1
|
Hu YM, Liu XC, Hu L, Dong ZW, Yao HY, Wang YJ, Zhao WJ, Xiang YK, Liu Y, Wang HB, Yin QK. Inhibition of the ATR-DNAPKcs-RB axis drives G1/S-phase transition and sensitizes triple-negative breast cancer (TNBC) to DNA holliday junctions. Biochem Pharmacol 2024; 225:116310. [PMID: 38788960 DOI: 10.1016/j.bcp.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Targeting the DNA damage response (DDR) is a promising strategy in oncotherapy, as most tumor cells are sensitive to excess damage due to their repair defects. Ataxia telangiectasia mutated and RAD3-related protein (ATR) is a damage response signal transduction sensor, and its therapeutic potential in tumor cells needs to be precisely investigated. Herein, we identified a new axis that could be targeted by ATR inhibitors to decrease the DNA-dependent protein kinase catalytic subunit (DNAPKcs), downregulate the expression of the retinoblastoma (RB), and drive G1/S-phase transition. Four-way DNA Holliday junctions (FJs) assembled in this process could trigger S-phase arrest and induce lethal chromosome damage in RB-positive triple-negative breast cancer (TNBC) cells. Furthermore, these unrepaired junctions also exerted toxic effects to RB-deficient TNBC cells when the homologous recombination repair (HRR) was inhibited. This study proposes a precise strategy for treating TNBC by targeting the DDR and extends our understanding of ATR and HJ in tumor treatment.
Collapse
Affiliation(s)
- Yue-Miao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Xue-Cun Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Lei Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Zhi-Wen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China; Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Hong-Ying Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Ying-Jie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Wen-Jing Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Yu-Ke Xiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Hong-Bo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China.
| | - Qi-Kun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China.
| |
Collapse
|
2
|
Huang L, Shao J, Lai W, Gu H, Yang J, Shi S, Wufoyrwoth S, Song Z, Zou Y, Xu Y, Zhu Q. Discovery of the first ataxia telangiectasia and Rad3-related (ATR) degraders for cancer treatment. Eur J Med Chem 2024; 267:116159. [PMID: 38325007 DOI: 10.1016/j.ejmech.2024.116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The first examples of ataxia telangiectasia and Rad3-related (ATR) PROTACs were designed and synthesized. Among them, the most potent degrader, ZS-7, demonstrated selective and effective ATR degradation in ATM-deficient LoVo cells, with a DC50 value of 0.53 μM. Proteasome-mediated ATR degradation by ZS-7 lasted approximately 12 h after washout in the LoVo cell lines. Notably, ZS-7 demonstrated reasonable PK profiles and, as a single agent or in combination with cisplatin, showed improved antitumor activity and safety profiles compared with the parent inhibitor AZD6738 in a xenograft mouse model of LoVo human colorectal cancer cells upon intraperitoneal (i.p.) administration.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Jialu Shao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenwen Lai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongfeng Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Jieping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shi Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shepherd Wufoyrwoth
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhe Song
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Ruan Q, Wen C, Jin G, Yuan Z, Yang X, Wen Z, Huang G, Li G, Deng J, Bai Y. Phloretin-induced STAT3 inhibition suppresses pancreatic cancer growth and progression via enhancing Nrf2 activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154990. [PMID: 37494874 DOI: 10.1016/j.phymed.2023.154990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignant pancreatic tumor charactered by a rapid progression and high lethal rate. Hyperactivation of STAT3 signaling exerts a vital effect on the growth and progression of PDAC. While dietary flavonoid phloretin has anti-inflammatory and antioxidant activities, it remains unclear whether phloretin has anti-tumor effects on PDAC. PURPOSE The focus of the present study is to elucidate the effects of phloretin on PDAC and investigate its underlying molecular mechanisms. STUDY DESIGN AND METHODS Effect of phloretin were assessed in the pancreatic cancer cells (PCCs) by colony formation assay, real-time cell analysis, flow cytometry, Immunofluorescence staining, and cell migration assay. The expressions of mRNA and protein were respectively analyzed by quantitative PCR and Western blotting. A xenograft model was used to appraise the antitumor efficacy of phloretin. RESULTS Phloretin treatment significantly restrained cell viability and metastasis, induced DNA injury and ROS accumulation, and triggered mitochondrial-dependent apoptosis in PCCs. Mechanistically, phloretin exhibits anti-tumor potential via inactivating STAT3 signaling and enhancing Nrf2 activity. STAT3 overexpression and Nrf2 silencing partially relieved phloretin-induced inhibition on cell growth and metastasis in PCCs. Phloretin remarkably blocked pancreatic tumor growth and metastasis in vivo. CONCLUSIONS Phloretin suppresses pancreatic cancer growth and progression through inhibition of STAT3 mediated by enhancing Nrf2 activity. Phloretin may serve as a promising therapeutic agent for PDAC.
