1
|
Arnold MR, Chen S, Unni VK. Alpha-synuclein knockout impairs melanoma development and alters DNA damage repair in the TG3 mouse model in a sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626256. [PMID: 39677631 PMCID: PMC11642733 DOI: 10.1101/2024.12.01.626256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Strong evidence suggests links between Parkinson's Disease (PD) and melanoma, as studies have found that people with PD are at an increased risk of developing melanoma and those with melanoma are at increased risk of developing PD. Although these clinical associations are well-established, the cellular and molecular pathways linking these diseases are poorly understood. Recent studies have found a previously unrecognized role for the neurodegeneration-associated protein alpha-synuclein (αSyn) in melanoma; the overexpression of αSyn promotes melanoma cell proliferation and metastasis. However, to our knowledge, no studies have investigated the role of αSyn in in vivo melanoma models outside of a xenograft paradigm. Our study created and characterized Snca knockout in the spontaneously developing melanoma TG3 mouse line, TG3+/+Snca-/-. We show that αSyn loss-of-function significantly delays melanoma onset and slows tumor growth in vivo. Furthermore, decreased tumor volume is correlated with a decreased DNA damage signature and increased apoptotic markers, indicating a role for αSyn in modulating the DNA damage response (DDR) pathway. Overall, our study provides evidence that targeting αSyn and its role in modulating the DDR and melanomagenesis could serve as a promising new therapeutic target.
Collapse
Affiliation(s)
- Moriah R. Arnold
- Medical Scientist Training Program, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Suzie Chen
- Departments of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA
| | - Vivek K. Unni
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
- OHSU Parkinson Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
3
|
O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer 2024; 130:347-357. [PMID: 37945750 PMCID: PMC10844642 DOI: 10.1038/s41416-023-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and unfortunately, disease will progress in up to a third of patients despite primary treatment. Currently, there is a significant lack of prognostic tests that accurately predict disease course; however, the acquisition of somatic chromosomal variation in the form of DNA copy number variants may help understand disease progression. Notably, studies have found that a higher burden of somatic copy number alterations (SCNA) correlates with more aggressive disease, recurrence after surgery and metastasis. Here we will review the literature surrounding SCNA formation, including the roles of key tumour suppressors and oncogenes (PTEN, BRCA2, NKX3.1, ERG and AR), and their potential to inform diagnostic and prognostic clinical testing to improve predictive value. Ultimately, SCNAs, or inherited germline alterations that predispose to SCNAs, could have significant clinical utility in diagnostic and prognostic tests, in addition to guiding therapeutic selection.
Collapse
Affiliation(s)
- Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillip E Melton
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
4
|
DEBELEÇ BÜTÜNER B, ERTUNÇ HASBAL N, İŞEL E, ROGGENBUCK D, KORKMAZ KS. Androgen receptor contributes to repairing DNA damage induced by inflammation and oxidative stress in prostate cancer. Turk J Biol 2023; 47:325-335. [PMID: 38155939 PMCID: PMC10752373 DOI: 10.55730/1300-0152.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 12/30/2023] Open
Abstract
Background Androgen deprivation therapy remains the first-line therapy option for prostate cancer, mostly resulting in the transition of the disease to a castration-resistant state. The lack of androgen signaling during therapy affects various cellular processes, which sometimes paradoxically contributes to cancer progression. As androgen receptor (AR) signaling is known to contribute to oxidative stress regulation, loss of AR may also affect DNA damage level and the response mechanism in oxidant and inflammatory conditions of the prostate tumor microenvironment. Therefore, this study aimed to investigate the role of AR and AR-regulated tumor suppressor NKX3.1 upon oxidative stress-induced DNA damage response (DDR) in the inflammatory tumor microenvironment of the prostate. Materials and methods Intracellular reactive oxygen species (ROS) level was induced by either inflammatory conditioned media obtained from lipopolysaccharide-induced macrophages or oxidants and measured by dichlorodihydrofluorescein diacetate. In addition to this, DNA damage was subsequently quantified by counting gH2AX foci using an immunofluorescence-based Aklides platform. Altered expression of proteins function in DDR detected by western blotting. Results Cellular levels of ROS and ROS-induced DNA double-strand break damage were analyzed in the absence and presence of AR signaling upon treatment of prostate cancer cells by either oxidants or inflammatory microenvironment exposure. The results showed that AR suppresses intracellular ROS and contributes to DNA damage recognition under oxidant conditions. Besides, increased DNA damage due to loss of NKX3.1 under inflammatory conditions was alleviated by its overexpression. Moreover, the activation of the DDR mediators caused by AR and NKX3.1 activation in androgen-responsive and castration-resistant prostate cancer cells indicated that the androgen receptor function is essential both in controlling oxidative stress and in activating the ROS-induced DDR. Conclusion Taken together, it is concluded that the regulatory function of androgen receptor signaling has a vital function in the balance between antioxidant response and DDR activation.
