 were verified in glioma cells and tissues by RT-qPCR and immunohistochemical staining. Results We found the overexpression of XRCC2 in glioma. Moreover, the overexpressed XRCC2 was associated with a variety of clinical features related to prognosis. Cox and meta-analyses showed that XRCC2 is an independent risk factor for the poor prognosis of glioma. Furthermore, the results of GSEA indicated that overexpressed XRCC2 could promote malignant progression through involved signaling pathways, such as in the cell cycle. Finally, doxazosin, quinostatin, canavanine, and chrysin were identified to exert anti-glioma effects by targeting XRCC2. Conclusions This study analyzed the expression pattern of XRCC2 in gliomas and its relationship with prognosis using multiple datasets. This is the first study to show that XRCC2, a novel oncogene, is significantly overexpressed in glioma and can lead to poor prognosis in glioma patients. XRCC2 could serve as a new biomarker for glioma diagnosis, treatment, and prognosis evaluation, thus bringing new insight into the management of glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00316-0.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China.,Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wang Zhang
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Xingbo Cheng
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hongbo Wang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Lu Bian
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Jialin Wang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Yanbiao Wang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Xiaoyu Lian
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Binfeng Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhishuai Ren
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Bo Zhang
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.
| | - Yanzheng Gao
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China. .,Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
19
|
Inhibition of DNA Repair in Combination with Temozolomide or Dianhydrogalactiol Overcomes Temozolomide-Resistant Glioma Cells. Cancers (Basel) 2021; 13:cancers13112570. [PMID: 34073837 PMCID: PMC8197190 DOI: 10.3390/cancers13112570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glioblastoma is the most prevalent and lethal brain tumor. Temozolomide is usually used for the treatment of glioblastoma. The poor prognosis of the tumor is due to drug resistance and tumor heterogeneity. The mechanism of the resistance to temozolomide is various within the same tumor. The aim of the study was to clarify the mechanism of temozolomide resistance and find methods to overcome temozolomide resistance in glioma. Inhibition of DNA repair (homologous recombination or base excision repair) resensitized resistant cells harboring different resistance mechanism to temozolomide. Additionally, a bifunctional DNA-targeting agent, dianhydrogalactiol, showed anti-tumor effect independent of MGMT and mismatch repair status. Further, inhibition of checkpoint or homologous recombination enhanced dianhydrogalactiol-induced cytotoxicity in temozolomide-resistant glioma cells. Although resistance to temozolomide is clinically important issue, selecting suitable treatments for resistance mechanism can improve the prognosis of glioma. Abstract Resistance to temozolomide and intratumoral heterogeneity contribute to the poor prognosis of glioma. The mechanisms of temozolomide resistance can vary within a heterogeneous tumor. Temozolomide adds a methyl group to DNA. The primary cytotoxic lesion, O6-methylguanine, mispairs with thymine, leading to a futile DNA mismatch repair cycle, formation of double-strand breaks, and eventual cell death when O6-methylguanine DNA methyltransferase (MGMT) is absent. N7-methylguanine and N3-methyladenine are repaired by base excision repair (BER). The study aim was to elucidate temozolomide resistance mechanisms and identify methods to overcome temozolomide resistance in glioma. Several temozolomide-resistant clones were analyzed. Increased homologous recombination and mismatch repair system deficiencies contributed to temozolomide resistance. Inhibition of homologous recombination resensitized resistant cells with high homologous recombination efficiency. For the mismatch repair-deficient cells, inhibition of BER by PARP inhibitor potentiated temozolomide-induced cytotoxicity. Dianhydrogalactiol is a bifunctional DNA-targeting agent that forms N7-alkylguanine and inter-strand DNA crosslinks. Dianhydrogalactiol reduced the proliferation of cells independent of MGMT and mismatch repair, inducing DNA double-strand breaks and apoptosis in temozolomide-resistant cells. Further, inhibition of chk1 or homologous recombination enhanced dianhydrogalactiol-induced cytotoxicity in the cells. Selecting treatments most appropriate to the types of resistance mechanisms can potentially improve the prognosis of glioma.
Collapse
|
20
|
Gao C, Jin G, Forbes E, Mangala LS, Wang Y, Rodriguez-Aguayo C, Amero P, Bayraktar E, Yan Y, Lopez-Berestein G, Broaddus RR, Sood AK, Xue F, Zhang W. Inactivating Mutations of the IK Gene Weaken Ku80/Ku70-Mediated DNA Repair and Sensitize Endometrial Cancer to Chemotherapy. Cancers (Basel) 2021; 13:2487. [PMID: 34065218 PMCID: PMC8160817 DOI: 10.3390/cancers13102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
IK is a mitotic factor that promotes cell cycle progression. Our previous investigation of 271 endometrial cancer (EC) samples from the Cancer Genome Atlas (TCGA) dataset showed IK somatic mutations were enriched in a cluster of patients with high-grade and high-stage cancers, and this group had longer survival. This study provides insight into how IK somatic mutations contribute to EC pathophysiology. We analyzed the somatic mutational landscape of IK gene in 547 EC patients using expanded TCGA dataset. Co-immunoprecipitation and mass spectrometry were used to identify protein interactions. In vitro and in vivo experiments were used to evaluate IK's role in EC. The patients with IK-inactivating mutations had longer survival during 10-year follow-up. Frameshift and stop-gain were common mutations and were associated with decreased IK expression. IK knockdown led to enrichment of G2/M phase cells, inactivation of DNA repair signaling mediated by heterodimerization of Ku80 and Ku70, and sensitization of EC cells to cisplatin treatment. IK/Ku80 mutations were accompanied by higher mutation rates and associated with significantly better overall survival. Inactivating mutations of IK gene and loss of IK protein expression were associated with weakened Ku80/Ku70-mediated DNA repair, increased mutation burden, and better response to chemotherapy in patients with EC.
Collapse
Affiliation(s)
- Chao Gao
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (C.G.); (G.J.); (E.F.)
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Y.W.); (Y.Y.)
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin 300052, China
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (C.G.); (G.J.); (E.F.)
| | - Elizabeth Forbes
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (C.G.); (G.J.); (E.F.)
| | - Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (L.S.M.); (E.B.); (A.K.S.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (G.L.-B.)
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Y.W.); (Y.Y.)
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin 300052, China
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (G.L.-B.)
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (L.S.M.); (E.B.); (A.K.S.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (G.L.-B.)
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Y.W.); (Y.Y.)
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin 300052, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (G.L.-B.)
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Russell R. Broaddus
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA;
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (L.S.M.); (E.B.); (A.K.S.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (G.L.-B.)
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Y.W.); (Y.Y.)
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin 300052, China
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (C.G.); (G.J.); (E.F.)
| |
Collapse
|
21
|
From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021; 10:cells10051225. [PMID: 34067729 PMCID: PMC8157002 DOI: 10.3390/cells10051225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ.