Collapse
Affiliation(s)
- Qingqing Ruan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chunmei Wen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhikai Wen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Gang Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guogang Li
- Department of Public Health, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang People's Hospital, Jinhua 321000, China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
4
|
Wang YC, Kelso AA, Karamafrooz A, Chen YH, Chen WK, Cheng CT, Qi Y, Gu L, Malkas L, Taglialatela A, Kung HJ, Moldovan GL, Ciccia A, Stark JM, Ann DK. Arginine shortage induces replication stress and confers genotoxic resistance by inhibiting histone H4 translation and promoting PCNA ubiquitination. Cell Rep 2023; 42:112296. [PMID: 36961817 PMCID: PMC10517088 DOI: 10.1016/j.celrep.2023.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
The arginine dependency of cancer cells creates metabolic vulnerability. In this study, we examine the impact of arginine availability on DNA replication and genotoxicity resistance. Using DNA combing assays, we find that limiting extracellular arginine results in the arrest of cancer cells at S phase and a slowing or stalling of DNA replication. The translation of new histone H4 is arginine dependent and influences DNA replication. Increased proliferating cell nuclear antigen (PCNA) occupancy and helicase-like transcription factor (HLTF)-catalyzed PCNA K63-linked polyubiquitination protect arginine-starved cells from DNA damage. Arginine-deprived cancer cells display tolerance to genotoxicity in a PCNA K63-linked polyubiquitination-dependent manner. Our findings highlight the crucial role of extracellular arginine in nutrient-regulated DNA replication and provide potential avenues for the development of cancer treatments.
Collapse
Affiliation(s)
- Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Andrew A Kelso
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Adak Karamafrooz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yi-Hsuan Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Wei-Kai Chen
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Chun-Ting Cheng
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Yue Qi
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Long Gu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Linda Malkas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Wang YC, Kelso AA, Karamafrooz A, Chen YH, Chen WK, Cheng CT, Qi Y, Gu L, Malkas L, Kung HJ, Moldovan GL, Ciccia A, Stark JM, Ann DK. Arginine shortage induces replication stress and confers genotoxic resistance by inhibiting histone H4 translation and promoting PCNA polyubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526362. [PMID: 36778247 PMCID: PMC9915598 DOI: 10.1101/2023.01.31.526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The unique arginine dependencies of cancer cell proliferation and survival creates metabolic vulnerability. Here, we investigate the impact of extracellular arginine availability on DNA replication and genotoxic resistance. Using DNA combing assays, we find that when extracellular arginine is limited, cancer cells are arrested at S-phase and DNA replication forks slow or stall instantly until arginine is re-supplied. The translation of new histone H4 is arginine-dependent and impacts DNA replication and the expression of newly synthesized histone H4 is reduced in the avascular nutrient-poor breast cancer xenograft tumor cores. Furthermore, we demonstrate that increased PCNA occupancy and HLTF-catalyzed PCNA K63-linked polyubiquitination protects arginine-starved cells from hydroxyurea-induced, DNA2-catalyzed nascent strand degradation. Finally, arginine-deprived cancer cells are tolerant to genotoxic insults in a PCNA K63-linked polyubiquitination-dependent manner. Together, these findings reveal that extracellular arginine is the "linchpin" for nutrient-regulated DNA replication. Such information could be leveraged to expand current modalities or design new drug targets against cancer.
