1
|
Maldonado H, Dreger M, Bedgood LD, Kyriakou T, Wolanska KI, Rigby ME, Marotta VE, Webster JM, Wang J, Rusilowicz-Jones EV, Marshall JF, Coulson JM, Macpherson IR, Hurlstone A, Morgan MR. A trafficking regulatory subnetwork governs α Vβ 6 integrin-HER2 cross-talk to control breast cancer invasion and drug resistance. SCIENCE ADVANCES 2024; 10:eadk9944. [PMID: 39630893 PMCID: PMC11616693 DOI: 10.1126/sciadv.adk9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
HER2 and αVβ6 integrin are independent predictors of breast cancer survival and metastasis. We identify an αVβ6/HER2 cross-talk mechanism driving invasion, which is dysregulated in drug-resistant HER2+ breast cancer cells. Proteomic analyses reveal ligand-bound αVβ6 recruits HER2 and a trafficking subnetwork, comprising guanosine triphosphatases RAB5 and RAB7A and the Rab regulator guanine nucleotide dissociation inhibitor 2 (GDI2). The RAB5/RAB7A/GDI2 functional module mediates direct cross-talk between αVβ6 and HER2, affecting receptor trafficking and signaling. Acute exposure to trastuzumab increases recruitment of the subnetwork to αVβ6, but trastuzumab resistance decouples GDI2 recruitment. GDI2, RAB5, and RAB7A cooperate to regulate migration and transforming growth factor-β activation to promote invasion. However, these mechanisms are dysregulated in trastuzumab-resistant cells. In patients, RAB5A, RAB7A, and GDI2 expression correlates with patient survival and αVβ6 expression predicts relapse following trastuzumab treatment. Thus, the RAB5/RAB7A/GDI2 subnetwork regulates αVβ6-HER2 cross-talk to drive breast cancer invasion but is subverted in trastuzumab-resistant cells to drive αVβ6-independent and HER2-independent tumor progression.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Marcel Dreger
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lara D. Bedgood
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Theano Kyriakou
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Katarzyna I. Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Megan E. Rigby
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Valeria E. Marotta
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Justine M. Webster
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Jun Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Emma V. Rusilowicz-Jones
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Judy M. Coulson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Iain R. Macpherson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Adam Hurlstone
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mark R. Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
2
|
Geyer M, Geyer F, Reuning U, Klapproth S, Wolff KD, Nieberler M. CRISPR/Cas9-mediated knock out of ITGB6 in human OSCC cells reduced migration and proliferation ability. Head Face Med 2024; 20:37. [PMID: 38890650 PMCID: PMC11184753 DOI: 10.1186/s13005-024-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The treatment of oral squamous cell carcinoma (OSCC) remains challenging and survival rates have not been improved significantly over the past decades. Integrins have been recognized driving the cancer progression and high expression levels cause poor outcomes in patients afflicted with OSCC. Integrin αvβ6 and its subunit integrin beta 6 (ITGB6) were discovered to enhance the invasiveness by providing beneficial effects on downstream pathways promoting the cancer progression. The objective of this study was to establish a CRISPR/Cas9-mediated knock out of ITGB6 in the human OSCC cell line HN and investigate the effects on the migration and proliferation ability. METHODS ITGB6 knock out was performed using the CRISPR/Cas9-system, RNPs, and lipofection. Monoclonal cell clones were achieved by limiting dilution and knock out verification was carried out by sanger sequencing and FACS on protein level. The effects of the knock out on the proliferation and migration ability were evaluated by using MTT and scratch assays. In addition, in silico TCGA analysis was utilized regarding the effects of ITGB6 on overall survival and perineural invasion. RESULTS In silico analysis revealed a significant impact of ITGB6 mRNA expression levels on the overall survival of patients afflicted with OSCC. Additionally, a significantly higher rate of perineural invasion was discovered. CRISPR/Cas9-mediated knock out of ITGB6 was performed in the OSCC cell line HN, resulting in the generation of a monoclonal knock out clone. The knock out clone exhibited a significantly reduced migration and proliferation ability when compared to the wildtype. CONCLUSIONS ITGB6 is a relevant factor in the progression of OSCC and can be used for the development of novel treatment strategies. The present study is the first to establish a monoclonal CRISPR/Cas9-mediated ITGB6 knockout cell clone derived from an OSCC cell line. It suggests that ITGB6 has a significant impact on the proliferative and migratory capacity in vitro.
Collapse
Affiliation(s)
- Maximilian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany.
| | - Fabian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, D-81675, Munich, Germany
| | - Sarah Klapproth
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, D-81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany
| |
Collapse
|
3
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
4
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Zeltz C, Kusche-Gullberg M, Heljasvaara R, Gullberg D. Novel roles for cooperating collagen receptor families in fibrotic niches. Curr Opin Cell Biol 2023; 85:102273. [PMID: 37918273 DOI: 10.1016/j.ceb.2023.102273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Recent data indicate that integrin and non-integrin collagen receptors cooperate in the fibrosis-specific microenvironment (i.e., the fibrotic niche). In certain tumor types, DDR1 can regulate the interaction with collagen III to regulate dormancy and metastasis, whereas in other tumor types, DDR1 can be shed and used to reorganize collagen. DDR1 expressed on tumor cells, together with DDR2 and α11β1 integrin expressed on cancer-associated fibroblasts, can increase tumor tissue stiffness. Integrin α1β1 and α2β1 are present on immune cells where they together with the immunosuppressive collagen receptor LAIR-1 can mediate binding to intratumor collagens. In summary, collagen-binding integrins together with DDRs, can create fibrillar collagen niches that act as traps to hinder immune cell trafficking into the tumor cell mass. Binding of collagens via LAIR-1 on immune cells in turn results in CD8+T-cell exhaustion. Continued studies of these complex interactions are needed for successful new stroma-based therapeutic interventions. In the current review, we will summarize recent data on collagen receptors with a special focus on their potential role in tumor fibrosis and highlight their collaborative roles in tumor fibrotic niches.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway
| | - Marion Kusche-Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
6
|
Kuo SH, Tseng LM, Chen ST, Sagara Y, Chang YC, Yeh HT, Kuo YL, Hung CC, Lu TP, Lee YH, Toi M, Huang CS. Radiotherapy versus low-dose tamoxifen following breast-conserving surgery for low-risk and estrogen receptor-positive breast ductal carcinoma in situ: an international open-label randomized non-inferiority trial (TBCC-ARO DCIS Trial). BMC Cancer 2023; 23:865. [PMID: 37710198 PMCID: PMC10500726 DOI: 10.1186/s12885-023-11291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) following breast-conserving surgery (BCS) is mainly used to decrease the rate of ipsilateral breast tumor recurrence (IBTR) in women with breast ductal carcinoma in situ (DCIS). Recent studies have demonstrated that low-dose tamoxifen significantly reduces IBTR in breast DCIS. Here, we aim to determine whether the administration of low-dose tamoxifen is non-inferior to RT in preventing IBTR in patients with low-risk characteristics of breast DCIS. METHODS/DESIGN This is a prospective, international, open-label, randomized, non-inferiority trial. Patients with low-risk clinicopathologic features (> 40 years old, low risk of breast cancer susceptibility gene (BRCA) 1 and BRCA2 mutations, mammographically detected unicentric and non-mass lesions, low- or intermediate-grade without comedo or necrosis, measuring < 2.5 cm with margins ≥ 3 mm, and estrogen receptor-positive status) of DCIS who underwent BCS will be randomized at a 1:1 ratio to either receive tamoxifen (5 mg/day) for 5 years or undergo RT with conventional fractions (50 Gy in 25 fractions) or hypofractionations (40.05 Gy in 15 fractions). Randomization will be stratified by the Taiwan Breast Cancer Consortium. As approximately 5% of patients cannot tolerate the side effects of low-dose tamoxifen and will receive RT, we estimate that 405 patients will be randomized to a low-dose tamoxifen arm and 405 patients to the RT arm, according to a non-inferiority margin within 5% of IBTR difference and 90% β-power noticing non-inferiority. The primary endpoints are breast tumor recurrence, including ipsilateral, regional, contralateral, and distant recurrence of breast DCIS or invasive cancer. The secondary endpoints are overall survival and adverse effects of RT and tamoxifen. Translational studies will also be conducted for this trial. DISCUSSION This is the first non-inferiority trial on breast DCIS. This study will provide an important recommendation for clinical physicians on whether to use low-dose adjuvant tamoxifen for patients with low-risk breast DCIS who do not want to receive adjuvant RT. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT04046159, Registered on April 30, 2019.