Collapse
|
22
|
Lim YC, Ensbey KS, Offenhäuser C, D'souza RCJ, Cullen JK, Stringer BW, Quek H, Bruce ZC, Kijas A, Cianfanelli V, Mahboubi B, Smith F, Jeffree RL, Wiesmüeller L, Wiegmans AP, Bain A, Lombard FJ, Roberts TL, Khanna KK, Lavin MF, Kim B, Hamerlik P, Johns TG, Coster MJ, Boyd AW, Day BW. Simultaneous targeting of DNA replication and homologous recombination in glioblastoma with a polyether ionophore. Neuro Oncol 2021; 22:216-228. [PMID: 31504812 PMCID: PMC7442340 DOI: 10.1093/neuonc/noz159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. METHODS In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. RESULTS Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell-like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. CONCLUSION Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.
Collapse
Affiliation(s)
- Yi Chieh Lim
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.,Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kathleen S Ensbey
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Carolin Offenhäuser
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Rochelle C J D'souza
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Jason K Cullen
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Brett W Stringer
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Hazel Quek
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Zara C Bruce
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | | | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bijan Mahboubi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Fiona Smith
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Rosalind L Jeffree
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Queensland, Australia
| | - Lisa Wiesmüeller
- Department of Obstetrics and Gynaecology, University of Ulm, Ulm, Germany
| | - Adrian P Wiegmans
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Amanda Bain
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Fanny J Lombard
- University of Queensland, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Tara L Roberts
- School of Medicine, Ingham Institute, New South Wales, Australia
| | - Kum Kum Khanna
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Martin F Lavin
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Baek Kim
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Mark J Coster
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Andrew W Boyd
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.,University of Queensland, Queensland, Australia
| | - Bryan W Day
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.,University of Queensland, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
23
|
Ohba S, Murayama K, Kuwahara K, Pareira ES, Nakae S, Nishiyama Y, Adachi K, Yamada S, Sasaki H, Yamamoto N, Abe M, Mukherjee J, Hasegawa M, Pieper RO, Hirose Y. The Correlation of Fluorescence of Protoporphyrinogen IX and Status of Isocitrate Dehydrogenase in Gliomas. Neurosurgery 2021; 87:408-417. [PMID: 31833548 DOI: 10.1093/neuros/nyz524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/01/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The extent of resection has been reported to be associated with overall survival in gliomas. The use of 5-aminolevulinic acid (5-ALA) has been recognized to increase the extent of tumor resection. OBJECTIVE To evaluate what factors affect the intraoperative fluorescence after administration of 5-ALA in gliomas. METHODS Correlation of intraoperative fluorescence and several clinical, radiographic, molecular biologic, and histopathologic characters was retrospectively evaluated in 104 patients (53 males and 51 females; mean age 54.2 yr) with gliomas at our institution. To clarify the mechanisms that mutant isocitrate dehydrogenase (IDH) affect the intraoperative fluorescence, in Vitro experiments using genetically engineered glioma cells harboring mutant IDH1 were performed. RESULTS Intraoperative fluorescence was observed in 82 patients (78.8%). In addition to age, magnetic resonance imaging enhancement, World Health Organization grades, and MIB-1 index, the status of IDH was revealed to be correlated with intraoperative fluorescence. In Vitro assay revealed that mutant IDH indirectly reduced the amount of exogenous 5-ALA-derived protoporphyrinogen IX in glioma cells by increasing activity of ferrochelatase and heme oxygenase 1. CONCLUSION Mutant IDH1/2-induced metabolite changes of exogenous 5-ALA were suggested to contribute to the lesser intraoperative fluorescence in gliomas with mutant IDH1/2 than in those without.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | | | - Kiyonori Kuwahara
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | | | - Shunsuke Nakae
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Yuya Nishiyama
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Kazuhide Adachi
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Seiji Yamada
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology, Fujita Health University Institute of Joint Research, Toyoake, Japan
| | - Masato Abe
- Department of Pathology, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Joydeep Mukherjee
- Department of Neurological Surgery, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | | | - Russell O Pieper
- Department of Neurological Surgery, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| |
Collapse
|
24
|
Chen SH, Huang WT, Kao WC, Hsiao SY, Pan HY, Fang CW, Shiue YL, Chou CL, Li CF. O6-methylguanine-DNA methyltransferase modulates cisplatin-induced DNA double-strand breaks by targeting the homologous recombination pathway in nasopharyngeal carcinoma. J Biomed Sci 2021; 28:2. [PMID: 33397362 PMCID: PMC7780675 DOI: 10.1186/s12929-020-00699-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background The homologous recombination (HR) pathway is involved in DNA damage response (DDR), which is crucial to cancer cell survival after treatment with DNA damage agents. O6-methylguanine DNA methyltransferase (MGMT) is associated with cisplatin (CDDP) resistance in cancer cells; however, the underlying mechanisms remain unclear. Here, we explored the interactions between MGMT and the HR pathway in CDDP-activated DDR and their clinical implications in nasopharyngeal carcinoma (NPC). Methods Human NPC cells were assessed using loss-of-function approaches in vitro. The expression correlations between MGMT and major proteins of the HR pathway were analyzed through Western blotting, quantitative real-time PCR, and bioinformatic analysis by using a public database. The physical interactions between MGMT and HR proteins were studied using co-immunoprecipitation and immunofluorescence analyses. Cell comet tails and γ-H2AX expression levels were examined to evaluate double-strand break (DSB) formation. Established immunofluorescence and reporter analyses were conducted to measure HR activity. Xenograft and cell viability studies were used to assess the therapeutic potential of MGMT inhibition in combination with CDDP and poly(ADP-ribose) polymerase (PARP) inhibitor, respectively. Results Among major proteins of the HR pathway, MGMT suppression inhibited CDDP-induced RAD51 expression. Bioinformatic analyses showed a positive correlation between MGMT and RAD51 expression in patients with NPC. Moreover, MGMT physically interacted with BRCA1 and regulated CDDP-induced BRCA1 phosphorylation (ser 988). In functional assays, MGMT inhibition increased CDDP-induced DSB formation through attenuation of HR activity. NPC xenograft studies demonstrated that MGMT inhibition combined with CDDP treatment reduced tumor size and downregulated RAD51 expression and BRCA1 phosphorylation. Furthermore, MGMT suppression increased PARP inhibitor–induced cell death and DSB formation in NPC cells. Conclusion MGMT is crucial in the activation of the HR pathway and regulates DDR in NPC cells treated with CDDP and PARP inhibitor. Thus, MGMT is a promising therapeutic target for cancer treatments involving HR-associated DDR.
Collapse
Affiliation(s)
- Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tsung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Wan-Chen Kao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Sheng-Yen Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yi Pan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chin-Wen Fang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Lin Chou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 71004, Taiwan.
