1
|
Chao Y, Jin X, Guo R, Zhang H, Cui X, Qi Y. Characterization of Immune-Related circRNAs and mRNAs in Human Chronic Atrophic Gastritis. J Inflamm Res 2024; 17:8487-8500. [PMID: 39534060 PMCID: PMC11556230 DOI: 10.2147/jir.s472213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Chronic atrophic gastritis (CAG) is a severe condition characterized by inflammation and loss of appropriate mucosal glands in the stomach. The underlying mechanisms of CAG development remain unclear. Exploring immune-related circular RNAs (circRNAs) could provide insights for potential diagnostic and therapeutic strategies. Methods Samples from 40 patients with CAG and non-CAG (CNAG) underwent high-throughput sequencing, and EdgeR analysis identified differentially expressed circRNAs and mRNAs. Gene Ontology (GO) analysis elucidated biological functions, while Immune Cell Abundance Identifier (ImmuCellAI) estimated immune cell abundance. Flow cytometry analyzed immune cell infiltration. Weighted gene co-expression network analysis (WGCNA) identified hub genes related to the immune response in CAG. CircRNA-mRNA networks were constructed, and qRT-PCR validated findings. Results A total of 163 differentially expressed immune-related genes (DEIRGs) were identified between CAG and CNAG. The upregulated immune-related mRNAs in CAG were significantly enriched in antimicrobial humoral response, viral entry into host cells, neutrophil activation, and leukocyte migration. Conversely, downregulated immune-related mRNAs were linked to regulation of natural killer cell-mediated cytotoxicity, positive regulation of adaptive immune response, antigen receptor-mediated signaling pathway, and B cell activation. Immune Cell Abundance Identifier (ImmuCellAI) and flow cytometry confirmed increased neutrophil infiltration in CAG compared to CNAG. WGCNA identified 56 hub immune-related genes. Additionally, circRNA expression profiles in CNAG and CAG were explored, with 19 upregulated and 23 downregulated circRNAs identified in CAG. The upregulated circRNAs were associated with biological processes like carnitine metabolic process and regulation of B cell receptor signaling pathway. A circRNA-mRNA co-expression network was constructed based on five circRNAs highly related to hub immune-related genes. Furthermore, the expression of eight immune-related mRNAs and five circRNAs were validated in CAG. Conclusion This study is the first systematic analysis of circRNA profiles in CAG and provide important insights for potential immunotherapeutic strategies and early diagnostic biomarkers in CAG treatment.
Collapse
Affiliation(s)
- Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiya Jin
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rui Guo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongyu Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Natsume M, Niwa M, Ichikawa S, Okamoto T, Tsutsui H, Usukura D, Murata T, Abe R, Shimonaka M, Nishida T, Shiina I, Obata Y. Brefeldin A and M-COPA block the export of RTKs from the endoplasmic reticulum via simultaneous inactivation of ARF1, ARF4, and ARF5. J Biol Chem 2024; 300:107327. [PMID: 38679330 PMCID: PMC11127164 DOI: 10.1016/j.jbc.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Normal receptor tyrosine kinases (RTKs) need to reach the plasma membrane (PM) for ligand-induced activation, whereas its cancer-causing mutants can be activated before reaching the PM in organelles, such as the Golgi/trans-Golgi network (TGN). Inhibitors of protein export from the endoplasmic reticulum (ER), such as brefeldin A (BFA) and 2-methylcoprophilinamide (M-COPA), can suppress the activation of mutant RTKs in cancer cells, suggesting that RTK mutants cannot initiate signaling in the ER. BFA and M-COPA block the function of ADP-ribosylation factors (ARFs) that play a crucial role in ER-Golgi protein trafficking. However, among ARF family proteins, the specific ARFs inhibited by BFA or M-COPA, that is, the ARFs involved in RTKs transport from the ER, remain unclear. In this study, we showed that M-COPA blocked the export of not only KIT but also PDGFRA/EGFR/MET RTKs from the ER. ER-retained RTKs could not fully transduce anti-apoptotic signals, thereby leading to cancer cell apoptosis. Moreover, a single knockdown of ARF1, ARF3, ARF4, ARF5, or ARF6 could not block ER export of RTKs, indicating that BFA/M-COPA treatment cannot be mimicked by the knockdown of only one ARF member. Interestingly, simultaneous transfection of ARF1, ARF4, and ARF5 siRNAs mirrored the effect of BFA/M-COPA treatment. Consistent with these results, in vitro pulldown assays showed that BFA/M-COPA blocked the function of ARF1, ARF4, and ARF5. Taken together, these results suggest that BFA/M-COPA targets at least ARF1, ARF4, and ARF5; in other words, RTKs require the simultaneous activation of ARF1, ARF4, and ARF5 for their ER export.