Collapse
Affiliation(s)
- Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Tung Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yasuaki Sagara
- Department of Breast Surgical Oncology, Hakuaikai Social Cooperation, Sagara Hospital, Kagoshima, Japan
| | | | - Hsien-Tang Yeh
- Department of Surgery, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Yao-Lung Kuo
- Division of Breast Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Chiang Hung
- Department of Surgery, Division of Breast Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, National, Institute of Epidemiology and Preventive Medicine, Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Masakazu Toi
- Tokyo Metropolitan Cancer and Infectious Disease Centre, Komagome Hospital, Tokyo, Japan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan.
| |
Collapse
|
7
|
Gibson SV, Roozitalab RM, Allen MD, Jones JL, Carter EP, Grose RP. Everybody needs good neighbours: the progressive DCIS microenvironment. Trends Cancer 2023; 9:326-338. [PMID: 36739265 DOI: 10.1016/j.trecan.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive form of breast cancer where neoplastic luminal cells are confined to the ductal tree. While as many as 70% of DCIS cases will remain indolent, most women are treated with surgery, often combined with endocrine and radiotherapies. Overtreatment is therefore a major issue, demanding new methods to stratify patients. Somewhat paradoxically, the neoplastic cells in DCIS are genetically comparable to those in invasive disease, suggesting the tumour microenvironment is the driving force for progression. Clinical and mechanistic studies highlight the complex DCIS microenvironment, with multiple cell types competing to regulate progression. Here, we examine recent studies detailing distinct aspects of the DCIS microenvironment and discuss how these may inform more effective care.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Reza M Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
8
|
Lian Y, Zeng S, Wen S, Zhao X, Fang C, Zeng N. Review and Application of Integrin Alpha v Beta 6 in the Diagnosis and Treatment of Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231189399. [PMID: 37525872 PMCID: PMC10395192 DOI: 10.1177/15330338231189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Integrin Alpha v Beta 6 is expressed primarily in solid epithelial tumors, such as cholangiocarcinoma, pancreatic cancer, and colorectal cancer. It has been considered a potential and promising molecular marker for the early diagnosis and treatment of cancer. Cholangiocarcinoma and pancreatic ductal adenocarcinoma share genetic, histological, and pathophysiological similarities due to the shared embryonic origin of the bile duct and pancreas. These cancers share numerous clinicopathological characteristics, including growth pattern, poor response to conventional radiotherapy and chemotherapy, and poor prognosis. This review focuses on the role of integrin Alpha v Beta 6 in cancer progression. It addition, it reviews how the marker can be used in molecular imaging and therapeutic targets. We propose further research explorations and questions that need to be addressed. We conclude that integrin Alpha v Beta 6 may serve as a potential biomarker for cancer disease progression and prognosis.
Collapse
Affiliation(s)
- Yunyu Lian
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Sai Wen
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Chihua Fang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Ning Zeng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
9
|
Udayasiri RI, Luo T, Gorringe KL, Fox SB. Identifying recurrences and metastasis after ductal carcinoma in situ (DCIS) of the breast. Histopathology 2023; 82:106-118. [PMID: 36482277 PMCID: PMC10953414 DOI: 10.1111/his.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumour that has the potential to progress to invasive ductal carcinoma (IDC). Thus, it represents a treatment dilemma: alone it does not present a risk to life, however, left untreated it may progress to a life-threatening condition. Current clinico-pathological features cannot accurately predict which patients with DCIS have invasive potential, and therefore clinicians are unable to quantify the risk of progression for an individual patient. This leads to many women being over-treated, while others may not receive sufficient treatment to prevent invasive recurrence. A better understanding of the molecular features of DCIS, both tumour-intrinsic and the microenvironment, could offer the ability to better predict which women need aggressive treatment, and which can avoid therapies carrying significant side-effects and such as radiotherapy. In this review, we summarise the current knowledge of DCIS, and consider future research directions.
Collapse
Affiliation(s)
- Ruwangi I Udayasiri
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Tongtong Luo
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
10
|
Dawoud MM, Jones DT, Chelala C, Abdou AG, Dreger SA, Asaad N, Abd El-Wahed M, Jones L. Expression Profile of Myoepithelial Cells in DCIS: Do They Change From Protective Angels to Wicked Witches? Appl Immunohistochem Mol Morphol 2022; 30:397-409. [PMID: 35467556 DOI: 10.1097/pai.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
The mechanism of transition of ductal carcinoma in situ (DCIS) to invasive cancer is elusive but recently changes in the myoepithelial cells (MECs) have been implicated. The aim of this study is to investigate the changes in gene profile of MECs in DCIS that could compromise their tumor suppressor function leading to promotion of tumor progression. Immuno-laser capture microdissection (LCM) was used to isolate MECs from normal and DCIS breast tissues followed by whole genome expression profiling using Affymetrix HGU-133 plus2.0 arrays. The data were analyzed using Bioconductor packages then validated by using real-time quantitative polymerase chain reaction and immunohistochemistry. Ingenuity Pathways software analysis showed clustering of most of the altered genes in cancer and cell death networks, with the Wnt/B-catenin pathway as the top canonical pathway. Validation revealed a 71.4% correlation rate with the array results. Most dramatic was upregulation of Fibronectin 1 ( FN1 ) in DCIS-associated MECs. Immunohistochemistry analysis for FN1 on normal and DCIS tissues confirmed a strong correlation between FN1 protein expression by MECs and DCIS ( P <0.0001) and between high expression level and presence of invasion ( P =0.006) in DCIS. Other validated alterations in MEC expression profile included upregulation of Nephronectin and downregulation of parathyroid hormone like hormone ( PTHLH ), fibroblast growth factor receptor 2 ( FGFR2 ), ADAMTS5 , TGFBR3 , and CAV1 . In vitro experiments revealed downregulation of PTHLH in DCIS-modified MECs versus normal lines when cultured on Fibronectin matrix. This is the first study to use this in vivo technique to investigate molecular changes in MECs in DCIS. This study adds more evidences to the molecular deviations in MECs toward tumor progression in DCIS through upregulation of the tumor-promoting molecules that may lead to novel predictive and therapeutic targets.