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. .,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan. .,Institute of Precision Medicine, National Sun Yat-sen University, No.70, Lien-hai Rd., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
25
|
Viswanath P, Batsios G, Mukherjee J, Gillespie AM, Larson PEZ, Luchman HA, Phillips JJ, Costello JF, Pieper RO, Ronen SM. Non-invasive assessment of telomere maintenance mechanisms in brain tumors. Nat Commun 2021; 12:92. [PMID: 33397920 PMCID: PMC7782549 DOI: 10.1038/s41467-020-20312-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Joanna J Phillips
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Mehrjardi NZ, Hänggi D, Kahlert UD. Current biomarker-associated procedures of cancer modeling-a reference in the context of IDH1 mutant glioma. Cell Death Dis 2020; 11:998. [PMID: 33221817 PMCID: PMC7680457 DOI: 10.1038/s41419-020-03196-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Isocitrate dehydrogenases (IDH1/2) are central molecular markers for glioblastoma. Providing in vitro or in vivo models with mutated IDH1/2 can help prepare facilities to understand the biology of these mutated genes as glioma markers, as well as help, improve therapeutic strategies. In this review, we first summarize the biology principles of IDH and its mutations and outline the core primary findings in the clinical context of neuro-oncology. Given the extensive research interest and exciting developments in current stem cell biology and genome editing, the central part of the manuscript is dedicated to introducing various routes of disease modeling strategies of IDH mutation (IDHMut) glioma and comparing the scientific-technological findings from the field using different engineering methods. Lastly, by giving our perspective on the benefits and limitations of patient-derived and donor-derived disease modeling respectively, we aim to propose leading research questions to be answered in the context of IDH1 and glioma.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
27
|
Lin L, Cai J, Tan Z, Meng X, Li R, Li Y, Jiang C. Mutant IDH1 Enhances Temozolomide Sensitivity via Regulation of the ATM/CHK2 Pathway in Glioma. Cancer Res Treat 2020; 53:367-377. [PMID: 33070553 PMCID: PMC8053882 DOI: 10.4143/crt.2020.506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Isocitrate dehydrogenase 1 (IDH1) mutations are the most common genetic abnormalities in low-grade gliomas and secondary glioblastomas. Glioma patients with these mutations had better clinical outcomes. However, the effect of IDH1 mutation on drug sensitivity is still under debate. Materials and Methods IDH1-R132H mutant cells were established by lentivirus. IDH1-R132H protein expression was confirmed by western blot. The expression of ataxia telangiectasia mutated (ATM) signaling pathway and apoptosis-related proteins were detected by immunofluorescence and western blot. Temozolomide (TMZ) induced cell apoptosis was detected by flow cytometry. Tumor cell proliferation was detected by Cell Counting Kit-8. In vivo nude mice were used to confirm the in vitro roles of IDH1 mutation. RESULTS We established glioma cell lines that expressed IDH1-R132H mutation stably. We found that TMZ inhibited glioma cells proliferation more significantly in IDH1 mutant cells compared to wild type. The IC50 of TMZ in IDH1-R132H mutant group was less than half that of wild-type group (p < 0.01). TMZ significantly induced more DNA damage (quantification of γH2AX expression in IDH1 mutation vs. wild type, p < 0.05) and apoptosis (quantification of AnnexinV+propidium iodide-cells in IDH1 mutation versus wild type, p < 0.01) in IDH1 mutant gliomas compared to wild-type gliomas. The ATM-associated DNA repair signal was impaired in IDH1 mutant cells. Inhibiting the ATM/checkpoint kinase 2DNA repair pathway further sensitized IDH1 mutant glioma cells to chemotherapy. We found that IDH1 mutation significantly inhibited tumor growth in vivo (the tumor size was analyzed statistically, p < 0.05). Moreover, we confirmed that gliomas with IDH1 mutation were more sensitive to TMZ in vivo compared to wild type significantly and the results were consistent with the in vitro experiment. CONCLUSION These results provide evidence that combination of TMZ and ATM inhibitor enhances the antitumor effect in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zixiao Tan
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruiyan Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Liu Y, Lang F, Chou FJ, Zaghloul KA, Yang C. Isocitrate Dehydrogenase Mutations in Glioma: Genetics, Biochemistry, and Clinical Indications. Biomedicines 2020; 8:biomedicines8090294. [PMID: 32825279 PMCID: PMC7554955 DOI: 10.3390/biomedicines8090294] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) are commonly observed in lower-grade glioma and secondary glioblastomas. IDH mutants confer a neomorphic enzyme activity that converts α-ketoglutarate to an oncometabolite D-2-hydroxyglutarate, which impacts cellular epigenetics and metabolism. IDH mutation establishes distinctive patterns in metabolism, cancer biology, and the therapeutic sensitivity of glioma. Thus, a deeper understanding of the roles of IDH mutations is of great value to improve the therapeutic efficacy of glioma and other malignancies that share similar genetic characteristics. In this review, we focused on the genetics, biochemistry, and clinical impacts of IDH mutations in glioma.
Collapse
Affiliation(s)
- Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
| | - Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
| | - Fu-Ju Chou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
| | - Kareem A. Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
- Correspondence: ; Tel.: +1-240-760-7083
| |
Collapse
|
29
|
He B, Dai C, Lang J, Bing P, Tian G, Wang B, Yang J. A machine learning framework to trace tumor tissue-of-origin of 13 types of cancer based on DNA somatic mutation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165916. [PMID: 32771416 DOI: 10.1016/j.bbadis.2020.165916] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Carcinoma of unknown primary (CUP), defined as metastatic cancers with unknown cancer origin, occurs in 3-5 per 100 cancer patients in the United States. Heterogeneity and metastasis of cancer brings great difficulties to the follow-up diagnosis and treatment for CUP. To find the tissue-of-origin (TOO) of the CUP, multiple methods have been raised. However, the accuracies for computed tomography (CT) and positron emission tomography (PET) to identify TOO were 20%-27% and 24%-40% respectively, which were not enough for determining targeted therapies. In this study, we provide a machine learning framework to trace tumor tissue origin by using gene length-normalized somatic mutation sequencing data. Somatic mutation data was downloaded from the Data Portal (Release 28) of the International Cancer Genome Consortium (ICGC), and 4909 samples for 13 cancers was used to identify primary site of cancers. Optimal results were obtained based on a 600-gene set by using the random forest algorithm with 10-fold cross-validation, and the average accuracy and F1-score were 0.8822 and 0.8886 respectively across 13 types of cancer. In conclusion, we provide an effective computational framework to infer cancer tissue-of-origin by combining DNA sequencing and machine learning techniques, which is promising in assisting clinical diagnosis of cancers.