Collapse
Affiliation(s)
- Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Andrew A. Kelso
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Adak Karamafrooz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yi-Hsuan Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Wei-Kai Chen
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Chun-Ting Cheng
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Yue Qi
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Long Gu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Linda Malkas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Sundararajan V, Tan TZ, Lim D, Peng Y, Wengner AM, Ngoi NYL, Jeyasekharan AD, Tan DSP. Nuclear pCHK1 as a potential biomarker of increased sensitivity to ATR inhibition. J Pathol 2023; 259:194-204. [PMID: 36373784 PMCID: PMC10107453 DOI: 10.1002/path.6032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Excessive genomic instability coupled with abnormalities in DNA repair pathways induces high levels of 'replication stress' when cancer cells propagate. Rather than hampering cancer cell proliferation, novel treatment strategies are turning their attention towards targeting cell cycle checkpoint kinases (such as ATR, CHK1, WEE1, and others) along the DNA damage response and replicative stress response pathways, thereby allowing unrepaired DNA damage to be carried forward towards mitotic catastrophe and apoptosis. The selective ATR kinase inhibitor elimusertib (BAY 1895344) has demonstrated preclinical and clinical monotherapy activity; however, reliable predictive biomarkers of treatment benefit are still lacking. In this study, using gene expression profiling of 24 cell lines from different cancer types and in a panel of ovarian cancer cell lines, we found that nuclear-specific enrichment of checkpoint kinase 1 (CHK1) correlated with increased sensitivity to elimusertib. Using an advanced multispectral imaging system in subsequent cell line-derived xenograft specimens, we showed a trend between nuclear phosphorylated CHK1 (pCHK1) staining and increased sensitivity to the ATR inhibitor elimusertib, indicating the potential value of pCHK1 expression as a predictive biomarker of ATR inhibitor sensitivity. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Diana Lim
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Natalie Yan Li Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - David Shao Peng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
7
|
Wen C, Ruan Q, Li Z, Zhou X, Yang X, Xu P, Akuetteh PDP, Xu Z, Deng J. Corynoxine suppresses pancreatic cancer growth primarily via ROS-p38 mediated cytostatic effects. Br J Cancer 2022; 127:2108-2117. [PMID: 36229578 PMCID: PMC9727079 DOI: 10.1038/s41416-022-02002-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Pancreatic cancer is among the most common malignant tumours, and effective therapeutic strategies are still lacking. While Corynoxine (Cory) can induce autophagy in neuronal cells, it remains unclear whether Cory has anti-tumour activities against pancreatic cancer. METHODS Two pancreatic cancer cell lines, Patu-8988 and Panc-1, were used. Effects of Cory were evaluated by cell viability analysis, EdU staining, TUNEL assay, colony formation assay, and flow cytometry. Quantitative PCR and Western blot were performed to analyse mRNA and protein levels, respectively. In vivo anti-tumour efficacy of Cory was determined by a xenograft model. RESULTS Cory treatment inhibited cell proliferation, induced endoplasmic reticulum (ER) stress, and triggered apoptosis in the pancreatic cancer cell lines. CHOP knockdown-mediated inhibition of ER stress alleviated the Cory-induced apoptosis but showed a limited effect on cell viability. Cory induced cell death partially via promoting reactive oxygen species (ROS) production and activating p38 signalling. Pretreatment with ROS scavenger N-acetylcysteine and p38 inhibitor SB203580 relieved the Cory-induced inhibition on cell growth. Cory remarkably blocked pancreatic tumour growth in vivo. CONCLUSIONS Cory exerts an anti-tumour effect on pancreatic cancer primarily via ROS-p38-mediated cytostatic effects. Cory may serve as a promising therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
- Chunmei Wen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Qingqing Ruan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Zhaofeng Li
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Xuezhi Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Pingwei Xu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Percy David Papa Akuetteh
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Zheng Xu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
8
|
Liu D, Cheng Y, Mei X, Xie Y, Tang Z, Liu J, Cao X. Mechanisms of acrolein induces toxicity in human umbilical vein endothelial cells: Oxidative stress, DNA damage response, and apoptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:708-719. [PMID: 34908224 DOI: 10.1002/tox.23436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Acrolein is a ubiquitous environmental pollutant that produced by the incomplete combustion of cigarette smoke, forest fires, petroleum fuels, plastic materials, and cooking fumes. Inhalation is a common form of people exposure to acrolein, increasing evidence demonstrates that acrolein impairs the cardiovascular system by targeting vascular endothelial cells. However, the molecular mechanism of the cytotoxicity of acrolein exposure on vascular endothelial cells remains unclear. This work focused on the toxicity of acrolein on human umbilical vein endothelial cells (HUVECs). The