Collapse
Affiliation(s)
- Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Mariko Niwa
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Sho Ichikawa
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takuma Okamoto
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Hisazumi Tsutsui
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Daiki Usukura
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Murata
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba, Japan
| | - Motoyuki Shimonaka
- Faculty of Science, Department of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, Tokyo, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Isamu Shiina
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Qiao L, Sinha S, Abd El‐Hafeez AA, Lo I, Midde KK, Ngo T, Aznar N, Lopez‐Sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells. Mol Syst Biol 2023; 19:e11127. [PMID: 36856068 PMCID: PMC10090951 DOI: 10.15252/msb.202211127] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Amer Ali Abd El‐Hafeez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Present address:
Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer InstituteCairo UniversityCairoEgypt
| | - I‐Chung Lo
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Krishna K Midde
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of California San DiegoLa JollaCAUSA
| | - Nicolas Aznar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Inmaculada Lopez‐Sanchez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Vijay Gupta
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Marilyn G Farquhar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Moores Comprehensive Cancer CenterUniversity of California San DiegoLa JollaCAUSA
- Department of Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Veterans Affairs Medical CenterLa JollaCAUSA
| |
Collapse
|
5
|
Khine MN, Sakurai K. Golgi-Targeting Anticancer Natural Products. Cancers (Basel) 2023; 15:cancers15072086. [PMID: 37046746 PMCID: PMC10093635 DOI: 10.3390/cancers15072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023] Open
Abstract
The Golgi apparatus plays an important role in maintaining cell homeostasis by serving as a biosynthetic center for glycans, lipids and post-translationally modified proteins and as a sorting center for vesicular transport of proteins to specific destinations. Moreover, it provides a signaling hub that facilitates not only membrane trafficking processes but also cellular response pathways to various types of stresses. Altered signaling at the Golgi apparatus has emerged as a key regulator of tumor growth and survival. Among the small molecules that can specifically perturb or modulate Golgi proteins and organization, natural products with anticancer property have been identified as powerful chemical probes in deciphering Golgi-related pathways and, in particular, recently described Golgi stress response pathways. In this review, we highlight a set of Golgi-targeting natural products that enabled the characterization of the Golgi-mediated signaling events leading to cancer cell death and discuss the potential for selectively exploiting these pathways for the development of novel chemotherapeutic agents.
Collapse
|
6
|
Saraon P, Snider J, Schormann W, Rai A, Radulovich N, Sánchez-Osuna M, Coulombe-Huntington J, Huard C, Mohammed M, Lima-Fernandes E, Thériault B, Halabelian L, Chan M, Joshi D, Drecun L, Yao Z, Pathmanathan S, Wong V, Lyakisheva A, Aboualizadeh F, Niu L, Li F, Kiyota T, Subramanian R, Joseph B, Aman A, Prakesch M, Isaac M, Mamai A, Poda G, Vedadi M, Marcellus R, Uehling D, Leighl N, Sacher A, Samaržija M, Jakopović M, Arrowsmith C, Tyers M, Tsao MS, Andrews D, Al-Awar R, Stagljar I. Chemical Genetics Screen Identifies COPB2 Tool Compounds That Alters ER Stress Response and Induces RTK Dysregulation in Lung Cancer Cells. J Mol Biol 2021; 433:167294. [PMID: 34662547 DOI: 10.1016/j.jmb.2021.167294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.