Collapse
Affiliation(s)
- Bingsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Chan Dai
- Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Jidong Lang
- Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Bo Wang
- Geneis Beijing Co., Ltd., Beijing 100102, China.
| | - Jialiang Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, China; Geneis Beijing Co., Ltd., Beijing 100102, China.
| |
Collapse
|
30
|
Liu X, Li L, Peng L, Wang B, Lang J, Lu Q, Zhang X, Sun Y, Tian G, Zhang H, Zhou L. Predicting Cancer Tissue-of-Origin by a Machine Learning Method Using DNA Somatic Mutation Data. Front Genet 2020; 11:674. [PMID: 32760423 PMCID: PMC7372518 DOI: 10.3389/fgene.2020.00674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with carcinoma of unknown primary (CUP) account for 3-5% of all cancer cases. A large number of metastatic cancers require further diagnosis to determine their tissue of origin. However, diagnosis of CUP and identification of its primary site are challenging. Previous studies have suggested that molecular profiling of tissue-specific genes could be useful in inferring the primary tissue of a tumor. The purpose of this study was to evaluate the performance somatic mutations detected in a tumor to identify the cancer tissue of origin. We downloaded the somatic mutation datasets from the International Cancer Genome Consortium project. The random forest algorithm was used to extract features, and a classifier was established based on the logistic regression. Specifically, the somatic mutations of 300 genes were extracted, which are significantly enriched in functions, such as cell-to-cell adhesion. In addition, the prediction accuracy on tissue-of-origin inference for 3,374 cancer samples across 13 cancer types reached 81% in a 10-fold cross-validation. Our method could be useful in the identification of cancer tissue of origin, as well as the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | | | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Bo Wang
- Genesis Beijing Co., Ltd., Beijing, China
| | | | | | | | - Yi Sun
- Chifeng Municipal Hospital, Chifeng, China
| | - Geng Tian
- Genesis Beijing Co., Ltd., Beijing, China
| | - Huajun Zhang
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
31
|
Nagashima H, Lee CK, Tateishi K, Higuchi F, Subramanian M, Rafferty S, Melamed L, Miller JJ, Wakimoto H, Cahill DP. Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD + to Potentiate the Metabolic Lethality of Alkylating Chemotherapy in IDH-Mutant Tumor Cells. Cancer Discov 2020; 10:1672-1689. [PMID: 32606138 DOI: 10.1158/2159-8290.cd-20-0226] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
NAD+ is an essential cofactor metabolite and is the currency of metabolic transactions critical for cell survival. Depending on tissue context and genotype, cancer cells have unique dependencies on NAD+ metabolic pathways. PARPs catalyze oligomerization of NAD+ monomers into PAR chains during cellular response to alkylating chemotherapeutics, including procarbazine or temozolomide. Here we find that, in endogenous IDH1-mutant tumor models, alkylator-induced cytotoxicity is markedly augmented by pharmacologic inhibition or genetic knockout of the PAR breakdown enzyme PAR glycohydrolase (PARG). Both in vitro and in vivo, we observe that concurrent alkylator and PARG inhibition depletes freely available NAD+ by preventing PAR breakdown, resulting in NAD+ sequestration and collapse of metabolic homeostasis. This effect reversed with NAD+ rescue supplementation, confirming the mechanistic basis of cytotoxicity. Thus, alkylating chemotherapy exposes a genotype-specific metabolic weakness in tumor cells that can be exploited by PARG inactivation. SIGNIFICANCE: Oncogenic mutations in the isocitrate dehydrogenase genes IDH1 or IDH2 initiate diffuse gliomas of younger adulthood. Strategies to maximize the effectiveness of chemotherapy in these tumors are needed. We discover alkylating chemotherapy and concurrent PARG inhibition exploits an intrinsic metabolic weakness within these cancer cells to provide genotype-specific benefit.See related commentary by Pirozzi and Yan, p. 1629.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christine K Lee
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megha Subramanian
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seamus Rafferty
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
He B, Lang J, Wang B, Liu X, Lu Q, He J, Gao W, Bing P, Tian G, Yang J. TOOme: A Novel Computational Framework to Infer Cancer Tissue-of-Origin by Integrating Both Gene Mutation and Expression. Front Bioeng Biotechnol 2020; 8:394. [PMID: 32509741 PMCID: PMC7248358 DOI: 10.3389/fbioe.2020.00394] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Metastatic cancers require further diagnosis to determine their primary tumor sites. However, the tissue-of-origin for around 5% tumors could not be identified by routine medical diagnosis according to a statistics in the United States. With the development of machine learning techniques and the accumulation of big cancer data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), it is now feasible to predict cancer tissue-of-origin by computational tools. Metastatic tumor inherits characteristics from its tissue-of-origin, and both gene expression profile and somatic mutation have tissue specificity. Thus, we developed a computational framework to infer tumor tissue-of-origin by integrating both gene mutation and expression (TOOme). Specifically, we first perform feature selection on both gene expressions and mutations by a random forest method. The selected features are then used to build up a multi-label classification model to infer cancer tissue-of-origin. We adopt a few popular multiple-label classification methods, which are compared by the 10-fold cross validation process. We applied TOOme to the TCGA data containing 7,008 non-metastatic samples across 20 solid tumors. Seventy four genes by gene expression profile and six genes by gene mutation are selected by the random forest process, which can be divided into two categories: (1) cancer type specific genes and (2) those expressed or mutated in several cancers with different levels of expression or mutation rates. Function analysis indicates that the selected genes are significantly enriched in gland development, urogenital system development, hormone metabolic process, thyroid hormone generation prostate hormone generation and so on. According to the multiple-label classification method, random forest performs the best with a 10-fold cross-validation prediction accuracy of 96%. We also use the 19 metastatic samples from TCGA and 256 cancer samples downloaded from GEO as independent testing data, for which TOOme achieves a prediction accuracy of 89%. The cross-validation validation accuracy is better than those using gene expression (i.e., 95%) and gene mutation (53%) alone. In conclusion, TOOme provides a quick yet accurate alternative to traditional medical methods in inferring cancer tissue-of-origin. In addition, the methods combining somatic mutation and gene expressions outperform those using gene expression or mutation alone.
