1
|
Palmbos P, Wang Y, Jerome N, Kelleher A, Henderson M, Day M, Coulombe P. TRIM29 promotes bladder cancer invasion by regulating the intermediate filament network and focal adhesion. RESEARCH SQUARE 2023:rs.3.rs-3697712. [PMID: 38168254 PMCID: PMC10760242 DOI: 10.21203/rs.3.rs-3697712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bladder cancer is a common malignancy whose lethality is determined by invasive potential. We have previously shown that TRIM29, also known as ATDC, is transcriptionally regulated by TP63 in basal bladder cancers where it promotes invasive progression and metastasis, but the molecular events which promote invasion and metastasis downstream of TRIM29 remained poorly understood. Here we identify stimulation of bladder cancer migration as the specific role of TRIM29 during invasion. We show that TRIM29 physically interacts with K14 + intermediate filaments which in turn regulates focal adhesion stability. Further, we find that both K14 and the focal adhesion protein, ZYX are required for bladder cancer migration and invasion. Taken together, these results establish a role for TRIM29 in the regulation of cytoskeleton and focal adhesions during invasion and identify a pathway with therapeutic potential.
Collapse
|
2
|
Yi Q, Zhao Y, Xia R, Wei Q, Chao F, Zhang R, Bian P, Lv L. TRIM29 hypermethylation drives esophageal cancer progression via suppression of ZNF750. Cell Death Discov 2023; 9:191. [PMID: 37365152 DOI: 10.1038/s41420-023-01491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer (ESCA) is the seventh most frequent and deadly neoplasm. Due to the lack of early diagnosis and high invasion/metastasis, the prognosis of ESCA remains very poor. Herein, we identify skin-related signatures as the most deficient signatures in invasive ESCA, which are regulated by the transcription factor ZNF750. Of note, we find that TRIM29 level strongly correlated with the expression of many genes in the skin-related signatures, including ZNF750. TRIM29 is significantly down-regulated due to hypermethylation of its promoter in both ESCA and precancerous lesions compared to normal tissues. Low TRIM29 expression and high methylation levels of its promoter are associated with malignant progression and poor clinical outcomes in ESCA patients. Functionally, TRIM29 overexpression markedly hinders proliferation, migration, invasion, and epithelial-mesenchymal transition of esophageal cancer cells, whereas opposing results are observed when TRIM29 is silenced in vitro. In addition, TRIM29 inhibits metastasis in vivo. Mechanistically, TRIM29 downregulation suppresses the expression of the tumor suppressor ZNF750 by activating the STAT3 signaling pathway. Overall, our study demonstrates that TRIM29 expression and its promoter methylation status could be potential early diagnostic and prognostic markers. It highlights the role of the TRIM29-ZNF750 signaling axis in modulating tumorigenesis and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of education training, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ran Xia
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Rui Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, Anhui, China
| | - Po Bian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
| | - Lei Lv
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China.
| |
Collapse
|
3
|
Yue C, Qian Y, Wang C, Chen J, Wang J, Wang Z, Wan X, Cao S, Zhu J, Tao Q, Yan M, Liu Q. TRIM29 acts as a potential senescence suppressor with epigenetic activation in nasopharyngeal carcinoma. Cancer Sci 2023. [PMID: 37248790 PMCID: PMC10394149 DOI: 10.1111/cas.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Epigenetic alterations marked by DNA methylation are frequent events during the early development of nasopharyngeal carcinoma (NPC). We identified that TRIM29 is hypomethylated and overexpressed in NPC cell lines and tissues. TRIM29 silencing not only limited the growth of NPC cells in vitro and in vivo, but also induced cellular senescence, along with reactive oxygen species (ROS) accumulation. Mechanistically, we found that TRIM29 interacted with voltage-dependent anion-selective channel 1 (VDAC1) to activate mitophagy clearing up damaged mitochondria, which are the major source of ROS. In patients with NPC, high levels of TRIM29 expression are associated with an advanced clinical stage. Moreover, we detected hypomethylation of TRIM29 in patient nasopharyngeal swab DNA. Our findings indicate that TRIM29 depends on VDAC1 to induce mitophagy and prevents cellular senescence by decreasing ROS. Detection of aberrantly methylated TRIM29 in the nasopharyngeal swab DNA could be a promising strategy for the early detection of NPC.
Collapse
Affiliation(s)
- Caifeng Yue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Department of Laboratory Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Yuanmin Qian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Chang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Jiewei Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jing Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiangbo Wan
- Gastrointestinal Institute, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sumei Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
He J, Dong C, Zhang H, Jiang Y, Liu T, Man X. The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell Signal 2023; 102:110527. [PMID: 36410635 DOI: 10.1016/j.cellsig.2022.110527] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Overexpression of TFAP2A has been linked to increased lymph node metastasis in basal-squamous bladder cancer. However, its downstream targets in bladder urothelial carcinoma (BLCA), the most malignant cancer of the urinary tract, remain unclear. In the current study, we aim to explore the function and mechanism of TFAP2A in BLCA. METHODS TFAP2A expression and the prognostic significance in BLCA was analyzed using TCGA and GTEX projects. TFAP2A was knocked-down in BLCA cells to study its impact on glucose uptake, lactate and ATP production, expression of HK2, and the number of vascular meshes formed by HUVEC. The target long noncoding RNAs (lncRNAs) of TFAP2A were predicted by bioinformatics tools, followed by ChIP-qPCR and luciferase assays. The downstream targets of TPRG1-AS1 were analyzed by microarray analysis. Rescue experiments were conducted for validation. RESULTS TFAP2A upregulation in BLCA predicted dismal survival of patients. Loss of TFAP2A inhibited glycolysis (as evidenced by reduced glucose uptake, lactate, ATP production, and the expression of HK2) and angiogenesis (decreased number of vascular meshes formed by HUVEC). TFAP2A promoted the transcription of TPRG1-AS1. TPRG1-AS1 reversed the inhibitory effect of TFAP2A knockdown on glycolysis and angiogenesis in BLCA cells. TPRG1-AS1 inhibited the transcription of CRTAC1 by recruiting a DNA methyltransferase to the promoter of CRTAC1 and increasing the DNA methylation of its promoter. CRTAC1 inhibited glycolysis and angiogenesis in BLCA cells. TFAP2A silencing curbed tumor growth in vivo via the TPRG1-AS1/CRTAC1 axis. CONCLUSION TFAP2A reduces CRTAC1 expression by promoting TPRG1-AS1 transcription, thereby expediting BLCA glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Jiani He
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Changming Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
5
|
Rana PS, Wang W, Markovic V, Szpendyk J, Chan ER, Sossey-Alaoui K. The WAVE2/miR-29/Integrin-β1 Oncogenic Signaling Axis Promotes Tumor Growth and Metastasis in Triple-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:160-174. [PMID: 36968231 PMCID: PMC10035451 DOI: 10.1158/2767-9764.crc-22-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and the major cause of death because of its invasion, metastasis, and resistance to therapies capabilities. The most aggressive subtype of breast cancer is triple-negative breast cancer (TNBC) due to invasive and metastatic properties along with early age of diagnosis and poor prognosis. TNBC tumors do not express estrogen, progesterone, and HER2 receptors, which limits their treatment with targeted therapies. Cancer invasiveness and metastasis are known to be promoted by increased cell motility and upregulation of the WAVE proteins. While the contribution of WAVE2 to cancer progression is well documented, the WAVE2-mediated regulation of TNBC oncogenic properties is still under investigated, as does the molecular mechanisms by which WAVE2 regulates such oncogenic pathways. In this study, we show that WAVE2 plays a significant role in TNBC development, progression, and metastasis, through the regulation of miR-29 expression, which in turn targets Integrin-β1 (ITGB1) and its downstream oncogenic activities. Conversely, we found WAVE2 expression to be regulated by miR-29 in a negative regulatory feedback loop. Reexpression of exogenous WAVE2 in the WAVE2-deficient TNBC cells resulted in reactivation of ITGB1 expression and activity, further confirming the specificity of WAVE2 in regulating Integrin-β1. Together, our data identify a novel WAVE2/miR-29/ITGB1 signaling axis, which is essential for the regulation of the invasion-metastasis cascade in TNBC. Our findings offer new therapeutic strategies for the treatment of TNBC by targeting WAVE2 and/or its downstream effectors. Significance Identification of a novel WAVE2/miR-29/ITGB1 signaling axis may provide new insights on how WAVE2 regulates the invasion-metastasis cascade of TNBC tumors through the modulation of ITGB1 and miR-29.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Wei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | | | | | | | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
6
|
de Rooij LA, Mastebroek DJ, ten Voorde N, van der Wall E, van Diest PJ, Moelans CB. The microRNA Lifecycle in Health and Cancer. Cancers (Basel) 2022; 14:cancers14235748. [PMID: 36497229 PMCID: PMC9736740 DOI: 10.3390/cancers14235748] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that regulate gene expression at the post-transcriptional level. They can bind to around 60% of all protein-coding genes with an average of 200 targets per miRNA, indicating their important function within physiological and pathological cellular processes. miRNAs can be quickly produced in high amounts through canonical and non-canonical pathways that involve a multitude of steps and proteins. In cancer, miRNA biogenesis, availability and regulation of target expression can be altered to promote tumour progression. This can be due to genetic causes, such as single nucleotide polymorphisms, epigenetic changes, differences in host gene expression, or chromosomal remodelling. Alternatively, post-transcriptional changes in miRNA stability, and defective or absent components and mediators of the miRNA-induced silencing complex can lead to altered miRNA function. This review provides an overview of the current knowledge on the lifecycle of miRNAs in health and cancer. Understanding miRNA function and regulation is fundamental prior to potential future application of miRNAs as cancer biomarkers.
Collapse
Affiliation(s)
- Laura Adriana de Rooij
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-887-556-557
| | - Dirk Jan Mastebroek
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nicky ten Voorde
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul Joannes van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Cathy Beatrice Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
A genome-wide association study with tissue transcriptomics identifies genetic drivers for classic bladder exstrophy. Commun Biol 2022; 5:1203. [PMID: 36352089 PMCID: PMC9646906 DOI: 10.1038/s42003-022-04092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility. A genome-wide association study on classic bladder exstrophy reveals eight genome-wide significant loci, most of which contained genes expressed in embryonic developmental bladder stages.