molecular mechanism was studied based on oxidative stress, DNA damage response (DDR), and mitochondrial apoptosis pathways. After HUVECs were treated with 12.5, 25, and 50 μM acrolein for 24 h, cell viability, cell colony formation, mitochondrial membrane potential, and adenosine triphosphate content significantly reduced, and acrolein increased intracellular reactive oxygen species, apoptosis rate, and 8-hydroxy-2 deoxyguanosine (8-OHdG) level. Furthermore, p38MAPK and c-Jun N-terminal kinase signaling pathways were activated in response to oxidative stress. Moreover, acrolein induced G0/G1phase arrest, promoted the expression of γ-H2AX, activated the DDR signaling pathway (Ataxia-Telangiectasia-Mutated [ATM] and Rad-3-related/Chk1 and ATM/Chk2), and triggered the consequent cell cycle checkpoints. Finally, the protein expression of Bax/Bcl-2 and cleaved Caspase-3 was up-regulated, suggesting apoptosis was induced by triggering the mitochondrial apoptosis pathway. All these results indicated that acrolein induced HUVECs cytotoxicity by regulating oxidative stress, DNA damage, and apoptosis. This study provides a novel perspective on the mechanism of acrolein-induced cardiovascular toxicity, it will be helpful for the prevention of acrolein-induced cardiovascular disease.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Yanzhen Xie
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
9
|
Teoh PJ, An O, Chung TH, Vaiyapuri T, Raju A, Hoppe MM, Toh SHM, Wang W, Chan MC, Fullwood MJ, Jeyasekharan AD, Tergaonkar V, Chen L, Yang H, Chng WJ. p53-NEIL1 co-abnormalities induce genomic instability and promote synthetic lethality with Chk1 inhibition in multiple myeloma having concomitant 17p13(del) and 1q21(gain). Oncogene 2022; 41:2106-2121. [DOI: 10.1038/s41388-022-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
|
10
|
Liu D, Cheng Y, Chen J, Mei X, Tang Z, Cao X, Liu J. Exploring the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity by luteolin using network pharmacology and cell biology technology. Food Chem Toxicol 2021; 160:112779. [PMID: 34958803 DOI: 10.1016/j.fct.2021.112779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Acrolein is a highly reactive unsaturated hazardous air pollutant, which is extremely irritating to the respiratory tract. Luteolin, an active flavonoid compound, possesses multiple biological activities. The purpose of this study was to evaluate the mechanism of the inhibition of acrolein-induced human bronchial epithelial (BEAS-2B) cells cytotoxicity by luteolin using network pharmacology and cell biology technology. Firstly, network pharmacology results indicated that oxidative stress processes might play an important role in luteolin inhibiting lung injury. Next, it was verified at the cellular level. Reactive oxygen species (ROS) generation increased, glutathione (GSH) level decreased after exposure to acrolein. MAPK signaling pathways were activated, which activated downstream IκBα/NF-κB signaling pathways. Meanwhile, acrolein caused oxidative DNA damage and double-strand breaks, induced DNA damage response (DDR) and apoptosis. These adverse effects were significantly reversed by luteolin, which inhibited the activation of MAPK/IκBα/NF-κB and DDR pathways, and reduced the ratio of Bax/Bcl-2. Moreover, luteolin also had a similar effect to antioxidant N-acetyl cysteine (NAC) in the regulation of signaling transduction mechanisms, which indicated that the regulation of oxidative stress played an important role in the process. These results provide an experimental basis for elucidating the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity with luteolin.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Junliang Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
11
|
Hossain MA, Lin Y, Driscoll G, Li J, McMahon A, Matos J, Zhao H, Tsuchimoto D, Nakabeppu Y, Zhao J, Yan S. APE2 Is a General Regulator of the ATR-Chk1 DNA Damage Response Pathway to Maintain Genome Integrity in Pancreatic Cancer Cells. Front Cell Dev Biol 2021; 9:738502. [PMID: 34796173 PMCID: PMC8593216 DOI: 10.3389/fcell.2021.738502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
The maintenance of genome integrity and fidelity is vital for the proper function and survival of all organisms. Recent studies have revealed that APE2 is required to activate an ATR-Chk1 DNA damage response (DDR) pathway in response to oxidative stress and a defined DNA single-strand break (SSB) in Xenopus laevis egg extracts. However, it remains unclear whether APE2 is a general regulator of the DDR pathway in mammalian cells. Here, we provide evidence using human pancreatic cancer cells that APE2 is essential for ATR DDR pathway activation in response to different stressful conditions including oxidative stress, DNA replication stress, and DNA double-strand breaks. Fluorescence microscopy analysis shows that APE2-knockdown (KD) leads to enhanced γH2AX foci and increased micronuclei formation. In addition, we identified a small molecule compound Celastrol as an APE2 inhibitor that specifically compromises the binding of APE2 but not RPA to ssDNA and 3′-5′ exonuclease activity of APE2 but not APE1. The impairment of ATR-Chk1 DDR pathway by Celastrol in Xenopus egg extracts and human pancreatic cancer cells highlights the physiological significance of Celastrol in the regulation of APE2 functionalities in genome integrity. Notably, cell viability assays demonstrate that APE2-KD or Celastrol sensitizes pancreatic cancer cells to chemotherapy drugs. Overall, we propose APE2 as a general regulator for the DDR pathway in genome integrity maintenance.
