1
|
Azur RAG, Olarte KCV, Ybañez WS, Ocampo AMM, Bagamasbad PD. CYB561 supports the neuroendocrine phenotype in castration-resistant prostate cancer. PLoS One 2024; 19:e0300413. [PMID: 38739593 PMCID: PMC11090301 DOI: 10.1371/journal.pone.0300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 05/16/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) is associated with resistance to androgen deprivation therapy, and an increase in the population of neuroendocrine (NE) differentiated cells. It is hypothesized that NE differentiated cells secrete neuropeptides that support androgen-independent tumor growth and induce aggressiveness of adjacent proliferating tumor cells through a paracrine mechanism. The cytochrome b561 (CYB561) gene, which codes for a secretory vesicle transmembrane protein, is constitutively expressed in NE cells and highly expressed in CRPC. CYB561 is involved in the α-amidation-dependent activation of neuropeptides, and contributes to regulating iron metabolism which is often dysregulated in cancer. These findings led us to hypothesize that CYB561 may be a key player in the NE differentiation process that drives the progression and maintenance of the highly aggressive NE phenotype in CRPC. In our study, we found that CYB561 expression is upregulated in metastatic and NE prostate cancer (NEPC) tumors and cell lines compared to normal prostate epithelia, and that its expression is independent of androgen regulation. Knockdown of CYB561 in androgen-deprived LNCaP cells dampened NE differentiation potential and transdifferentiation-induced increase in iron levels. In NEPC PC-3 cells, depletion of CYB561 reduced the secretion of growth-promoting factors, lowered intracellular ferrous iron concentration, and mitigated the highly aggressive nature of these cells in complementary assays for cancer hallmarks. These findings demonstrate the role of CYB561 in facilitating transdifferentiation and maintenance of NE phenotype in CRPC through its involvement in neuropeptide biosynthesis and iron metabolism pathways.
Collapse
Affiliation(s)
- Romie Angelo G. Azur
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V. Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S. Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alessandria Maeve M. Ocampo
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D. Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
2
|
Nguyen N, Franz RD, Mohammed O, Huynh R, Son CK, Khan RN, Ahmed B. A systematic review of primary large cell neuroendocrine carcinoma of the prostate. Front Oncol 2024; 14:1341794. [PMID: 38515575 PMCID: PMC10955467 DOI: 10.3389/fonc.2024.1341794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
Background Large cell neuroendocrine carcinoma (LCNEC) is a rare subtype of prostate cancer. The pathogenesis, clinical manifestation, treatment options, and prognosis are uncertain and underreported. Materials and methods A systematic search was conducted in April 2022 through PubMed, Embase, and Cochrane. We reviewed cases of LCNEC developed either from de novo or transformation from prostate adenocarcinoma and summarized the relevant pathophysiological course, treatment options, and outcomes. Results A total of 25 patients with a mean age of 70.4 (range 43 87 years old) from 18 studies were included in this review. 13 patients were diagnosed with de novo LCNEC of the prostate. 12 patients were from the transformation of adenocarcinoma post-hormonal therapy treatment. Upon initial diagnosis, patients diagnosed with de novo prostatic LCNEC had a mean serum PSA value of 24.6 ng/ml (range: 0.09-170 ng/ml, median 5.5 ng/ml), while transformation cases were significantly lower at 3.3 ng/ml (range: 0-9.3 ng/ml, median 0.05 ng/ml). The pattern of metastasis closely resembles prostate adenocarcinoma. Six out of twenty-three cases displayed brain metastasis matching the correlation between neuroendocrine tumors and brain metastasis. Three notable paraneoplastic syndromes included Cushings syndrome, dermatomyositis, and polycythemia. Most patients with advanced metastatic disease received conventional platinum-based chemotherapy with a mean survival of 5 months. There was one exception in the transformation cohort with a somatic BRCA2 mutation who was treated with a combination of M6620 and platinum-based chemotherapy with an impressive PFS of 20 months. Patients with pure LCNEC phenotype have worse survival outcomes when compared to those with mixed LCNEC and adenocarcinoma phenotypes. It is unclear whether there is a survival benefit to administering ADT in pure pathologies. Conclusion LCNEC of the prostate is a rare disease that can occur de novo or transformation from prostatic adenocarcinoma. Most patients present at an advanced stage with poor prognosis and are treated with conventional chemotherapy regimens. Patients who had better outcomes were those who were diagnosed at an early stage and received treatment with surgery or radiation and androgen deprivation therapy (ADT). There was one case with an exceptional outcome that included a treatment regimen of M6620 and chemotherapy.