Collapse
|
8
|
Association of H-Type Hypertension with miR-21, miR-29, and miR-199 in Kazahks of Xinjiang, China. Int J Hypertens 2022; 2022:4632087. [PMID: 36200021 PMCID: PMC9529513 DOI: 10.1155/2022/4632087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/30/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This study aims to analyze the expressions of miR-21, miR-29, and miR-199 in the serum of the patients with H-type hypertension among Kazakhs. Then, we analyzed the effect of MTHFR 677C > T polymorphism on the association between the above miRNA and H-type hypertension. Method In this study, the expression of miR-21, miR-29, and miR-199 was quantitatively measured in 120 serum samples and then stratified according to the C677T polymorphism to analyze the relationship between target miRNAs and HHcy. Results The expression of miR-21/-29 in the hypertension group was higher than the normal group (P < 0.001). And the expression of miR-199 was higher in the hcy group than in the normal group (P < 0.001). In the CC and CT genotypes of MTHFR 677C > T, the expression of miR-21 was lower in the HHcy patients than in the normal individuals (P = 0.005 and P = 0.001) and miR-199 was significantly higher in the HHcy patients than in the normal ones (P = 0.002 and P = 0.048). No such difference was found in the TT genotype. Logistic regression analysis showed that after adjusting for sex, age, BMI, systolic blood pressure, diastolic blood pressure, and MTHFRC677 T gene polymorphism, miR-21 was negatively correlated with hcy (OR = 0.222, 95% CI (0.101–0.485), P < 0.001) and miR-199 was positively correlated with hcy (OR = 1.823,95%CI (1.272∼2.614), P = 0.001). Conclusion miR-21, miR-29, and miR-199 are associated with H-type hypertension in the Kazakhs, especially hyperhomocysteinemia. And these three miRNAs may serve as biomarkers to provide clues to the potential pathogenesis of H-type hypertension.
Collapse
|
9
|
microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022; 12:biom12020213. [PMID: 35204714 PMCID: PMC8961662 DOI: 10.3390/biom12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs, pivotal post-transcriptional regulators of gene expression, in the past decades have caught the attention of researchers for their involvement in different biological processes, ranging from cell development to cancer. Although lots of effort has been devoted to elucidate the topological features and the equilibrium properties of microRNA-mediated motifs, little is known about how the information encoded in frequency, amplitude, duration, and other features of their regulatory signals can affect the resulting gene expression patterns. Here, we review the current knowledge about microRNA-mediated gene regulatory networks characterized by time-dependent input signals, such as pulses, transient inputs, and oscillations. First, we identify the general characteristic of the main motifs underlying temporal patterns. Then, we analyze their impact on two commonly studied oncogenic networks, showing how their dysfunction can lead to tumorigenesis.
Collapse
|
10
|
Hsu CY, Yanagi T, Ujiie H. TRIM29 in Cutaneous Squamous Cell Carcinoma. Front Med (Lausanne) 2022; 8:804166. [PMID: 34988104 PMCID: PMC8720877 DOI: 10.3389/fmed.2021.804166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins play important roles in a wide range of cell physiological processes, such as signal transduction, transcriptional regulation, innate immunity, and programmed cell death. TRIM29 protein, encoded by the ATDC gene, belongs to the RING-less group of TRIM protein family members. It consists of four zinc finger motifs in a B-box domain and a coiled-coil domain, and makes use of the B-box domain as E3 ubiquitin ligase in place of the RING. TRIM29 was found to be involved in the formation of homodimers and heterodimers in relation to DNA binding; additional studies have also demonstrated its role in carcinogenesis, DNA damage signaling, and the suppression of radiosensitivity. Recently, we reported that TRIM29 interacts with keratins and FAM83H to regulate keratin distribution. Further, in cutaneous SCC, the expression of TRIM29 is silenced by DNA methylation, leading to the loss of TRIM29 and promotion of keratinocyte migration. This paper reviews the role of TRIM family proteins in malignant tumors, especially the role of TRIM29 in cutaneous SCC.
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
GRWD1-WDR5-MLL2 Epigenetic Complex Mediates H3K4me3 Mark and Is Essential for Kaposi's Sarcoma-Associated Herpesvirus-Induced Cellular Transformation. mBio 2021; 12:e0343121. [PMID: 34933446 PMCID: PMC8689518 DOI: 10.1128/mbio.03431-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is causally associated with numerous cancers. The mechanism of KSHV-induced oncogenesis remains unclear. By performing a CRISPR-Cas9 screening in a model of KSHV-induced cellular transformation of primary cells, we identified epigenetic regulators that were essential for KSHV-induced cellular transformation. Examination of TCGA data sets of the top 9 genes, including glutamate-rich WD repeat containing 1 (GRWD1), a WD40 family protein upregulated by KSHV, that had positive effects on cell proliferation and survival of KSHV-transformed cells (KMM) but not the matched primary cells (MM), uncovered the predictive values of their expressions for patient survival in numerous types of cancer. We revealed global epigenetic remodeling including H3K4me3 epigenetic active mark in KMM cells compared to MM cells. Knockdown of GRWD1 inhibited cell proliferation, cellular transformation, and tumor formation and caused downregulation of global H3K4me3 mark in KMM cells. GRWD1 interacted with WD repeat domain 5 (WDR5), the core protein of H3K4 methyltransferase complex, and several H3K4me3 methyltransferases, including myeloid leukemia 2 (MLL2). Knockdown of WDR5 and MLL2 phenocopied GRWD1 knockdown, caused global reduction of H3K4me3 mark, and altered the expression of similar sets of genes. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses further identified common and distinct cellular genes and pathways that were regulated by GRWD1, WDR5, and MLL2. These results indicate that KSHV hijacks the GRWD1-WDR5-MLL2 epigenetic complex to regulate H3K4me3 methylation of specific genes, which is essential for KSHV-induced cellular transformation. Our work has identified an epigenetic complex as a novel therapeutic target for KSHV-induced cancers. IMPORTANCE By performing a genome-wide CRISPR-Cas9 screening, we have identified cellular epigenetic regulators that are essential for KSHV-induced cellular transformation. Among them, GRWD1 regulates epigenetic active mark H3K4me3 by interacting with WDR5 and MLL2 and recruiting them to chromatin loci of specific genes in KSHV-transformed cells. Hence, KSHV hijacks the GRWD1-WDR5-MLL2 complex to remodel cellular epigenome and induce cellular transformation. Since the dysregulation of GRWD1 is associated with poor prognosis in several types of cancer, GRWD1 might also be a critical driver in other viral or nonviral cancers.
Collapse
|
12
|
Jiang T, Wang H, Liu L, Song H, Zhang Y, Wang J, Liu L, Xu T, Fan R, Xu Y, Wang S, Shi L, Zheng L, Wang R, Song J. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer. Mol Cancer 2021; 20:167. [PMID: 34922544 PMCID: PMC8684286 DOI: 10.1186/s12943-021-01474-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accumulating studies have revealed that aberrant expression of circular RNAs (circRNAs) is widely involved in the tumorigenesis and progression of malignant cancers, including colorectal cancer (CRC). Nevertheless, the clinical significance, levels, features, biological function, and molecular mechanisms of novel circRNAs in CRC remain largely unexplored. METHODS CRC-related circRNAs were identified through bioinformatics analysis and verified in clinical specimens by qRT-PCR and in situ hybridization (ISH). Then, in vitro and in vivo experiments were performed to determine the clinical significance of, functional roles of, and clinical characteristics associated with circIL4R in CRC specimens and cells. Mechanistically, RNA pull-down, fluorescence in situ hybridization (FISH), luciferase reporter, and ubiquitination assays were performed to confirm the underlying mechanism of circIL4R. RESULTS CircIL4R was upregulated in CRC cell lines and in sera and tissues from CRC patients and was positively correlated with advanced clinicopathological features and poor prognosis. Functional experiments demonstrated that circIL4R promotes CRC cell proliferation, migration, and invasion via the PI3K/AKT signaling pathway. Mechanistically, circIL4R was regulated by TFAP2C and competitively interacted with miR-761 to enhance the expression of TRIM29, thereby targeting PHLPP1 for ubiquitin-mediated degradation to activate the PI3K/AKT signaling pathway and consequently facilitate CRC progression. CONCLUSIONS Our findings demonstrate that upregulation of circIL4R plays an oncogenic role in CRC progression and may serve as a promising diagnostic and prognostic biomarker for CRC detection and as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Hongyu Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lianyu Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lei Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Shuai Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Linsen Shi
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Li Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Renhao Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
13
|
Knockdown of TRIM26 inhibits the proliferation, migration and invasion of bladder cancer cells through the Akt/GSK3β/β-catenin pathway. Chem Biol Interact 2021; 337:109366. [PMID: 33549581 DOI: 10.1016/j.cbi.2021.109366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Tripartite motif-containing protein 26 (TRIM26) is a member of the TRIM protein family and has been demonstrated to play crucial roles in several types of cancers. However, the biological role of TRIM26 in bladder cancer and the mechanism have not been studied. In this study, we investigated the expression of TRIM26 in bladder cancer tissues and their adjacent non-tumor tissues by Western blot and qRT-PCR. In vitro investigations were performed to assess the roles of TRIM26 in bladder cancer using TRIM26-silencing and TRIM26-overexpressing bladder cancer cell lines. MTT and EdU assays were performed to evaluate cell proliferation. Cell migration and invasion were determined by transwell assays. Western blot analysis was performed to detect the expression levels of p-Akt, Akt, p-GSK3β, GSK3β, β-catenin and c-Myc. Our results showed that TRIM26 expression was upregulated in human bladder cancer tissues and cell lines at both mRNA and protein levels. Knockdown of TRIM26 significantly inhibited the proliferation, migration and invasion of bladder cancer cells. In contrast, TRIM26 overexpression promoted bladder cancer cell proliferation, cell migration and invasion. Furthermore, knockdown of TRIM26 significantly decreased the levels of p-Akt, p-GSK3β, β-catenin and c-Myc in bladder cancer cells. Additionally, induction of Akt by SC79 treatment reversed the inhibitory effects of TRIM26 knockdown on the cellular behaviors of bladder cancer cells, while inhibition of β-catenin reversed the effects of TRIM26 overexpression on the behaviors. Finally, knockdown of TRIM26 attenuated the growth of tumor xenografts in nude mice. In conclusion, these findings demonstrated that TRIM26 exerted an oncogenic role in bladder cancer through regulation of cell proliferation, migration and invasion via the Akt/GSK3β/β-catenin pathway.