Collapse
Affiliation(s)
- Md Akram Hossain
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Garrett Driscoll
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jia Li
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Joshua Matos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
12
|
PB01 suppresses radio-resistance by regulating ATR signaling in human non-small-cell lung cancer cells. Sci Rep 2021; 11:12093. [PMID: 34103635 PMCID: PMC8187425 DOI: 10.1038/s41598-021-91716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Despite the common usage of radiotherapy for the treatment of human non-small-cell lung cancer (NSCLC), cancer therapeutic efficacy and outcome with ionizing radiation remains a challenge. Here, we report the antitumor effects and mechanism of a novel benzothiazole derivative PB01 (4-methoxy-cyclohexane carboxylic acid [2-(3,5-dimethyl-isoxazole-4-yl) sulpanil-benzothiazole-6-yl]-amide) in radiation-resistant human NSCLC cells. PB01 treatment is cytotoxic because it induces reactive oxygen species, ER stress, Bax, cytochrome c expression, the ATR-p53-GADD45ɑ axis, and cleavage of caspase-3 and -9. Additionally, we found that radio-resistant A549 and H460 subclones, named A549R and H460R, respectively, show enhanced epithelial-to-mesenchymal transition (EMT), whereas PB01 treatment inhibits EMT and mediates cell death through ER stress and the ATR axis under radiation exposure in radio-resistant A549R and H460R cells. Together, these results suggest that PB01 treatment can overcome radio-resistance during radiotherapy of NSCLC.
Collapse
|
13
|
Bruce JW, Bracken M, Evans E, Sherer N, Ahlquist P. ZBTB2 represses HIV-1 transcription and is regulated by HIV-1 Vpr and cellular DNA damage responses. PLoS Pathog 2021; 17:e1009364. [PMID: 33635925 PMCID: PMC7946322 DOI: 10.1371/journal.ppat.1009364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/10/2021] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Previously, we reported that cellular transcription factor ZASC1 facilitates DNA-dependent/RNA-independent recruitment of HIV-1 TAT and the cellular elongation factor P-TEFb to the HIV-1 promoter and is a critical factor in regulating HIV-1 transcriptional elongation (PLoS Path e1003712). Here we report that cellular transcription factor ZBTB2 is a novel repressor of HIV-1 gene expression. ZBTB2 strongly co-immunoprecipitated with ZASC1 and was dramatically relocalized by ZASC1 from the cytoplasm to the nucleus. Mutations abolishing ZASC1/ZBTB2 interaction prevented ZBTB2 nuclear relocalization. We show that ZBTB2-induced repression depends on interaction of cellular histone deacetylases (HDACs) with the ZBTB2 POZ domain. Further, ZASC1 interaction specifically recruited ZBTB2 to the HIV-1 promoter, resulting in histone deacetylation and transcription repression. Depleting ZBTB2 by siRNA knockdown or CRISPR/CAS9 knockout in T cell lines enhanced transcription from HIV-1 vectors lacking Vpr, but not from these vectors expressing Vpr. Since HIV-1 Vpr activates the viral LTR by inducing the ATR kinase/DNA damage response pathway, we investigated ZBTB2 response to Vpr and DNA damaging agents. Expressing Vpr or stimulating the ATR pathway with DNA damaging agents impaired ZASC1’s ability to localize ZBTB2 to the nucleus. Moreover, the effects of DNA damaging agents and Vpr on ZBTB2 localization could be blocked by ATR kinase inhibitors. Critically, Vpr and DNA damaging agents decreased ZBTB2 binding to the HIV-1 promoter and increased promoter histone acetylation. Thus, ZBTB2 is recruited to the HIV-1 promoter by ZASC1 and represses transcription, but ATR pathway activation leads to ZBTB2 removal from the promoter, cytoplasmic sequestration and activation of viral transcription. Together, our data show that ZASC1/ZBTB2 integrate the functions of TAT and Vpr to maximize HIV-1 gene expression. The Human immunodeficiency virus 1 (HIV-1) TAT and VPR proteins, in combination with cellular transcription factors, regulate the switch between transcriptionally active productive infection and the transcriptionally inactive latent state. Previously we reported that ZASC1, a cellular transcription factor linked to multiple squamous cell carcinomas and inherited ataxias, contributes to an RNA-independent, DNA-dependent step in recruiting the TAT/P-TEFb complex that is critical for HIV-1 transcription elongation to the HIV-1 promoter. Here we show ZASC1 interacts with ZBTB2, another cellular transcription factor with strong links to cancer. ZASC1 interaction relocalizes ZBTB2 from the cytoplasm to the HIV-1 promoter in the nucleus where ZBTB2 interacts with cellular HDACs, increases HIV-1 promoter histone deacetylation and represses viral transcription. We show that Vpr-mediated activation of the ATR/DNA damage pathway regulates ZBTB2 relocalization by ZASC1. Thus, the cellular transcription factors ZASC1 and ZBTB2 regulate the transcription elongation activities of HIV-1 TAT and the Vpr activation of the cellular DNA damage response pathway to determine the transcriptional fate of the HIV-1 provirus. These results also have strong implications for the role of ZASC1/ZBTB2 and the DNA damage response in cancer and inherited ataxias.
