1
|
Applications and mechanisms of the cyclin-dependent kinase 4/6 inhibitor, PD-0332991, in solid tumors. Cell Oncol (Dordr) 2022; 45:1053-1071. [PMID: 36087253 DOI: 10.1007/s13402-022-00714-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 01/10/2023] Open
Abstract
Abnormal CDK4/6-Rb-E2F signal transduction is a common finding in tumors and is a driving factor for the excessive proliferation of various tumor cells. PD-0332991, a highly specific, small molecule inhibitor for CDK4 and 6, has been shown to inhibit tumor growth by abrogating the phosphorylating capacity of CDK4/6 and suppressing Rb phosphorylation. It has been promoted for the treatment of breast cancer and potentially for other tumor types such as liver cancers, lung cancers and sarcomas. Due to the risk of monotherapy resistance, PD-0332991 is commonly used in combination with other drugs. Such combination treatments have proved able to inhibit tumor proliferation more effectively, induce stronger senescence and apoptosis, and enhance the efficiency of immunotherapy. Therefore, tumor cells with senescence induced by PD-0332991 are now used as ideal screening tools of cytolytic drugs with more efficient and thorough anti-tumor properties. With more extensive understandings about the branching points between senescence and apoptosis, it is possible to refine the dosage of PD-0332991. Better characterization of resistant cells, of inhibitors and of adverse effects such as leukopenia are needed to overcome obstacles in the use of PD-0332991. In this review of PD-0332991 research, we hope to provide guidance of transitions from laboratory findings to clinical applications of PD-0332991 and to facilitate PD-0332991-based multi-inhibitor combination therapies for various tumors.
Collapse
|
2
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
Poulikakos PI, Sullivan RJ, Yaeger R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clin Cancer Res 2022; 28:4618-4628. [PMID: 35486097 PMCID: PMC9616966 DOI: 10.1158/1078-0432.ccr-21-2138] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
With the identification of activating mutations in BRAF across a wide variety of malignancies, substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. These efforts have led to the development and regulatory approval of three BRAF inhibitors as well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and the duration of benefit is often short-lived. Further limitations preventing optimal management of BRAF-mutant malignancies are that treatments of non-V600 BRAF mutations have been less profound and combination therapy is likely necessary to overcome resistance mechanisms, but multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how BRAF mutations signal through the RAS/MAPK pathway, newer RAF inhibitors are being developed that may be more effective and potentially safer and more rational combination therapies are being tested in the clinic. In this review, we identify the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on single-agent and combination RAF targeting efforts, describe emerging combinations, summarize the toxicity of the various agents in clinical testing, and speculate as to where the field may be headed.
Collapse
Affiliation(s)
- Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
4
|
Nassar KW, Hintzsche JD, Bagby SM, Espinoza V, Langouët-Astrié C, Amato CM, Chimed TS, Fujita M, Robinson W, Tan AC, Schweppe RE. Targeting CDK4/6 Represents a Therapeutic Vulnerability in Acquired BRAF/MEK Inhibitor-Resistant Melanoma. Mol Cancer Ther 2021; 20:2049-2060. [PMID: 34376578 PMCID: PMC9768695 DOI: 10.1158/1535-7163.mct-20-1126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
There is a clear need to identify targetable drivers of resistance and potential biomarkers for salvage therapy for patients with melanoma refractory to the combination of BRAF and MEK inhibition. In this study, we performed whole-exome sequencing on BRAF-V600E-mutant melanoma patient tumors refractory to the combination of BRAF/MEK inhibition and identified acquired oncogenic mutations in NRAS and loss of the tumor suppressor gene CDKN2A We hypothesized the acquired resistance mechanisms to BRAF/MEK inhibition were reactivation of the MAPK pathway and activation of the cell-cycle pathway, which can both be targeted pharmacologically with the combination of a MEK inhibitor (trametinib) and a CDK4/6 inhibitor (palbociclib). In vivo, we found that combination of CDK4/6 and MEK inhibition significantly decreased tumor growth in two BRAF/MEK inhibitor-resistant patient-derived xenograft models. In vitro, we observed that the combination of CDK4/6 and MEK inhibition resulted in synergy and significantly reduced cellular growth, promoted cell-cycle arrest, and effectively inhibited downstream signaling of MAPK and cell-cycle pathways in BRAF inhibitor-resistant cell lines. Knockdown of CDKN2A in BRAF inhibitor-resistant cells increased sensitivity to CDK4/6 inhibition alone and in combination with MEK inhibition. A key implication of our study is that the combination of CDK4/6 and MEK inhibitors overcomes acquired resistance to BRAF/MEK inhibitors, and loss of CDKN2A may represent a biomarker of response to the combination. Inhibition of the cell-cycle and MAPK pathway represents a promising strategy for patients with metastatic melanoma who are refractory to BRAF/MEK inhibitor therapy.