Collapse
Affiliation(s)
- Ngan Nguyen
- Hematology and Medical Oncology, The Oncology Institute of Hope and Innovation, Riverside, CA, United States
| | - Ronald Dean Franz
- College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Omar Mohammed
- Department of Hematology and Oncology, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Richard Huynh
- Department of Internal Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Christine Kim Son
- Department of Hematology and Oncology, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Rida Nusrat Khan
- College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Bilawal Ahmed
- Department of Hematology and Oncology, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
3
|
Wang H, Xie D, Lu J, Chu Y, Wang S, Qiao P, Wu L, Wang J. Case Report: Analysis of four cases of metastatic bladder masses after radical prostatectomy. Front Oncol 2023; 13:1211027. [PMID: 37576903 PMCID: PMC10417713 DOI: 10.3389/fonc.2023.1211027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Objective The aim of this study is to investigate the clinical characteristics and diagnostic and therapeutic methods of bladder metastasis after radical prostatectomy and to improve its diagnosis and treatment. Methods The clinical data of four patients with bladder metastasis after radical prostatectomy were retrospectively analyzed from January 2011 to December 2021. Three cases suffered from intermittent gross hematuria, and only one case was found to have an elevated prostate-specific antigen (PSA) value. Transurethral resection of bladder tumor was performed in four cases, in which one case also underwent resection of urethral mass. Three cases received endocrine therapy, one of which added intravesical instillation and radiation therapy. Another case received chemotherapy based on comprehensive treatment. Results According to the pathological and immunohistochemical results, three cases were acinar adenocarcinoma of the prostate with Gleason score of 9, and all cases were PSA positive and negative for cytokeratin 7 (CK7) and GATA binding protein 3 (GATA-3). One case was small cell neuroendocrine carcinoma of the prostate and was positive for chromogranin A (CGA), synaptophysin (SYN), and cluster of differentiation 56 (CD56). During the follow-up period of 4 to 13 months, one case was lost to follow-up and three cases were alive. Conclusion Bladder metastasis after radical prostatectomy is rare, and pathology combined with immunohistochemistry is the gold standard for its diagnosis. Pathological type determines its treatment. Systemic treatment is essential, and local treatment is the most palliative means. Early diagnosis and treatment is significant for better prognosis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Dawei Xie
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yifan Chu
- Department of Urology, Beijing Daxing District People’s Hospital, Beijiing, China
| | - Siqi Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peng Qiao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Liyang Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jianwen Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Fosado R, Soto-Hernández JE, Núñez-Anita RE, Aceves C, Berumen LC, Mendieta I. Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice. Int J Mol Sci 2023; 24:ijms24020990. [PMID: 36674504 PMCID: PMC9865473 DOI: 10.3390/ijms24020990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Lung cancer has the highest mortality among all types of cancer; during its development, cells can acquire neural and endocrine properties that affect tumor progression by releasing several factors, some acting as immunomodulators. Neuroendocrine phenotype correlates with invasiveness, metastasis, and low survival rates. This work evaluated the effect of neuroendocrine differentiation of adenocarcinoma on the mouse immune system. A549 cells were treated with FSK (forskolin) and IBMX (3-Isobutyl-1-methylxanthine) for 96 h to induce neuroendocrine differentiation (NED). Systemic effects were assessed by determining changes in circulating cytokines and immune cells of BALB/c mice immunized with PBS, undifferentiated A549 cells, or neuroendocrine A549NED cells. A549 cells increased circulating monocytes, while CD4+CD8- and CD4+CD8+ T cells increased in mice immunized with neuroendocrine cells. IL-2 and IL-10 increased in mice that received untreated A549 cells, suggesting that the immune system mounts a regulated response against adenocarcinoma, which did not occur with A549NED cells. Cocultures demonstrated the cytotoxic capacity of PBMCs when confronted with A549 cells, while in the presence of neuroendocrine cells they not only were unable to show cytolytic activity, but also lost viability. Neuroendocrine differentiation seems to mount less of an immune response when injected in mice, which may contribute to the poor prognosis of cancer patients affected by this pathology.
Collapse
Affiliation(s)
- Ricardo Fosado
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Jazmín E. Soto-Hernández
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Mexico
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
| | - Laura C. Berumen
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Irasema Mendieta
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
- Correspondence: ; Tel.: +52-442-192-12-00 (ext. 5529)
| |
Collapse
|
5
|
Burbanks A, Cerasuolo M, Ronca R, Turner L. A hybrid spatiotemporal model of PCa dynamics and insights into optimal therapeutic strategies. Math Biosci 2023; 355:108940. [PMID: 36400316 DOI: 10.1016/j.mbs.2022.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Using a hybrid cellular automaton with stochastic elements, we investigate the effectiveness of multiple drug therapies on prostate cancer (PCa) growth. The ability of Androgen Deprivation Therapy to reduce PCa growth represents a milestone in prostate cancer treatment, nonetheless most patients eventually become refractory and develop castration-resistant prostate cancer. In recent years, a "second generation" drug called enzalutamide has been used to treat advanced PCa, or patients already exposed to chemotherapy that stopped responding to it. However, tumour resistance to enzalutamide is not well understood, and in this context, preclinical models and in silico experiments (numerical simulations) are key to understanding the mechanisms of resistance and to assessing therapeutic settings that may delay or prevent the onset of resistance. In our mathematical system, we incorporate cell phenotype switching to model the development of increased drug resistance, and consider the effect of the micro-environment dynamics on necrosis and apoptosis of the tumour cells. The therapeutic strategies that we explore include using a single drug (enzalutamide), and drug combinations (enzalutamide and everolimus or cabazitaxel) with different treatment schedules. Our results highlight the effectiveness of alternating therapies, especially alternating enzalutamide and cabazitaxel over a year, and a comparison is made with data taken from TRAMP mice to verify our findings.
Collapse
Affiliation(s)
- Andrew Burbanks
- School of Mathematics and Physics, University of Portsmouth, Lion Gate Building, Lion Terrace, Portsmouth, PO1 3HF, Hampshire, United Kingdom
| | - Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Lion Gate Building, Lion Terrace, Portsmouth, PO1 3HF, Hampshire, United Kingdom.