Collapse
Affiliation(s)
- Marwa M Dawoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Dylan T Jones
- Centre for Tumour Biology, Institute of Cancer & CR-UK Clinical Centre, Barts and The London School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ
| | - Claude Chelala
- Centre for Tumour Biology, Institute of Cancer & CR-UK Clinical Centre, Barts and The London School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ
| | - Asmaa G Abdou
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Sally A Dreger
- Centre for Tumour Biology, Institute of Cancer & CR-UK Clinical Centre, Barts and The London School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ
- Gut Microbes in Health, Quadram Institute Bioscience, Norwich, UK
| | - Nancy Asaad
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | - Louise Jones
- Centre for Tumour Biology, Institute of Cancer & CR-UK Clinical Centre, Barts and The London School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ
| |
Collapse
|
11
|
Solek J, Chrzanowski J, Cieslak A, Zielinska A, Piasecka D, Braun M, Sadej R, Romanska HM. Subtype-Specific Tumour Immune Microenvironment in Risk of Recurrence of Ductal Carcinoma In Situ: Prognostic Value of HER2. Biomedicines 2022; 10:1061. [PMID: 35625798 PMCID: PMC9138378 DOI: 10.3390/biomedicines10051061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that the significance of the tumour immune microenvironment (TIME) for disease prognostication in invasive breast carcinoma is subtype-specific but equivalent studies in ductal carcinoma in situ (DCIS) are limited. The purpose of this paper is to review the existing data on immune cell composition in DCIS in relation to the clinicopathological features and molecular subtype of the lesion. We discuss the value of infiltration by various types of immune cells and the PD-1/PD-L1 axis as potential markers of the risk of recurrence. Analysis of the literature available in PubMed and Medline databases overwhelmingly supports an association between densities of infiltrating immune cells, traits of immune exhaustion, the foci of microinvasion, and overexpression of HER2. Moreover, in several studies, the density of immune infiltration was found to be predictive of local recurrence as either in situ or invasive cancer in HER2-positive or ER-negative DCIS. In light of the recently reported first randomized DCIS trial, relating recurrence risk with overexpression of HER2, we also include a closing paragraph compiling the latest mechanistic data on a functional link between HER2 and the density/composition of TIME in relation to its potential value in the prognostication of the risk of recurrence.
Collapse
Affiliation(s)
- Julia Solek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Jedrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Adrianna Cieslak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Aleksandra Zielinska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| | - Dominika Piasecka
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Hanna M. Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| |
Collapse
|
12
|
Krishn SR, Garcia V, Naranjo NM, Quaglia F, Shields CD, Harris MA, Kossenkov AV, Liu Q, Corey E, Altieri DC, Languino LR. Small extracellular vesicle-mediated ITGB6 siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient prostate cancer cells. Cancer Biol Ther 2022; 23:173-185. [PMID: 35188070 PMCID: PMC8865252 DOI: 10.1080/15384047.2022.2030622] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The αVβ6 integrin, an epithelial-specific cell surface receptor absent in normal prostate and expressed during prostate cancer (PrCa) progression, is a therapeutic target in many cancers. Here, we report that transcript levels of ITGB6 (encoding the β6 integrin subunit) are significantly increased in metastatic castrate-resistant androgen receptor-negative prostate tumors compared to androgen receptor-positive prostate tumors. In addition, the αVβ6 integrin protein levels are significantly elevated in androgen receptor-negative PrCa patient derived xenografts (PDXs) compared to androgen receptor-positive PDXs. In vitro, the androgen receptor-negative PrCa cells express high levels of the αVβ6 integrin compared to androgen receptor-positive PrCa cells. Additionally, expression of androgen receptor (wild type or variant 7) in androgen receptor-negative PrCa cells downregulates the expression of the β6 but not αV subunit compared to control cells. We demonstrate an efficient strategy to therapeutically target the αVβ6 integrin during PrCa progression by using short interfering RNA (siRNA) loaded into PrCa cell-derived small extracellular vesicles (sEVs). We first demonstrate that fluorescently-labeled siRNAs can be efficiently loaded into PrCa cell-derived sEVs by electroporation. By confocal microscopy, we show efficient internalization of these siRNA-loaded sEVs into PrCa cells. We show that sEV-mediated delivery of ITGB6-targeting siRNAs into PC3 cells specifically downregulates expression of the β6 subunit. Furthermore, treatment with sEVs encapsulating ITGB6 siRNA significantly reduces cell adhesion and migration of PrCa cells on an αVβ6-specific substrate, LAP-TGFβ1. Our results demonstrate an approach for specific targeting of the αVβ6 integrin in PrCa cells using sEVs encapsulating ITGB6-specific siRNAs.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Vaughn Garcia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Nicole M. Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Christopher D. Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Maisha A. Harris
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, the Wistar Institute, Philadelphia, PA USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, PA USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA USA
| | - Dario C. Altieri
- Prostate Cancer Discovery and Development Program, the Wistar Institute, Philadelphia, PA USA
- Immunology, Microenvironment and Metastasis Program, the Wistar Institute, Philadelphia, PA USA
| | - Lucia R. Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
13
|
Nachmanson D, Officer A, Mori H, Gordon J, Evans MF, Steward J, Yao H, O'Keefe T, Hasteh F, Stein GS, Jepsen K, Weaver DL, Hirst GL, Sprague BL, Esserman LJ, Borowsky AD, Stein JL, Harismendy O. The breast pre-cancer atlas illustrates the molecular and micro-environmental diversity of ductal carcinoma in situ. NPJ Breast Cancer 2022; 8:6. [PMID: 35027560 PMCID: PMC8758681 DOI: 10.1038/s41523-021-00365-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microenvironmental and molecular factors mediating the progression of Breast Ductal Carcinoma In Situ (DCIS) are not well understood, impeding the development of prevention strategies and the safe testing of treatment de-escalation. We addressed methodological barriers and characterized the mutational, transcriptional, histological, and microenvironmental landscape across 85 multiple microdissected regions from 39 cases. Most somatic alterations, including whole-genome duplications, were clonal, but genetic divergence increased with physical distance. Phenotypic and subtype heterogeneity was frequently associated with underlying genetic heterogeneity and regions with low-risk features preceded those with high-risk features according to the inferred phylogeny. B- and T-lymphocytes spatial analysis identified three immune states, including an epithelial excluded state located preferentially at DCIS regions, and characterized by histological and molecular features of immune escape, independently from molecular subtypes. Such breast pre-cancer atlas with uniquely integrated observations will help scope future expansion studies and build finer models of outcomes and progression risk.