Collapse
Affiliation(s)
- Kelsey W Nassar
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer D Hintzsche
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stacey M Bagby
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Veronica Espinoza
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christophe Langouët-Astrié
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carol M Amato
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mayumi Fujita
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - William Robinson
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida.
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
5
|
NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99:102238. [PMID: 34098219 DOI: 10.1016/j.ctrv.2021.102238] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
Collapse
|
6
|
Antitumoral Activity of the MEK Inhibitor Trametinib (TMT212) Alone and in Combination with the CDK4/6 Inhibitor Ribociclib (LEE011) in Neuroendocrine Tumor Cells In Vitro. Cancers (Basel) 2021; 13:cancers13061485. [PMID: 33807122 PMCID: PMC8004919 DOI: 10.3390/cancers13061485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study assessed the antitumoral activity of the MEK inhibitor trametinib (TMT212) and the ERK1/2 inhibitor SCH772984, alone and in combination with the CDK4/6 inhibitor ribociclib (LEE011) in human neuroendocrine tumor (NET) cell lines in vitro. METHODS Human NET cell lines BON1, QGP-1, and NCI-H727 were treated with trametinib or SCH772984, alone and in combination with ribociclib, to assess cell proliferation, cell cycle distribution, and protein signaling using cell proliferation, flow cytometry, and Western blot assays, respectively. RESULTS Trametinib and SCH772984, alone and in combination with ribociclib, significantly reduced NET cell viability and arrested NET cells at the G1 phase of the cell cycle in all three cell lines tested. In addition, trametinib also caused subG1 events and apoptotic PARP cleavage in QGP1 and NCI-H727 cells. A western blot analysis demonstrated the use of trametinib alone and trametinib in combination with ribociclib to decrease the expression of pERK, cMyc, Chk1, pChk2, pCDK1, CyclinD1, and c-myc in a time-dependent manner in NCI-H727 and QGP-1 cells. CONCLUSIONS MEK and ERK inhibition causes antiproliferative effects in human NET cell lines in vitro. The combination of the MEK inhibitor trametinib (TMT212) with the CDK4/6 inhibitor ribociclib (LEE011) causes additive antiproliferative effects. Future preclinical and clinical studies of MEK inhibition in NETs should be performed.
Collapse
|
7
|
Ohara M, Saito K, Kageyama K, Terai M, Cheng H, Aplin AE, Sato T. Dual Targeting of CDK4/6 and cMET in Metastatic Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13051104. [PMID: 33806615 PMCID: PMC7961994 DOI: 10.3390/cancers13051104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Up to 50% of uveal melanoma patients subsequently develop metastases, for which no effective treatment has been identified. In this study, 87.5% of uveal melanoma patients’ samples were positive for phosphorylated retinoblastoma (RB), and ex vivo incubation of patients’ biopsy specimens with CDK4/6 inhibitor decreased the phosphorylation of RB. Hepatocyte growth factor (HGF), which is rich in the liver microenvironment, diminished the efficacy of CDK4/6 inhibitor. In human HGF knock-in NOD.Cg-Prkdc scid Il2rg tm1Wjl/SzJ mice, combination of CDK4/6 inhibitor and cMET inhibitor showed significant growth suppression in implanted metastatic uveal melanoma cells, compared to CDK4/6 inhibitor alone. Taken together, our preclinical study indicated that combining CDK4/6 inhibitor and cMET inhibitor would provide significant clinical benefit to patients with metastatic uveal melanoma. Abstract Uveal melanoma (UM) is the most common cancer of the eye in adults. Up to 50% of UM patients subsequently develop metastases, especially in the liver. It has been reported that the retinoblastoma (RB) pathway is deregulated in more than 90% of UM despite the rarity of mutations in the RB1 gene itself. CDK4/6 inhibition (CDK4/6i) is a rational strategy for treatment of UM. In this report, we investigated the antiproliferative activity of a selective CDK4/6 inhibitor on metastatic UM. A CDK4/6 inhibitor suppressed UM cell lines growth in in vitro and in vivo experiments. Hepatocyte growth factor (HGF) decreased the effect of CDK4/6 inhibitor on metastatic UM cell lines. When CDK4/6i was combined with cMET inhibitor, enhanced growth suppression was observed in metastatic UM tumors grown in human-HGF knock-in xenograft mouse models. HGF is enriched in the liver and the majority of liver metastases from UM express activated forms of cMET; therefore, signaling through cMET could contribute to the resistance mechanisms against CDK4/6i, especially in UM patients with hepatic metastasis. Together, these results provide a rationale for the use of cMET inhibitor in combination with a CDK4/6 inhibitor for the treatment of metastatic UM.