Collapse
Affiliation(s)
- Punit Saraon
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada.
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Wiebke Schormann
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Maria Sánchez-Osuna
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Mohammed Mohammed
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | | | - Brigitte Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Manuel Chan
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Dhananjay Joshi
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Shivanthy Pathmanathan
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Ontario, Canada
| | | | | | - Li Niu
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | | | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Ahmed Mamai
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada; University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Miroslav Samaržija
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada.
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Ontario, Canada; Mediterranean Institute for Life Sciences, Split, Croatia; School of Medicine, University of Split, Split, Croatia.
| |
Collapse
|
7
|
Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene 2021; 40:4079-4093. [PMID: 34079087 DOI: 10.1038/s41388-021-01841-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease, notably cancer. Since their discovery, several mechanisms of RTK dysregulation have been identified, resulting in multiple cancer types displaying 'oncogenic addiction' to RTKs. As a result, RTKs have represented a major class for targeted therapeutics over the past two decades, with numerous small molecule-based tyrosine kinase inhibitor (TKI) therapeutics having been developed and clinically approved for several cancers. However, many of the current RTK inhibitor treatments eventually result in the rapid development of acquired resistance and subsequent tumor relapse. Recent technological advances and tools are being generated for the identification of novel RTK small molecule therapeutics. These newer technologies will be important for the identification of diverse types of RTK inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.
Collapse
|
8
|
Autophagy Induction by Trichodermic Acid Attenuates Endoplasmic Reticulum Stress-Mediated Apoptosis in Colon Cancer Cells. Int J Mol Sci 2021; 22:ijms22115566. [PMID: 34070303 PMCID: PMC8197497 DOI: 10.3390/ijms22115566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading malignant tumor in the world, which has high morbidity and mortality. In this study we found that trichodermic acid (TDA), a secondary metabolite isolated from the plant endophytic fungus Penicillium ochrochloronthe with a variety of biological and pharmacological activities, exhibited the antitumor effects on colorectal cancer cells in vitro and in vivo. Our results showed that TDA inhibited the proliferation of colon cancer cells in a dose-dependent manner. TDA induces sustained endoplasmic reticulum stress, which triggers apoptosis through IRE1α/XBP1 and PERK/ATF4/CHOP pathways. In addition, we found that TDA mediated endoplasmic reticulum stress also induces autophagy as a protective mechanism. Moreover, combined treatment of TDA with autophagy inhibitors significantly enhanced its anticancer effect. In conclusion, our results indicated that TDA can induce ER stress and autophagy mediated apoptosis, suggesting that targeting ER stress and autophagy may be an effective strategy for the treatment of CRC.
Collapse
|
9
|
Qiao L, Sinha S, El-hafeez AAA, Lo I, Midde KK, Ngo T, Aznar N, Lopez-sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A Circuit for Secretion-coupled Cellular Autonomy in Multicellular Eukaryotes.. [DOI: 10.1101/2021.03.18.436048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTCancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell’s ability to ‘secrete-and-sense’ growth factors: a poorly understood phenomenon. Using an integrated systems and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control (CLC), allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint growth factors (e.g., the epidermal growth factor; EGF) as a key stimuli for such self-sustenance. Findings highlight how enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.SYNOPSIS IMAGESTANDFIRST TEXTThis work defines the inner workings of a Golgi-localized molecular circuitry comprised of coupled GTPases, which empowers cells to achieve self-sufficiency in growth factor signaling by creating a secrete-and-sense autocrine loop.HIGHLIGHTS/MAIN FINDINGSModeling and experimental approaches were used to dissect a coupled GTPase circuit.Coupling enables closed loop feedback and mutual control of GTPases.Coupling generates dose response alignment behavior of sensing and secretion of growth factors.Coupling is critical for multiscale feedback control to achieve secretion-coupled autonomy.