Collapse
Affiliation(s)
- Bilge DEBELEÇ BÜTÜNER
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Nurşah ERTUNÇ HASBAL
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, İzmir,
Turkiye
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6,
Canada
| | - Elif İŞEL
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Dirk ROGGENBUCK
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg,
Germany
- Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg,
Germany
| | - Kemal Sami KORKMAZ
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, İzmir,
Turkiye
| |
Collapse
|
5
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
Lorenzoni M, De Felice D, Beccaceci G, Di Donato G, Foletto V, Genovesi S, Bertossi A, Cambuli F, Lorenzin F, Savino A, Avalle L, Cimadamore A, Montironi R, Weber V, Carbone FG, Barbareschi M, Demichelis F, Romanel A, Poli V, Del Sal G, Julio MKD, Gaspari M, Alaimo A, Lunardi A. ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3β dependent Nkx3.1 degradation. Cancer Lett 2022; 534:215612. [PMID: 35259458 PMCID: PMC8968219 DOI: 10.1016/j.canlet.2022.215612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022]
Abstract
21q22.2–3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5–30% of tumor precursor lesions – High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3β-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation. Expression of ERGM40 in mouse prostate organoids promotes their survival and growth in the absence of Egf. ERGM40 alters the extracellular signaling network of mouse prostate organoids. Canonical Wnt pathway is substantially reduced in ERG + prostate organoids due to decreased autocrine signaling of Wnt4. Gsk3b promotes Nkx3.1 proteolysis and, in turn, accumulation of double strand breaks in ERG + prostate organoids. Paracrine signaling of ERG + prostate organoids modulates Arginase 1 expression in M1-polarized macrophages.
Collapse
Affiliation(s)
- Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giorgia Di Donato
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Arianna Bertossi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessia Cimadamore
- Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Via Tronto, 10, Ancona, Italy
| | - Veronica Weber
- Unit of Surgical Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giannino Del Sal
- University of Trieste Department Life Sciences, ICGEB-Area Science Park Trieste, IFOM, Milan, Italy
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland; Translational Organoid Resource CORE, Department for BioMedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of Urology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
7
|
Sex disparities in DNA damage response pathways: Novel determinants in cancer formation and therapy. iScience 2022; 25:103875. [PMID: 35243237 PMCID: PMC8858993 DOI: 10.1016/j.isci.2022.103875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
8
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
9
|
Montagud A, Béal J, Tobalina L, Traynard P, Subramanian V, Szalai B, Alföldi R, Puskás L, Valencia A, Barillot E, Saez-Rodriguez J, Calzone L. Patient-specific Boolean models of signalling networks guide personalised treatments. eLife 2022; 11:e72626. [PMID: 35164900 PMCID: PMC9018074 DOI: 10.7554/elife.72626] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.
Collapse
Affiliation(s)
- Arnau Montagud
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
| | - Jonas Béal
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Luis Tobalina
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Pauline Traynard
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Vigneshwari Subramanian
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Bence Szalai
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Semmelweis University, Faculty of Medicine, Department of PhysiologyBudapestHungary
| | | | | | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
- ICREA, Pg. Lluís Companys 23BarcelonaSpain
| | - Emmanuel Barillot
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Laurence Calzone
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| |
Collapse
|
10
|
Deregulated estrogen receptor signaling and DNA damage response in breast tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1875:188482. [PMID: 33260050 DOI: 10.1016/j.bbcan.2020.188482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Carriers of BRCA1 mutations have a higher chance of developing cancers in hormone-responsive tissues like the breast, ovary and prostate, compared to other tissues. These tumors generally exhibit basal-like characters and do not express estrogen receptor (ER) or progesterone receptor (PR). Intriguingly, BRCA1 mutated breast cancers have a less favorable clinical outcome, as they will not respond to hormone therapy. BRCA1 has been reported to exhibit ligand dependent and independent transcriptional inhibition of ER-α; however, there exists a controversy on whether BRCA1 induces or inhibits ER-α expression. The mechanisms associated with resistance of BRCA1 mutated cancers to hormone therapy, as well as the tissue restriction exhibited by BRCA1 mutated tumors are still largely unknown. BRCA1 mutated tumors possess increased DNA damages and decreased genomic integrity, as BRCA1 plays a cardinal role in high fidelity DNA damage repair pathways, like homologous recombination (HR). The existence of cross regulatory signaling networks between ER-α and BRCA1 speculates a role of ER on BRCA1 dependent DDR pathways. Thus, the loss or haploinsufficiency of BRCA1 and the consequential deregulation of ER-α signaling may result in persistence of unrepaired DNA damages, eventually leading to tumorigenesis. Therefore, understanding of this cross-talk between ER-α and BRCA1, with regard to DDR, will provide critical insights to steer drug development and therapy for breast/ovarian cancers. This review discusses the mechanisms by which estrogen and ER signaling influence BRCA1 mediated DNA damage response and repair pathways in the mammalian system.