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Leo Turner
- School of Mathematics and Physics, University of Portsmouth, Lion Gate Building, Lion Terrace, Portsmouth, PO1 3HF, Hampshire, United Kingdom
| |
Collapse
|
6
|
Meade W, Weber A, Phan T, Hampston E, Resa LF, Nagy J, Kuang Y. High Accuracy Indicators of Androgen Suppression Therapy Failure for Prostate Cancer-A Modeling Study. Cancers (Basel) 2022; 14:cancers14164033. [PMID: 36011026 PMCID: PMC9406554 DOI: 10.3390/cancers14164033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Hormonal therapy for prostate cancer is often applied past the point of resistance, hence losing any future clinical value to the evolution of resistant strains. If the undesirable outcome of the treatment is forewarned, then clinicians can have an opportunity to adjust the treatment, which can result in better management of the cancer. Using a mechanistic mathematical model, we introduce two methods to enhance the accuracy of classical biomarkers for hormonal therapy failure. Our results show the value in measuring both prostate-specific antigen and androgen during hormonal treatment, which can potentially allow for better management of prostate cancer. Abstract Prostate cancer is a serious public health concern in the United States. The primary obstacle to effective long-term management for prostate cancer patients is the eventual development of treatment resistance. Due to the uniquely chaotic nature of the neoplastic genome, it is difficult to determine the evolution of tumor composition over the course of treatment. Hence, a drug is often applied continuously past the point of effectiveness, thereby losing any potential treatment combination with that drug permanently to resistance. If a clinician is aware of the timing of resistance to a particular drug, then they may have a crucial opportunity to adjust the treatment to retain the drug’s usefulness in a potential treatment combination or strategy. In this study, we investigate new methods of predicting treatment failure due to treatment resistance using a novel mechanistic model built on an evolutionary interpretation of Droop cell quota theory. We analyze our proposed methods using patient PSA and androgen data from a clinical trial of intermittent treatment with androgen deprivation therapy. Our results produce two indicators of treatment failure. The first indicator, proposed from the evolutionary nature of the cancer population, is calculated using our mathematical model with a predictive accuracy of 87.3% (sensitivity: 96.1%, specificity: 65%). The second indicator, conjectured from the implication of the first indicator, is calculated directly from serum androgen and PSA data with a predictive accuracy of 88.7% (sensitivity: 90.2%, specificity: 85%). Our results demonstrate the potential and feasibility of using an evolutionary tumor dynamics model in combination with the appropriate data to aid in the adaptive management of prostate cancer.
Collapse
Affiliation(s)
- William Meade
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Allison Weber
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tin Phan
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Emily Hampston
- Department of Mathematics, State University of New York, Buffalo, NY 14260, USA
| | - Laura Figueroa Resa
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - John Nagy
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
- Department of Life Sciences, Scottsdale Community College, Scottsdale, AZ 85256, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
- Correspondence:
| |
Collapse
|
7
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
8
|
Mendieta I, Rodríguez-Nieto M, Nuñez-Anita RE, Menchaca-Arredondo JL, García-Alcocer G, Berumen LC. Ultrastructural changes associated to the neuroendocrine transdifferentiation of the lung adenocarcinoma cell line A549. Acta Histochem 2021; 123:151797. [PMID: 34688180 DOI: 10.1016/j.acthis.2021.151797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine transdifferentiation has been found in many cancer cell types, such as prostate, lung and gastrointestinal cells and is accompanied by a lower patient life expectancy. The transdifferentiation process has been induced in vitro by the exposure to different stimuli in human lung adenocarcinoma. The aim of this work was to identify the morphological characteristics of the neuroendocrine phenotype in a human lung cancer cell line, induced by two cAMP elevating agents (IBMX and FSK). Our results showed two phenotypes, one produced by IBMX with higher volume, cell size and increased number of secondary projections, and the other produced by FSK with higher area, roughness of the membrane, cell neurite percentage, number of outgrowths per cell and increased number of primary projections. In conclusion, we describe some morphological and ultrastructural characteristics of the neuroendocrine phenotype in A549 human lung cancer cell line promoted by IBMX and FSK to contribute to the understanding of the autocrine or paracrine signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Irasema Mendieta
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico
| | - Maricela Rodríguez-Nieto
- Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás Hidalgo, Tarímbaro Municipio de Morelia 58920, Michoacán, Mexico
| | - Jorge Luis Menchaca-Arredondo
- Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Centro de Investigación en Ciencias Físico Matemáticas, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Guadalupe García-Alcocer
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico
| | - Laura Cristina Berumen
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico.
| |
Collapse
|
9
|
Okasho K, Ogawa O, Akamatsu S. Narrative review of challenges in the management of advanced neuroendocrine prostate cancer. Transl Androl Urol 2021; 10:3953-3962. [PMID: 34804838 PMCID: PMC8575589 DOI: 10.21037/tau-20-1131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
With wide availability of potent androgen receptor targeted agents (ARTAs), the incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) has been dramatically increasing. However, there is no standard effective treatment for this disease state. Recent advances in genomic and molecular medicine have identified some critical features of NEPC that would help in understanding the biology of the disease. Furthermore, invaluable pre-clinical in vivo and in vitro research models that represent NEPC have been developed. These advances in research have revealed a large heterogeneity of t-NEPC with varying degree of androgen receptor (AR), neuroendocrine (NE) marker, and cell cycle associated gene expressions, which may have clinical implication in terms of prognosis and treatment selection. Based on these studies, some potential drug targets have been identified, and early clinical trials are ongoing. In the future, more precise disease classification and biomarker-driven selection of patients will be critical for optimization of treatment for patients with NEPC. In the present review, we describe up-to-date findings of recent research on this topic and introduce ongoing therapeutic developments that are expected to lead to novel treatment strategies for NEPC in the future.