Collapse
|
10
|
Xu B, Muramatsu T, Inazawa J. Suppression of MET Signaling Mediated by Pitavastatin and Capmatinib Inhibits Oral and Esophageal Cancer Cell Growth. Mol Cancer Res 2020; 19:585-597. [PMID: 33443139 DOI: 10.1158/1541-7786.mcr-20-0688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Despite increasing knowledge on oral and esophageal squamous cell carcinoma (OSCC and ESCC), specific medicines against both have not yet been developed. Here, we aimed to find novel anticancer drugs through functional cell-based screening of an FDA-approved drug library against OSCC and ESCC. Pitavastatin, an HMGCR inhibitor, emerged as an anticancer drug that inhibits tumor growth by downregulating AKT and ERK signals in OSCC and ESCC cells. One of the mechanisms by which pitavastatin inhibits cell growth might be the suppression of MET signaling through immature MET due to dysfunction of the Golgi apparatus. Moreover, the sensitivity of tumor growth to pitavastatin might be correlated with GGPS1 expression levels. In vivo therapeutic models revealed that the combination of pitavastatin with capmatinib, a MET-specific inhibitor, dramatically reduced tumor growth. Our findings suggest that GGPS1 expression could be a biomarker in cancer therapy with pitavastatin, and the combination of pitavastatin with capmatinib might be a promising therapeutic strategy in OSCC and ESCC. IMPLICATIONS: This study provides new insight into the mechanism of pitavastatin as an anticancer drug and suggests that the combination of pitavastatin with capmatinib is a useful therapeutic strategy in OSCC and ESCC.
Collapse
Affiliation(s)
- Bo Xu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Laboratory for Integrated Research Projects on Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
11
|
Gu ML, Zhou XX, Ren MT, Shi KD, Yu MS, Jiao WR, Wang YM, Zhong WX, Ji F. Blockage of ETS homologous factor inhibits the proliferation and invasion of gastric cancer cells through the c-Met pathway. World J Gastroenterol 2020; 26:7497-7512. [PMID: 33384550 PMCID: PMC7754554 DOI: 10.3748/wjg.v26.i47.7497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency, but its exact pathogenesis has not been fully elucidated. ETS homologous factor (EHF) is an important member of the ETS family and contributes to the pathogenesis of multiple malignant tumors. To date, whether EHF participates in the development of GC via the c-Met signaling pathway remains unclear.
AIM To investigate the role and mechanism of EHF in the occurrence and development of GC.
METHODS The expression of EHF mRNA in GC tissues and cell lines was measured by quantitative PCR. Western blotting was performed to determine the protein expression of EHF, c-Met, and its downstream signal molecules. The EHF expression in GC tissues was further detected by immunohistochemical staining. To investigate the role of EHF in GC oncogenesis, small interfering RNA (siRNA) against EHF was transfected into GC cells. The cell proliferation of GC cells was determined by Cell Counting Kit-8 and colony formation assays. Flow cytometry was performed following Annexin V/propidium iodide (PI) to identify apoptotic cells and PI staining to analyze the cell cycle. Cell migration and invasion were assessed by transwell assays.
RESULTS The data showed that EHF was upregulated in GC tissues and cell lines in which increased expression of c-Met was also observed. Silencing of EHF by siRNA reduced the proliferation of GC cells. Inhibition of EHF induced significant apoptosis and cell cycle arrest in GC cells. Cell migration and invasion were significantly inhibited. EHF silencing led to c-Met downregulation and further blocked the Ras/c-Raf/extracellular signal-related kinase 1/2 (Erk1/2) pathway. Additionally, phosphatase and tensin homolog was upregulated and glycogen synthase kinase 3 beta was deactivated. Moreover, inactivation of signal transducer and activator of transcription 3 was detected following EHF inhibition, leading to inhibition of the epithelial-to-mesenchymal transition (EMT).