Collapse
|
11
|
Bowen C, Shibata M, Zhang H, Bergren SK, Shen MM, Gelmann EP. CRISPR/Cas9-Mediated Point Mutation in Nkx3.1 Prolongs Protein Half-Life and Reverses Effects Nkx3.1 Allelic Loss. Cancer Res 2020; 80:4805-4814. [PMID: 32943441 PMCID: PMC7642110 DOI: 10.1158/0008-5472.can-20-1742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
NKX3.1 is the most commonly deleted gene in prostate cancer and is a gatekeeper suppressor. NKX3.1 is haploinsufficient, and pathogenic reduction in protein levels may result from genetic loss, decreased transcription, and increased protein degradation caused by inflammation or PTEN loss. NKX3.1 acts by retarding proliferation, activating antioxidants, and enhancing DNA repair. DYRK1B-mediated phosphorylation at serine 185 of NKX3.1 leads to its polyubiquitination and proteasomal degradation. Because NKX3.1 protein levels are reduced, but never entirely lost, in prostate adenocarcinoma, enhancement of NKX3.1 protein levels represents a potential therapeutic strategy. As a proof of principle, we used CRISPR/Cas9-mediated editing to engineer in vivo a point mutation in murine Nkx3.1 to code for a serine to alanine missense at amino acid 186, the target for Dyrk1b phosphorylation. Nkx3.1S186A/-, Nkx3.1+/- , and Nkx3.1+/+ mice were analyzed over one year to determine the levels of Nkx3.1 expression and effects of the mutant protein on the prostate. Allelic loss of Nkx3.1 caused reduced levels of Nkx3.1 protein, increased proliferation, and prostate hyperplasia and dysplasia, whereas Nkx3.1S186A/- mouse prostates had increased levels of Nkx3.1 protein, reduced prostate size, normal histology, reduced proliferation, and increased DNA end labeling. At 2 months of age, when all mice had normal prostate histology, Nkx3.1+/- mice demonstrated indices of metabolic activation, DNA damage response, and stress response. These data suggest that modulation of Nkx3.1 levels alone can exert long-term control over premalignant changes and susceptibility to DNA damage in the prostate. SIGNIFICANCE: These findings show that prolonging the half-life of Nkx3.1 reduces proliferation, enhances DNA end-labeling, and protects from DNA damage, ultimately blocking the proneoplastic effects of Nkx3.1 allelic loss.
Collapse
Affiliation(s)
- Cai Bowen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Maho Shibata
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Hailan Zhang
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona
| | - Sarah K Bergren
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Edward P Gelmann
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona.