Collapse
Affiliation(s)
- Kosuke Okasho
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Turner L, Burbanks A, Cerasuolo M. PCa dynamics with neuroendocrine differentiation and distributed delay. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8577-8602. [PMID: 34814314 DOI: 10.3934/mbe.2021425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prostate cancer is the fifth most common cause of death from cancer, and the second most common diagnosed cancer in men. In the last few years many mathematical models have been proposed to describe the dynamics of prostate cancer under treatment. So far one of the major challenges has been the development of mathematical models that would represent in vivo conditions and therefore be suitable for clinical applications, while being mathematically treatable. In this paper, we take a step in this direction, by proposing a nonlinear distributed-delay dynamical system that explores neuroendocrine transdifferentiation in human prostate cancer in vivo. Sufficient conditions for the existence and the stability of a tumour-present equilibrium are given, and the occurrence of a Hopf bifurcation is proven for a uniform delay distribution. Numerical simulations are provided to explore differences in behaviour for uniform and exponential delay distributions. The results suggest that the choice of the delay distribution is key in defining the dynamics of the system and in determining the conditions for the onset of oscillations following a switch in the stability of the tumour-present equilibrium.
Collapse
Affiliation(s)
- Leo Turner
- School of Mathematics and Physics - University of Portsmouth, Portsmouth PO1 3HF, United Kingdom
| | - Andrew Burbanks
- School of Mathematics and Physics - University of Portsmouth, Portsmouth PO1 3HF, United Kingdom
| | - Marianna Cerasuolo
- School of Mathematics and Physics - University of Portsmouth, Portsmouth PO1 3HF, United Kingdom
| |
Collapse
|
11
|
Inoue Y, Nikolic A, Farnsworth D, Shi R, Johnson FD, Liu A, Ladanyi M, Somwar R, Gallo M, Lockwood WW. Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer. eLife 2021; 10:66524. [PMID: 34121659 PMCID: PMC8337080 DOI: 10.7554/elife.66524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Ana Nikolic
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Fraser D Johnson
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Alvin Liu
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Marco Gallo
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Columbia, Canada
| |
Collapse
|
12
|
Maitland NJ. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel) 2021; 13:327. [PMID: 33477370 PMCID: PMC7829888 DOI: 10.3390/cancers13020327] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.
Collapse
Affiliation(s)
- Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
13
|
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol 2020; 17:292-307. [PMID: 32203305 PMCID: PMC7218925 DOI: 10.1038/s41585-020-0298-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Over the past 5 years, the advent of combination therapeutic strategies has substantially reshaped the clinical management of patients with advanced prostate cancer. However, most of these combination regimens were developed empirically and, despite offering survival benefits, are not enough to halt disease progression. Thus, the development of effective therapeutic strategies that target the mechanisms involved in the acquisition of drug resistance and improve clinical trial design are an unmet clinical need. In this context, we hypothesize that the tumour engineers a dynamic response through the process of cellular rewiring, in which it adapts to the therapy used and develops mechanisms of drug resistance via downstream signalling of key regulatory cascades such as the androgen receptor, PI3K-AKT or GATA2-dependent pathways, as well as initiation of biological processes to revert tumour cells to undifferentiated aggressive states via phenotype switching towards a neuroendocrine phenotype or acquisition of stem-like properties. These dynamic responses are specific for each patient and could be responsible for treatment failure despite multi-target approaches. Understanding the common stages of these cellular rewiring mechanisms to gain a new perspective on the molecular underpinnings of drug resistance might help formulate novel combination therapeutic regimens.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - W Kevin Kelly
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen E Knudsen
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Josep Domingo-Domenech
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, Niewiarowska J. Endothelial Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:71-86. [PMID: 32040856 DOI: 10.1007/978-3-030-37184-5_6] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a critical process required for tumor progression. Newly formed blood vessels provide nutrition and oxygen to the tumor contributing to its growth and development. However, endothelium also plays other functions that promote tumor metastasis. It is involved in intravasation, which allows invasive cancer cells to translocate into the blood vessel lumen. This phenomenon is an important stage for cancer metastasis. Besides direct association with cancer development, endothelial cells are one of the main sources of cancer-associated fibroblasts (CAFs). The heterogeneous group of CAFs is the main inductor of migration and invasion abilities of cancer cells. Therefore, the endothelium is also indirectly responsible for metastasis. Considering the above, the endothelium is one of the important targets of anticancer therapy. In the chapter, we will present mechanisms regulating endothelial function, dependent on cancer and cancer niche cells. We will focus on possibilities of suppressing pro-metastatic endothelial functions, applied in anti-cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Aljarba SI, Murad M, Bafaquh M, Alshakweer W. Brain metastasis from large cell neuroendocrine carcinoma of the prostate: A case report and literature review. Int J Surg Case Rep 2020; 67:245-249. [PMID: 32070819 PMCID: PMC7025180 DOI: 10.1016/j.ijscr.2020.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Large-cell neuroendocrine carcinoma (LCNEC) of the prostate is a rare type of prostate cancer. Only eighteen case reports have been published in the literature to date. The present case report is the first case in the literature to describe brain metastasis of LCNEC of the prostate with neuroimaging, gross, and microscopic evaluation with immunohistochemistry CASE PRESENTATION: A 79-year old male with a history of high-grade prostatic adenocarcinoma treated with androgen deprivation therapy (ADT) who presented after remission with a severe headache and limbs weakness. Neuroimaging showed large right frontal lesion that caused a mass effect. Tumor resection was done, and the biopsy showed LCNEC of prostatic origin. The patient survived for 40 days after the diagnosis and tumor removal. DISCUSSION We discuss the spectrum of neuroendocrine differentiation in prostate carcinomas and the possible pathological pathways leading to the development of LCNEC of the prostate, and how it affects the presentation and the pattern of metastasis. CONCLUSION This case report describes a brain metastasis of a rare aggressive type of prostate cancer with poor prognosis. With metastatic lesions of prostatic adenocarcinoma, the probability of NE transdifferentiation increases. LCNEC has a poor prognosis attributed to its nature and late diagnosis. Thus, reporting and investigating such tumor will positively contribute to better management for future patients.