CONCLUSION These results suggest that EHF plays a key role in cell proliferation, invasion, apoptosis, the cell cycle and EMT via the c-Met pathway. Therefore, EHF may serve as an antineoplastic target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Meng-Li Gu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Ting Ren
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ke-Da Shi
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Rui Jiao
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ya-Mei Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China
| | - Wei-Xiang Zhong
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
12
|
Detection of the in vitro modulation of Plasmodium falciparum Arf1 by Sec7 and ArfGAP domains using a colorimetric plate-based assay. Sci Rep 2020; 10:4193. [PMID: 32144363 PMCID: PMC7061341 DOI: 10.1038/s41598-020-61101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated. In this study, we established an in vitro colorimetric microtiter plate-based assay to detect the activation status of truncated human and P. falciparum Arf1 and used it to demonstrate the activation of both proteins by the Sec7 domain of ARNO, their deactivation by the GAP domain of human ArfGAP1 and the inhibition of the respective reactions by the compounds SecinH3 and QS11. In addition, we found that the GAP domains of both P. falciparum ArfGAPs have activities equivalent to that of human ArfGAP1, but are insensitive to QS11. Library screening identified a novel inhibitor which selectively inhibits one of the P. falciparum GAP domains (IC50 4.7 µM), suggesting that the assay format is suitable for screening compound collections for inhibitors of Arf1 regulatory proteins.
Collapse
|
13
|
Anania MC, Di Marco T, Mazzoni M, Greco A. Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12010129. [PMID: 31947935 PMCID: PMC7017043 DOI: 10.3390/cancers12010129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.
Collapse
|
14
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
15
|
HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis 2018; 9:867. [PMID: 30158543 PMCID: PMC6115420 DOI: 10.1038/s41419-018-0922-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are important components of tumor stroma and play a key role in tumor progression. CAFs involve in crosstalk with tumor cells through various kinds of cytokines. In the present study, we screened hepatocyte growth factor (HGF) as a cytokine predominantly originating from CAFs. CAFs-derived HGF was found to promote MET-unamplified gastric cancer (GC) proliferation, migration, and invasion through the activation of HGF/c-Met/STAT3/twist1 pathway. It also activated interleukin (IL)-6/IL-6R/JAK2/STAT3/twist1 pathway by up-regulating IL-6R expression. As IL-6 was also found to upregulate c-Met expression, we identified the cooperation of HGF and IL-6 in enhancing the characteristics of CAFs. In vivo experiments revealed that CAFs-derived HGF promoted tumorigenesis and metastasis of MET-unamplified GC. Gene set enrichment analysis (GSEA) was performed to confirm our findings. Our study found that the increased expression of HGF in CAFs induced by MET-unamplified GC contributed to the malignant phenotype of both MET-unamplified GC and CAFs in tumor microenvironment.
Collapse
|
16
|
Luchsinger C, Aguilar M, Burgos PV, Ehrenfeld P, Mardones GA. Functional disruption of the Golgi apparatus protein ARF1 sensitizes MDA-MB-231 breast cancer cells to the antitumor drugs Actinomycin D and Vinblastine through ERK and AKT signaling. PLoS One 2018; 13:e0195401. [PMID: 29614107 PMCID: PMC5882166 DOI: 10.1371/journal.pone.0195401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the Golgi apparatus plays active roles in cancer, but a comprehensive understanding of its functions in the oncogenic transformation has not yet emerged. At the same time, the Golgi is becoming well recognized as a hub that integrates its functions of protein and lipid biosynthesis to signal transduction for cell proliferation and migration in cancer cells. Nevertheless, the active function of the Golgi apparatus in cancer cells has not been fully evaluated as a target for combined treatment. Here, we analyzed the effect of perturbing the Golgi apparatus on the sensitivity of the MDA-MB-231 breast cancer cell line to the drugs Actinomycin D and Vinblastine. We disrupted the function of ARF1, a protein necessary for the homeostasis of the Golgi apparatus. We found that the expression of the ARF1-Q71L mutant increased the sensitivity of MDA-MB-231 cells to both Actinomycin D and Vinblastine, resulting in decreased cell proliferation and cell migration, as well as in increased apoptosis. Likewise, the combined treatment of cells with Actinomycin D or Vinblastine and Brefeldin A or Golgicide A, two disrupting agents of the ARF1 function, resulted in similar effects on cell proliferation, cell migration and apoptosis. Interestingly, each combined treatment had distinct effects on ERK1/2 and AKT signaling, as indicated by the decreased levels of either phospho-ERK1/2 or phospho-AKT. Our results suggest that disruption of Golgi function could be used as a strategy for the sensitization of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Aguilar