| |
Collapse
|
12
|
NKX3-1 Is a Useful Immunohistochemical Marker of EWSR1-NFATC2 Sarcoma and Mesenchymal Chondrosarcoma. Am J Surg Pathol 2020; 44:719-728. [PMID: 31972596 DOI: 10.1097/pas.0000000000001441] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NK3 homeobox 1 (NKX3-1) is widely accepted as a highly sensitive and specific marker for prostatic adenocarcinoma. Prompted by published transcriptome data showing upregulation of NKX3-1 mRNA expression in EWSR1-NFATC2 sarcoma, we explored the utility of NKX3-1 immunohistochemistry in sarcoma diagnosis. We applied NKX3-1 immunohistochemistry to 11 EWSR1-NFATC2 sarcomas and 168 mimics using whole tissue sections. All EWSR1-NFATC2 sarcomas consisted of uniform small round or ovoid cells, all except 1 showing at least focally the typical growth pattern of nests, cords, or trabeculae within a fibrous/myxoid background. A variable eosinophilic infiltrate was common. NKX3-1 was expressed in 9 of 11 (82%) EWSR1-NFATC2 sarcomas, often diffuse and of moderate or strong intensity. All 12 mesenchymal chondrosarcomas tested were also positive for NKX3-1, with over half showing diffuse staining and moderate or strong intensity. The positive staining was seen only in the primitive small round cell component, whereas the cartilaginous component was mostly negative. Although 1 of 30 osteosarcomas showed focal NKX3-1 positivity, all the remaining 155 cases tested, including 20 Ewing sarcomas, 20 myoepithelial tumors, 11 ossifying fibromyxoid tumors, and 1 FUS-NFATC2 sarcoma were negative for NKX3-1. Our study provides the first evidence that EWSR1-NFATC2 sarcoma and Ewing sarcoma could be distinguished immunohistochemically, adding to the accumulating data that these tumors are phenotypically distinct. We suggest that NKX3-1 may have a diagnostic utility in the evaluation of sarcoma and we also call attention to potential pitfalls in the use of this well-known marker of prostatic adenocarcinoma.
Collapse
|
13
|
Identification of Potential Key Genes and Pathways in Enzalutamide-Resistant Prostate Cancer Cell Lines: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8341097. [PMID: 32724813 PMCID: PMC7382728 DOI: 10.1155/2020/8341097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
Enzalutamide (ENZ) has been approved for the treatment of advanced prostate cancer (PCa), but some patients develop ENZ resistance initially or after long-term administration. Although a few key genes have been discovered by previous efforts, the complete mechanisms of ENZ resistance remain unsolved. To further identify more potential key genes and pathways in the development of ENZ resistance, we employed the GSE104935 dataset, including 5 ENZ-resistant (ENZ-R) and 5 ENZ-sensitive (ENZ-S) PCa cell lines, from the Gene Expression Omnibus (GEO) database. Integrated bioinformatics analyses were conducted, such as analysis of differentially expressed genes (DEGs), Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) analysis, gene set enrichment analysis (GSEA), and survival analysis. From these, we identified 201 DEGs (93 upregulated and 108 downregulated) and 12 hub genes (AR, ACKR3, GPER1, CCR7, NMU, NDRG1, FKBP5, NKX3-1, GAL, LPAR3, F2RL1, and PTGFR) that are potentially associated with ENZ resistance. One upregulated pathway (hedgehog pathway) and seven downregulated pathways (pathways related to androgen response, p53, estrogen response, TNF-α, TGF-β, complement, and pancreas β cells) were identified as potential key pathways involved in the occurrence of ENZ resistance. Our findings may contribute to further understanding the molecular mechanisms of ENZ resistance and provide some clues for the prevention and treatment of ENZ resistance.
Collapse
|
14
|
Abstract
The development of peptide-based drugs, which are usually synthetic analogues of endogenous peptides, is currently one of the most topical directions in drug development. Among them, antitumor peptide-based drugs are of great interest. Anticancer peptides can be classified into three main groups based on their mechanism of action: inhibitory, necrosis-inducing and pro-apoptotic peptides. As an antitumor therapy, peptides are considered to have at least the same efficacy as chemotherapy or surgical treatment, but offer advantages in terms of safety and tolerability, given that chemotherapy is usually characterized by severe adverse effects, and surgery carries additional risks for patients. Short peptides have a number of benefits over other molecules. First, compared with full-length proteins and antibodies, short peptides are less immunogenic, more stable ex-vivo (prolonged storage at room temperature), and have better tumor or organ permeability. Moreover, the production of such short peptide-based drugs is more cost effective. Second, in comparison with small organic molecules, peptides have higher efficacy and specificity. Finally, due to the fact that the main products of peptide metabolism are amino acids, these drugs are usually characterized by lower toxicity. Short peptides have a highly selective mechanism of action, thereby demonstrating low toxicity. Furthermore, with the addition of different stabilizing structural modifications, as well as novel drug delivery systems, the peptide-based drugs are proving to be promising therapeutics for cancer mono- or polytherapy. However, challenges remain including that endogenous and synthetic peptide molecules can be oncogenic. Therefore, it is important to investigate whether peptides contribute to tumor growth. In order to answer such questions, numerous preclinical and clinical studies of peptide-based therapeutics are currently being conducted.