Collapse
Affiliation(s)
- Sultan Ibrahim Aljarba
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | - Mohammed Bafaquh
- Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wafaa Alshakweer
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Cerasuolo M, Maccarinelli F, Coltrini D, Mahmoud AM, Marolda V, Ghedini GC, Rezzola S, Giacomini A, Triggiani L, Kostrzewa M, Verde R, Paris D, Melck D, Presta M, Ligresti A, Ronca R. Modeling Acquired Resistance to the Second-Generation Androgen Receptor Antagonist Enzalutamide in the TRAMP Model of Prostate Cancer. Cancer Res 2020; 80:1564-1577. [PMID: 32029552 DOI: 10.1158/0008-5472.can-18-3637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance. In this study, the prostate cancer multistage murine model TRAMP and TRAMP-derived cells have been used to extensively characterize in vitro and in vivo the response and resistance to enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of prostate cancer. The model showed that all therapeutic strategies that use enzalutamide result in the onset of resistance. The model also showed that combination therapies can delay the onset of resistance to enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further mathematical models of combination therapies to treat prostate cancer and CRPC.Significance: Merging mathematical modeling with experimental data, this study presents the "TRAMP-based platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer resistance to enzalutamide.
Collapse
Affiliation(s)
- Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Hampshire, United Kingdom
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ali Mokhtar Mahmoud
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Viviana Marolda
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Gaia Cristina Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Roberta Verde
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy.
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
17
|
Braadland PR, Ramberg H, Grytli HH, Urbanucci A, Nielsen HK, Guldvik IJ, Engedal A, Ketola K, Wang W, Svindland A, Mills IG, Bjartell A, Taskén KA. The β 2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells. Mol Cancer Res 2019; 17:2154-2168. [PMID: 31395667 DOI: 10.1158/1541-7786.mcr-18-0605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/25/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
The incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) is rising as more potent drugs targeting the androgen signaling axis are clinically implemented. Neuroendocrine transdifferentiation (NEtD), an putative initial step in t-NEPC development, is induced by androgen-deprivation therapy (ADT) or anti-androgens, and by activation of the β2-adrenergic receptor (ADRB2) in prostate cancer cell lines. Thus, understanding whether ADRB2 is involved in ADT-initiated NEtD may assist in developing treatment strategies that can prevent or reverse t-NEPC emergence, thereby prolonging therapeutic responses. Here we found that in primary, treatment-naïve prostate cancers, ADRB2 mRNA was positively correlated with expression of luminal differentiation markers, and ADRB2 protein levels were inversely correlated with Gleason grade. ADRB2 mRNA was upregulated in metastatic prostate cancer, and progressively downregulated during ADT and t-NEPC emergence. In androgen-deprivated medium, high ADRB2 was required for LNCaP cells to undergo NEtD, measured as increased neurite outgrowth and expression of neuron differentiation and neuroendocrine genes. ADRB2 overexpression induced a neuroendocrine-like morphology in both androgen receptor (AR)-positive and -negative prostate cancer cell lines. ADRB2 downregulation in LNCaP cells increased canonical Wnt signaling, and GSK3α/β inhibition reduced the expression of neuron differentiation and neuroendocrine genes. In LNCaP xenografts, more pronounced castration-induced NEtD was observed in tumors derived from high than low ADRB2 cells. In conclusion, high ADRB2 expression is required for ADT-induced NEtD, characterized by ADRB2 downregulation and t-NEPC emergence. IMPLICATIONS: This data suggest a potential application of β-blockers to prevent cancer cells committed to a neuroendocrine lineage from evolving into t-NEPC.
Collapse
Affiliation(s)
- Peder R Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håkon Ramberg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Helene Hartvedt Grytli
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Department of Core Facilities, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Heidi Kristin Nielsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Jenny Guldvik
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Wanzhong Wang
- Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Aud Svindland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Movember FASTMAN Centre of Excellence, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden.,Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmø, Sweden
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Usmani S, Orevi M, Stefanelli A, Zaniboni A, Gofrit ON, Bnà C, Illuminati S, Lojacono G, Noventa S, Savelli G. Neuroendocrine differentiation in castration resistant prostate cancer. Nuclear medicine radiopharmaceuticals and imaging techniques: A narrative review. Crit Rev Oncol Hematol 2019; 138:29-37. [PMID: 31092382 DOI: 10.1016/j.critrevonc.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Androgen Deprivation Therapy (ADT) is the primary treatment for patients suffering from relapsing or advanced prostate cancer (PC). Hormone therapy generally guarantees adequate clinical control of the disease for some years, even in those patients affected by widespread skeletal and soft tissue metastases. Despite ADT, however, most patients treated with hormones eventually progress to castration-resistant prostate cancer (CRPC), for which there are no effective treatments. This clinical reality is an open challenge to the oncologist because of those neoplasms which elaborate neuroendocrine differentiation (NED). METHODS An online search of current and past literature on NED in CRPC was performed. Relevant articles dealing with the biological and pathological basis of NED, with nuclear medicine imaging in CRPC and somatostatin treatment in NED were analyzed. EVIDENCE FROM THE LITERATURE NED may arise in prostate cancer patients in the late stages of ADT. The onset of NED offers prognostic insight because it reflects a dramatic increase in the aggressive nature of the neoplasm. Several genetic, molecular, cytological and immunohistochemical markers are associated with this transformation. Among these, overexpression of somatostatin receptors, seen through Nuclear Medicine testing, is one of the most studied. CONCLUSIONS Preliminary studies show that the overexpression of somatostatin receptors related to NED in CRPC may easily be studied in vivo with PET/CT. This finding offers a potentially useful objective for targeted therapy in CRPC. If the overexpression of SSTRs is shown to afflict a significant segment of patients with CRPC, this will open further study of possible therapeutic options based on this marker.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Kuwait Cancer Control Center Al Sabah Medical District, 70653, Kuwait
| | - Marina Orevi
- Nuclear Medicine Division, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| | - Antonella Stefanelli
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Alberto Zaniboni
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | | | - Claudio Bnà
- Radiology Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Sonia Illuminati
- Radiology Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Giulia Lojacono
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Giordano Savelli
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy.