Collapse
Affiliation(s)
- Daniela Nachmanson
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Adam Officer
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Jonathan Gordon
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Mark F Evans
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Joseph Steward
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
| | - Huazhen Yao
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Thomas O'Keefe
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Farnaz Hasteh
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Gary S Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Donald L Weaver
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Gillian L Hirst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Brian L Sprague
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Laura J Esserman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Janet L Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA.
| |
Collapse
|
14
|
Carter EP, Roozitalab R, Gibson SV, Grose RP. Tumour microenvironment 3D-modelling: simplicity to complexity and back again. Trends Cancer 2021; 7:1033-1046. [PMID: 34312120 DOI: 10.1016/j.trecan.2021.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Tumours are surrounded by a host of noncancerous cells that fulfil both supportive and suppressive roles within the tumour microenvironment (TME). The drive to understand the biology behind each of these components has led to a rapid expansion in the number and use of 3D in vitro models, as researchers find ways to incorporate multiple cell types into physiomimetic configurations. The use and increasing complexity of these models does however demand many considerations. In this review we discuss approaches adopted to recapitulate complex tumour biology in tractable 3D models. We consider how these cell types can be sourced and combined and examine methods for the deconvolution of complex multicellular models into manageable and informative outputs.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
15
|
Li D, Dong C, Ma X, Zhao X. Integrin α vβ 6-targeted MR molecular imaging of breast cancer in a xenograft mouse model. Cancer Imaging 2021; 21:44. [PMID: 34187570 PMCID: PMC8244136 DOI: 10.1186/s40644-021-00411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/08/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The motif RXDLXXL-based nanoprobes allow specific imaging of integrin αvβ6, a protein overexpressed during tumorigenesis and tumor progression of various tumors. We applied a novel RXDLXXL-coupled cyclic arginine-glycine-aspartate (RGD) nonapeptide conjugated with ultrasmall superparamagnetic iron oxide nanoparticles (referred to as cFK-9-USPIO) for the application of integrin αvβ6-targeted magnetic resonance (MR) molecular imaging for breast cancer. METHODS A novel MR-targeted nanoprobe, cFK-9-USPIO, was synthesized by conjugating integrin αvβ6-targeted peptide cFK-9 to N-amino (-NH2)-modified USPIO nanoparticles via a dehydration esterification reaction. Integrin αvβ6-positive mouse breast cancer (4 T1) and integrin αvβ6 negative human embryonic kidney 293 (HEK293) cell lines were incubated with cFK-9-AbFlour 647 (blocking group) or cFK-9-USPIO (experimental group), and subsequently imaged using laser scanning confocal microscopy (LSCM) and 3.0 Tesla magnetic resonance imaging (MRI) system. The affinity of cFK-9 targeting αvβ6 was analyzed by calculating the mean fluorescent intensity in cells, and the nanoparticle targeting effect was measured by the reduction of T2 values in an in vitro MRI. The in vivo MRI capability of cFK-9-USPIO was investigated in 4 T1 xenograft mouse models. Binding of the targeted nanoparticles to αvβ6-positive 4 T1 tumors was determined by ex vivo histopathology. RESULTS In vitro laser scanning confocal microscopy (LSCM) imaging showed that the difference in fluorescence intensity between the targeting and blocking groups of 4 T1 cells was significantly greater than that in HEK293 cells (P < 0.05). The in vitro MRI demonstrated a more remarkable T2 reduction in 4 T1 cells than in HEK293 cells (P < 0.001). The in vivo MRI of 4 T1 xenograft tumor-bearing nude mice showed significant T2 reduction in tumors compared to controls. Prussian blue staining further confirmed that αvβ6 integrin-targeted nanoparticles were specifically accumulated in 4 T1 tumors and notably fewer nanoparticles were detected in 4 T1 tumors of mice injected with control USPIO and HEK293 tumors of mice administered cFK-9-USPIO. CONCLUSIONS Integrin αvβ6-targeted nanoparticles have great potential for use in the detection of αvβ6-overexpressed breast cancer with MR molecular imaging.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | | | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| |
Collapse
|
16
|
Delort L, Cholet J, Decombat C, Vermerie M, Dumontet C, Castelli FA, Fenaille F, Auxenfans C, Rossary A, Caldefie-Chezet F. The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer. Front Cell Dev Biol 2021; 8:571948. [PMID: 33505957 PMCID: PMC7829501 DOI: 10.3389/fcell.2020.571948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Overweight and obesity are now recognized as established risk factors for this pathology in postmenopausal women. These conditions are also believed to be responsible for higher recurrence and mortality rates. Reciprocal interactions have been described between adipose and cancer cells. An adipose microenvironment favors a greater proliferation of cancer cells, their invasion and even resistance to anti-cancer treatments. In addition, the chronic low-grade inflammation observed in obese individuals is believed to amplify these processes. Among the cell types present in the breast, myoepithelial cells (MECs), located at the interface of the epithelial cells and the stroma, are considered "tumor suppressor" cells. During the transition from ductal carcinoma in situ to invasive cancer, disorganization or even the disappearance of MECs is observed, thereby enhancing the ability of the cancer cells to migrate. As the adipose microenvironment is now considered as a central actor in the progression of breast cancer, our objective was to evaluate if it could be involved in MEC functional modifications, leading to the transition of in situ to invasive carcinoma, particularly in obese patients. Through a co-culture model, we investigated the impact of human adipose stem cells from women of normal weight and obese women, differentiated or not into mature adipocytes, on the functionality of the MECs by measuring changes in viability, apoptosis, gene, and miRNA expressions. We found that adipose cells (precursors and differentiated adipocytes) could decrease the viability of the MECs, regardless of the original BMI. The adipose cells could also disrupt the expression of the genes involved in the maintenance of the extracellular matrix and to amplify the expression of leptin and inflammatory markers. miR-122-5p and miR-132-3p could also be considered as targets for adipose cells. The metabolite analyses revealed specific profiles that may be involved in the growth of neoplastic cells. All of these perturbations could thus be responsible for the loss of tumor suppressor status of MECs and promote the transition from in situ to invasive carcinoma.
Collapse
Affiliation(s)
- Laetitia Delort
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Juliette Cholet
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Marion Vermerie
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Charles Dumontet
- Université Lyon 1, INSERM U1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
| | - Florence A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif-sur-Yvette, France
| | - Céline Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Adrien Rossary
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | | |
Collapse
|
17
|
Urquiza M, Guevara V, Diaz-Sana E, Mora F. The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200528124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidic and non-peptidic αvβ6 integrin-binding molecules have been used in
the clinic for detection and treatment of tumors expressing αvβ6 integrin, because this protein
is expressed in malignant epithelial cells of the oral cavity, pancreas, breast, ovary,
colon and stomach carcinomas but it is not expressed in healthy adult tissue except during
wound healing and inflammation. This review focuses on the landscape of αvβ6 integrinbinding
molecules and their use in cancer treatment and detection, and discusses recent
designs for tumor detection, treatment, and immunotherapy. In the last ten years, several
reviews abamp;#945;vβ6 integrin-binding molecules and their role in cancer detection and treatment.