Collapse
|
15
|
Bowen C, Ostrowski MC, Leone G, Gelmann EP. Loss of PTEN Accelerates NKX3.1 Degradation to Promote Prostate Cancer Progression. Cancer Res 2019; 79:4124-4134. [PMID: 31213464 PMCID: PMC6753942 DOI: 10.1158/0008-5472.can-18-4110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
NKX3.1 is the most commonly deleted gene in prostate cancer and a gatekeeper suppressor. NKX3.1 is a growth suppressor, mediator of apoptosis, inducer of antioxidants, and enhancer of DNA repair. PTEN is a ubiquitous tumor suppressor that is often decreased in prostate cancer during tumor progression. Steady-state turnover of NKX3.1 is mediated by DYRK1B phosphorylation at NKX3.1 serine 185 that leads to polyubiquitination and proteasomal degradation. In this study, we show PTEN is an NKX3.1 phosphatase that protects NKX3.1 from degradation. PTEN specifically opposed phosphorylation at NKX3.1(S185) and prolonged NKX3.1 half-life. PTEN and NKX3.1 interacted primarily in the nucleus as loss of PTEN nuclear localization abrogated its ability to bind to and protect NKX3.1 from degradation. The effect of PTEN on NKX3.1 was mediated via rapid enzyme-substrate interaction. An effect of PTEN on Nkx3.1 gene transcription was seen in vitro, but not in vivo. In gene-targeted mice, Nkx3.1 expression significantly diminished shortly after loss of Pten expression in the prostate. Nkx3.1 loss primarily increased prostate epithelial cell proliferation in vivo. In these mice, Nkx3.1 mRNA was not affected by Pten expression. Thus, the prostate cancer suppressors PTEN and NKX3.1 interact and loss of PTEN is responsible, at least in part, for progressive loss of NKX3.1 that occurs during tumor progression. SIGNIFICANCE: PTEN functions as a phosphatase of NKX3.1, a gatekeeper suppressor of prostate cancer.
Collapse
Affiliation(s)
- Cai Bowen
- Departments of Medicine and of Pathology and Cell Biology, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Ft. Washington Ave., MHB 6N-435, New York, NY, 10032
| | - Michael C. Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Gustavo Leone
- Medical University of South Carolina, Hollings Cancer Center, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425
| | - Edward P. Gelmann
- Departments of Medicine and of Pathology and Cell Biology, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Ft. Washington Ave., MHB 6N-435, New York, NY, 10032
- Corresponding author present address: University of Arizona Medical Center, Division of Hematology/Oncology, 1515 N Campbell Avenue, Room 1969K, Tucson, AZ 85724-5024
| |
Collapse
|
16
|
Debelec-Butuner B, Bostancı A, Ozcan F, Singin O, Karamil S, Aslan M, Roggenbuck D, Korkmaz KS. Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer. Cancer Invest 2019; 37:113-126. [PMID: 30836777 DOI: 10.1080/07357907.2019.1576192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 8-hydroxy-2'-deoxyguanosine (8-OHdG) damages are base damages induced by reactive oxygen species. We aimed to investigate the role of Androgen Receptor and NKX3.1 in 8-OHdG formation and repair activation by quantitating the DNA damage using Aklides.NUK system. The data demonstrated that the loss of NKX3.1 resulted in increased oxidative DNA damage and its overexpression contributes to the removal of menadione-induced 8-OHdG damage even under oxidative stress conditions. Moreover, 8-oxoguanine DNA glycosylase-1 (OGG1) expression level positively correlates to NKX3.1 expression. Also in this study, first time a reliable cell-based quantitation method for 8-OHdG damages is reported and used for data collection.