Collapse
Affiliation(s)
- Masahiro Ohara
- Department of Medical Oncology, Thomas Jefferson University, 1015 Walnut Street, Suite 1024, Philadelphia, PA 19107, USA; (K.S.); (K.K.); (M.T.); (T.S.)
- Department of Breast Surgery, Hiroshima General Hospital, 1-3-3 Jigozen, Hatsukaichi, Hiroshima 738-8503, Japan
- Correspondence: ; Tel.: +1-215-955-1195; Fax: +1-215-923-0797
| | - Kengo Saito
- Department of Medical Oncology, Thomas Jefferson University, 1015 Walnut Street, Suite 1024, Philadelphia, PA 19107, USA; (K.S.); (K.K.); (M.T.); (T.S.)
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Ken Kageyama
- Department of Medical Oncology, Thomas Jefferson University, 1015 Walnut Street, Suite 1024, Philadelphia, PA 19107, USA; (K.S.); (K.K.); (M.T.); (T.S.)
- Department of Radiology, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, 1015 Walnut Street, Suite 1024, Philadelphia, PA 19107, USA; (K.S.); (K.K.); (M.T.); (T.S.)
| | - Hanyin Cheng
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.C.); (A.E.A.)
- Hematologics Inc., 3161 Elliott Ave., Suite 200, Seattle, WA 98121, USA
| | - Andrew E. Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.C.); (A.E.A.)
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, 1015 Walnut Street, Suite 1024, Philadelphia, PA 19107, USA; (K.S.); (K.K.); (M.T.); (T.S.)
| |
Collapse
|
8
|
Santiappillai NT, Abuhammad S, Slater A, Kirby L, McArthur GA, Sheppard KE, Smith LK. CDK4/6 Inhibition Reprograms Mitochondrial Metabolism in BRAF V600 Melanoma via a p53 Dependent Pathway. Cancers (Basel) 2021; 13:cancers13030524. [PMID: 33572972 PMCID: PMC7866416 DOI: 10.3390/cancers13030524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are being tested in numerous clinical trials and are currently employed successfully in the clinic for the treatment of breast cancers. Understanding their mechanism of action and interaction with other therapies is vital in their clinical development. CDK4/6 regulate the cell cycle via phosphorylation and inhibition of the tumour suppressor RB, and in addition can phosphorylate many cellular proteins and modulate numerous cellular functions including cell metabolism. Metabolic reprogramming is observed in melanoma following standard-of-care BRAF/MEK inhibition and is involved in both therapeutic response and resistance. In preclinical models, CDK4/6 inhibitors overcome BRAF/MEK inhibitor resistance, leading to sustained tumour regression; however, the metabolic response to this combination has not been explored. Here, we investigate how CDK4/6 inhibition reprograms metabolism and if this alters metabolic reprogramming observed upon BRAF/MEK inhibition. Although CDK4/6 inhibition has no substantial effect on the metabolic phenotype following BRAF/MEK targeted therapy in melanoma, CDK4/6 inhibition alone significantly enhances mitochondrial metabolism. The increase in mitochondrial metabolism in melanoma cells following CDK4/6 inhibition is fuelled in part by both glutamine metabolism and fatty acid oxidation pathways and is partially dependent on p53. Collectively, our findings identify new p53-dependent metabolic vulnerabilities that may be targeted to improve response to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Nancy T. Santiappillai
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3052, Australia; (N.T.S.); (S.A.); (A.S.); (L.K.); (G.A.M.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3052, Australia
| | - Shatha Abuhammad
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3052, Australia; (N.T.S.); (S.A.); (A.S.); (L.K.); (G.A.M.)
| | - Alison Slater
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3052, Australia; (N.T.S.); (S.A.); (A.S.); (L.K.); (G.A.M.)
| | - Laura Kirby
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3052, Australia; (N.T.S.); (S.A.); (A.S.); (L.K.); (G.A.M.)