| |
Collapse
|
19
|
Weindorf SC, Taylor AS, Kumar-Sinha C, Robinson D, Wu YM, Cao X, Spratt DE, Kim MM, Lagstein A, Chinnaiyan AM, Mehra R. Metastatic castration resistant prostate cancer with squamous cell, small cell, and sarcomatoid elements-a clinicopathologic and genomic sequencing-based discussion. Med Oncol 2019; 36:27. [PMID: 30712214 DOI: 10.1007/s12032-019-1250-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Histologic variants are uncommon but well reported amongst cases of prostatic adenocarcinoma, including those in the setting of hormonal and/or chemoradiation therapy and castration resistance. However, the spectrum of morphologic phenotypes and molecular alterations present in such histologic variants are still incompletely understood. Herein, we describe a case of metastatic prostatic adenocarcinoma with hormonal and chemoradiation therapy-associated differentiation, displaying a combination of squamous cell, small cell, and sarcomatoid elements. The morphologic, immunohistochemical, and molecular observations are discussed with attention given to the gene alterations present, including in TP53, NF1, AR, PTEN, and RB1. Finally, we will compare our findings with those observed in uncommonly reported similar cases so as to detail the molecular underpinnings of such processes which may carry therapeutic implications.
Collapse
Affiliation(s)
- Steven C Weindorf
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA
| | - Alexander S Taylor
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Dan Robinson
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Yi-Mi Wu
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA.,Rogel Cancer Center, Michigan Medicine, 1400 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amir Lagstein
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, Michigan Medicine, 1400 East Medical Center Drive, Ann Arbor, MI, 48109, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, MI, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA. .,Rogel Cancer Center, Michigan Medicine, 1400 East Medical Center Drive, Ann Arbor, MI, 48109, USA. .,Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Dankert JT, Wiesehöfer M, Czyrnik ED, Singer BB, von Ostau N, Wennemuth G. The deregulation of miR-17/CCND1 axis during neuroendocrine transdifferentiation of LNCaP prostate cancer cells. PLoS One 2018; 13:e0200472. [PMID: 30001402 PMCID: PMC6042731 DOI: 10.1371/journal.pone.0200472] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Prostate carcinoma contain foci of neuroendocrine transdifferentiation, resulting in an increase of androgen-independent neuroendocrine-like (NE) tumor cells, whose number significantly correlates with tumor aggressiveness and thus lower survival rate. Neuroendocrine transdifferentiation of prostate cancer cells and a potential role of miRNAs within this process are poorly understood. MicroRNAs are small non-coding RNAs which post-transcriptionally regulate gene expression. The aim of this project was to identify new genes and miRNAs involved in neuroendocrine transdifferentiation. LNCaP prostate cancer cells were differentiated to NE-like cancer cells and microarray analyses were performed. Microarray results have been validated for the eight most deregulated mRNAs and microRNAs via qRT-PCR and analyzed with different algorithms to predict new targets for deregulated microRNAs. The induced CyclinD1 gene could be validated as new target gene for the repressed miR-17 family containing miR-17, miR-20a, miR-20b, miR-106a and miR-106b via reporter gene assays and Western Blot. Functional analysis of miR-17 family shows a high influence on cell proliferation, colony forming ability and apoptosis in LNCaP cells. Our data demonstrate wide changes in mRNA and microRNA expression during neuroendocrine transdifferentiation of LNCaP cells and confirm new mRNA-miRNA interactions with potential roles in NE-transdifferentiation of prostate carcinoma.
Collapse
Affiliation(s)
- Jaroslaw Thomas Dankert
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
- * E-mail:
| | - Marc Wiesehöfer
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Elena Dilara Czyrnik
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Bernhard B. Singer
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Nicola von Ostau
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| |
Collapse
|
21
|
Abaffy T, Bain JR, Muehlbauer MJ, Spasojevic I, Lodha S, Bruguera E, O'Neal SK, Kim SY, Matsunami H. A Testosterone Metabolite 19-Hydroxyandrostenedione Induces Neuroendocrine Trans-Differentiation of Prostate Cancer Cells via an Ectopic Olfactory Receptor. Front Oncol 2018; 8:162. [PMID: 29892571 PMCID: PMC5985834 DOI: 10.3389/fonc.2018.00162] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptor OR51E2, also known as a Prostate Specific G-Protein Receptor, is highly expressed in prostate cancer but its function is not well understood. Through in silico and in vitro analyses, we identified 24 agonists and 1 antagonist for this receptor. We detected that agonist 19-hydroxyandrostenedione, a product of the aromatase reaction, is endogenously produced upon receptor activation. We characterized the effects of receptor activation on metabolism using a prostate cancer cell line and demonstrated decreased intracellular anabolic signals and cell viability, induction of cell cycle arrest, and increased expression of neuronal markers. Furthermore, upregulation of neuron-specific enolase by agonist treatment was abolished in OR51E2-KO cells. The results of our study suggest that OR51E2 activation results in neuroendocrine trans-differentiation. These findings reveal a new role for OR51E2 and establish this G-protein coupled receptor as a novel therapeutic target in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, United States
| | - James R Bain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Shweta Lodha