Firstly, this review describes the role of the αvβ6 integrin in normal tissues, how the expression
of this protein is correlated with cancer severity and its role in cancer development. Taking into account
the potential of αvβ6 integrin-binding molecules in detection and treatment of specific tumors, special
attention is given to several high-affinity αvβ6 integrin-binding peptides used for tumor imaging; particularly,
the αvβ6-binding peptide NAVPNLRGDLQVLAQKVART [A20FMDV2], derived from the foot and mouth
disease virus. This peptide labeled with either 18F, 111In or with 68Ga has been used for PET imaging of αvβ6
integrin-positive tumors. Moreover, αvβ6 integrin-binding peptides have been used for photoacoustic and fluorescence
imaging and could potentially be used in clinical application in cancer diagnosis and intraoperative
imaging of αvβ6-integrin positive tumors. Additionally, non-peptidic αvβ6-binding molecules have been designed
and used in the clinic for the detection and treatment of αvβ6-expressing tumors. Anti-αvβ6 integrin antibodies
are another useful tool for selective identification and treatment of αvβ6 (+) tumors. The utility of
these αvβ6 integrin-binding molecules as a tool for tumor detection and treatment is discussed, considering
specificity, sensitivity and serum stability. Another use of the αvβ6 integrin-binding peptides is to modify the
Ad5 cell tropism for inducing oncolytic activity of αvβ6-integrin positive tumor cells by expressing
A20FMDV2 peptide within the fiber knob protein (Ad5NULL-A20). The newly designed oncolytic
Ad5NULL-A20 virotherapy is promising for local and systemic targeting of αvβ6-overexpressing cancers. Finally,
new evidence has emerged, indicating that chimeric antigen receptor (CAR) containing the αvβ6 integrin-
binding peptide on top of CD28+CD3 endodomain displays a potent therapeutic activity in a diverse
repertoire of solid tumor models.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Valentina Guevara
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Erika Diaz-Sana
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Felipe Mora
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| |
Collapse
|
18
|
Krishn SR, Salem I, Quaglia F, Naranjo NM, Agarwal E, Liu Q, Sarker S, Kopenhaver J, McCue PA, Weinreb PH, Violette SM, Altieri DC, Languino LR. The αvβ6 integrin in cancer cell-derived small extracellular vesicles enhances angiogenesis. J Extracell Vesicles 2020; 9:1763594. [PMID: 32595914 PMCID: PMC7301698 DOI: 10.1080/20013078.2020.1763594] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PrCa) cells crosstalk with the tumour microenvironment by releasing small extracellular vesicles (sEVs). sEVs, as well as large extracellular vesicles (LEVs), isolated via iodixanol density gradients from PrCa cell culture media, express the epithelial-specific αvβ6 integrin, which is known to be induced in cancer. In this study, we show sEV-mediated protein transfer of αvβ6 integrin to microvascular endothelial cells (human microvascular endothelial cells 1 - HMEC1) and demonstrate that de novo αvβ6 integrin expression is not caused by increased mRNA levels. Incubation of HMEC1 with sEVs isolated from PrCa PC3 cells that express the αvβ6 integrin results in a highly significant increase in the number of nodes, junctions and tubules. In contrast, incubation of HMEC1 with sEVs isolated from β6 negative PC3 cells, generated by shRNA against β6, results in a reduction in the number of nodes, junctions and tubules, a decrease in survivin levels and an increase in a negative regulator of angiogenesis, pSTAT1. Furthermore, treatment of HMEC1 with sEVs generated by CRISPR/Cas9-mediated down-regulation of β6, causes up-regulation of pSTAT1. Overall, our findings suggest that αvβ6 integrin in cancer sEVs regulates angiogenesis during PrCa progression.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, USA.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Israa Salem
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, USA.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, USA.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Nicole M Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, USA.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Ekta Agarwal
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, USA.,Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, USA
| | - Srawasti Sarker
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, USA.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Jessica Kopenhaver
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Peter A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, USA
| | | | | | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, USA.,Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, USA.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
19
|
Huang H, Yuan M, Wu SL, Ba J, Yu X, Mao X, Jin F. Clinical Significance of C-X-C Motif Chemokine Receptor 4 and Integrin αvβ6 Expression in Breast Cancer. J Breast Cancer 2020; 23:171-181. [PMID: 32395376 PMCID: PMC7192747 DOI: 10.4048/jbc.2020.23.e23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose C-X-C motif chemokine receptor 4 (CXCR4) and integrin αvβ6 play important roles in the malignant progression of multiple cancers. However, it remains unclear whether the expression of one or both proteins in breast cancer (BC) is of clinical significance. In this study, we investigated the expression of CXCR4 and integrin αvβ6 in BC tissues and their correlation with clinicopathological characteristics, including survival. Methods CXCR4 and αvβ6 expression in 111 BC tissues was examined by immunocytochemistry. Correlations between the expression of the 2 proteins and patient clinicopathological characteristic were investigated using the Kaplan–Meier method and the Cox proportional hazards model. Results CXCR4 and αvβ6 were overexpressed in BC tissue compared with normal breast tissue. Overexpression of both molecules was related to lymph node status (p = 0.013 and p = 0.022, respectively). αvβ6 overexpression was also associated with tumor size (p = 0.044). A positive correlation was detected between the expression of CXCR4 and αvβ6 (r = 0.649, p = 0.001), and co-overexpression of both molecules was associated with tumor size (p = 0.018) and lymph node metastasis (p = 0.015). Kaplan–Meier analysis revealed that overexpression of CXCR4, αvβ6, or both molecules was associated with short overall survival (OS; p < 0.001, p < 0.001, and p = 0.009, respectively) and disease-free survival (DFS; p < 0.001, p = 0.005, and p = 0.019, respectively). Multivariate analysis indicated that lymph node metastasis was an independent prognostic factor for unfavorable OS and DFS (p = 0.002 and p = 0.005, respectively), whereas co-overexpression of CXCR4 and αvβ6 was an independent prognostic factor only for OS (p = 0.043). Conclusion CXCR4 and αvβ6 may play synergistic roles in the progression of BC, and co-targeting of CXCR4 and αvβ6 could be a potential strategy for the prevention and treatment of BC.
Collapse
Affiliation(s)
- Hongshan Huang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengci Yuan
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Shuang-Ling Wu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinling Ba
- Department of Breast Thyroid Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Smeland HYH, Askeland C, Wik E, Knutsvik G, Molven A, Edelmann RJ, Reed RK, Warren DJ, Gullberg D, Stuhr L, Akslen LA. Integrin α11β1 is expressed in breast cancer stroma and associates with aggressive tumor phenotypes. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:69-82. [PMID: 31605508 PMCID: PMC6966706 DOI: 10.1002/cjp2.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
Cancer‐associated fibroblasts are essential modifiers of the tumor microenvironment. The collagen‐binding integrin α11β1 has been proposed to be upregulated in a pro‐tumorigenic subtype of cancer‐associated fibroblasts. Here, we analyzed the expression and clinical relevance of integrin α11β1 in a large breast cancer series using a novel antibody against the human integrin α11 chain. Several novel monoclonal antibodies against the integrin α11 subunit were tested for use on formalin‐fixed paraffin‐embedded tissues, and Ab 210F4B6A4 was eventually selected to investigate the immunohistochemical expression in 392 breast cancers using whole sections. mRNA data from METABRIC and co‐expression patterns of integrin α11 in relation to αSMA and cytokeratin‐14 were also investigated. Integrin α11 was expressed to varying degrees in spindle‐shaped cells in the stroma of 99% of invasive breast carcinomas. Integrin α11 co‐localized with αSMA in stromal cells, and with αSMA and cytokeratin‐14 in breast myoepithelium. High stromal integrin α11 expression (66% of cases) was associated with aggressive breast cancer features such as high histologic grade, increased tumor cell proliferation, ER negativity, HER2 positivity, and triple‐negative phenotype, but was not associated with breast cancer specific survival at protein or mRNA levels. In conclusion, high stromal integrin α11 expression was associated with aggressive breast cancer phenotypes.