Collapse
Affiliation(s)
- Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | | | - Bo Wang
- Geneis Beijing Co., Ltd., Beijing, China
| | | | | | - Jianjun He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Wei Gao
- Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
| | | |
Collapse
|
33
|
Palumbo P, Lombardi F, Augello FR, Giusti I, Dolo V, Leocata P, Cifone MG, Cinque B. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell Int 2020; 20:167. [PMID: 32435158 PMCID: PMC7222447 DOI: 10.1186/s12935-020-01250-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of glioblastoma (GBM). The poor survival of GBM was mainly associated with the presence of glioma stem cells (GSC) and the markedly inflammatory microenvironment. To further explore the involvement of COX-2 in glioma biology, the effects of NS398, a selective COX-2 inhibitor, were evaluated on GSC derived from COX-2 expressing GBM cell lines, i.e., U87MG and T98G, in terms of neurospheres' growth, autophagy, and extracellular vesicle (EV) release. Methods Neurospheres' growth and morphology were evaluated by optical and scanning electron microscopy. Autophagy was measured by staining acidic vesicular organelles. Extracellular vesicles (EV), released from neurospheres, were analyzed by transmission electron microscopy. The autophagic proteins Beclin-1 and LC3B, as well as the EV markers CD63 and CD81, were analyzed by western blotting. The scratch assay test was used to evaluate the NS398 influence on GBM cell migration. Results Both cell lines were strongly influenced by NS398 exposure, as showed by morphological changes, reduced growth rate, and appearance of autophagy. Furthermore, the inhibitor led to a functional change of EV released by neurospheres. Indeed, EV secreted by NS398-treated GSC, but not those from control cells, were able to significantly inhibit adherent U87MG and T98G cell migration and induced autophagy in recipient cells, thus leading to effects quite similar to those directly caused by NS398 in the same cells. Conclusion Despite the intrinsic diversity and individual genetic features of U87MG and T98G, comparable effects were exerted by the COX-2 inhibitor NS398 on both GBM cell lines. Overall, our findings support the crucial role of the inflammatory-associated COX-2/PGE2 system in glioma and glioma stem cell biology.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Ilaria Giusti
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Pietro Leocata
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
34
|
IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 2020; 122:1580-1589. [PMID: 32291392 PMCID: PMC7250901 DOI: 10.1038/s41416-020-0814-x] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) enzymes catalyse the oxidative decarboxylation of isocitrate and therefore play key roles in the Krebs cycle and cellular homoeostasis. Major advances in cancer genetics over the past decade have revealed that the genes encoding IDHs are frequently mutated in a variety of human malignancies, including gliomas, acute myeloid leukaemia, cholangiocarcinoma, chondrosarcoma and thyroid carcinoma. A series of seminal studies further elucidated the biological impact of the IDH mutation and uncovered the potential role of IDH mutants in oncogenesis. Notably, the neomorphic activity of the IDH mutants establishes distinctive patterns in cancer metabolism, epigenetic shift and therapy resistance. Novel molecular targeting approaches have been developed to improve the efficacy of therapeutics against IDH-mutated cancers. Here we provide an overview of the latest findings in IDH-mutated human malignancies, with a focus on glioma, discussing unique biological signatures and proceedings in translational research.
Collapse
|
35
|
CITK Loss Inhibits Growth of Group 3 and Group 4 Medulloblastoma Cells and Sensitizes Them to DNA-Damaging Agents. Cancers (Basel) 2020; 12:cancers12030542. [PMID: 32111106 PMCID: PMC7139701 DOI: 10.3390/cancers12030542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/15/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, and it is classified into four biological subgroups: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. The current treatment is surgery, followed by irradiation and chemotherapy. Unfortunately, these therapies are only partially effective. Citron kinase protein (CITK) has been proposed as a promising target for SHH MB, whose inactivation leads to DNA damage and apoptosis. D283 and D341 cell lines (Group 3/Group 4 MB) were silenced with established siRNA sequences against CITK, to assess the direct effects of its loss. Next, D283, D341, ONS-76 and DAOY cells were treated with ionizing radiation (IR) or cisplatin in combination with CITK knockdown. CITK depletion impaired proliferation and induced cytokinesis failure and apoptosis of G3/G4 MB cell lines. Furthermore, CITK knockdown produced an accumulation of DNA damage, with reduced RAD51 nuclear levels. Association of IR or cisplatin with CITK depletion strongly impaired the growth potential of all tested MB cells. These results indicate that CITK inactivation could prevent the expansion of G3/G4 MB and increase their sensitivity to DNA-damaging agents, by impairing homologous recombination. We suggest that CITK inhibition could be broadly associated with IR and adjuvant therapy in MB treatment.
Collapse
|
36
|
Carroll SL, Longo JF. Salinomycin targets the genome of radioresistant cells in glioblastomas. Neuro Oncol 2020; 22:167-168. [PMID: 31784742 DOI: 10.1093/neuonc/noz224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
37
|
Yin N, Xie T, Zhang H, Chen J, Yu J, Liu F. IDH1-R132H mutation radiosensitizes U87MG glioma cells via epigenetic downregulation of TIGAR. Oncol Lett 2019; 19:1322-1330. [PMID: 31966064 PMCID: PMC6956398 DOI: 10.3892/ol.2019.11148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most frequently mutated gene in World Health Organization grade II–III and secondary glioma. The majority of IDH1 mutation cases involve the substitution from arginine to histidine at codon 132 (IDH1-R132H). Although the oncogenic role of IDH1-R132H has been confirmed, patients with IDH1-R132H brain tumors exhibit a better response to radiotherapy compared with those with wild-type (WT) IDH1. In the present study, the potential mechanism of radiosensitization mediated by IDH1-R132H was investigated by overexpressing IDH1-R132H in U87MG glioma cells. The results demonstrated decreased clonogenic capacity of IDH1-R132H-expressing cells, as well as delayed repair of DNA double-strand breaks compared with IDH1-WT. Data from The Cancer Genome Atlas were analyzed, which demonstrated that the expression of TP53-induced glycolysis and apoptosis regulator (TIGAR) was lower in patients with glioma harboring IDH1 mutations compared with that in patients with IDH1-WT. TIGAR-knockdown increases the radiosensitivity of glioma cells; in U87MG cells, IDH1-R132H suppressed TIGAR expression. Chromatin immunoprecipitation assays revealed increased levels of repressive H3K9me3 markers at the TIGAR promoter in IDH1-R132H compared with IDH1-WT. These data indicated that IDH1-R132H may overcome radioresistance in glioma cells through epigenetic suppression of TIGAR expression. However, these favorable effects were not observed in U87MG glioma stem-like cells. The results of the present study provide an improved understanding of the functionality of IDH1 mutations in glioma cells, which may improve the therapeutic efficacy of radiotherapy.
Collapse
Affiliation(s)
- Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Ting Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
38
|
Huang J, Yu J, Tu L, Huang N, Li H, Luo Y. Isocitrate Dehydrogenase Mutations in Glioma: From Basic Discovery to Therapeutics Development. Front Oncol 2019; 9:506. [PMID: 31263678 PMCID: PMC6584818 DOI: 10.3389/fonc.2019.00506] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is a key rate-limiting enzyme in the Krebs cycle that plays an important role in energy metabolism. In recent years, it has been found that IDH mutations are closely related to the occurrence and development of glioma, and it is a notable potential therapeutic target. First, IDH mutations can produce high levels of 2-hydroxyglutaric acid (2-HG), thereby inhibiting glioma stem cell differentiation. At the same time, IDH mutations can upregulate vascular endothelial growth factor (VEGF) to promote the formation of the tumor microenvironment. In addition, IDH mutations can also induce high levels of hypoxia-inducible factor-1α (HIF-1α) to promote glioma invasion. Ultimately, these changes will lead to the development of glioma. Currently, a large number of IDH inhibitors and vaccines have entered clinical trials, representing progress in the treatment of glioma patients.