Collapse
|
14
|
Purohit V, Wang L, Yang H, Li J, Ney GM, Gumkowski ER, Vaidya AJ, Wang A, Bhardwaj A, Zhao E, Dolgalev I, Zamperone A, Abel EV, Magliano MPD, Crawford HC, Diolaiti D, Papagiannakopoulos TY, Lyssiotis CA, Simeone DM. ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer. Genes Dev 2021; 35:218-233. [PMID: 33446568 PMCID: PMC7849366 DOI: 10.1101/gad.344184.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease characterized by late diagnosis, propensity for early metastasis and resistance to chemotherapy. Little is known about the mechanisms that drive innate therapeutic resistance in pancreatic cancer. The ataxia-telangiectasia group D-associated gene (ATDC) is overexpressed in pancreatic cancer and promotes tumor growth and metastasis. Our study reveals that increased ATDC levels protect cancer cells from reactive oxygen species (ROS) via stabilization of nuclear factor erythroid 2-related factor 2 (NRF2). Mechanistically, ATDC binds to Kelch-like ECH-associated protein 1 (KEAP1), the principal regulator of NRF2 degradation, and thereby prevents degradation of NRF2 resulting in activation of a NRF2-dependent transcriptional program, reduced intracellular ROS and enhanced chemoresistance. Our findings define a novel role of ATDC in regulating redox balance and chemotherapeutic resistance by modulating NRF2 activity.
Collapse
Affiliation(s)
- Vinee Purohit
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Lidong Wang
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Huibin Yang
- Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Jiufeng Li
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Gina M Ney
- Department of Pediatric Oncology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Erica R Gumkowski
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Akash J Vaidya
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Annie Wang
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
- Department of Surgery, New York University, New York, New York 10016, USA
| | - Amit Bhardwaj
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Ende Zhao
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Igor Dolgalev
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Andrea Zamperone
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Ethan V Abel
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Marina Pasca Di Magliano
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Daniel Diolaiti
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Thales Y Papagiannakopoulos
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
- Department of Pathology, New York University, New York, New York 10016, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
- Department of Surgery, New York University, New York, New York 10016, USA
- Department of Pathology, New York University, New York, New York 10016, USA
| |
Collapse
|
15
|
Jung YD, Park SK, Kang D, Hwang S, Kang MH, Hong SW, Moon JH, Shin JS, Jin DH, You D, Lee JY, Park YY, Hwang JJ, Kim CS, Suh N. Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells. Redox Biol 2020; 37:101716. [PMID: 32961441 PMCID: PMC7509080 DOI: 10.1016/j.redox.2020.101716] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
The use of human mesenchymal stem cells (hMSCs) in clinical applications requires large-scale cell expansion prior to administration. However, the prolonged culture of hMSCs results in cellular senescence, impairing their proliferation and therapeutic potentials. To understand the role of microRNAs (miRNAs) in regulating cellular senescence in hMSCs, we globally depleted miRNAs by silencing the DiGeorge syndrome critical region 8 (DGCR8) gene, an essential component of miRNA biogenesis. DGCR8 knockdown hMSCs exhibited severe proliferation defects and senescence-associated alterations, including increased levels of reactive oxygen species (ROS). Transcriptomic analysis revealed that the antioxidant gene superoxide dismutase 2 (SOD2) was significantly downregulated in DGCR8 knockdown hMSCs. Moreover, we found that DGCR8 silencing in hMSCs resulted in hypermethylation in CpG islands upstream of SOD2. 5-aza-2'-deoxycytidine treatment restored SOD2 expression and ROS levels. We also found that these effects were dependent on the epigenetic regulator DNA methyltransferase 3 alpha (DNMT3A). Using computational and experimental approaches, we demonstrated that DNMT3A expression was regulated by miR-29a-3p and miR-30c-5p. Overexpression of miR-29a-3p and/or miR-30c-5p reduced ROS levels in DGCR8 knockdown hMSCs and rescued proliferation defects, mitochondrial dysfunction, and premature senescence. Our findings provide novel insights into hMSCs senescence regulation by the miR-29a-3p/miR-30c-5p/DNMT3A/SOD2 axis.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seul-Ki Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dayeon Kang
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Supyong Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seung-Woo Hong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jai-Hee Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jae-Sik Shin
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Choung Soo Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
16
|
Xu W, Chen B, Ke D, Chen X. TRIM29 mediates lung squamous cell carcinoma cell metastasis by regulating autophagic degradation of E-cadherin. Aging (Albany NY) 2020; 12:13488-13501. [PMID: 32640423 PMCID: PMC7377877 DOI: 10.18632/aging.103451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023]
Abstract
Lung squamous cell carcinoma (LSCC) is the most common histological type of primary lung cancer. In this study, we had tested the biological role of TRIM29 in LSCC cells. TRIM29 abundance, the relationships between TRIM29 and E-cadherin and autophagy degradation related proteins in clinical tissues and six cell lines were studied with quantitative real-time PCR test (qRT-PCR) and western blot. TRIM29 overexpression treated HTB-182 cells and knockdown treated NCL-H1915 cells was used for studying cell proliferation, colony formation, migration, invasion, and the expression of epithelial mesenchymal transformation (EMT) associated biomarkers. The relationships between TRIM29 and BECN1 were investigated with western blot. TRIM29 was profoundly overexpressed in LSCC tissues and cells compared with human normal bronchial epithelial cells (HNBE). High TRIM29 expression was closely related to overall survival (OS). TRIM29 overexpression and knockdown affected LSCC activity and the expression of EMT associated biomarkers. TRIM29 can regulate the degradation of E-cadherin and autophagy of LSCC through BECN1 gene, and promote autophagy in HTB-182 and NCL-H1915 cells. Our results revealed that TRIM29 could promote the proliferation, migration, and invasion of LSCC via E-cadherin autophagy degradation. The results are useful for further study in LSCC.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| | - Beibei Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| | - Dianshan Ke
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| |
Collapse
|
17
|
Zhu H, Chen Y, Zhang J, Qian C, Qiu W, Shen H, Shen Z. Knockdown of TRIM37 Promotes Apoptosis and Suppresses Tumor Growth in Gastric Cancer by Inactivation of the ERK1/2 Pathway. Onco Targets Ther 2020; 13:5479-5491. [PMID: 32606764 PMCID: PMC7297455 DOI: 10.2147/ott.s233906] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Gastric cancer (GC), a malignant tumor of the gastric mucosa, is the second leading cause of cancer deaths worldwide. Although the incidence and mortality of gastric cancer have been reduced in the US and elsewhere, it is still a major public health concern. In this study, we attempted to investigate the function of tripartite motif-containing protein 37 (TRIM37) in GC cell lines in order to propose a new therapy for GC. METHODS The expression of TRIM37 in GC patients and cell lines was detected by immunohistochemistry, real-time PCR and Western blotting analysis. After TRIM37 knockdown or overexpression, the cell cycle, proliferation and apoptosis, as well as the expression of related proteins, were detected. In addition, in vivo experiments on nude mice were performed. RESULTS We found that TRIM37 expression was significantly elevated in tumor tissues of GC patients and GC cell lines, and patients with high expression of TRIM37 had a poor prognosis. Knockdown of TRIM37 in GC cells significantly inhibited cell proliferation and cell cycle progression, promoted apoptosis, increased cleaved caspase 3 and decreased c-myc and phosphorylation of protein kinase 1/2 (p-ERK1/2). Effects of TRIM37 overexpression were opposite to that of TRIM37 knockdown and were potently attenuated by an ERK1/2 inhibitor. In addition, an ERK1/2 agonist increased TRIM37 and p-ERK1/2 in a dose-dependent manner, and TRIM37 knockdown potently attenuated EGF-induced cell proliferation and expression of TRIM37 and p-ERK1/2. Interestingly, we found that TRIM37 overexpression did not affect the mRNA level of dual-specificity phosphatase 6 (DUSP6), but reduced its protein level in GC cells. Co-immunoprecipitation (Co-IP) analyses revealed that TRIM37 interacted with DUSP6, and TRIM37 overexpression enhanced DUSP6 ubiquitination in GC cells. In vivo experiments on nude mice showed the inhibitory effect of TRIM37 knockdown on tumor growth. CONCLUSION These findings suggest that TRIM37 may act as an oncogene in the growth of GC cells and illustrate its potential function as a target in the treatment of GC.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai201112, People’s Republic of China
| | - Yuanwen Chen
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai201112, People’s Republic of China
| | - Jie Zhang
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai201112, People’s Republic of China
| | - Changlin Qian
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai201112, People’s Republic of China
| | - Weiqing Qiu
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai201112, People’s Republic of China
| | - Huojian Shen
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai201112, People’s Republic of China
| | - Zhiyong Shen
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai201112, People’s Republic of China
| |
Collapse
|
18
|
Yuan L, Guo F, Wang L, Zou Q. Prediction of tumor metastasis from sequencing data in the era of genome sequencing. Brief Funct Genomics 2020; 18:412-418. [PMID: 31204784 DOI: 10.1093/bfgp/elz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/22/2019] [Accepted: 04/26/2019] [Indexed: 02/01/2023] Open
Abstract
Tumor metastasis is the key reason for the high mortality rate of tumor. Growing number of scholars have begun to pay attention to the research on tumor metastasis and have achieved satisfactory results in this field. The advent of the era of sequencing has enabled us to study cancer metastasis at the molecular level, which is essential for understanding the molecular mechanism of metastasis, identifying diagnostic markers and therapeutic targets and guiding clinical decision-making. We reviewed the metastasis-related studies using sequencing data, covering detection of metastasis origin sites, determination of metastasis potential and identification of distal metastasis sites. These findings include the discovery of relevant markers and the presentation of prediction tools. Finally, we discussed the challenge of studying metastasis considering the difficulty of obtaining metastatic cancer data, the complexity of tumor heterogeneity and the uncertainty of sample labels.