Collapse
Affiliation(s)
- Hilde Ytre-Hauge Smeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Cecilie Askeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Reidunn J Edelmann
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rolf K Reed
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - David J Warren
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Donald Gullberg
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Linda Stuhr
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Koivisto L, Bi J, Häkkinen L, Larjava H. Integrin αvβ6: Structure, function and role in health and disease. Int J Biochem Cell Biol 2018; 99:186-196. [PMID: 29678785 DOI: 10.1016/j.biocel.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors that traditionally mediate cell-to-extracellular matrix and cell-to-cell adhesion. They can, however, also bind a large repertoire of other molecules. Integrin αvβ6 is exclusively expressed in epithelial cells where it can, for example, serve as a fibronectin receptor. However, its hallmark function is to activate transforming growth factor-β1 (TGF-β1) to modulate innate immune surveillance in lungs and skin and along the gastrointestinal tract, and to maintain epithelial stem cell quiescence. The loss of αvβ6 integrin function in mice and humans leads to an altered immune response in lungs and skin, amelogenesis imperfecta, periodontal disease and, in some cases, alopecia. Elevated αvβ6 integrin expression and aberrant TGF-β1 activation and function are associated with organ fibrosis and cancer. Therefore, αvβ6 integrin serves as an attractive target for cancer imaging and for fibrosis and cancer therapy.
Collapse
Affiliation(s)
- Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
22
|
Terabayashi T, Hanada K, Motani K, Kosako H, Yamaoka M, Kimura T, Ishizaki T. Baicalein disturbs the morphological plasticity and motility of breast adenocarcinoma cells depending on the tumor microenvironment. Genes Cells 2018; 23:466-479. [PMID: 29667279 DOI: 10.1111/gtc.12584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
During tumor invasion, cancer cells change their morphology and mode of migration based on communication with the surrounding environment. Numerous studies have indicated that paracrine interactions from non-neoplastic cells impact the migratory and invasive properties of cancer cells. Thus, these interactions are potential targets for anticancer therapies. In this study, we showed that the flavones member baicalein suppresses the motility of breast cancer cells that is promoted by paracrine interactions. First, we identified laminin-332 (LN-332) as a principle paracrine factor in conditioned medium from mammary epithelium-derived MCF10A cells that regulates the morphology and motility of breast adenocarcinoma MDA-MB-231 cells. Then, we carried out a morphology-based screen for small compounds, which showed that baicalein suppressed the morphological changes and migratory activity of MDA-MB-231 cells that were induced by conditioned medium from MCF10A cells and LN-332. We also found that baicalein caused narrower and incomplete lamellipodia formation in conditioned medium-treated MDA-MB-231 cells, although actin dynamics downstream of Rho family small GTPases were unaffected. These results suggest the importance of mammary epithelial cells in the cancer microenvironment promoting the migratory activity of breast adenocarcinoma cells and show a novel mechanism through which baicalein inhibits cancer cell motility.
Collapse
Affiliation(s)
- Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kou Motani
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Mami Yamaoka
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Toshihide Kimura
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| |
Collapse
|
23
|
Rakha EA, Miligy IM, Gorringe KL, Toss MS, Green AR, Fox SB, Schmitt FC, Tan PH, Tse GM, Badve S, Decker T, Vincent-Salomon A, Dabbs DJ, Foschini MP, Moreno F, Wentao Y, Geyer FC, Reis-Filho JS, Pinder SE, Lakhani SR, Ellis IO. Invasion in breast lesions: the role of the epithelial-stroma barrier. Histopathology 2018; 72:1075-1083. [DOI: 10.1111/his.13446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emad A Rakha
- Department of Histopathology; Nottingham City Hospital NHS Trust; Nottingham University; Nottingham UK
| | - Islam M Miligy
- Department of Histopathology; Nottingham City Hospital NHS Trust; Nottingham University; Nottingham UK
| | - Kylie L Gorringe
- Cancer Genomics Program; Peter MacCallum Cancer Centre; Melbourne Vic. Australia
- The Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Vic. Australia
| | - Michael S Toss
- Department of Histopathology; Nottingham City Hospital NHS Trust; Nottingham University; Nottingham UK
| | - Andrew R Green
- Department of Histopathology; Nottingham City Hospital NHS Trust; Nottingham University; Nottingham UK
| | - Stephen B Fox
- Pathology Department; Peter MacCallum Cancer Centre; Melbourne Vic. Australia
| | - Fernando C Schmitt
- Institute of Molecular Pathology and Immunology (IPATIMUP) and Medical Faculty; University of Porto; Porto Portugal
| | - Puay-Hoon Tan
- Department of Pathology; Singapore General Hospital; Singapore
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology; Prince of Wales Hospital; Hong Kong
| | - Sunil Badve
- Departments of Pathology and Internal Medicine; Clarian Pathology Laboratory of Indiana University; Indianapolis IN USA
| | - Thomas Decker
- Breast-Screening-Pathology; Reference Centre Munster; Gerhard Domagk-Institute of Pathology; University Hospital Münster; Münster Germany
| | | | - David J Dabbs
- University of Pittsburgh Medical Centre; Pittsburgh PA USA
| | - Maria P Foschini
- Department of Biomedical and Neuromotor Sciences; Section of Anatomic Pathology at Bellaria Hospital; University of Bologna; Bologna Italy
| | - Filipa Moreno
- Anatomic Pathology Department; Centro Hospitalar do Porto; Porto Portugal
| | - Yang Wentao
- Pathology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Felipe C Geyer
- Department of Pathology; Memorial Sloan Kettering Cancer Centre; New York NY USA
| | - Jorge S Reis-Filho
- Department of Pathology; Memorial Sloan Kettering Cancer Centre; New York NY USA
| | - Sarah E Pinder
- Division of Cancer Studies; King's College London; Guy's Hospital; London UK
| | - Sunil R Lakhani
- Discipline of Molecular & Cellular Pathology; Faculty of Medicine; University of Queensland; The Royal Brisbane & Women's Hospital; Brisbane QLD Australia
| | - Ian O Ellis
- Department of Histopathology; Nottingham City Hospital NHS Trust; Nottingham University; Nottingham UK
| |
Collapse
|
24
|
Gorringe KL, Fox SB. Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Front Oncol 2017; 7:248. [PMID: 29109942 PMCID: PMC5660056 DOI: 10.3389/fonc.2017.00248] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is an often-diagnosed breast disease and a known, non-obligate, precursor to invasive breast carcinoma. In this review, we explore the clinical and pathological features of DCIS, fundamental elements of DCIS biology including gene expression and genetic events, the relationship of DCIS with recurrence and invasive breast cancer, and the interaction of DCIS with the microenvironment. We also survey how these various elements are being used to solve the clinical conundrum of how to optimally treat a disease that has potential to progress, and yet is also likely over-treated in a significant proportion of cases.