Collapse
Affiliation(s)
- Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Jialong Yu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Lin Tu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Nanqu Huang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Hang Li
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Yong Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| |
Collapse
|
39
|
Perrech M, Dreher L, Röhn G, Stavrinou P, Krischek B, Toliat M, Goldbrunner R, Timmer M. Qualitative and Quantitative Analysis of IDH1 Mutation in Progressive Gliomas by Allele-Specific qPCR and Western Blot Analysis. Technol Cancer Res Treat 2019; 18:1533033819828396. [PMID: 30943868 PMCID: PMC6457076 DOI: 10.1177/1533033819828396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To date, diagnosis of IDH1 mutation is based on DNA sequencing and immunohistochemistry, methods limited in terms of sensitivity and ease of use. Recently, the diagnosis of IDH1 mutation by real-time polymerase chain reaction was introduced as an alternative method. In this study, real-time polymerase chain reaction was validated as a tool for detection of IDH1 mutation, and expression levels were analyzed for correlation with course of the disease. A total of 113 tumor samples were obtained intraoperatively from 84 patients with glioma having a diagnosis of diffuse glioma (World Health Organization II), anaplastic glioma (World Health Organization III), secondary glioblastoma ± chemotherapy, primary glioblastoma ± chemotherapy (World Health Organization IV). Tumor samples were snap frozen and processed for sectioning and RNA and protein isolation. Presence of IDH1 mutation was determined by DNA sequencing. Hereafter, quantitative expression of IDH1 messenger RNA was assessed using real-time polymerase chain reaction with specific primers for IDH1 mutation and -wt; protein expression was verified by Western Blot analysis and immunohistochemistry. Additionally, 19 samples of low-grade glioma and their consecutive high-grade glioma were analyzed at different time points of the disease. IDH1 mutation was identified in 63% of samples by DNA sequencing. In correlation with the real-time polymerase chain reaction results, a cutoff value was determined. Above this threshold, sensitivity and specificity of real-time polymerase chain reaction in detecting IDH1 mutation were 98% and 94%, respectively. Quantitative analysis revealed that IDH1 mutation expression is upregulated in secondary glioblastoma (mean ± standard error of mean: 3.52 ± 0.55) compared to lower grade glioma (II = 1.54 ± 0.22; III = 1.67 ± 0.23). In contrast, IDH1 wt expression is upregulated in all glioma grades (concentration >0.1) compared to control brain tissue (0.007 ± 0.0016). Western Blot analysis showed a high concordance to both sequencing and real-time polymerase chain reaction results in qualitative analysis of IDH1 mutation status (specificity 100% and sensitivity 100%). Moreover, semiquantitative protein expression analysis also showed higher expression levels of mutated IDH1 in secondary glioblastoma. In our study, real-time polymerase chain reaction and Western Blot analysis were found to be highly efficient methods in detecting IDH1 mutation in glioma samples. As cost-effective and time-saving methods, real-time polymerase chain reaction and Western Blot analysis may therefore play an important role in IDH1 mutation analysis in the future. IDH1 mutation expression level was found to correlate with the course of disease to a certain extent. Yet, clinical factors as recurrent disease or prior radiochemotherapy did not alter IDH1 mutation expression level.
Collapse
Affiliation(s)
- Moritz Perrech
- 1 Laboratory of Neuro-oncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Lena Dreher
- 1 Laboratory of Neuro-oncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Gabriele Röhn
- 1 Laboratory of Neuro-oncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Pantelis Stavrinou
- 1 Laboratory of Neuro-oncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Boris Krischek
- 1 Laboratory of Neuro-oncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Mohammad Toliat
- 2 Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- 1 Laboratory of Neuro-oncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Marco Timmer
- 1 Laboratory of Neuro-oncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
40
|
Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst) 2019; 78:128-141. [PMID: 31039537 DOI: 10.1016/j.dnarep.2019.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
Alkylating agents have been used since the 60ties in brain cancer chemotherapy. Their target is the DNA and, although the DNA of normal and cancer cells is damaged unselectively, they exert tumor-specific killing effects because of downregulation of some DNA repair activities in cancer cells. Agents exhibiting methylating properties (temozolomide, procarbazine, dacarbazine, streptozotocine) induce at least 12 different DNA lesions. These are repaired by damage reversal mechanisms involving the alkyltransferase MGMT and the alkB homologous protein ALKBH2, and through base excision repair (BER). There is a strong correlation between the MGMT expression level and therapeutic response in high-grade malignant glioma, supporting the notion that O6-methylguanine and, for nitrosoureas, O6-chloroethylguanine are the most relevant toxic damages at therapeutically relevant doses. Since MGMT has a significant impact on the outcome of anti-cancer therapy, it is a predictive marker of the effectiveness of methylating anticancer drugs, and clinical trials are underway aimed at assessing the influence of MGMT inhibition on the therapeutic success. Other DNA repair factors involved in methylating drug resistance are mismatch repair, DNA double-strand break (DSB) repair by homologous recombination (HR) and DSB signaling. Base excision repair and ALKBH2 might also contribute to alkylating drug resistance and their downregulation may have an impact on drug sensitivity notably in cells expressing a high amount of MGMT and at high doses of temozolomide, but the importance in a therapeutic setting remains to be shown. MGMT is frequently downregulated in cancer cells (up to 40% in glioblastomas), which is due to CpG promoter methylation. Astrocytoma (grade III) are frequently mutated in isocitrate dehydrogenase (IDH1). These tumors show a surprisingly good therapeutic response. IDH1 mutation has an impact on ALKBH2 activity thus influencing DNA repair. A master switch between survival and death is p53, which often retains transactivation activity (wildtype) in malignant glioma. The role of p53 in regulating survival via DNA repair and the routes of death are discussed and conclusions as to cancer therapeutic options were drawn.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
41
|
Wang Y, Yang J, Wild AT, Wu WH, Shah R, Danussi C, Riggins GJ, Kannan K, Sulman EP, Chan TA, Huse JT. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat Commun 2019; 10:943. [PMID: 30808951 PMCID: PMC6391399 DOI: 10.1038/s41467-019-08905-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Mutational inactivation of ATRX (α-thalassemia mental retardation X-linked) represents a defining molecular alteration in large subsets of malignant glioma. Yet the pathogenic consequences of ATRX deficiency remain unclear, as do tractable mechanisms for its therapeutic targeting. Here we report that ATRX loss in isogenic glioma model systems induces replication stress and DNA damage by way of G-quadruplex (G4) DNA secondary structure. Moreover, these effects are associated with the acquisition of disease-relevant copy number alterations over time. We then demonstrate, both in vitro and in vivo, that ATRX deficiency selectively enhances DNA damage and cell death following chemical G4 stabilization. Finally, we show that G4 stabilization synergizes with other DNA-damaging therapies, including ionizing radiation, in the ATRX-deficient context. Our findings reveal novel pathogenic mechanisms driven by ATRX deficiency in glioma, while also pointing to tangible strategies for drug development. ATRX deficiency is linked to genomic stability in cancer cells. Here, the authors show that ATRX inactivation induces G-quadruplex formation, leading to genome-wide DNA damage, and the use of G-quadruplex stabilisers can be exploited therapeutically in ATRX deficient gliomas.