Collapse
Affiliation(s)
- Bilge Debelec-Butuner
- a Department of Pharmaceutical Biotechnology, Faculty of Pharmacy , Ege University , Izmir , Turkey
| | - Aykut Bostancı
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Filiz Ozcan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Oznur Singin
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Selda Karamil
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Mutay Aslan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Dirk Roggenbuck
- d Medipan GmBH , Dahlewitz , Germany.,e Faculty Environment and Natural Sciences , Brandenburg University of Technology Cottbus-Senftenberg , Senftenberg , Germany
| | - Kemal Sami Korkmaz
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| |
Collapse
|
17
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
18
|
Köseoğlu H. Genetics in the Prostate Cancer. Prostate Cancer 2018. [DOI: 10.5772/intechopen.77259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Min A, Jang H, Kim S, Lee KH, Kim DK, Suh KJ, Yang Y, Elvin P, O'Connor MJ, Im SA. Androgen Receptor Inhibitor Enhances the Antitumor Effect of PARP Inhibitor in Breast Cancer Cells by Modulating DNA Damage Response. Mol Cancer Ther 2018; 17:2507-2518. [PMID: 30232143 DOI: 10.1158/1535-7163.mct-18-0234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is expressed in 60%-70% of breast cancers regardless of estrogen receptor status, and has been proposed as a therapeutic target in breast cancers that retain AR. In this study, the authors aimed to investigate a new treatment strategy using a novel AR inhibitor AZD3514 in breast cancer. AZD3514 alone had a minimal antiproliferative effect on most breast cancer cell lines irrespective of AR expression level, but it downregulated the expressions of DNA damage response (DDR) molecules, including ATM and chk2, which resulted in the accumulation of damaged DNA in some breast cancer cells. Furthermore, AZD3514 enhanced cellular sensitivity to a PARP inhibitor olaparib by blocking the DDR pathway in breast cancer cells. Furthermore, the downregulation of NKX3.1 expression in MDA-MB-468 cells by AZD3514 occurred in parallel with the suppression of ATM-chk2 axis activation, and the suppression of NKX3.1 by AZD3514 was found to result from AZD3514-induced TOPORS upregulation and a resultant increase in NKX3.1 degradation. The study shows posttranslational regulation of NKX3.1 via TOPORS upregulation by AZD3514-induced ATM inactivation-increased olaparib sensitivity in AR-positive and TOPORS-expressing breast cancer cells, and suggests the antitumor effect of AZD3514/olaparib cotreatment is caused by compromised DDR activity in breast cancer cell lines and in a xenograft model. These results provide a rationale for future clinical trials of olaparib/AR inhibitor combination treatment in breast cancer.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyemin Jang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | - Koung Jin Suh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Yaewon Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Chungbuk University Hospital, Cheong-Ju, Korea
| | - Paul Elvin
- Oncology IMED, AstraZeneca UK Ltd., Cambridge, United Kingdom
| | - Mark J O'Connor
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca UK Ltd., Cambridge, United Kingdom
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
21
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
22
|
Jiang J, Liu Z, Ge C, Chen C, Zhao F, Li H, Chen T, Yao M, Li J. NK3 homeobox 1 (NKX3.1) up-regulates forkhead box O1 expression in hepatocellular carcinoma and thereby suppresses tumor proliferation and invasion. J Biol Chem 2017; 292:19146-19159. [PMID: 28972178 DOI: 10.1074/jbc.m117.793760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality in China, and the molecular mechanism of uncontrolled HCC progression remains to be explored. NK3 homeobox 1 (NKX3.1), an androgen-regulated prostate-specific transcription factor, suppresses tumors in prostate cancer, but its role in HCC is unknown, especially in hepatocellular carcinoma. In the present study, the differential expression analyses in HCC tissues and matched adjacent noncancerous liver tissues revealed that NKX3.1 is frequently down-regulated in human primary HCC tissues compared with matched adjacent noncancerous liver tissues. We also noted that NKX3.1 significantly inhibits proliferation and mobility of HCC cells both in vitro and in vivo Furthermore, NKX3.1 overexpression resulted in cell cycle arrest at the G1/S phase via direct binding to the promoter of forkhead box O1 (FOXO1) and up-regulation of expression. Of note, FOXO1 silencing in NKX3.1-overexpressing cells reversed the inhibitory effects of NKX3.1 on HCC cell proliferation and invasion. Consistently, both FOXO1 and NKX3.1 were down-regulated in human HCC tissues, and their expression was significantly and positively correlated with each other. These results suggest that NKX3.1 functions as a tumor suppressor in HCC cells through directly up-regulating FOXO1 expression.