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Center for Cell Biology and Biomedicine (CEBICEM), School of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Department of Anatomy, Histology and Pathology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Center for Cell Biology and Biomedicine (CEBICEM), School of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- * E-mail:
| |
Collapse
|
17
|
Zappa F, Failli M, De Matteis MA. The Golgi complex in disease and therapy. Curr Opin Cell Biol 2018; 50:102-116. [PMID: 29614425 DOI: 10.1016/j.ceb.2018.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
The Golgi complex occupies a strategic position in the endomembrane system and acts not only as a key trafficking and sorting station and a vital biosynthetic center for glycoproteins and lipids, but also as an active signaling hub. As such, the Golgi complex participates in the establishment and maintenance of cell compartmentalization and in general, cell processes such as cell growth and apoptosis. The different functions of the Golgi complex are executed by composite molecular machineries that have been exhaustively dissected over the last three decades. These machineries can become dysfunctional as a result of mutations in the respective encoding genes or may be hijacked by infectious agents or misregulated in the course of multifactorial diseases such as neurodegeneration and cancer. Small molecules targeting components of these machineries have been instrumental in dissecting their functions in in vitro studies and some of them have been developed or are currently under development for clinical use.
Collapse
Affiliation(s)
- Francesca Zappa
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Mario Failli
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.
| |
Collapse
|
18
|
Ohashi Y, Okamura M, Katayama R, Fang S, Tsutsui S, Akatsuka A, Shan M, Choi HW, Fujita N, Yoshimatsu K, Shiina I, Yamori T, Dan S. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget 2017; 9:1641-1655. [PMID: 29416720 PMCID: PMC5788588 DOI: 10.18632/oncotarget.22895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression.
Collapse
Affiliation(s)
- Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mutsumi Okamura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siyang Fang
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Saki Tsutsui
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akinobu Akatsuka
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mingde Shan
- Eisai AiM Institute, Eisai Inc., Andover, MA, USA
| | | | - Naoya Fujita
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Present address: Center for Product Evaluation, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
19
|
Obata Y, Horikawa K, Shiina I, Takahashi T, Murata T, Tasaki Y, Suzuki K, Yonekura K, Esumi H, Nishida T, Abe R. Oncogenic Kit signalling on the Golgi is suppressed by blocking secretory trafficking with M-COPA in gastrointestinal stromal tumours. Cancer Lett 2017; 415:1-10. [PMID: 29196126 DOI: 10.1016/j.canlet.2017.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023]
Abstract
Most gastrointestinal stromal tumours (GISTs) are caused by constitutively active mutations in Kit tyrosine kinase. The drug imatinib, a specific Kit inhibitor, improves the prognosis of metastatic GIST patients, but these patients become resistant to the drug by acquiring secondary mutations in the Kit kinase domain. We recently reported that a Kit mutant causes oncogenic signals only on the Golgi apparatus in GISTs. In this study, we show that in GIST, 2-methylcoprophilinamide (M-COPA, also known as "AMF-26"), an inhibitor of biosynthetic protein trafficking from the endoplasmic reticulum (ER) to the Golgi, suppresses Kit autophosphorylation at Y703/Y721/Y730/Y936, resulting in blockade of oncogenic signalling. Results of our M-COPA treatment assay show that Kit Y703/Y730/Y936 in the ER are dephosphorylated by protein tyrosine phosphatases (PTPs), thus the ER-retained Kit is unable to activate downstream molecules. ER-localized Kit Y721 is not phosphorylated, but not due to PTPs. Importantly, M-COPA can inhibit the activation of the Kit kinase domain mutant, resulting in suppression of imatinib-resistant GIST proliferation. Our study demonstrates that Kit autophosphorylation is spatio-temporally regulated and may offer a new strategy for treating imatinib-resistant GISTs.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Keita Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Keita Yonekura
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Hiroyasu Esumi
- Division of Clinical Research, Research Institute for Biomedical Sciences, Tokyo, University of Science, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan.