Collapse
Affiliation(s)
- Yuxiang Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Jie Yang
- Department of Radation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aaron T Wild
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Wei H Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Rachna Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Carla Danussi
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gregory J Riggins
- Departments of Neurosurgery, Oncology, and Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Kasthuri Kannan
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Erik P Sulman
- Department of Radation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Meng X, Duan C, Pang H, Chen Q, Han B, Zha C, Dinislam M, Wu P, Li Z, Zhao S, Wang R, Lin L, Jiang C, Cai J. DNA damage repair alterations modulate M2 polarization of microglia to remodel the tumor microenvironment via the p53-mediated MDK expression in glioma. EBioMedicine 2019; 41:185-199. [PMID: 30773478 PMCID: PMC6442002 DOI: 10.1016/j.ebiom.2019.01.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
Background DNA damage repair (DDR) alterations are important events in cancer initiation, progression, and therapeutic resistance. However, the involvement of DDR alterations in glioma malignancy needs further investigation. This study aims to characterize the clinical and molecular features of gliomas with DDR alterations and elucidate the biological process of DDR alterations that regulate the cross talk between gliomas and the tumor microenvironment. Methods Integrated transcriptomic and genomic analyses were undertaken to conduct a comprehensive investigation of the role of DDR alterations in glioma. The prognostic DDR-related cytokines were identified from multiple datasets. In vivo and in vitro experiments validated the role of p53, the key molecule of DDR, regulating M2 polarization of microglia in glioma. Findings DDR alterations are associated with clinical and molecular characteristics of glioma. Gliomas with DDR alterations exhibit distinct immune phenotypes, and immune cell types and cytokine processes. DDR-related cytokines have an unfavorable prognostic implication for GBM patients and are synergistic with DDR alterations. Overexpression of MDK mediated by p53, the key transcriptional factor in DDR pathways, remodels the GBM immunosuppressive microenvironment by promoting M2 polarization of microglia, suggesting a potential role of DDR in regulating the glioma microenvironment. Interpretation Our work suggests that DDR alterations significantly contribute to remodeling the glioma microenvironment via regulating the immune response and cytokine pathways. Fund This study was supported by: 1. The National Key Research and Development Plan (No. 2016YFC0902500); 2. National Natural Science Foundation of China (No. 81702972, No. 81874204, No. 81572701, No. 81772666); 3. China Postdoctoral Science Foundation (2018M640305); 4. Special Fund Project of Translational Medicine in the Chinese-Russian Medical Research Center (No. CR201812); 5. The Research Project of the Chinese Society of Neuro-oncology, CACA (CSNO-2016-MSD12); 6. The Research Project of the Health and Family Planning Commission of Heilongjiang Province (2017–201); and 7. Harbin Medical University Innovation Fund (2017LCZX37, 2017RWZX03). Gliomas with DNA damage repair alterations had distinct genomic variation spectrum. DDR alterations exhibit distinct immune phenotypes, cytokine processes and immune cell types in glioma. DDR-related cytokines in GME have an unfavorable prognostic implication for GBM patients. P53-mediated midkine expression derived from glioma cells promotes M2 polarization of microglia.
Collapse
Affiliation(s)
- Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chunbin Duan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Hengyuan Pang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bo Han
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Magafurov Dinislam
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neurosurgical department, Bashkir State Medical University, Ufa 450008, Russia
| | - Pengfei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruijia Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Lin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China.
| |
Collapse
|
43
|
Mukherjee J, Johannessen TC, Ohba S, Chow TT, Jones L, Pandita A, Pieper RO. Mutant IDH1 Cooperates with ATRX Loss to Drive the Alternative Lengthening of Telomere Phenotype in Glioma. Cancer Res 2018; 78:2966-2977. [PMID: 29545335 PMCID: PMC10578296 DOI: 10.1158/0008-5472.can-17-2269] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
A subset of tumors use a recombination-based alternative lengthening of telomere (ALT) pathway to resolve telomeric dysfunction in the absence of TERT. Loss-of-function mutations in the chromatin remodeling factor ATRX are associated with ALT but are insufficient to drive the process. Because many ALT tumors express the mutant isocitrate dehydrogenase IDH1 R132H, including all lower grade astrocytomas and secondary glioblastoma, we examined a hypothesized role for IDH1 R132H in driving the ALT phenotype during gliomagenesis. In p53/pRb-deficient human astrocytes, combined deletion of ATRX and expression of mutant IDH1 were sufficient to create tumorigenic cells with ALT characteristics. The telomere capping complex component RAP1 and the nonhomologous DNA end joining repair factor XRCC1 were each downregulated consistently in these tumorigenic cells, where their coordinate reexpression was sufficient to suppress the ALT phenotype. RAP1 or XRCC1 downregulation cooperated with ATRX loss in driving the ALT phenotype. RAP1 silencing caused telomere dysfunction in ATRX-deficient cells, whereas XRCC1 silencing suppressed lethal fusion of dysfunctional telomeres by allowing IDH1-mutant ATRX-deficient cells to use homologous recombination and ALT to resolve telomeric dysfunction and escape cell death. Overall, our studies show how expression of mutant IDH1 initiates telomeric dysfunction and alters DNA repair pathway preferences at telomeres, cooperating with ATRX loss to defeat a key barrier to gliomagenesis.Significance: Studies show how expression of mutant IDH1 initiates telomeric dysfunction and alters DNA repair pathway preferences at telomeres, cooperating with ATRX loss to defeat a key barrier to gliomagenesis and suggesting new therapeutic options to treat low-grade gliomas. Cancer Res; 78(11); 2966-77. ©2018 AACR.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Tor-Christian Johannessen
- The Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Tracy T Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Lindsey Jones
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | | | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
44
|
Association between mutant IDHs and tumorigenesis in gliomas. Med Mol Morphol 2018; 51:194-198. [PMID: 29633022 DOI: 10.1007/s00795-018-0189-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 01/14/2023]
Abstract
To become immortalized, cells need to maintain the telomere length via the activation of telomerase or alternative lengthening of telomere. Mutations in IDH1/2 are strongly associated with the early stage of gliomagenesis. Previous work has shown that the accumulation of 2-HG, which is induced by mutant IDH1/2, inhibits α-KG-dependent deoxygenase and leads to genome-wide histone and DNA methylation alterations. These alterations are believed to contribute to tumorigenesis. H-Ras can transform human astrocytes with the inactivation of p53/pRb and expression of hTERT; however, mutant IDH1 can also transform cells. Moreover, mutant IDH1 can drive the immortalization and transformation of p53-/pRb-deficient astrocytes by reactivating telomerase and stabilizing telomeres in combination with increased histone lysine methylation and c-Myc/Max binding at the TERT promoter. It remains unclear whether mutant IDH1/2 acts only as the initial driver of gliomagenesis or it maintains transformed cells. Clinical studies are being performed to assess the use of mutant IDH1/2 inhibitors for treating gliomas.