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Elisa Bruguera
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Sara K O'Neal
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Functional Genomics Shared Resource, Duke University School of Medicine, Durham, NC, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
22
|
Mendieta I, Nuñez-Anita RE, Pérez-Sánchez G, Pavón L, Rodríguez-Cruz A, García-Alcocer G, Berumen LC. Effect of A549 neuroendocrine differentiation on cytotoxic immune response. Endocr Connect 2018; 7:791-802. [PMID: 29700099 PMCID: PMC5987362 DOI: 10.1530/ec-18-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022]
Abstract
The present study was designed to determine the effects of factors secreted by the lung adenocarcinoma cell line with the neuroendocrine phenotype, A549NED, on cytotoxic T lymphocytes (CTLs) activity in vitro A perspective that integrates the nervous, endocrine and immune system in cancer research is essential to understand the complexity of dynamic interactions in tumours. Extensive clinical research suggests that neuroendocrine differentiation (NED) is correlated with worse patient outcomes; however, little is known regarding the effects of neuroendocrine factors on the communication between the immune system and neoplastic cells. The human lung cancer cell line A549 was induced to NED (A549NED) using cAMP-elevating agents. The A549NED cells showed changes in cell morphology, an inhibition of proliferation, an overexpression of chromogranin and a differential pattern of biogenic amine production (decreased dopamine and increased serotonin [5-HT] levels). Using co-cultures to determine the cytolytic CTLs activity on target cells, we showed that the acquisition of NED inhibits the decrease in the viability of the target cells and release of fluorescence. Additionally, the conditioned medium of A549NED and 5-HT considerably decreased the viability and proliferation of the Jurkat cells after 24 h. Thus, our study successfully generated a neuroendocrine phenotype from the A549 cell line. In co-cultures with CTLs, the pattern of secretion by A549NED impaired the proliferation and cytotoxic activity of CTLs, which might be partly explained by the increased release of 5-HT.
Collapse
Affiliation(s)
- Irasema Mendieta
- Facultad de QuímicaUniversidad Autónoma de Querétaro, Querétaro, Mexico
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y ZootecniaUniversidad Michoacana de San Nicolás Hidalgo, Morelia, Michoacán, Mexico
| | - Gilberto Pérez-Sánchez
- Departmento de PsicoimunologíaInstituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Lenin Pavón
- Departmento de PsicoimunologíaInstituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | | | | | | |
Collapse
|
23
|
Roubaud G, Liaw BC, Oh WK, Mulholland DJ. Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nat Rev Clin Oncol 2017; 14:269-283. [PMID: 27874061 PMCID: PMC5567685 DOI: 10.1038/nrclinonc.2016.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increasing potency of therapies that target the androgen receptor (AR) signalling axis has correlated with a rise in the proportion of patients with prostate cancer harbouring an adaptive phenotype, termed treatment-induced lineage crisis. This phenotype is characterized by features that include soft-tissue metastasis and/or resistance to standard anticancer therapies. Potent anticancer treatments might force cancer cells to evolve and develop alternative cell lineages that are resistant to primary therapies, a mechanism similar to the generation of multidrug- resistant microorganisms after continued antibiotic use. Herein, we assess the hypothesis that treatment-adapted phenotypes harbour reduced AR expression and/or activity, and acquire compensatory strategies for cell survival. We highlight the striking similarities between castration-resistant prostate cancer and triple-negative breast cancer, another poorly differentiated endocrine malignancy. Alternative treatment paradigms are needed to avoid therapy-induced resistance. Herein, we present a new clinical trial strategy designed to evaluate the potential of rapid drug cycling as an approach to delay the onset of resistance and treatment-induced lineage crisis in patients with metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 229 Cours de l'Argonne, Bordeaux 33076, France
| | - Bobby C Liaw
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| | - William K Oh
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| | - David J Mulholland
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| |
Collapse
|
24
|
Morozumi K, Namiki S, Kudo T, Aizawa M, Ioritani N, Sakamoto K, Nakamura Y. Transdifferentiation of Small Cell Carcinoma of the Urinary Bladder from Urothelial Carcinoma after Transurethral Resection of a Bladder Tumor, Intravesical Bacillus Calmette-Guerin Instillation, and Chemotherapy: A Case Report. Case Rep Oncol 2016; 9:786-791. [PMID: 28101026 PMCID: PMC5216226 DOI: 10.1159/000452945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/03/2022] Open
Abstract
A 73-year-old male underwent transurethral resection of a bladder tumor in August 2010 and April 2011. Pathological examination revealed urothelial carcinoma. After the surgery, chemotherapy and intravesical Bacillus Calmette-Guerin instillation were performed. In September 2014, he once again underwent transurethral resection of the bladder tumor for recurrence, and was again diagnosed with urothelial carcinoma, pT2, by pathological examination. After neoadjuvant chemotherapy, radical cystectomy for tumor recurrence was performed. Pathological examination at this time revealed small cell carcinoma, pT3N0. It is rare for urothelial carcinoma to change to small cell carcinoma, and the mechanism and cause of this change are still unknown. In this case report, we discuss what causes small cell carcinoma of the urinary bladder and review the literature regarding its origin.