| |
Collapse
|
20
|
Benabdi S, Peurois F, Nawrotek A, Chikireddy J, Cañeque T, Yamori T, Shiina I, Ohashi Y, Dan S, Rodriguez R, Cherfils J, Zeghouf M. Family-wide Analysis of the Inhibition of Arf Guanine Nucleotide Exchange Factors with Small Molecules: Evidence of Unique Inhibitory Profiles. Biochemistry 2017; 56:5125-5133. [PMID: 28858527 DOI: 10.1021/acs.biochem.7b00706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arf GTPases and their guanine nucleotide exchange factors (ArfGEFs) are major regulators of membrane traffic and organelle structure in cells. They are associated with a variety of diseases and are thus attractive therapeutic targets for inhibition by small molecules. Several inhibitors of unrelated chemical structures have been discovered, which have shown their potential in dissecting molecular pathways and blocking disease-related functions. However, their specificity across the ArfGEF family has remained elusive. Importantly, inhibitory responses in the context of membranes, which are critical determinants of Arf and ArfGEF cellular functions, have not been investigated. Here, we compare the efficiency and specificity of four structurally distinct ArfGEF inhibitors, Brefeldin A, SecinH3, M-COPA, and NAV-2729, toward six ArfGEFs (human ARNO, EFA6, BIG1, and BRAG2 and Legionella and Rickettsia RalF). Inhibition was assessed by fluorescence kinetics using pure proteins, and its modulation by membranes was determined with lipidated GTPases in the presence of liposomes. Our analysis shows that despite the intra-ArfGEF family resemblance, each inhibitor has a specific inhibitory profile. Notably, M-COPA is a potent pan-ArfGEF inhibitor, and NAV-2729 inhibits all GEFs, the strongest effects being against BRAG2 and Arf1. Furthermore, the presence of the membrane-binding domain in Legionella RalF reveals a strong inhibitory effect of BFA that is not measured on its GEF domain alone. This study demonstrates the value of family-wide assays with incorporation of membranes, and it should enable accurate dissection of Arf pathways by these inhibitors to best guide their use and development as therapeutic agents.
Collapse
Affiliation(s)
- Sarah Benabdi
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay , 61 avenue du président Wilson, 94235 Cachan, France
| | - François Peurois
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay , 61 avenue du président Wilson, 94235 Cachan, France
| | - Agata Nawrotek
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay , 61 avenue du président Wilson, 94235 Cachan, France
| | - Jahnavi Chikireddy
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay , 61 avenue du président Wilson, 94235 Cachan, France
| | - Tatiana Cañeque
- Institut Curie, PSL Research University , Chemical Cell Biology group, 26 rue d'Ulm, 75248 Paris Cedex 05, France.,CNRS UMR3666 , 75005 Paris, France.,INSERM U1143 , 75005 Paris, France
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research , Tokyo 135-8550, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , Tokyo 162-8601, Japan
| | - Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research , Tokyo 135-8550, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research , Tokyo 135-8550, Japan
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University , Chemical Cell Biology group, 26 rue d'Ulm, 75248 Paris Cedex 05, France.,CNRS UMR3666 , 75005 Paris, France.,INSERM U1143 , 75005 Paris, France
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay , 61 avenue du président Wilson, 94235 Cachan, France
| | - Mahel Zeghouf
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay , 61 avenue du président Wilson, 94235 Cachan, France
| |
Collapse
|
21
|
Zhao LY, Tong DD, Xue M, Ma HL, Liu SY, Yang J, Liu YX, Guo B, Ni L, Liu LY, Qin YN, Wang LM, Zhao XG, Huang C. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis 2017; 6:e368. [PMID: 28759023 PMCID: PMC5541712 DOI: 10.1038/oncsis.2017.