Collapse
Affiliation(s)
- Jingyi Jiang
- From the Shanghai Medical College, Fudan University, Shanghai 200032.,the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Zheng Liu
- From the Shanghai Medical College, Fudan University, Shanghai 200032.,the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Chao Ge
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Cong Chen
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Fangyu Zhao
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Hong Li
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Taoyang Chen
- the Qi Dong Liver Cancer Institute, Qi Dong 226200, China
| | - Ming Yao
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Jinjun Li
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| |
Collapse
|
23
|
Xie Q, Wang ZA. Transcriptional regulation of the Nkx3.1 gene in prostate luminal stem cell specification and cancer initiation via its 3' genomic region. J Biol Chem 2017; 292:13521-13530. [PMID: 28679531 DOI: 10.1074/jbc.m117.788315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/19/2017] [Indexed: 11/06/2022] Open
Abstract
NK3 homeobox 1 (Nkx3.1), a transcription factor expressed in the prostate epithelium, is crucial for maintaining prostate cell fate and suppressing tumor initiation. Nkx3.1 is ubiquitously expressed in luminal cells of hormonally intact prostate but, upon androgen deprivation, exclusively labels a type of luminal stem cells named castration-resistant Nkx3.1-expressing cells (CARNs). During prostate cancer initiation, Nkx3.1 expression is frequently lost in both humans and mouse models. Therefore, investigating how Nkx3.1 expression is regulated in vivo is important for understanding the mechanisms of prostate stem cell specification and cancer initiation. Here, using a transgenic mouse line with destabilized GFP, we identified an 11-kb genomic region 3' of the Nkx3.1 transcription start site to be responsible for alterations in Nkx3.1 expression patterns under various physiological conditions. We found that androgen cell-autonomously activates Nkx3.1 expression through androgen receptor (AR) binding to the 11-kb region in both normal luminal cells and CARNs and discovered new androgen response elements in the Nkx3.1 3' UTR. In contrast, we found that, in Pten-/- prostate tumors, loss of Nkx3.1 expression is mediated at the transcriptional level through the 11-kb region despite functional AR in the nucleus. Importantly, the GFP reporter specifically labeled CARNs in the regressed prostate only in the presence of cell-autonomous AR, supporting a facultative model for CARN specification.
Collapse
Affiliation(s)
- Qing Xie
- From the Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Zhu A Wang
- From the Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
24
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|
25
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
26
|
Gorges TM, Kuske A, Röck K, Mauermann O, Müller V, Peine S, Verpoort K, Novosadova V, Kubista M, Riethdorf S, Pantel K. Accession of Tumor Heterogeneity by Multiplex Transcriptome Profiling of Single Circulating Tumor Cells. Clin Chem 2016; 62:1504-1515. [DOI: 10.1373/clinchem.2016.260299] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 01/06/2023]
Abstract
Abstract
BACKGROUND
Transcriptome analysis of circulating tumor cells (CTCs) holds great promise to unravel the biology of cancer cell dissemination and identify expressed genes and signaling pathways relevant to therapeutic interventions.
METHODS
CTCs were enriched based on their EpCAM expression (CellSearch®) or by size and deformability (ParsortixTM), identified by EpCAM and/or pan-keratin–specific antibodies, and isolated for single cell multiplex RNA profiling.
RESULTS
Distinct breast and prostate CTC expression signatures could be discriminated from RNA profiles of leukocytes. Some CTCs positive for epithelial transcripts (EpCAM and KRT19) also coexpressed leukocyte/mesenchymal associated markers (PTPRC and VIM). Additional subsets of CTCs within individual patients were characterized by divergent expression of genes involved in epithelial–mesenchymal transition (e.g., CDH2, MMPs, VIM, or ZEB1 and 2), DNA repair (RAD51), resistance to cancer therapy (e.g., AR, AR-V7, ERBB2, EGFR), cancer stemness (e.g., CD24 and CD44), activated signaling pathways involved in tumor progression (e.g., PIK3CA and MTOR) or cross talks between tumors and immune cells (e.g., CCL4, CXCL2, CXCL9, IL15, IL1B, or IL8).
CONCLUSIONS
Multimarker RNA profiling of single CTCs reveals distinct CTC subsets and provides important insights into gene regulatory networks relevant for cancer progression and therapy.
Collapse
Affiliation(s)
- Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andra Kuske
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Röck
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mauermann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Verpoort
- Practice for Haematology and Oncology, Hamburg, Germany
| | - Vendula Novosadova
- Department of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Mikael Kubista
- Department of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- TATAA Biocenter, Gothenburg, Sweden
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
EAF2 regulates DNA repair through Ku70/Ku80 in the prostate. Oncogene 2016; 36:2054-2065. [PMID: 27721405 PMCID: PMC5386836 DOI: 10.1038/onc.2016.373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/27/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Androgens are known to protect prostate cancer cells from DNA damage. Recent studies showed regulation of DNA repair genes by androgen receptor signaling in prostate cancers. ELL-associated factor 2 (EAF2) is an androgen-regulated tumor suppressor and its intracellular localization can be modulated by ultraviolet light, suggesting a potential role for EAF2 in androgen regulation of DNA repair in prostate cancer cells. Here we show that knockdown of EAF2 or its homolog EAF1 sensitized prostate cancer cells to DNA damage and the sensitization did not require p53. EAF2 knockout mouse prostate was also sensitized to γ-irradiation. Furthermore, EAF2 knockdown blocked androgen repression of LNCaP or C4-2 cells from doxorubicin induction of γH2ax, a DNA damage marker. In human prostate cancer specimens, EAF2 expression was inversely correlated with the level of γH2ax. Further analysis showed that EAF2 and EAF1 are required for the recruitment and retention of Ku70/Ku80 to DNA damage sites and play a functional role in nonhomologous end-joining DNA repair. These findings provide evidence for EAF2 as a key factor mediating androgen protection of DNA damage via Ku70/Ku80 in prostate cancer cells.