| | - Grant A. McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3052, Australia; (N.T.S.); (S.A.); (A.S.); (L.K.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3052, Australia
| | - Karen E. Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3052, Australia; (N.T.S.); (S.A.); (A.S.); (L.K.); (G.A.M.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3052, Australia
- Correspondence: (K.E.S.); (L.K.S.)
| | - Lorey K. Smith
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3052, Australia; (N.T.S.); (S.A.); (A.S.); (L.K.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3052, Australia
- Correspondence: (K.E.S.); (L.K.S.)
| |
Collapse
|
9
|
Xue Z, Lui VWY, Li Y, Jia L, You C, Li X, Piao W, Yuan H, Khong PL, Lo KW, Cheung LWT, Lee VHF, Lee AWM, Tsao SW, Tsang CM. Therapeutic evaluation of palbociclib and its compatibility with other chemotherapies for primary and recurrent nasopharyngeal carcinoma. J Exp Clin Cancer Res 2020; 39:262. [PMID: 33243298 PMCID: PMC7690146 DOI: 10.1186/s13046-020-01763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent genomic analyses revealed that druggable molecule targets were only detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6-cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. METHODS We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response-related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. RESULTS In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro. Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo, as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro. Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo. This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. CONCLUSIONS Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.
Collapse
Affiliation(s)
- Zhichao Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongshu Li
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chanping You
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenying Piao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hui Yuan
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, Guangdong, PR China
| | - Pek Lan Khong
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lydia Wai Ting Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Victor Ho Fan Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Chi Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
10
|
Teh JLF, Erkes DA, Cheng PF, Tiago M, Wilski NA, Field CO, Chervoneva I, Levesque MP, Xu X, Dummer R, Aplin AE. Activation of CD8 + T Cells Contributes to Antitumor Effects of CDK4/6 Inhibitors plus MEK Inhibitors. Cancer Immunol Res 2020; 8:1114-1121. [PMID: 32661093 DOI: 10.1158/2326-6066.cir-19-0743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
Concurrent MEK and CDK4/6 inhibition shows promise in clinical trials for patients with advanced-stage mutant BRAF/NRAS solid tumors. The effects of CDK4/6 inhibitor (CDK4/6i) in combination with BRAF/MEK-targeting agents on the tumor immune microenvironment are unclear, especially in melanoma, for which immune checkpoint inhibitors are effective in approximately 50% of patients. Here, we show that patients progressing on CDK4/6i/MEK pathway inhibitor combinations exhibit T-cell exclusion. We found that MEK and CDK4/6 targeting was more effective at delaying regrowth of mutant BRAF melanoma in immunocompetent versus immune-deficient mice. Although MEK inhibitor (MEKi) treatment increased tumor immunogenicity and intratumoral recruitment of CD8+ T cells, the main effect of CDK4/6i alone and in combination with MEKi was increased expression of CD137L, a T-cell costimulatory molecule on immune cells. Depletion of CD8+ T cells or blockade of the CD137 ligand-receptor interaction reduced time to regrowth of melanomas in the context of treatment with CDK4/6i plus MEKi treatment in vivo Together, our data outline an antitumor immune-based mechanism and show the efficacy of targeting both the MEK pathway and CDK4/6.
Collapse
Affiliation(s)
- Jessica L F Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan A Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole A Wilski
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Conroy O Field
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mitch P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Teh JLF, Purwin TJ, Han A, Chua V, Patel P, Baqai U, Liao C, Bechtel N, Sato T, Davies MA, Aguirre-Ghiso J, Aplin AE. Metabolic Adaptations to MEK and CDK4/6 Cotargeting in Uveal Melanoma. Mol Cancer Ther 2020; 19:1719-1726. [PMID: 32430489 DOI: 10.1158/1535-7163.mct-19-1016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
Frequent GNAQ and GNA11 mutations in uveal melanoma hyperactivate the MEK-ERK signaling pathway, leading to aberrant regulation of cyclin-dependent kinases (CDK) and cell-cycle progression. MEK inhibitors (MEKi) alone show poor efficacy in uveal melanoma, raising the question of whether downstream targets can be vertically inhibited to provide long-term benefit. CDK4/6 selective inhibitors are FDA-approved in patients with estrogen receptor (ER)-positive breast cancer in combination with ER antagonists/aromatase inhibitors. We determined the effects of MEKi plus CDK4/6 inhibitors (CDK4/6i) in uveal melanoma. In vitro, palbociclib, a CDK4/6i, enhanced the effects of MEKi via downregulation of cell-cycle proteins. In contrast, in vivo CDK4/6 inhibition alone led to cytostasis and was as effective as MEKi plus CDK4/6i treatment at delaying tumor growth. RNA sequencing revealed upregulation of the oxidative phosphorylation (OxPhos) pathway in both MEKi-resistant tumors and CDK4/6i-tolerant tumors. Furthermore, oxygen consumption rate was increased following MEKi + CDK4/6i treatment. IACS-010759, an OxPhos inhibitor, decreased uveal melanoma cell survival in combination with MEKi + CDK4/6i. These data highlight adaptive upregulation of OxPhos in response to MEKi + CDK4/6i treatment in uveal melanoma and suggest that suppression of this metabolic state may improve the efficacy of MEKi plus CDK4/6i combinations.