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is involved in the carcinogenesis and progression of multiple types of cancer. However, its precise role in gastric cancer (GC) and the relevant molecular mechanism remain unknown. In the present study, we found that miR-638 levels were lower in GC tissues and GC cell lines than in adjacent normal tissues and normal gastric epithelial cell lines, respectively. Low miR-638 levels were associated with poor tumor differentiation, tumor size and lymph node metastasis. MeCP2 expression levels were higher in GC tissues than in adjacent normal tissues. It was found that miR-638 inhibited GC cell proliferation, colony formation, G1–S transition and tumor growth, and induced cell apoptosis by directly targeting MeCP2. MeCP2 promoted GC cell proliferation, colony formation and G1–S cell-cycle transition, and suppressed apoptosis. Molecular mechanistic investigations were performed using an integrated approach with a combination of microarray analysis, chromatin immunoprecipitation sequencing and a reporter gene assay. The results showed that MeCP2 bound to the methylated CpG islands of G-protein-coupled receptor kinase-interacting protein 1 (GIT1) promoter and upregulated its expression, thereby activating the MEK1/2–ERK1/2 signaling pathway and promoting GC cell proliferation. Taken together, our study demonstrates that MeCP2, a target of miR-638, facilitates GC cell proliferation and induces cell-cycle progression through activation of the MEK1/2–ERK1/2 signaling pathway by upregulating GIT1. The findings suggest that MeCP2 plays a significant role in GC progression, and may serve as a potential target for GC therapy.
Collapse
Affiliation(s)
- L Y Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - D D Tong
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - M Xue
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - H L Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - S Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - J Yang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y X Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - B Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Ni
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y N Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L M Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - X G Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - C Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Medical College of Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
22
|
Ignashkova TI, Gendarme M, Peschk K, Eggenweiler HM, Lindemann RK, Reiling JH. Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents. Traffic 2017; 18:530-544. [PMID: 28485883 DOI: 10.1111/tra.12493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022]
Abstract
The Golgi apparatus is part of the secretory pathway and of central importance for modification, transport and sorting of proteins and lipids. ADP-ribosylation factors, whose activation can be blocked by brefeldin A (BFA), play a major role in functioning of the Golgi network and regulation of membrane traffic and are also involved in proliferation and migration of cancer cells. Due to high cytotoxicity and poor bioavailability, BFA has not passed the preclinical stage of drug development. Recently, AMF-26 and golgicide A have been described as novel inhibitors of the Golgi system with antitumor or bactericidal properties. We provide here further evidence that AMF-26 closely mirrors the mode of action of BFA but is less potent. Using several human cancer cell lines, we studied the effects of AMF-26, BFA and golgicide A on cell homeostasis including Golgi structure, endoplasmic reticulum (ER) stress markers, secretion and viability, and found overall a significant correlation between these parameters. Furthermore, modulation of ADP-ribosylation factor expression has a profound impact on Golgi organization and survival in response to Golgi stress inducers.
Collapse
Affiliation(s)
- Tatiana I Ignashkova
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Mathieu Gendarme
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Katrin Peschk
- Medicinal Chemistry, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | - Jan H Reiling
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| |
Collapse
|
23
|
Hara Y, Obata Y, Horikawa K, Tasaki Y, Suzuki K, Murata T, Shiina I, Abe R. M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells. PLoS One 2017; 12:e0175514. [PMID: 28403213 PMCID: PMC5389679 DOI: 10.1371/journal.pone.0175514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/27/2017] [Indexed: 01/28/2023] Open
Abstract
Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to activate Akt and also demonstrates that M-COPA is efficacious for growth suppression of neoplastic mast cells.
Collapse
Affiliation(s)
- Yasushi Hara
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| | - Keita Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|