Collapse
|
28
|
Padmanabhan A, Rao V, De Marzo AM, Bieberich CJ. Regulating NKX3.1 stability and function: Post-translational modifications and structural determinants. Prostate 2016; 76:523-33. [PMID: 26841725 DOI: 10.1002/pros.23144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/15/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND The androgen-regulated homeodomain transcription factor NKX3.1 plays roles in early prostate development and functions as a prostate-specific tumor suppressor. Decreased expression of NKX3.1 protein is common in primary prostate cancer. Discordance between NKX3.1 mRNA and protein levels during prostate carcinogenesis suggested a key role for post-transcriptional modifications in regulating NKX3.1 protein levels in prostate epithelial cells. Subsequent studies revealed NKX3.1 to be modified post-translationally at multiple sites. METHODS We reviewed published literature to identify and summarize post-translational modifications and structural elements critical in regulating NKX3.1 stability and levels in prostate epithelial cells. RESULTS NKX3.1 is modified post-translationally at multiple sites by different protein kinases. These modifications together with several structural determinants were identified to play an important role in NKX3.1 stability and biology. CONCLUSIONS In this review, we provide a comprehensive overview of the known post-translational modifications and structural features that impact NKX3.1. Defining factors that regulate NKX3.1 in prostate epithelial cells will extend our understanding of molecular changes that may contribute to prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Varsha Rao
- Department of Genetics, Stanford University, Palo Alto, California
| | - Angelo M De Marzo
- Departments of Pathology, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the Brady Urological Research Institute at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| |
Collapse
|
29
|
Schiewer MJ, Knudsen KE. Linking DNA Damage and Hormone Signaling Pathways in Cancer. Trends Endocrinol Metab 2016; 27:216-225. [PMID: 26944914 PMCID: PMC4808434 DOI: 10.1016/j.tem.2016.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
DNA damage response and repair (DDR) is a tightly controlled process that serves as a barrier to tumorigenesis. Consequently, DDR is frequently altered in human malignancy, and can be exploited for therapeutic gain either through molecularly targeted therapies or as a consequence of therapeutic agents that induce genotoxic stress. In select tumor types, steroid hormones and cognate receptors serve as major drivers of tumor development/progression, and as such are frequently targets of therapeutic intervention. Recent evidence suggests that the existence of crosstalk mechanisms linking the DDR machinery and hormone signaling pathways cooperate to influence both cancer progression and therapeutic response. These underlying mechanisms and their implications for cancer management will be discussed.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA.
| |
Collapse
|
30
|
Zhang H, Zheng T, Chua CW, Shen M, Gelmann EP. Nkx3.1 controls the DNA repair response in the mouse prostate. Prostate 2016; 76:402-8. [PMID: 26660523 PMCID: PMC4738428 DOI: 10.1002/pros.23131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The human prostate tumor suppressor NKX3.1 mediates the DNA repair response and interacts with the androgen receptor to assure faithful completion of transcription thereby protecting against TMPRSS2-ERG gene fusion. To determine directly the effect of Nkx3.1 in vivo we studied the DNA repair response in prostates of mice with targeted deletion of Nkx3.1. METHODS Using both drug-induced DNA damage and γ-irradiation, we assayed expression of γ-histone 2AX at time points up to 24 hr after induction of DNA damage. RESULTS We demonstrated that expression of Nkx3.1 influenced both the timing and magnitude of the DNA damage response in the prostate. CONCLUSIONS Nkx3.1 affects the DNA damage response in the murine prostate and is haploinsufficient for this phenotype.
Collapse
Affiliation(s)
- Hailan Zhang
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Tian Zheng
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
- Department of StatisticsColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Chee Wai Chua
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
- Department of Developmental and Cell BiologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Michael Shen
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
- Department of Developmental and Cell BiologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Edward P. Gelmann
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| |
Collapse
|