Collapse
Affiliation(s)
- Linlin Yuan
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
20
|
Bankhead A, McMaster T, Wang Y, Boonstra PS, Palmbos PL. TP63 isoform expression is linked with distinct clinical outcomes in cancer. EBioMedicine 2020; 51:102561. [PMID: 31927310 PMCID: PMC6953644 DOI: 10.1016/j.ebiom.2019.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Half of muscle-invasive bladder cancer patients will relapse with metastatic disease and molecular tests to predict relapse are needed. TP63 has been proposed as a prognostic biomarker in bladder cancer, but reports associating it with clinical outcomes are conflicting. Since TP63 is expressed as multiple isoforms, we hypothesized that these conflicting associations with clinical outcome may be explained by distinct opposing effects of differential TP63 isoform expression. Methods Using RNA-Seq data from The Cancer Genome Atlas (TCGA), TP63 isoform-level expression was quantified and associated with clinical covariates (e.g. survival, stage) across 8,519 patients from 29 diseases. A comprehensive catalog of TP63 isoforms was assembled using gene annotation databases and de novo discovery in bladder cancer patients. Quantifications and un-annotated TP63 isoforms were validated using quantitative RT-PCR and a separate bladder cancer cohort. Findings DNp63 isoform expression was associated with improved bladder cancer patient survival in patients with a luminal subtype (HR = 0.89, CI 0.80–0.99, Cox p = 0.034). Conversely, TAp63 isoform expression was associated with reduced bladder cancer patient survival in patients with a basal subtype (HR = 2.35, CI 1.64–3.37, Cox p < 0.0001). These associations were observed in multiple TCGA disease cohorts and correlated with epidermal differentiation (DNp63) and immune-related (TAp63) gene signatures. Interpretation These results comprehensively define TP63 isoform expression in human cancer and suggest that TP63 isoforms are involved in distinct transcriptional programs with opposing effects on clinical outcome.
Collapse
Affiliation(s)
- Armand Bankhead
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas McMaster
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yin Wang
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philip S Boonstra
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Seyer AK, Lehman HL, DeGraff DJ. Modeling Tumor Heterogeneity in Bladder Cancer: The Current State of the Field and Future Needs. Bladder Cancer 2019. [DOI: 10.3233/blc-199009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda K. Seyer
- Departments of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Surgery, Division of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Heather L. Lehman
- Department of Biology, Millersville University, Millersville, PA, USA
| | - David J. DeGraff
- Departments of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Surgery, Division of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
22
|
TRIM11 promotes lymphomas by activating the β-catenin signaling and Axin1 ubiquitination degradation. Exp Cell Res 2019; 387:111750. [PMID: 31786079 DOI: 10.1016/j.yexcr.2019.111750] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Lymphoma, a malignant tumor, is mainly characterized by painless lymph node enlargement and hepatosplenomegaly. At present, lymphoma is mainly treated by radiation, chemical drugs, bone marrow transplantation and surgery. However, due to the high degree of heterogeneity, lymphomas are highly different in terms of treatment intensity and prognosis. This study is designed to investigate the function of tripartite motif-containing 11 (TRIM11) in lymphomas. METHODS The expression of TRIM11 in lymphoma tissues and multiple lymphoma cell lines was respectively detected by microarray immunohistochemistry, real-time PCR and Western blotting. After TRIM11 knockdown, overexpression, or β-catenin inhibitor XAV939 treatment, proliferation, apoptosis and cell cycle progression, as well as expression of related-genes were detected. Next, Co-Immunoprecipitation (Co-IP) and ubiquitination detection were performed. RESULTS Elevated expression of tripartite motif-containing 11 (TRIM11) was observed in lymphoma tissues and multiple lymphoma cell lines (Raji, Jurkat, U937 and Hut78). Knockdown of TRIM11 in lymphoma cells significantly suppressed cell proliferation and prevented cell cycle progression from entering S or G2 phase. Concurrently, the expression of β-catenin, Cyclin D1 and c-Myc proteins in TRIM11-silenced lymphoma cells was decreased, while Axin1 was increased. In addition, TRIM11 overexpression had an opposite effect to TRIM11 knockdown, and a β-catenin inhibitor, XAV939, potently attenuated the induction of TRIM11 on lymphoma cells. Co-IP assay showed the interaction of TRIM11 and Axin1, and TRIM11 knockdown inhibited Axin1 ubiquitination degradation. CONCLUSIONS Together all, the results suggested that TRIM11 may be an oncogene in lymphomas, which involving the activation of the β-catenin signaling and the ubiquitination degradation of Axin1.
Collapse
|
23
|
Liu X, Long Z, Cai H, Yu S, Wu J. TRIM58 suppresses the tumor growth in gastric cancer by inactivation of β-catenin signaling via ubiquitination. Cancer Biol Ther 2019; 21:203-212. [PMID: 31747856 PMCID: PMC7012179 DOI: 10.1080/15384047.2019.1679554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: To investigate and define the underlying molecular mechanism of tripartite motif-containing 58 (TRIM58) in regulating the tumor growth of gastric cancer (GC).Methods: TRIM58 expression in GC tissues and cells was detected by real-time PCR and Western blot, followed by lentiviral-induced overexpression or knockdown of TRIM58. Subsequently, CCK8, BrdU-ELISA, flow cytometry, immunoprecipitation, in vitro animal experiments and immunochemistry were performed to explore the function of TRIM58. Western blotting was used to detect β-catenin, C-myc, Cyclin D1, and survivin expression.Results: TRIM58 expression was significantly reduced in tumor tissues of GC patients and GC cell lines, whereas β-catenin, C-myc, Cyclin D1, and survivin were highly expressed. Overexpression of TRIM58 in GC cells resulted in decreases in β-catenin, C-myc, Cyclin D1, and survivin protein expression and significantly suppressed proliferation by preventing cell-cycle progression and promoting cell apoptosis. Conversely, TRIM58 knockdown resulted in the opposite effects. Furthermore, the effect of TRIM58 knockdown on GC cells was potently reversed by a β-catenin inhibitor, XAV939. Immunoprecipitations showed the interaction between TRIM58 and β-catenin, and TRIM58 overexpression significantly enhanced β-catenin degradation. In addition, we found a significant decrease in the growth and weight of tumors and an increase in tumor cell apoptosis in TRIM58-overexpression nude mice, which were also accompanied by reduced β-catenin expression.Conclusions: These data suggest that TRIM58 may function as a tumor suppressor in GC and potentially suppress the tumor growth of gastric cancer by inactivation of β-catenin signaling via ubiquitination.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziwen Long
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Cai
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengjia Yu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianghong Wu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Purvis IJ, Avilala J, Guda MR, Venkataraman S, Vibhakar R, Tsung AJ, Velpula KK, Asuthkar S. Role of MYC-miR-29-B7-H3 in Medulloblastoma Growth and Angiogenesis. J Clin Med 2019; 8:jcm8081158. [PMID: 31382461 PMCID: PMC6723910 DOI: 10.3390/jcm8081158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB) is the most common embryonal neuroepithelial tumor, with poor patient outcomes and secondary complications. In this study, we investigated the role of the B7 family of immune checkpoint homolog 3 (B7-H3) expression in MB angiogenesis. B7-H3, a co-inhibitory immune checkpoint, is highly expressed and is associated with lower overall survival in MYC+ MB's. Evidence for a direct transcriptional role of MYC on the B7-H3 gene promoter was confirmed by MYC inhibition and anti-MYC antibody ChIP analysis. Interestingly, MYC inhibition not only downregulated the B7-H3 protein expression, but also rescued miR-29 expression, thus indicating a triangular regulatory relationship between MYC, miR-29, and B7-H3 in Group 3 MB cells. From RNA seq and IPAD assay, we observed a negative feedback loop between miR-29 and MYC that may control B7-H3 expression levels in MB cells. Our studies show that B7-H3 expression levels play a crucial role in promoting MB angiogenesis which can be inhibited by miR-29 overexpression via miR-29-mediated B7-H3 downregulation. The tumor suppressor role of miR-29 is mediated by the activation of JAK/STAT1 signaling that further plays a role in MYC-B7-H3 downregulation in MB. This study highlights B7-H3 as a viable target in MB angiogenesis, and that the expression of miR-29 can inhibit B7-H3 and sensitize MB cells to treatment with MYC-inhibiting drugs.
Collapse
Affiliation(s)
- Ian J Purvis
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Janardhan Avilala
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Maheedhara R Guda
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew J Tsung
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Neurosurgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Kiran K Velpula
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Neurosurgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Swapna Asuthkar
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA.
| |
Collapse
|
25
|
Zhang YP, Liu KL, Wang YX, Yang Z, Han ZW, Lu BS, Qi JC, Yin YW, Teng ZH, Chang XL, Li JD, Xin H, Li W. Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/β-catenin feedback loop. FASEB J 2019; 33:10973-10985. [PMID: 31318608 DOI: 10.1096/fj.201900537r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA-binding motif protein 5 (RBM5) acts as a tumor suppressor in various human cancers and presents with several important characteristics, such as the potentiation of apoptosis, inhibition of the cell cycle, and alternative splicing of Fas and caspase-2 precursor mRNA. However, its role in bladder urothelial carcinoma (BUC) remains unknown. In this study, we found that RBM5 expression was significantly down-regulated in BUC tissues when compared with the adjacent nontumor tissues. The down-regulation of RBM5 activates β-catenin, which binds to the T-cell factor/lymphocyte enhancer factor element of the miR-432-5p promoter and elevates the expression of miR-432-5p in bladder cancer cells. The up-regulated miR-432-5p directly targets 3'-UTR and depresses RBM5 expression. Thus, RBM5-miR-432-5p-β-catenin forms a feedback loop in regulating bladder cancer cell apoptosis. Our findings provide evidence that the regulatory feedback loop among RBM5, miR-432-5p, and Wnt-β-catenin is responsible for the progress of bladder cancer cells.-Zhang, Y.-P., Liu, K.-L., Wang, Y.-X., Yang, Z., Han, Z.-W., Lu, B.-S., Qi, J.-C., Yin, Y.-W., Teng, Z.-H., Chang, X.-L., Li, J.-D., Xin, H., Li, W. Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/β-catenin feedback loop.