Collapse
Affiliation(s)
- James W. Bruce
- Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Megan Bracken
- Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Edward Evans
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Nathan Sherer
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
14
|
Cheng CH, Ma HL, Deng YQ, Feng J, Jie YK, Guo ZX. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in the mud crab (Scylla paramamosain) induced by cadmium exposure. CHEMOSPHERE 2021; 263:128277. [PMID: 33297221 DOI: 10.1016/j.chemosphere.2020.128277] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 06/12/2023]
Abstract
Cadmium is one of the most common heavy metal pollutants in the aquatic environment. Mud crab (Scylla paramamosain) is considered a model organism to monitor the impact of heavy metals. However, knowledge about toxicological mechanism of cadmium in crustaceans still remains limited. In this study, mud crabs were exposed to different concentrations of cadmium (0, 1.25, 2.5, 5 and 10 mg/L) for 72 h. Cadmium exposure significantly decreased superoxide dismutase (SOD) activity, catalase (CAT) activity and total antioxidative capacity (T-AOC), and significantly increased malondialdehyde (MDA) and H2O2 levels. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activity significantly increased after cadmium exposure. Moreover, integrated biological responses version 2 (IBRv2) analysis suggested that cadmium exposure exerted stronger toxicity on mud crab. Furthermore, oxidative stress induced by cadmium exposure could decrease total hemocyte count (THC), interrupt Ca2+ homeostasis, and lead to cytological damage. Cadmium exposure induced DNA damage, which activated DNA damage response signaling ATR-CHK1-p53 pathway. Our results also showed that cadmium exposure significantly increased the apoptosis and caspase-3 mRNA levels, which implied that cadmium induced apoptosis through a caspase-3 pathway.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yu-Kun Jie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| |
Collapse
|
15
|
ATRIP protects progenitor cells against DNA damage in vivo. Cell Death Dis 2020; 11:923. [PMID: 33110058 PMCID: PMC7591577 DOI: 10.1038/s41419-020-03090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
The maintenance of genomic stability during the cell cycle of progenitor cells is essential for the faithful transmission of genetic information. Mutations in genes that ensure genome stability lead to human developmental syndromes. Mutations in Ataxia Telangiectasia and Rad3-related (ATR) or in ATR-interacting protein (ATRIP) lead to Seckel syndrome, which is characterized by developmental malformations and short life expectancy. While the roles of ATR in replicative stress response and chromosomal segregation are well established, it is unknown how ATRIP contributes to maintaining genomic stability in progenitor cells in vivo. Here, we generated the first mouse model to investigate ATRIP function. Conditional inactivation of Atrip in progenitor cells of the CNS and eye led to microcephaly, microphthalmia and postnatal lethality. To understand the mechanisms underlying these malformations, we used lens progenitor cells as a model and found that ATRIP loss promotes replicative stress and TP53-dependent cell death. Trp53 inactivation in Atrip-deficient progenitor cells rescued apoptosis, but increased mitotic DNA damage and mitotic defects. Our findings demonstrate an essential role of ATRIP in preventing DNA damage accumulation during unchallenged replication.
Collapse
|
16
|
Lee JW, Ratnakumar K, Hung KF, Rokunohe D, Kawasumi M. Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochem Photobiol 2020; 96:478-499. [PMID: 32119110 DOI: 10.1111/php.13245] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.