Collapse
Affiliation(s)
- Kylie L. Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen B. Fox
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Pisamai S, Rungsipipat A, Kunnasut N, Suriyaphol G. Immunohistochemical Expression Profiles of Cell Adhesion Molecules, Matrix Metalloproteinases and their Tissue Inhibitors in Central and Peripheral Neoplastic Foci of Feline Mammary Carcinoma. J Comp Pathol 2017; 157:150-162. [PMID: 28942298 DOI: 10.1016/j.jcpa.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
Abstract
Feline mammary carcinoma (FMC) is a common cancer with high metastatic potential and high mortality rate. Loss of cell-cell interactions and degradation of the extracellular matrix by proteinases enhances tumour invasion and metastasis. Peripheral neoplastic foci (PNF) are defined as the presence of discrete tumour cell clusters, splitting off from central neoplastic foci (CNF) and lodging around these CNF. PNF therefore locate at the tumour-host interface at the site of invasion. The aim of this study was to evaluate immunohistochemically the expression of cell adhesion molecules (e-cadherin [CDH-1], syndecan 1 [SDC-1] and nectin-2), matrix metalloproteinases (matrix metalloproteinase [MMP]-2, MMP-7 and MMP-9) and their tissue inhibitors (tissue inhibitor of matrix metalloproteinase [TIMP]-1 and TIMP-2) together with the cellular proliferation marker, Ki67, in CNF and PNF of FMCs of different clinical stages and histological grades. Compared with control sections from areas of mammary gland hyperplasia, lower expression of MMP-7 and TIMP-2 was observed in all stages. Increased expression of TIMP-1 was observed in PNF in early-stage disease with no metastasis, while marked expression of CDH-1 and Ki67 occurred in late-stage FMC. In addition, the expression of MMP-2, MMP-9 and TIMP-1 in PNF of tumours with high histological grade (grade III) was higher than in low-grade tumours. The observed divergent protein expression in PNF could potentially form the basis of acting as novel markers in FMC. Potential markers may include the expression of TIMP-1 in PNF in early stage lesions, the expression of CDH-1 and Ki67 in late stages and the expression of MMP-2, MMP-9 and TIMP-1 in high-grade tumours.
Collapse
Affiliation(s)
- S Pisamai
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - A Rungsipipat
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - N Kunnasut
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - G Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
26
|
Lo PK, Zhang Y, Yao Y, Wolfson B, Yu J, Han SY, Duru N, Zhou Q. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling. J Biol Chem 2017; 292:11466-11484. [PMID: 28512126 DOI: 10.1074/jbc.m117.775080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/12/2017] [Indexed: 12/18/2022] Open
Abstract
The normal myoepithelium has a tumor-suppressing nature and inhibits the progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC). Conversely, a growing number of studies have shown that tumor-associated myoepithelial cells have a tumor-promoting effect. Moreover, the exact role of tumor-associated myoepithelial cells in the DCIS-to-IDC development remains undefined. To address this, we explored the role of tumor-associated myoepithelial cells in the DCIS-to-IDC progression. We developed a direct coculture system to study the cell-cell interactions between DCIS cells and tumor-associated myoepithelial cells. Coculture studies indicated that tumor-associated myoepithelial cells promoted the invasive progression of a DCIS cell model in vitro, and mechanistic studies revealed that the interaction with DCIS cells stimulated tumor-associated myoepithelial cells to secrete TGFβ1, which subsequently contributed to activating the TGFβ/Smads pathway in DCIS cells. We noted that activation of the TGFβ signaling pathway promoted the epithelial-mesenchymal transition, basal-like phenotypes, stemness, and invasiveness of DCIS cells. Importantly, xenograft studies further demonstrated that tumor-associated myoepithelial cells enhanced the DCIS-to-IDC progression in vivo Furthermore, we found that TGFβ-mediated induction of oncogenic miR-10b-5p expression and down-regulation of RB1CC1, a miR-10b-5p-targeted tumor-suppressor gene, contributed to the invasive progression of DCIS. Our findings provide the first experimental evidence to directly support the paradigm that altered DCIS-associated myoepithelial cells promote the invasive progression of DCIS into IDC via TGFβ signaling activation.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Yongshu Zhang
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Yuan Yao
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Benjamin Wolfson
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Justine Yu
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Shu-Yan Han
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and.,the Key Laboratory of Carcinogenesis and Translational Research, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Nadire Duru
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Qun Zhou
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
27
|
Yamamoto Y, Saito A, Tateishi A, Shimojo H, Kanno H, Tsuchiya S, Ito KI, Cosatto E, Graf HP, Moraleda RR, Eils R, Grabe N. Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach. Sci Rep 2017; 7:46732. [PMID: 28440283 PMCID: PMC5404264 DOI: 10.1038/srep46732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/20/2017] [Indexed: 01/13/2023] Open
Abstract
Machine learning systems have recently received increased attention for their broad applications in several fields. In this study, we show for the first time that histological types of breast tumors can be classified using subtle morphological differences of microenvironmental myoepithelial cell nuclei without any direct information about neoplastic tumor cells. We quantitatively measured 11661 nuclei on the four histological types: normal cases, usual ductal hyperplasia and low/high grade ductal carcinoma in situ (DCIS). Using a machine learning system, we succeeded in classifying the four histological types with 90.9% accuracy. Electron microscopy observations suggested that the activity of typical myoepithelial cells in DCIS was lowered. Through these observations as well as meta-analytic database analyses, we developed a paracrine cross-talk-based biological mechanism of DCIS progressing to invasive cancer. Our observations support novel approaches in clinical computational diagnostics as well as in therapy development against progression.