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Xuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhen-Wei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Hai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Liang Chang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing-Dong Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Xin
- Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
Li W, Xue H, Li Y, Li P, Ma F, Liu M, Kong S. ATDC promotes the growth and invasion of hepatocellular carcinoma cells by modulating GSK-3β/Wnt/β-catenin signalling. Clin Exp Pharmacol Physiol 2019; 46:845-853. [PMID: 31168819 DOI: 10.1111/1440-1681.13119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has suggested that the ataxia telangiectasia group D complementing (ATDC) gene is an emerging cancer-related gene in multiple human cancer types. However, little is known about the role of ATDC in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the expression level, biological function and underlying mechanism of ATDC in HCC. The expression of ATDC in HCC cells was detected by quantitative real-time polymerase chain reaction and western blot analysis. Cell growth was determined by cell counting kit-8 assay and colony formation assay. Cell invasion was assessed by Transwell invasion assay. The activation status of Wnt/β-catenin signalling was evaluated by the luciferase reporter assay. Functional experiments showed that the silencing of ATDC expression significantly suppressed the growth and invasion of HCC cells, whereas the overexpression of ATDC promoted the growth and invasion of HCC cells in vitro. Moreover, we showed that ATDC overexpression promoted the phosphorylation of glycogen synthase kinase (GSK)-3β and resulted in the activation of Wnt/β-catenin signalling. Notably, the inhibition of GSK-3β activity significantly abrogated the tumour suppressive effect of ATDC silencing, while the silencing of β-catenin partially reversed the oncogenic effect of ATDC overexpression. Taken together, these findings reveal an oncogenic role of ATDC in HCC and show that the suppression of ATDC impedes the growth and invasion of HCC cells associated with the inactivation of Wnt/β-catenin signalling. Our study suggests that ATDC may serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Weizhi Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Xue
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijie Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuquan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengying Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Lu BS, Yin YW, Zhang YP, Guo PY, Li W, Liu KL. Upregulation of NPL4 promotes bladder cancer cell proliferation by inhibiting DXO destabilization of cyclin D1 mRNA. Cancer Cell Int 2019; 19:149. [PMID: 31164795 PMCID: PMC6543671 DOI: 10.1186/s12935-019-0874-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background NPL4 is an important cofactor of the valosin-containing protein (VCP)–NPL4–UFD1 complex. The VCP–NPL4–UFD1 has been considered as a ubiquitin proteasome system (UPS) regulator and response to protein degradation. While NPL4 plays important roles in various diseases, little is known about its functions in bladder cancer (BC). Methods MTT assays and colony forming test were performed to evaluate cell proliferation ability and Western blotting was used to detect protein expression. Cyclin D1 mRNA expression was detected using qRT-PCR, and coimmunoprecipitation (CoIP) was used to detect protein–protein interactions. Results NPL4 was upregulated in BC tissue and correlated with poor prognosis. Upregulation of NPL4 promoted cell proliferation while suppression of NPL4 reduced BC cell proliferation. Upregulation of NPL4 led to overexpression of cyclin D1 by enhancing its mRNA stability. Moreover, NPL4 was found to bind directly to DXO and induce its degradation. DXO was downregulated in BC tissue and regulated BC cell proliferation by destabilizing cyclin D1 mRNA. DXO-mediated NPL4 regulated BC cell proliferation by stabilizing cyclin D1 expression. Conclusions The NPL4/DXO/cyclin D1 axis exert crucial role in BC cell growth and is associated with prognosis and may represent a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Yan-Ping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Ping-Ying Guo
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000 Hebei People's Republic of China
| |
Collapse
|
28
|
Tian H, Wang X, Lu J, Tian W, Chen P. MicroRNA-621 inhibits cell proliferation and metastasis in bladder cancer by suppressing Wnt/β-catenin signaling. Chem Biol Interact 2019; 308:244-251. [PMID: 31145890 DOI: 10.1016/j.cbi.2019.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Increasing evidence has shown that dysregulation of microRNA-621 (miR-621) is demonstrated to be associated with several cancers. However, the role of miR-621 in bladder cancer (BCa) remains unclear. Herein, we aimed to study the expression pattern, biological function, and molecular mechanism of miR-621 in BCa. First, we demonstrated that miR-621 was frequently downregulated in BCa tissues and cell lines compared with the adjacent normal BCa tissues and non-cancerous immortalized urothelial cell line. In addition, the expression of miR-621 was negatively correlated with overall survival of BCa patients. Functional experiments suggessted that miR-621 inhibited the proliferation and metastasis of BCa cells. Notably, dual-luciferase assay showed that miR-621 directly targeted the 3' UTR of TRIM29, which was frequently upregulated in BCa tissues and displayed inverse correlation with miR-621 expression. Furthermore, we demonstrated that miR-621 inhibited the proliferation and metastasis of BCa cells via Wnt/β-catenin signaling pathway by targeting TRIM29. Our study suggested that the miR-621/TRIM29 axis inhibits the proliferation and metastasis of BCa cells via Wnt/β-catenin signaling pathway and may have potential applications for development of BCa diagnosis or treatment.
Collapse
Affiliation(s)
- Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | | | - Jianfeng Lu
- Department of pathology, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
29
|
Cao Y, Shi L, Wang M, Hou J, Wei Y, Du C. ATDC contributes to sustaining the growth and invasion of glioma cells through regulating Wnt/β-catenin signaling. Chem Biol Interact 2019; 305:148-155. [DOI: 10.1016/j.cbi.2019.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/09/2023]
|
30
|
Ruan JL, Hsu JW, Browning RJ, Stride E, Yildiz YO, Vojnovic B, Kiltie AE. Mouse Models of Muscle-invasive Bladder Cancer: Key Considerations for Clinical Translation Based on Molecular Subtypes. Eur Urol Oncol 2019; 2:239-247. [PMID: 31200837 DOI: 10.1016/j.euo.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT In the past few years, research has suggested that molecular subtypes in muscle-invasive bladder cancer (MIBC) may be exploited to accelerate developments in clinical disease management and novel therapeutics. OBJECTIVE To review MIBC mouse models from a molecular subtype perspective, their advantages and limitations, and their applications in translational medicine, based on a PubMed search for publications from January 2000 to February 2018. EVIDENCE ACQUISITION Publications relevant to MIBC mouse models and their molecular subtypes were identified in a literature review. EVIDENCE SYNTHESIS We classified the models according to the technique used for their establishment. For xenotransplant and allograft models, the inoculated cells and inoculated locations are the major determinants of molecular subtypes. Although the cell lines used in xenotransplant models can cover most of the basal-squamous and luminal subtypes, allograft models offer a more realistic environment in which to reconstruct aspects of the associated stromal and immune features. Autochthonous models, using genetic and/or chemical stimuli to induce disease progression, can also generate models with basal-squamous and luminal subtypes, but further molecular characterisation is needed since other mutational variants may be introduced in these models. CONCLUSIONS We identified preclinical MIBC models with different subtype specifications and assessed their promise and current limitations. These models are versatile tools that can reproduce the molecular complexity of MIBC and support novel therapeutic development. PATIENT SUMMARY Understanding which models of muscle-invasive bladder cancer most accurately represent the clinical situation is important for the development of novel drugs and disease management strategies. We review the different models currently available and their relevance to different clinical subtypes.
Collapse
Affiliation(s)
- Jia-Ling Ruan
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jong-Wei Hsu
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Yesna O Yildiz
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Borivoj Vojnovic
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol 2019; 51:11-17. [PMID: 30825741 DOI: 10.1016/j.cbpa.2019.01.024] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs, approximately 18-25 nucleotides in length, now recognized as one of the major regulatory gene families in eukaryotes. Recent advances have been made in understanding the complicated roles of miRNAs in epigenetic regulation. miRNAs, as epigenetic modulators, affect the protein levels of the target mRNAs without modifying the gene sequences. Moreover, miRNAs can also be regulated by epigenetic modifications, including DNA methylation, RNA modification, and histone modifications. The reciprocal actions of miRNAs and epigenetic pathway appear to form a miRNA-epigenetic feedback loop and have an extensive influence on gene expression proliferation. The dysregulation of the miRNA-epigenetic feedback loop interferes with the physiological and pathological processes and contributes to variety of diseases. In this review, we focus on the reciprocal interconnection of miRNAs in epigenetic regulation, with the aim of offering new insights into the epigenetic regulatory mechanism that can be used to combat diseases.
Collapse
Affiliation(s)
- Qian Yao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, PR China
| | - Yuqi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
32
|
Sun J, Zhang T, Cheng M, Hong L, Zhang C, Xie M, Sun P, Fan R, Wang Z, Wang L, Zhong J. TRIM29 facilitates the epithelial-to-mesenchymal transition and the progression of colorectal cancer via the activation of the Wnt/β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:104. [PMID: 30813948 PMCID: PMC6391790 DOI: 10.1186/s13046-019-1098-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
Background Tripartite Motif 29 (TRIM29) has been newly identified as being implicated in cancer progression. However, the biological role and molecular mechanism of TRIM29 in the invasion and metastasis of colorectal cancer (CRC) remain to be determined. Methods The expression levels of TRIM29 and β-catenin in CRC patient specimens were detected by immunohistochemistry. Recombinant lentivirus vectors containing the TRIM29 gene and its small hairpin interfering RNAs were constructed and transduced into CRC cells. Wound-healing and Transwell assays were performed to evaluate the migration and invasion abilities of CRC cells in vitro. Hepatic metastasis models in nude mice were established to validate the function of TRIM29 in vivo. Moreover, the expressions of epithelial-to-mesenchymal transition (EMT)-associated proteins were detected by qRT-PCR and Western blotting in CRC cells. Finally, Western blotting, qRT-PCR, luciferase reporter assays, and immunofluorescence assays were used to explore the molecular mechanisms of TRIM29 in CRC progression. Results Increased TRIM29 expression positively correlated with lymph node metastasis and β-catenin expression in patient CRC tissues. Overexpression of TRIM29 promoted invasion and metastasis of CRC cells in vitro and in vivo by regulating EMT, whereas the knockdown of TRIM29 had the opposite effect. Further mechanistic studies suggest that TRIM29 can activate the Wnt/β-catenin signaling pathway via up-regulating CD44 expression in colorectal cancer. Conclusions TRIM29 induces EMT through activating the Wnt/β-catenin signaling pathway via up-regulating CD44 expression, thus promoting invasion and metastasis of CRC.
Collapse
Affiliation(s)
- Juntao Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengfan Xie
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peijun Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
33
|
TRIM66 confers tumorigenicity of hepatocellular carcinoma cells by regulating GSK-3β-dependent Wnt/β-catenin signaling. Eur J Pharmacol 2019; 850:109-117. [PMID: 30710548 DOI: 10.1016/j.ejphar.2019.01.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022]
Abstract
Tripartite motif 66 (TRIM66) protein, a member of the tripartite motif (TRIM) protein superfamily, has emerged as an oncogenic protein that is closely related to carcinogenesis in multiple cancers. However, whether TRIM66 plays a role in the progression of hepatocellular carcinoma (HCC) remains unknown. This study was aimed to investigate TRIM66 expression and its potential biological function in HCC cell lines. Here we showed that TRIM66 expression was significantly upregulated in HCC cell lines compared with normal control cells. Loss-of-function experiments by RNA interfering knockdown of TRIM66 showed that TRIM66 inhibition significantly reduced the proliferation, colony formation, and invasion of HCC cells, whereas gain-of-function by overexpression of TRIM66 exhibited the opposite effect. Further investigation showed that TRIM66 was involved in regulating glycogen synthase kinase-3β (GSK-3β) phosphorylation and β-catenin expression. Knockdown of TRIM66 impeded the activation of Wnt signaling, while overexpression of TRIM66 promoted Wnt signaling activation. Moreover, inhibition of GSK-3β by specific inhibitor partially reversed TRIM66 inhibition-mediated antitumor effect, while knockdown of β-catenin blocked the oncogenic effect of TRIM66 overexpression in HCC cells. Additionally, in vivo experiments using a xenograft tumor model showed that TRIM66 knockdown blunted the tumorigenicity of HCC cells associated with downregulation of β-catenin expression. Overall, our results showed that TRIM66 functioned as an oncogenic protein in HCC by promoting the activation of Wnt/β-catenin signaling. Our study suggests that TRIM66 is a potential target for HCC treatment.