Collapse
Affiliation(s)
- Jihoon W Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kajan Ratnakumar
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kai-Feng Hung
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Daiki Rokunohe
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
17
|
Guo Z, Wang Y, Zhao Y, Jin Y, An L, Xu H, Liu Z, Chen X, Zhou H, Wang H, Zhang W. A functional variant in CHK1 contributes to increased risk of nasopharyngeal carcinoma in a Han Chinese population. J Cell Biochem 2020; 121:3248-3255. [PMID: 31904144 DOI: 10.1002/jcb.29592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
DNA damage checkpoints act as a supervisor by preventing the course of cell cycle upon DNA damage and keeping the steadiness of genome. Checkpoint kinase 1 (CHK1) cannot be ignore in the etiology of numerous human cancers including nasopharyngeal cancer (NPC). To discuss genetic polymorphisms of CHK1 rs492510 in the occurrence of NPC was our objective. Rs492510 polymorphism of CHK1 was genotyped in 684 patients with NPC and 823 cancer-free controls. We utilize logistic regression models to appraise the correlation of rs492510 and susceptibility of NPC. Comparative expression level about CHK1 in nasopharyngeal carcinoma tissues were determined by real-time polymerase chain reaction. And we made use of Dual-Luciferase Reporter Assay to assess the transcriptional ability of CHK1 with different rs492510 allele. Adjusting multivariate logistic regression based on age, sex, body mass index, smoking, and drinking status showed that CHK1 rs492510 GA + GG genotype carriers presented prominent higher risk in NPC (odds ratio = 1.376, 95% confidence interval: 1.087-1.742; P = .008). As a consequence, we revealed that CHK1 relative expression levels in NPC tissues was higher than rhinitis tissues. Besides, the expressions of CHK1 in rs492510 GA genotype carriers were higher compared with people in AA genotype. The G allele of rs492510 generated remarkable higher transcription activity of CHK1 vs A allele by luciferase reporter assay. Our study considered that single nucleotide polymorphism rs492510 could increase transcription activity of CHK1 with the functionality, contributing to the susceptibility of NPC.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Jin
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liang An
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Heng Xu
- Department of Laboratory Medicine, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
18
|
Hsu WH, Zhao X, Zhu J, Kim IK, Rao G, McCutcheon J, Hsu ST, Teicher B, Kallakury B, Dowlati A, Zhang YW, Giaccone G. Checkpoint Kinase 1 Inhibition Enhances Cisplatin Cytotoxicity and Overcomes Cisplatin Resistance in SCLC by Promoting Mitotic Cell Death. J Thorac Oncol 2019; 14:1032-1045. [PMID: 30771522 DOI: 10.1016/j.jtho.2019.01.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/28/2018] [Accepted: 01/27/2019] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Platinum-based chemotherapy remains the standard treatment for patients with SCLC, but the benefit of the treatment is often hampered by rapid development of drug resistance. Thus far, there is no targeted therapy available for SCLC. More than 90% of SCLC tumors harbor mutations in the tumor suppressor gene tumor protein p53 (p53), an important DNA damage checkpoint regulator, and these tumor cells rely predominantly on the checkpoint kinases to control DNA damage response. METHODS We examined whether and how inhibition of checkpoint kinase 1 (Chk1) affects cisplatin cytotoxicity in SCLC cells with and without p53 mutations, and evaluated the effect of Chk1 inhibitor and cisplatin combination in cisplatin-sensitive and -resistant preclinical models. RESULTS Inhibition of Chk1 synergized with cisplatin to induce mitotic cell death in the p53-deficeint SCLC cells. The effect was regulated in part through activation of caspase 2 and downregulation of E2F transcription factor 1 (E2F1). Furthermore, Chk1 inhibitors prexasertib and AZD7762 enhanced cisplatin antitumor activity and overcame cisplatin resistance in SCLC preclinical models in vitro an in vivo. We also observed that higher expression of Chk1 was associated with poorer overall survival of patients with SCLC. CONCLUSIONS Our data account Chk1 as a potential therapeutic target in SCLC, and rationalize clinical development of Chk1 inhibitor and cisplatin combinational strategy for the treatment of SCLC.
Collapse
Affiliation(s)
- Wei-Hsun Hsu
- Department of Oncology, Georgetown University Medical Center, Washington, DC; Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoliang Zhao
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Jianquan Zhu
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - In-Kyu Kim
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Guanhua Rao
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Justine McCutcheon
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Shuo-Tse Hsu
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Beverly Teicher
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | | | - Yu-Wen Zhang
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Giuseppe Giaccone
- Department of Oncology, Georgetown University Medical Center, Washington, DC.
| |
Collapse
|
19
|
Park S, Oh AY, Cho JH, Yoon MH, Woo TG, Kang SM, Lee HY, Jung YJ, Park BJ. Therapeutic Effect of Quinacrine, an Antiprotozoan Drug, by Selective Suppression of p-CHK1/2 in p53-Negative Malignant Cancers. Mol Cancer Res 2018; 16:935-946. [DOI: 10.1158/1541-7786.mcr-17-0511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/22/2017] [Accepted: 03/08/2018] [Indexed: 11/16/2022]
|
20
|
Li B, Zhou H, Yang G, Han F, Li Y, Gao Y, Gao J, Zhang F, Sun L. In vivo study of erysolin metabolic profile by ultra high performance liquid chromatography coupleded to Fourier transform ion cyclotron resonance mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:173-181. [DOI: 10.1016/j.jchromb.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/19/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
|
21
|
Liu R, Tang J, Ding C, Liang W, Zhang L, Chen T, Xiong Y, Dai X, Li W, Xu Y, Hu J, Lu L, Liao W, Lu X. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades. Cancer Lett 2017; 390:48-57. [PMID: 28093285 DOI: 10.1016/j.canlet.2016.12.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/24/2016] [Indexed: 02/07/2023]
Abstract
Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy.