Collapse
Affiliation(s)
- Kento Morozumi
- Department of Urology, Japan Community Health Care Organization Sendai Hospital, Sendai, Japan
| | - Shunichi Namiki
- Department of Urology, Japan Community Health Care Organization Sendai Hospital, Sendai, Japan
| | - Takashi Kudo
- Department of Urology, Japan Community Health Care Organization Sendai Hospital, Sendai, Japan
| | - Masataka Aizawa
- Department of Urology, Japan Community Health Care Organization Sendai Hospital, Sendai, Japan
| | - Naomasa Ioritani
- Department of Urology, Japan Community Health Care Organization Sendai Hospital, Sendai, Japan
| | | | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
25
|
Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 2016; 18:84. [PMID: 27515302 PMCID: PMC4982339 DOI: 10.1186/s13058-016-0740-2] [Citation(s) in RCA: 536] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is a heterogeneous population of cells consisting of the tumor bulk plus supporting cells. It is becoming increasingly evident that these supporting cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor angiogenesis, proliferation, invasion, and metastasis, as well as mediate mechanisms of therapeutic resistance. In addition, recruited stromal cells range in type and include vascular endothelial cells, pericytes, adipocytes, fibroblasts, and bone-marrow mesenchymal stromal cells. During normal wound healing and inflammatory processes, local stromal cells change their phenotype to become that of reactive stroma. Under certain conditions, however, tumor cells can co-opt these reactive stromal cells and further transition them into tumor-associated stromal cells (TASCs). These TASCs express higher levels of proteins, including alpha-smooth muscle actin, fibroblast activating protein, and matrix metalloproteinases, compared with their normal, non-reactive counterparts. TASCs are also known to secrete many pro-tumorigenic factors, including IL-6, IL-8, stromal-derived factor-1 alpha, vascular endothelial growth factor, tenascin-C, and matrix metalloproteinases, among others, which recruit additional tumor and pro-tumorigenic cells to the developing microenvironment. Here, we review the current literature pertaining to the origins of recruited host stroma, contributions toward tumor progression, tumor-associated stromal cells, and mechanisms of crosstalk between endogenous host stroma and tumor cells.
Collapse
Affiliation(s)
- Karen M Bussard
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lysette Mutkus
- Department of Regenerative Medicine, Wake Forest University, Winston-Salem, NC, 27157, USA
| | - Kristina Stumpf
- Department of Regenerative Medicine, Wake Forest University, Winston-Salem, NC, 27157, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Frank C Marini
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA. .,Department of Regenerative Medicine, Wake Forest University, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
26
|
Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals. Oncogene 2016; 35:6065-6076. [PMID: 27375022 PMCID: PMC5198573 DOI: 10.1038/onc.2016.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) that are associated with PCa progression. As the current androgen-deprivation therapy (ADT) with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here we found NEPCa cells could increase the docetaxel-resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel-resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed NEPCa could increase the docetaxel-resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or sh-PTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa.
Collapse
|
27
|
Kadakia KC, Tomlins SA, Sanghvi SK, Cani AK, Omata K, Hovelson DH, Liu CJ, Cooney KA. Comprehensive serial molecular profiling of an "N of 1" exceptional non-responder with metastatic prostate cancer progressing to small cell carcinoma on treatment. J Hematol Oncol 2015; 8:109. [PMID: 26444865 PMCID: PMC4596504 DOI: 10.1186/s13045-015-0204-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 01/17/2023] Open
Abstract
Importance Small cell carcinoma/neuroendocrine prostate cancer (NePC) is a lethal, poorly understood prostate cancer (PCa) subtype. Controversy exists about the origin of NePC in this setting. Objective To molecularly profile archived biopsy specimens from a case of early-onset PCa that rapidly progressed to NePC to identify drivers of the aggressive course and mechanisms of NePC origin and progression. Design, setting, and participants A 47-year-old patient presented with metastatic prostatic adenocarcinoma (Gleason score 9). After a 6-month response to androgen deprivation therapy, the patient developed jaundice and liver biopsy revealed exclusively NePC. Targeted next generation sequencing (NGS) from formalin-fixed paraffin-embedded (FFPE)-isolated DNA was performed from the diagnostic prostate biopsy and the liver biopsy at progression. Intervention Androgen deprivation therapy for adenocarcinoma followed by multiagent chemotherapy for NePC. Main outcomes and measures Identification of the mutational landscape in primary adenocarcinoma and NePC liver metastasis. Whether the NePC arose independently or was derived from the primary adenocarcinoma was considered based on mutational profiles. Results A deleterious somatic SMAD4 L535fs variant was present in both prostate and liver specimens; however, a TP53 R282W mutation was exclusively enriched in the liver specimen. Copy number analysis identified concordant, low-level alterations in both specimens, with focal MYCL amplification and homozygous PTEN, RB1, and MAP2K4 losses identified exclusively in the NePC specimen. Integration with published genomic profiles identified MYCL as a recurrently amplified in NePC. Conclusions and relevance NGS of routine biopsy samples from an exceptional non-responder identified SMAD4 as a driver of the aggressive course and supports derivation of NePC from primary adenocarcinoma (transdifferentiation). Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0204-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kunal C Kadakia
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 7216 Cancer Center, SPC 5948, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Scott A Tomlins
- Department of Pathology and Urology, Michigan Center for Translational Pathology; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, 48109, USA.
| | - Saagar K Sanghvi
- Boonshoft School of Medicine, Wright State University, Dayton, USA.
| | - Andi K Cani
- Department of Pathology, Michigan Center for Translational Pathology, Ann Arbor, MI, 48109, USA.
| | - Kei Omata
- Department of Pathology, Michigan Center for Translational Pathology, Ann Arbor, MI, 48109, USA.
| | - Daniel H Hovelson
- Department of Pathology, Michigan Center for Translational Pathology, Ann Arbor, MI, 48109, USA.
| | - Chia-Jen Liu
- Department of Pathology, Michigan Center for Translational Pathology, Ann Arbor, MI, 48109, USA.
| | - Kathleen A Cooney
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 7216 Cancer Center, SPC 5948, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Prostate cancer: Transdifferentiate to prevail. Nat Rev Urol 2015; 12:416. [PMID: 26123038 DOI: 10.1038/nrurol.2015.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|