Collapse
|
45
|
Christmann M, Diesler K, Majhen D, Steigerwald C, Berte N, Freund H, Stojanović N, Kaina B, Osmak M, Ambriović-Ristov A, Tomicic MT. Integrin αVβ3 silencing sensitizes malignant glioma cells to temozolomide by suppression of homologous recombination repair. Oncotarget 2018; 8:27754-27771. [PMID: 27487141 PMCID: PMC5438606 DOI: 10.18632/oncotarget.10897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Integrins have been suggested as possible targets in anticancer therapy. Here we show that knockdown of integrins αVβ3, αVβ5, α3β1 and α4β1 and pharmacological inhibition using a cyclo-RGD integrin αVβ3/αVβ5 antagonist sensitized multiple high-grade glioma cell lines to temozolomide (TMZ)-induced cytotoxicity. The greatest effect was observed in LN229 cells upon integrin β3 silencing, which led to inhibition of the FAK/Src/Akt/NFκB signaling pathway and increased formation of γH2AX foci. The integrin β3 knockdown led to the proteasomal degradation of Rad51, reduction of Rad51 foci and reduced repair of TMZ-induced DNA double-strand breaks by impairing homologous recombination efficiency. The down-regulation of β3 in Rad51 knockdown (LN229-Rad51kd) cells neither further sensitized them to TMZ nor increased the number of γH2AX foci, confirming causality between β3 silencing and Rad51 reduction. RIP1 was found cleaved and IκBα significantly less degraded in β3-silenced/TMZ-exposed cells, indicating inactivation of NFκB signaling. The anti-apoptotic proteins Bcl-xL, survivin and XIAP were proteasomally degraded and caspase-3/−2 cleaved. Increased H2AX phosphorylation, caspase-3 cleavage, reduced Rad51 and RIP1 expression, as well as sustained IκBα expression were also observed in mouse glioma xenografts treated with the cyclo-RGD inhibitor and TMZ, confirming the molecular mechanism in vivo. Our data indicates that β3 silencing in glioma cells represents a promising strategy to sensitize high-grade gliomas to TMZ therapy.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Kathrin Diesler
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | | | - Nancy Berte
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Halima Freund
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Maja Osmak
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| |
Collapse
|
46
|
Beyond Brooding on Oncometabolic Havoc in IDH-Mutant Gliomas and AML: Current and Future Therapeutic Strategies. Cancers (Basel) 2018; 10:cancers10020049. [PMID: 29439493 PMCID: PMC5836081 DOI: 10.3390/cancers10020049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1,2), the key Krebs cycle enzymes that generate NADPH reducing equivalents, undergo heterozygous mutations in >70% of low- to mid-grade gliomas and ~20% of acute myeloid leukemias (AMLs) and gain an unusual new activity of reducing the α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2HG) in a NADPH-consuming reaction. The oncometabolite D-2HG, which accumulates >35 mM, is widely accepted to drive a progressive oncogenesis besides exacerbating the already increased oxidative stress in these cancers. More importantly, D-2HG competes with α-KG and inhibits a large number of α-KG-dependent dioxygenases such as TET (Ten-eleven translocation), JmjC domain-containing KDMs (histone lysine demethylases), and the ALKBH DNA repair proteins that ultimately lead to hypermethylation of the CpG islands in the genome. The resulting CpG Island Methylator Phenotype (CIMP) accounts for major gene expression changes including the silencing of the MGMT (O6-methylguanine DNA methyltransferase) repair protein in gliomas. Glioma patients with IDH1 mutations also show better therapeutic responses and longer survival, the reasons for which are yet unclear. There has been a great surge in drug discovery for curtailing the mutant IDH activities, and arresting tumor proliferation; however, given the unique and chronic metabolic effects of D-2HG, the promise of these compounds for glioma treatment is uncertain. This comprehensive review discusses the biology, current drug design and opportunities for improved therapies through exploitable synthetic lethality pathways, and an intriguing oncometabolite-inspired strategy for primary glioblastoma.
Collapse
|
47
|
Carroll KT, Hirshman B, Ali MA, Alattar AA, Brandel MG, Lochte B, Lanman T, Carter B, Chen CC. Management and Survival Patterns of Patients with Gliomatosis Cerebri: A SEER-Based Analysis. World Neurosurg 2017; 103:186-193. [DOI: 10.1016/j.wneu.2017.03.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/27/2023]
|
48
|
Bogdańska M, Bodnar M, Belmonte-Beitia J, Murek M, Schucht P, Beck J, Pérez-García V. A mathematical model of low grade gliomas treated with temozolomide and its therapeutical implications. Math Biosci 2017; 288:1-13. [DOI: 10.1016/j.mbs.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
|
49
|
LeBlanc VG, Firme M, Song J, Chan SY, Lee MH, Yip S, Chittaranjan S, Marra MA. Comparative transcriptome analysis of isogenic cell line models and primary cancers links capicua (CIC) loss to activation of the MAPK signalling cascade. J Pathol 2017; 242:206-220. [PMID: 28295365 PMCID: PMC5485162 DOI: 10.1002/path.4894] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/30/2023]
Abstract
CIC encodes a transcriptional repressor, capicua (CIC), whose disrupted activity appears to be involved in several cancer types, including type I low‐grade gliomas (LGGs) and stomach adenocarcinomas (STADs). To explore human CIC's transcriptional network in an isogenic background, we developed novel isogenic CIC knockout cell lines as model systems, and used these in transcriptome analyses to study the consequences of CIC loss. We also compared our results with analyses of transcriptome data from TCGA for type I LGGs and STADs. We identified 39 candidate targets of CIC transcriptional regulation, and confirmed seven of these as direct targets. We showed that, although many CIC targets appear to be context‐specific, the effects of CIC loss converge on the dysregulation of similar biological processes in different cancer types. For example, we found that CIC deficiency was associated with disruptions in the expression of genes involved in cell–cell adhesion, and in the development of several cell and tissue types. We also showed that loss of CIC leads to overexpression of downstream members of the mitogen‐activated protein kinase (MAPK) signalling cascade, indicating that CIC deficiency may present a novel mechanism for activation of this oncogenic pathway. © 2017 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Veronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.,Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Marlo Firme
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Susanna Y Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Min Hye Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada
| | - Suganthi Chittaranjan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, Chheda ZS, Downey KM, Watchmaker PB, Beppler C, Warta R, Amankulor NA, Herold-Mende C, Costello JF, Okada H. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest 2017; 127:1425-1437. [PMID: 28319047 DOI: 10.1172/jci90644] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/19/2017] [Indexed: 01/16/2023] Open
Abstract
Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting α-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte-associated genes and IFN-γ-inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas.
Collapse
|