Collapse
Affiliation(s)
- Yoichiro Yamamoto
- Department of Pathology, Shinshu University School of Medicine, Nagano, Japan.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB) and Bioquant, University of Heidelberg, Heidelberg, Germany.,RIKEN Center for Advanced Intelligence Project, Pathology Informatics Unit, Tokyo, Japan
| | - Akira Saito
- RIKEN Center for Advanced Intelligence Project, Pathology Informatics Unit, Tokyo, Japan.,Quantitative Pathology &Immunology, Tokyo Medical University, Shinjuku, Tokyo, Japan.,Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Ayako Tateishi
- Department of Pathology, Shinshu University School of Medicine, Nagano, Japan
| | - Hisashi Shimojo
- Department of Pathology, Shinshu University School of Medicine, Nagano, Japan
| | - Hiroyuki Kanno
- Department of Pathology, Shinshu University School of Medicine, Nagano, Japan
| | | | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Shinshu University School of Medicine, Nagano, Japan
| | - Eric Cosatto
- Department of Machine Learning, NEC Laboratories America, NJ, USA
| | - Hans Peter Graf
- Department of Machine Learning, NEC Laboratories America, NJ, USA
| | - Rodrigo R Moraleda
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Department of informatics, Technical University Federico Santa Maria Valparaiso, Chile
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB) and Bioquant, University of Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany.,Hamamatsu Tissue Imaging and Analysis Center, Bioquant, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Casasent AK, Edgerton M, Navin NE. Genome evolution in ductal carcinoma in situ: invasion of the clones. J Pathol 2016; 241:208-218. [PMID: 27861897 DOI: 10.1002/path.4840] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ (DCIS) is the most frequently diagnosed early-stage breast cancer. Only a subset of patients progress to invasive ductal carcinoma (IDC), and this presents a formidable clinical challenge for determining which patients to treat aggressively and which patients to monitor without therapeutic intervention. Understanding the molecular and genomic basis of invasion has been difficult to study in DCIS cancers due to several technical obstacles, including low tumour cellularity, lack of fresh-frozen tissues, and intratumour heterogeneity. In this review, we discuss the role of intratumour heterogeneity in the progression of DCIS to IDC in the context of three evolutionary models: independent lineages, evolutionary bottlenecks, and multiclonal invasion. We examine the evidence in support of these models and their relevance to the diagnosis and treatment of patients with DCIS. We also discuss how emerging technologies, such as single-cell sequencing, STAR-FISH, and imaging mass spectrometry, are likely to provide new insights into the evolution of this enigmatic disease. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Edgerton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, Daley F, Vyse S, Huang P, Lord CJ, Farnie G, Brennan K, Natrajan R. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol 2016; 240:315-328. [PMID: 27512948 PMCID: PMC5082563 DOI: 10.1002/path.4778] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/05/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Class I Phosphatidylinositol 3-Kinases
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Disease Progression
- Exome/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome
- High-Throughput Nucleotide Sequencing
- Humans
- Models, Biological
- Mutation
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Sequence Analysis, DNA
- Spheroids, Cellular
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sarah L Maguire
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Barrie Peck
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Patty T Wai
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - James Campbell
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Holly Barker
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Frances Daley
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Paul Huang
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Gillian Farnie
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Keith Brennan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
30
|
Rahbar H, McDonald ES, Lee JM, Partridge SC, Lee CI. How Can Advanced Imaging Be Used to Mitigate Potential Breast Cancer Overdiagnosis? Acad Radiol 2016; 23:768-73. [PMID: 27017136 DOI: 10.1016/j.acra.2016.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023]
Abstract
Radiologists, as administrators and interpreters of screening mammography, are considered by some to be major contributors to the potential harms of screening, including overdiagnosis and overtreatment. In this article, we outline current efforts within the breast imaging community toward mitigating screening harms, including the widespread adoption of tomosynthesis and potentially adjusting screening frequency and thresholds for image-guided breast biopsy. However, the emerging field of breast radiomics may offer the greatest promise for reducing overdiagnosis by identifying imaging-based biomarkers strongly associated with tumor biology, and therefore helping prevent the harms of unnecessary treatment for indolent cancers.
Collapse
|
31
|
Desai K, Nair MG, Prabhu JS, Vinod A, Korlimarla A, Rajarajan S, Aiyappa R, Kaluve RS, Alexander A, Hari PS, Mukherjee G, Kumar RV, Manjunath S, Correa M, Srinath BS, Patil S, Prasad MSN, Gopinath KS, Rao RN, Violette SM, Weinreb PH, Sridhar TS. High expression of integrin β6 in association with the Rho-Rac pathway identifies a poor prognostic subgroup within HER2 amplified breast cancers. Cancer Med 2016; 5:2000-11. [PMID: 27184932 PMCID: PMC4873607 DOI: 10.1002/cam4.756] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/29/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Integrin αvβ6 is involved in the transition from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) of the breast. In addition, integrin β6 (ITGB6) is of prognostic value in invasive breast cancers, particularly in HER2+ subtype. However, pathways mediating the activity of integrin αvβ6 in clinical progression of invasive breast cancers need further elucidation. We have examined human breast cancer specimens (N = 460) for the expression of integrin β6 (ITGB6) mRNA by qPCR. In addition, we have examined a subset (N = 147) for the expression of αvβ6 integrin by immunohistochemistry (IHC). The expression levels of members of Rho–Rac pathway including downstream genes (ACTR2,ACTR3) and effector proteinases (MMP9,MMP15) were estimated by qPCR in the HER2+ subset (N = 59). There is a significant increase in the mean expression of ITGB6 in HER2+ tumors compared to HR+HER2‐ and triple negative (TNBC) subtypes (P = 0.00). HER2+ tumors with the highest levels (top quartile) of ITGB6 have significantly elevated levels of all the genes of the Rho–Rac pathway (P‐values from 0.01 to 0.0001). Patients in this group have a significantly shorter disease‐free survival compared to the group with lower ITGB6 levels (HR = 2.9 (0.9–8.9), P = 0.05). The mean level of ITGB6 expression is increased further in lymph node‐positive tumors. The increased regional and distant metastasis observed in HER2+ tumors with high levels of ITGB6 might be mediated by the canonical Rho–Rac pathway through increased expression of MMP9 and MMP15.
Collapse
Affiliation(s)
- Krisha Desai
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Anupama Vinod
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Aruna Korlimarla
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Radhika Aiyappa
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Rohini S Kaluve
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - P S Hari
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | | | - Rekha V Kumar
- Kidwai Medical Institute of Oncology, Bangalore, India
| | | | | | - B S Srinath
- Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Shekhar Patil
- Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - M S N Prasad
- Shankara Cancer Hospital and Research Centre, Bangalore, India
| | | | - Raman N Rao
- Rangadore Memorial Hospital, Bangalore, India
| | | | | | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
32
|
Pang JMB, Gorringe KL, Wong SQ, Dobrovic A, Campbell IG, Fox SB. Appraisal of the technologies and review of the genomic landscape of ductal carcinoma in situ of the breast. Breast Cancer Res 2015; 17:80. [PMID: 26078038 PMCID: PMC4469314 DOI: 10.1186/s13058-015-0586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ductal carcinoma in situ is a biologically diverse entity. Whereas some lesions are cured by local surgical excision, others recur as in situ disease or progress to invasive carcinoma with subsequent potential for metastatic spread. Reliable prognostic biomarkers are therefore desirable for appropriate clinical management but remain elusive. In common with invasive breast cancer, ductal carcinoma in situ exhibits many genomic changes, predominantly copy number alterations. Although studies have revealed the genomic heterogeneity within individual ductal carcinoma in situ lesions and the association of certain copy number alterations with nuclear grade, none of the genomic changes defined so far is consistently associated with invasive transformation or recurrence risk in pure ductal carcinoma in situ. This article will review the current landscape of genomic alterations in ductal carcinoma in situ and their potential as prognostic biomarkers together with the technologies used to define these.
Collapse
Affiliation(s)
- Jia-Min B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| | - Kylie L Gorringe
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen Q Wong
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Translational Research Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Alexander Dobrovic
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Translational Genomics & Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Studley Road, Heidelberg, VIC, 3084, Australia.
| | - Ian G Campbell
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|