Collapse
|
34
|
Han X, Huang C, Qu X, Liu S, Yang X, Wang Y, Bie F, Liu Q, Du J. Tripartite motif-containing 15 overexpression in non-small cell lung cancer is associated with poor patient prognoses. J Cancer 2019; 10:843-852. [PMID: 30854090 PMCID: PMC6400804 DOI: 10.7150/jca.27856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/01/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: This study aimed to comprehensively investigate the differential expression and prognostic indicators of the tripartite motif-containing (TRIM) gene family in non-small cell lung cancer (NSCLC). Methods: The Cancer Genome Atlas (TCGA) Research Network and three datasets from Gene Expression Omnibus (GEO) database were used to assess TRIM gene family expression patterns in NSCLC. Quantitative real-time PCR and immunohistochemistry (IHC) were conducted to confirm differentially expressed genes (DEGs). Kaplan-Meier survival analysis and univariate Cox regression analysis were carried out to analyze the association between TRIM gene expression and NSCLC prognoses. Gene set enrichment analysis (GSEA) was carried on for the predict the biological processes. Results: Of the 78 TRIM family members measured, TRIM15 was selected due to the DEGs and the prognostic value regarding NSCLC. In lung squamous cell carcinoma (LUSC), the Log2 fold change (Log2FC) of TRIM15 was 5.16 (p= 0.00575), whereas in lung adenocarcinoma (LUAD), it was 6.37 (p =6.78E-07). TRIM15 upregulation was related to poor prognoses in both LUSC (HR 1.353; 95%CI 1.023-1.789; p =0.034) and LUAD (HR 1.560; 95%CI 1.159-2.101; p =0.003). Using immunohistochemistry, TRIM15 expression was significantly higher in NSCLC tissues compared with that of matched normal tissues (p =0.0009), and similar findings were generated with tissue microarray analysis (p<0.0001). Conclusion: TRIM15 could act as a diagnostic predictor or therapeutic target for lung cancer treatments.
Collapse
Affiliation(s)
- Xiaoying Han
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Cuicui Huang
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Xiao Qu
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Shaorui Liu
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Xudong Yang
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Yu Wang
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Fenglong Bie
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Qi Liu
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Jiajun Du
- The Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| |
Collapse
|
35
|
ATDC mediates a TP63-regulated basal cancer invasive program. Oncogene 2019; 38:3340-3354. [PMID: 30643195 PMCID: PMC6499660 DOI: 10.1038/s41388-018-0646-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
Abstract
Basal subtype cancers are deadly malignancies but the molecular events driving tumor lethality are not completely understood. Ataxia-Telangiectasia Group D Complementing gene (ATDC, also known as TRIM29), is highly expressed and drives tumor formation and invasion in human bladder cancers but the factor(s) regulating its expression in bladder cancer are unknown. Molecular subtyping of bladder cancer has identified an aggressive basal subtype which shares molecular features of basal/squamous tumors arising in other organs and is defined by activation of a TP63-driven gene program. Here we demonstrate that ATDC is linked with expression of TP63 and highly expressed in basal bladder cancers. We find that TP63 binds to transcriptional regulatory regions of ATDC and KRT14 directly, increasing their expression, and that ATDC and KRT14 execute a TP63-driven invasive program. In vivo, ATDC is required for TP63-induced bladder tumor invasion and metastasis. These results link TP63 and the basal gene expression program to ATDC and to aggressive tumor behavior. Defining ATDC as a molecular determinant of aggressive, basal cancers may lead to improved biomarkers and therapeutic approaches.
Collapse
|
36
|
Yanagi T, Watanabe M, Hata H, Kitamura S, Imafuku K, Yanagi H, Homma A, Wang L, Takahashi H, Shimizu H, Hatakeyama S. Loss of TRIM29 Alters Keratin Distribution to Promote Cell Invasion in Squamous Cell Carcinoma. Cancer Res 2018; 78:6795-6806. [PMID: 30389700 DOI: 10.1158/0008-5472.can-18-1495] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/28/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
: TRIM29 (tripartite motif-containing protein 29) is a TRIM family protein that has been implicated in breast, colorectal, and pancreatic cancers. However, its role in stratified squamous epithelial cells and tumors has not been elucidated. Here, we investigate the expression of TRIM29 in cutaneous head and neck squamous cell carcinomas (SCC) and its functions in the tumorigenesis of such cancers. TRIM29 expression was lower in malignant SCC lesions than in adjacent normal epithelial tissue or benign tumors. Lower expression of TRIM29 was associated with higher SCC invasiveness. Primary tumors of cutaneous SCC showed aberrant hypermethylation of TRIM29. Depletion of TRIM29 increased cancer cell migration and invasion; conversely, overexpression of TRIM29 suppressed these. Comprehensive proteomics and immunoprecipitation analyses identified keratins and keratin-interacting protein FAM83H as TRIM29 interactors. Knockdown of TRIM29 led to ectopic keratin localization of keratinocytes. In primary tumors, lower TRIM29 expression correlated with the altered expression of keratins. Our findings reveal an unexpected role for TRIM29 in regulating the distribution of keratins, as well as in the migration and invasion of SCC. They also suggest that the TRIM29-keratin axis could serve as a diagnostic and prognostic marker in stratified epithelial tumors and may provide a target for SCC therapeutics. SIGNIFICANCE: These findings identify TRIM29 as a novel diagnostic and prognostic marker in stratified epithelial tissues.
Collapse
Affiliation(s)
- Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroo Hata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroko Yanagi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
37
|
Wang Y, Day ML, Simeone DM, Palmbos PL. 3-D Cell Culture System for Studying Invasion and Evaluating Therapeutics in Bladder Cancer. J Vis Exp 2018. [PMID: 30272657 DOI: 10.3791/58345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a significant health problem. It is estimated that more than 16,000 people will die this year in the United States from bladder cancer. While 75% of bladder cancers are non-invasive and unlikely to metastasize, about 25% progress to an invasive growth pattern. Up to half of the patients with invasive cancers will develop lethal metastatic relapse. Thus, understanding the mechanism of invasive progression in bladder cancer is crucial to predict patient outcomes and prevent lethal metastases. In this article, we present a three-dimensional cancer invasion model which allows incorporation of tumor cells and stromal components to mimic in vivo conditions occurring in the bladder tumor microenvironment. This model provides the opportunity to observe the invasive process in real time using time-lapse imaging, interrogate the molecular pathways involved using confocal immunofluorescent imaging and screen compounds with the potential to block invasion. While this protocol focuses on bladder cancer, it is likely that similar methods could be used to examine invasion and motility in other tumor types as well.
Collapse
Affiliation(s)
- Yin Wang
- Departments of Internal Medicine, Hematology/Oncology Division, Rogel Cancer Center, University of Michigan Medical Center
| | - Mark L Day
- Department of Urology, Division of GU Oncology, Rogel Cancer Center, University of Michigan Medical Center
| | - Diane M Simeone
- Departments of Surgery and Pathology, Perlmutter Cancer Center, NYU Langone Health
| | - Phillip L Palmbos
- Departments of Internal Medicine, Hematology/Oncology Division, Rogel Cancer Center, University of Michigan Medical Center;
| |
Collapse
|
38
|
Wei WS, Chen X, Guo LY, Li XD, Deng MH, Yuan GJ, He LY, Li YH, Zhang ZL, Jiang LJ, Chen RX, Ma XD, Wei S, Ma NF, Liu ZW, Luo JH, Zhou FJ, Xie D. TRIM65 supports bladder urothelial carcinoma cell aggressiveness by promoting ANXA2 ubiquitination and degradation. Cancer Lett 2018; 435:10-22. [PMID: 30075204 DOI: 10.1016/j.canlet.2018.07.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
Abstract
Clinically, most of human urothelial carcinoma of the bladder (UCB)-related deaths result from tumor metastasis, but the underlying molecular mechanisms are largely unknown. Recently, a growing number of tripartite motif (TRIM) family members have been suggested to be important regulators for tumorigenesis. However, the impact of most TRIM members on UCB pathogenesis is unclear. In this study, TRIM65 was first screened as an important oncogenic factor of UCB from the Cancer Genome Atlas (TCGA) database and was validated by a large cohort of clinical UCB tissues. By in vitro and in vivo experiments, we demonstrated that TRIM65 promotes UCB cell invasive and metastatic capacities. Notably, we showed that TRIM65 modulates cytoskeleton rearrangement and induces UCB cells epithelial-mesenchymal transition by the ubiquitination of ANXA2, ultimately leading to an enhanced invasiveness of UCB cells. Importantly, UCBs with high expression of TRIM65 and low expression of ANXA2 showed the poorest outcome. Collectively, our results suggest that the overexpression of TRIM65 has an essential oncogenic role via ubiquitination of ANXA2 in UCB pathogenesis, and that such could be used as a novel prognostic marker and/or therapeutic target for UCB.