Collapse
Affiliation(s)
- Rui Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiajia Tang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaodong Ding
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaowei Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenfeng Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yunsheng Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jin Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
22
|
ATR-Chk1 signaling inhibition as a therapeutic strategy to enhance cisplatin chemosensitivity in urothelial bladder cancer. Oncotarget 2016; 7:1947-59. [PMID: 26657501 PMCID: PMC4811508 DOI: 10.18632/oncotarget.6482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/21/2015] [Indexed: 12/12/2022] Open
Abstract
DNA damage responses contribute to cisplatin resistance; however, therapeutic strategies to overcome cisplatin resistance have not yet been established. Here, we demonstrate that inhibition of ATR-Chk1 pathway with the potent inhibitor WYC0209 sensitizes bladder cancer cells to cisplatin. In the clinical microarray profile, high ATR expression is associated with poor prognosis in bladder cancer patients who receive chemotherapy. We show that pharmacological and genetic suppressing of ATR sensitized cells to cisplatin. Treatment with WYC0209 or siATR increased levels of cisplatin-DNA adducts, concomitant with decreased levels of p-glycoprotein expression. Additionally, Combinations of cisplatin and WYC0209 show synergistic activity against bladder cancer. Ultimately, WYC0209 enhanced the anti-tumor effects of cisplatin and suppressed p-glycoprotein expression in bladder cancer xenografts. These results indicate that inhibiting ATR-Chk1 activation with WYC0209 suppresses p-glycoprotein expression and increases cisplatin activity in bladder cancer. Our findings collectively suggest that ATR-Chk1 is a target for improving the efficacy of cisplatin in bladder cancer.
Collapse
|
23
|
Zhang D, Piao HL, Li YH, Qiu Q, Li DJ, Du MR, Tsang BK. Inhibition of AKT sensitizes chemoresistant ovarian cancer cells to cisplatin by abrogating S and G2/M arrest. Exp Mol Pathol 2016; 100:506-13. [PMID: 27163202 DOI: 10.1016/j.yexmp.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently altered in human malignancies and Akt over-expression and/or activation induces malignant transformation and chemoresistance. However, the role of Akt in the mechanisms of chemoresistance remains elusive. Here we reported that cisplatin treatment of chemosensitive, but not resistant, ovarian cancer cells (OVCAs) markedly increased the cell proportion in sub-G1 phase. Cisplatin however caused a significant accumulation of the resistant cells in S and G2/M phases, which was associated with a rapid and sustained checkpoint kinase 1 (Chk1) activation. In contrast, while cisplatin also elicited a rapid activation of Chk1 in sensitive cells, it markedly decreased total ChK1 and phospho-Chk1 contents over 12 h. Over-expression of dominant negative (DN)-AKT alone increased phospho-Chk1 content, and induced G2/M arrest and apoptosis. However, it inhibited Chk1 activation and G2/M arrest with combination of cisplatin treatment, resulting in p53-independent apoptosis. Furthermore, the responses of the chemoresistant cells to cisplatin were attenuated with forced expression of constitutive active AKT2. Chk1 knock-down also facilitated cisplatin-induced apoptosis in chemoresistant cells. Our studies implicate that, in addition to its cell survival and anti-apoptotic actions, Akt might also play an important role in the regulation of G2-M transition, possibly via up-regulation of Chk1 activity and stability. These data provide strong support for the concept that Akt is important in cell cycle regulation in the control of chemosensitivity in OVCAs and offers an alternate regulatory pathway for the development of rationale therapy for cisplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Di Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Hai-Lan Piao
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Yan-Hong Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Qing Qiu
- Department of Obstetrics and Gynecology, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Mei-Rong Du
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China; Department of Obstetrics and Gynecology, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada.
| | - Benjamin K Tsang
- State Key Laboratory of Quality Research in Chinese Medicine and the Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau; Department of Obstetrics and Gynecology, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
24
|
Drugging ATR: progress in the development of specific inhibitors for the treatment of cancer. Future Med Chem 2016; 7:873-91. [PMID: 26061106 DOI: 10.4155/fmc.15.33] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this article, we review the ATR inhibitor field from initial pharmacological tools to first-generation clinical candidates with the potential to bring benefit to cancer patients. ATR is a critical part of the cell DNA-damage response. Over the past decade or more, compounds with weak ATR potency and low specificity have been used as tools in early studies to elucidate ATR pharmacology. More recently highly potent, selective and in vivo active ATR inhibitors have been developed enabling detailed preclinical in vitro and in vivo target assessment to be made. The published studies reveal the potential of ATR inhibitors for use as monotherapy or in combination with DNA-damaging agents. To date, VX-970 and AZD6738, have entered clinical assessment.
Collapse
|
25
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|