Collapse
Affiliation(s)
- Wen-Su Wei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Xin Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Li-Yi Guo
- Department of Oncology, The Sixth People's Hospital of Huizhou, Huiyang, Guangdong, China
| | - Xiang-Dong Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Ming-Hui Deng
- Department of Oncology, The Sixth People's Hospital of Huizhou, Huiyang, Guangdong, China
| | - Gang-Jun Yuan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Le-Ye He
- Department of Urology, Xiangya Third Hospital, No. 106, 2nd Zhongshan Road, Changsha, China
| | - Yong-Hong Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Zhi-Lin Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Li-Juan Jiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Ri-Xin Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Xiao-Dan Ma
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Shi Wei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning-Fang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhuo-Wei Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.
| | - Dan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Cencer for Cancer Medicine, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Li F, Liang J, Bai L. MicroRNA-449a functions as a tumor suppressor in pancreatic cancer by the epigenetic regulation of ATDC expression. Biomed Pharmacother 2018; 103:782-789. [DOI: 10.1016/j.biopha.2018.04.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
|
40
|
A Panel of MicroRNA Signature as a Tool for Predicting Survival of Patients with Urothelial Carcinoma of the Bladder. DISEASE MARKERS 2018; 2018:5468672. [PMID: 30026881 PMCID: PMC6031086 DOI: 10.1155/2018/5468672] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
Abstract
Introduction and Objectives MicroRNA (miRNA) expression is altered in urologic malignancies, including urothelial carcinoma of the bladder (UCB). Individual miRNAs have been shown to modulate multiple signaling pathways that contribute to BC. To identify a panel of miRNA signature that can predict aggressive phenotype from normal nonaggressive counterpart using miRNA expression levels and to assess the prognostic value of this specific miRNA markers in patients with UCB. Methods To determine candidate miRNAs as prognostic biomarkers for dividing aggressive type of UCB, miRNA expression was profiled in patients' samples with an aggressive phenotype or nonaggressive phenotype using 3D-Gene miRNA labeling kit (Toray, Japan). To create a prognostic index model, we used the panel of 9-miRNA signature based on Cancer Genome Atlas (TCGA) data portal (TCGA Data Portal (https://tcgadata.nci.nih.gov/tcga/tcgaHome2.jsp)). miRNA expression data and corresponding clinical data, including outcome and staging information of 84 UCB patients, were obtained. The Kaplan-Meier and log-rank test were performed to quantify the survival functions in two groups. Results Deregulation of nine miRNAs (hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-145-5p, hsa-miR-4324, hsa-miR-34b-5p, hsa-miR-29c-3p, hsa-miR-135a-3p, and hsa-miR-33b-3p) was determined in UCB patients with aggressive phenotype compared with nonaggressive subject. To validate the prognostic power of the nine-signature miRNAs using the TCGA dataset of bladder cancer, the survival status and tumor miRNA expression of all 84 TCGA UCB patients were ranked according to the prognostic score values. Of nine miRNAs, six were associated with high risk (hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-4324, hsa-miR-34b-5p, and hsa-miR-135a-3p) and three were shown to be protective (hsa-miR-145-5p, hsa-miR-29c-3p, and hsa-miR-33b-3p). Patients with the high-risk miRNA signature exhibited poorer OS than patients expressing the low-risk miRNA profile (HR = 7.05, p < 0.001). Conclusions The miRNA array identified nine dysregulated miRNAs from clinical samples. This panel of nine-miRNA signature provides predictive and prognostic value of patients with UCB.
Collapse
|
41
|
Xing J, Zhang A, Minze LJ, Li XC, Zhang Z. TRIM29 Negatively Regulates the Type I IFN Production in Response to RNA Virus. THE JOURNAL OF IMMUNOLOGY 2018; 201:183-192. [PMID: 29769269 DOI: 10.4049/jimmunol.1701569] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022]
Abstract
The innate immunity is critically important in protection against virus infections, and in the case of RNA viral infections, the signaling mechanisms that initiate robust protective innate immunity without triggering autoimmune inflammation remain incompletely defined. In this study, we found the E3 ligase TRIM29 was specifically expressed in poly I:C-stimulated human myeloid dendritic cells. The induced TRIM29 played a negative role in type I IFN production in response to poly I:C or dsRNA virus reovirus infection. Importantly, the challenge of wild-type mice with reovirus led to lethal infection. In contrast, deletion of TRIM29 protected the mice from this developing lethality. Additionally, TRIM29-/- mice have lower titers of reovirus in the heart, intestine, spleen, liver, and brain because of elevated production of type I IFN. Mechanistically, TRIM29 was shown to interact with MAVS and subsequently induce its K11-linked ubiquitination and degradation. Taken together, TRIM29 regulates negatively the host innate immune response to RNA virus, which could be employed by RNA viruses for viral pathogenesis.
Collapse
Affiliation(s)
- Junji Xing
- Department of Surgery, Houston Methodist, Houston, TX 77030.,Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX 77030
| | - Ao Zhang
- Department of Surgery, Houston Methodist, Houston, TX 77030.,Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX 77030.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; and
| | - Laurie J Minze
- Department of Surgery, Houston Methodist, Houston, TX 77030.,Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX 77030
| | - Xian Chang Li
- Department of Surgery, Houston Methodist, Houston, TX 77030.,Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX 77030.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065
| | - Zhiqiang Zhang
- Department of Surgery, Houston Methodist, Houston, TX 77030; .,Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX 77030.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
42
|
Li W, Yi J, Zheng X, Liu S, Fu W, Ren L, Li L, Hoon DSB, Wang J, Du G. miR-29c plays a suppressive role in breast cancer by targeting the TIMP3/STAT1/FOXO1 pathway. Clin Epigenetics 2018; 10:64. [PMID: 29796115 PMCID: PMC5956756 DOI: 10.1186/s13148-018-0495-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background miR-29c has been associated with the progression of many cancers. However, the function and mechanism of miR-29c have not been well investigated in breast cancers. Methods Real-time quantitative PCR was used to assess expression of miR-29c and DNMT3B mRNA. Western blot and immunochemistry were used to examine the expression of DNA methyltransferase 3B (DNMT3B) protein in breast cancer cells and tissues. The functional roles of miR-29c in breast cancer cells such as proliferation, migration, invasion, colony formation, and 3D growth were evaluated using MTT, transwell chambers, soft agar, and 3D Matrigel culture, respectively. In addition, the luciferase reporter assay was used to check if miR-29c binds the 3'UTR of DNMT3B. The effects of miR-29c on the DNMT3B/TIMP3/STAT1/FOXO1 pathway were also examined using Western blot and methyl-specific qPCR. The specific inhibitor of STAT1, fludarabine, was used to further check the mechanism of miR-29c function in breast cancer cells. Studies on cell functions were carried out in DNMT3B siRNA cell lines. Results The expression of miR-29c was decreased with the progression of breast cancers and was closely associated with an overall survival rate of patients. Overexpression of miR-29c inhibited the proliferation, migration, invasion, colony formation, and growth in 3D Matrigel while knockdown of miR-29c promoted these processes in breast cancer cells. In addition, miR-29c was found to bind 3'UTR of DNMT3B and inhibits the expression of DNMT3B, which was elevated in breast cancers. Moreover, the protein level of TIMP3 was reduced whereas methylation of TIMP3 was increased in miR-29c knockdown cells compared to control. On the contrary, the protein level of TIMP3 was increased whereas methylation of TIMP3 was reduced in miR-29c-overexpressing cells compared to control. Knockdown of DNMT3B reduced the proliferation, migration, and invasion of breast cancer cell lines. Finally, our results showed that miR-29c exerted its function in breast cancers by regulating the TIMP3/STAT1/FOXO1 pathway. Conclusion The results suggest that miR-29c plays a significant role in suppressing the progression of breast cancers and that miR-29c may be used as a biomarker of breast cancers.
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, 100730 China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan, 030002 Shanxi China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Li Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI) at Providence Saint John’s Health Center, Santa Monica, CA 90404 USA
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
43
|
Abstract
Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Young Joon Byun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Chen J, Zhou C, Li J, Xiang X, Zhang L, Deng J, Xiong J. miR‑21‑5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int J Mol Med 2018; 41:1855-1866. [PMID: 29393355 PMCID: PMC5810196 DOI: 10.3892/ijmm.2018.3405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Drug resistance and disease recurrence are major obstacles to the effective treatment of cancer, including gastric cancer (GC). However, the mechanisms of drug resistance remain to be fully elucidated. The present study investigated the roles of microRNA (miR)-21-5p in the doxorubicin (DOX) resistance of GC cells and the underlying mechanisms. miR-21-5p expression levels were identified to be inversely correlated with two well-known tumor suppressor genes, phosphatase and tensin homologue and tissue inhibitor of matrix metalloproteinases 3, and were upregulated in GC cell lines in proportion to their degree of resistance. Suppressing miR-21-5p expression partially sensitized SGC7901/DOX cells to DOX, suggesting that knockdown of miR-21-5p expression may be used as a therapeutic strategy to improve GC cell resistance. Importantly, increased miR-21-5p expression levels at diagnosis were correlated with clinicopathological characteristics including advanced stage and poor prognosis, further implying that a relapse of GC may be a consequence of miR-21-5p upregulation, thus providing evidence for the potential utility of miR-21-5p antagonism to sensitize GC cells to DOX chemotherapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
45
|
Zo RB, Long Z. MiR-124-3p suppresses bladder cancer by targeting DNA methyltransferase 3B. J Cell Physiol 2018; 234:464-474. [PMID: 29893409 DOI: 10.1002/jcp.26591] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
Abstract
This study was aimed to uncover the effects of miR-124-3p on bladder cancer (BC) by regulating DNA methyltransferase 3B. The expressions of miR-124-3p and DNMT3B mRNA in BC tissues and cell lines were detected using RT-PCR. The expression of DNMT3B in cells was determined using Western blot and immunohistochemistry in tissues. In addition, chromogenic in situ hybridization staining was used to measure the expression of miR-124-3p in tissues. BC cells were transfected with miR-124-3p mimics, miR-124-3p inhibitors, DNMT3B siRNAs, and DNMT3B cDNAs + miR-124-3p mimics. Subsequently, cell proliferation, apoptosis, migration, and invasion were measured using CCK-8, the cytometry test, wound healing assay, and Transwell assay, respectively. Finally, the relationship between miR-124-3p and DNMT3B was confirmed using dual luciferase reporter gene assay. MiR-124-3p expression was significantly lower and the level of DNMT3B was significantly higher in BC tissues and cell lines compared with the normal controls. MiR-124-3p was verified to target DNMT3B. The transfection of miR-124-3p mimics and DNMT3B siRNAs down-regulated BC cell proliferation, migration, and invasion, as well as induced cell apoptosis; miR-124-3p inhibitors promoted BC cell proliferation, migration, invasion, and reduced cell apoptosis; and the effects of DNMT3B cDNAs can be compromised by miR-124-3p mimics. Thus, we concluded that miR-124-3p could suppress the proliferation, migration, invasion, and promote apoptosis of BC cells by targeting DNMT3B.
Collapse
Affiliation(s)
- Rabah B Zo
- Department of Urology Surgery, Shigatse People's Hospital, Shigatse, Tibet, P.R. China
| | - Ziwen Long
- Department of Urology Surgery, Shigatse People's Hospital, Shigatse, Tibet, P.R. China
- Department of Gastric Cancer and Soft-Tissue Sarcoma Sugery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
46
|
Xu R, Hu J, Zhang T, Jiang C, Wang HY. TRIM29 overexpression is associated with poor prognosis and promotes tumor progression by activating Wnt/β-catenin pathway in cervical cancer. Oncotarget 2017; 7:28579-91. [PMID: 27081037 PMCID: PMC5053747 DOI: 10.18632/oncotarget.8686] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/28/2016] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of TRIM29 has been reported to be involved in tumorigenesis, but the role of TRIM29 in cervical cancer is unclear. In this study, we first examined TRIM29 expression and found that TRIM29 mRNA and protein expression was upregulated in cervical cancer tissues when compared with the matched adjacent cervical tissues. We further detected TRIM29 protein with immunohistochemistry in 150 paraffin-embedded samples from early-stage cervical cancer patients. The results showed that high expression of TRIM29 was significantly associated with pelvic lymph node metastasis (p=0.002), advanced FIGO stage (p=0.026) and post-operative recurrence (p<0.001). Patients with high expression of TRIM29 had a shorter overall survival (HR 5.042, p<0.001) and disease-free survival (HR 4.260, p<0.001). TRIM29 was proven to be an independent prognostic factor for cervical cancer patients. When endogenous TRIM29 expression was knocked down by siRNAs, cell proliferation, colony formation, migration and invasion in cervical cancer cell lines HeLa and SiHa were obviously inhibited. Meanwhile, TRIM29 knockdown increased E-cadherin expression but decreased the expression of N-cadherin and β-Catenin, which indicated that TRIM29 could promote epithelial-mesenchymal transition (EMT). Mechanically, knockdown of TRIM29 enhanced GSK-3β protein expression and inhibited the expression of β-Catenin and C-myc proteins. GSK-3β is a key upstream suppressor of β-Catenin and c-myc expression is an indicator of Wnt/β-Catenin activity. Therefore, these results demonstrate that TRIM29 promotes tumor progression by activating Wnt/β-Catenin signaling. In conclusion, TRIM29 is overexpressed and associated with survival of early-stage cervical cancer, indicating that TRIM29 may be a potential prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jingye Hu
- Department of Basic Medicine, Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Tiansong Zhang
- Gynecology and Obstetrics Department, Women and Children's Medical Center, Guangzhou, China
| | - Chao Jiang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
47
|
Lv M, Zhong Z, Huang M, Tian Q, Jiang R, Chen J. lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:1887-1899. [PMID: 28779971 DOI: 10.1016/j.bbamcr.2017.08.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Accumulating evidences indicate that long noncoding RNAs (lncRNAs) might play important roles in tumorigenesis and metastasis. EMT (epithelial-to-mesenchymal transition) is considered as a critical step in invasion and metastasis of various tumors including bladder cancer (BC). Recent researches have showed that lncRNA H19 is implicated in metastasis through regulating EMT and the reverse MET (mesenchymal-to-epithelial transition). However, underlying mechanisms remain largely unknown. Here, we screened lncRNA and mRNA expression profiles of BC with microarray assay. We found that H19 and DNMT3B displayed a higher co-expression in BC tissues and cells. Functionally, we demonstrated that H19 could increase proliferation, invasion and migration, regulate EMT as well as rearrange cytoskeleton of BC cells in vitro. Moreover, ectopic expression of H19 promoted tumorigenesis, angiogenesis and pulmonary metastasis in vivo, whereas knockdown of H19 has a contrary role in vivo and in vitro. Mechanistically, we proved that H19 could directly bind to miR-29b-3p (miR-29b) and derepress the expression of target DNMT3B. H19 and miR-29b-3p showed a co-localization. More importantly, up-regulating H19 antagonized miR-29b-3p-mediated proliferation, migration and EMT suppression in BC cells. Furthermore, H19 knockdown partially reversed the function of miR-29b-3p inhibitor on DNMT3B and facilitated miR-29b-3p-induced MET. Taken together, we demonstrated for the first time that H19 might function as ceRNA (competing endogenous RNA) for miR-29b-3p and relieve the suppression for DNMT3B, which led to EMT and metastasis of BC. Our findings highlight a novel mechanism of H19 in progression of BC and provide H19/miR-29b-3p/DNMT3B axis as a promising therapeutic target for BC.
Collapse
Affiliation(s)
- Mengxin Lv
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhenyu Zhong
- The First Clinical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengge Huang
- College of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Qiang Tian
- Department of Cell Biology and Genetics, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
48
|
Yang YF, Zhang MF, Tian QH, Zhang CZ. TRIM65 triggers β-catenin signaling via ubiquitylation of Axin1 to promote hepatocellular carcinoma. J Cell Sci 2017; 130:3108-3115. [PMID: 28754688 DOI: 10.1242/jcs.206623] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Deregulation of ubiquitin ligases contributes to the malignant progression of human cancers. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase and has been implicated in human diseases, but its role and clinical significance in hepatocellular carcinoma (HCC) remain unknown. Here, we showed that TRIM65 expression was increased in HCC tissues and associated with poor outcome in two independent cohorts containing 888 patients. In vitro and in vivo data demonstrated that overexpression of TRIM65 promoted cell growth and tumor metastasis, whereas knockdown of TRIM65 resulted in opposite phenotypes. Further studies revealed that TRIM65 exerted oncogenic activities via ubiquitylation of Axin1 to activate the β-catenin signaling pathway. TRIM65 directly bound to Axin1 and accelerated its degradation through ubiquitylation. Furthermore, HMGA1 was identified as an upstream regulator of TRIM65 in HCC cells. In clinical samples, TRIM65 expression was positively correlated with the expression of HMGA1 and nuclear β-catenin. Collectively, our data indicate that TRIM65 functions as an oncogene in HCC. The newly identified HMGA1/TRIM65/β-catenin axis serves as a promising prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Yu-Feng Yang
- Department of Pathology, Dongguan Third People's Hospital, Dongguan, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qiu-Hong Tian
- Department of Oncology, First Affiliated Hospital of NanChang University, NanChang, Jiangxi 330006, China
| | - Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
49
|
Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L, Chen J. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 2017; 403:305-317. [PMID: 28687357 DOI: 10.1016/j.canlet.2017.06.027] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 01/14/2023]
Abstract
Accumulating evidences indicate that circular RNAs (circRNAs) play a vital role in modulating gene expression. However, the mechanisms underlying circRNAs remain largely elusive. Here, we screened circRNA and mRNA expression profiles of bladder carcinoma (BC) using microarray analysis. We found that circRNA-MYLK and VEGFA were significantly up-regulated and co-expressed in BC. Importantly, circRNA-MYLK levels were related to the progression of stage and grade of BC. Mechanistically, we demonstrated that circRNA-MYLK could directly bind to miR-29a and relieve suppression for target VEGFA, which activated VEGFA/VEGFR2 signaling pathway. Functionally, we found that ectopically expressing circRNA-MYLK accelerated cell proliferation, migration, tube formation of HUVEC and rearranged cytoskeleton. Moreover, up-regulating circRNA-MYLK promoted epithelial-mesenchymal transition (EMT). Whereas circRNA-MYLK knockdown decreased cell proliferation, motility, and induced apoptosis. Finally, up-regulating circRNA-MYLK promoted the growth, angiogenesis and metastasis of BC xenografts. Taken together, this study demonstrated for the first time that circRNA-MYLK might function as competing endogenous RNA (ceRNA) for miR-29a, which could contribute to EMT and the development of BC through activating VEGFA/VEGFR2 and downstream Ras/ERK signaling pathway. Our data suggest that circRNA-MYLK would be a promising target for BC diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenyu Zhong
- The First Clinical College, Chongqing Medical University, Chongqing, 400016, PR China
| | - Mengge Huang
- College of Clinical Medicine, Southwest Medical University, Luzhou, 646000, PR China
| | - Mengxin Lv
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yunfeng He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing 400016, PR China
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, Chongqing 400016, PR China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
50
|
Panaccione A, Guo Y, Yarbrough WG, Ivanov SV. Expression Profiling of Clinical Specimens Supports the Existence of Neural Progenitor-Like Stem Cells in Basal Breast Cancers. Clin Breast Cancer 2017; 17:298-306.e7. [PMID: 28216417 DOI: 10.1016/j.clbc.2017.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND We previously characterized in salivary adenoid cystic carcinoma (ACC) a novel population of cancer stem cells (CSCs) marked by coexpression of 2 stemness genes, sex-determining region Y (SRY)-related HMG box-containing factor 10 (SOX10) and CD133. We also reported that in ACC and basal-like breast carcinoma (BBC), a triple-negative breast cancer subtype, expression of SOX10 similarly demarcates a highly conserved gene signature enriched with neural stem cell genes. On the basis of these findings, we hypothesized that BBC might be likewise driven by SOX10-positive (SOX10+)/CD133+ cells with neural stem cell properties. MATERIALS AND METHODS To validate our hypothesis on clinical data, we used a novel approach to meta-analysis that merges gene expression data from independent breast cancer studies and ranks genes according to statistical significance of their coexpression with the gene of interest. Genes that showed strong association with CD133/PROM1 as well as SOX10 were validated across different platforms and data sets and analyzed for enrichment with genes involved in neurogenesis. RESULTS We identified in clinical breast cancer data sets a highly conserved SOX10/PROM1 gene signature that contains neural stem cell markers common for Schwann cells, ACC, BBC, and melanoma. Identification of tripartite motif-containing 2 (TRIM2), TRIM29, MPZL2, potassium calcium-activated channel subfamily N member 4 (KCNN4), and V-set domain containing T cell activation inhibitor 1 (VTCN1)/B7 homolog 4 (B7H4) within this signature provides insight into molecular mechanisms of CSC maintenance. CONCLUSION Our results suggest that BBC is driven by SOX10+/CD133+ cells that express neural stem cell-specific markers and share molecular similarities with CSCs of neural crest origin. Our study provides clinically relevant information on possible drivers of these cells that might facilitate development of CSC-targeting therapies against this cancer distinguished with poor prognosis and resistance to conventional therapies.
Collapse
Affiliation(s)
- Alex Panaccione
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Wendell G Yarbrough
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT; Head and Neck Disease Center, Smilow Cancer Hospital, New Haven, CT; Molecular Virology Program, Yale Cancer Center, New Haven, CT
| | - Sergey V Ivanov
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|