Collapse
Affiliation(s)
| | | | - Anna Han
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Vivian Chua
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Prem Patel
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Usman Baqai
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Connie Liao
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Nelisa Bechtel
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Julio Aguirre-Ghiso
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew E Aplin
- Department of Cancer Biology, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Nguyen MQ, Teh JLF, Purwin TJ, Chervoneva I, Davies MA, Nathanson KL, Cheng PF, Levesque MP, Dummer R, Aplin AE. Targeting PHGDH Upregulation Reduces Glutathione Levels and Resensitizes Resistant NRAS-Mutant Melanoma to MAPK Kinase Inhibition. J Invest Dermatol 2020; 140:2242-2252.e7. [PMID: 32389536 DOI: 10.1016/j.jid.2020.02.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Abstract
Melanomas frequently harbor activating NRAS mutations leading to activation of MAPK kinase (MEK) and extracellular signal-regulated kinase 1/2 signaling; however, the clinical efficacy of inhibitors to this pathway is limited by resistance. Tumors rewire metabolic pathways in response to stress signals such as targeted inhibitors and drug resistance, but most therapy-resistant preclinical models are generated in conditions that lack physiological metabolism. We generated human NRAS-mutant melanoma xenografts that were resistant to the MEK inhibitor (MEKi) PD0325901 in vivo. MEKi-resistant cells showed cross-resistance to the structurally distinct MEKi trametinib and elevated extracellular signal-regulated kinase 1/2 phosphorylation and downstream signaling. Additionally, we observed upregulation of the serine synthesis pathway and PHGDH, a key enzyme in this pathway. Suppressing PHGDH in MEKi-resistant cells together with MEKi treatment decreased oxidative stress tolerance and cell proliferation. Together, our data suggest targeting PHGDH as a potential strategy in overcoming MEKi resistance.
Collapse
Affiliation(s)
- Mai Q Nguyen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jessica L F Teh
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
13
|
AbuHammad S, Cullinane C, Martin C, Bacolas Z, Ward T, Chen H, Slater A, Ardley K, Kirby L, Chan KT, Brajanovski N, Smith LK, Rao AD, Lelliott EJ, Kleinschmidt M, Vergara IA, Papenfuss AT, Lau P, Ghosh P, Haupt S, Haupt Y, Sanij E, Poortinga G, Pearson RB, Falk H, Curtis DJ, Stupple P, Devlin M, Street I, Davies MA, McArthur GA, Sheppard KE. Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. Proc Natl Acad Sci U S A 2019; 116:17990-18000. [PMID: 31439820 PMCID: PMC6731642 DOI: 10.1073/pnas.1901323116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.
Collapse
Affiliation(s)
- Shatha AbuHammad
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Carleen Cullinane
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Claire Martin
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Zoe Bacolas
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Teresa Ward
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Alison Slater
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kerry Ardley
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Laura Kirby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Keefe T Chan
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natalie Brajanovski
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lorey K Smith
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Aparna D Rao
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Emily J Lelliott
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Ismael A Vergara
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anthony T Papenfuss
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Lau
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Prerana Ghosh
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Sue Haupt
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gretchen Poortinga
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Richard B Pearson
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hendrik Falk
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David J Curtis
- Department of Clinical Hematology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Division of Blood Cancer Research, Australian Centre for Blood Diseases, Melbourne, VIC 3004, Australia
| | - Paul Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Mark Devlin
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
| | - Ian Street
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Davies
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Grant A McArthur
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karen E Sheppard
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Yu J, Yan J, Guo Q, Chi Z, Tang B, Zheng B, Yu J, Yin T, Cheng Z, Wu X, Yu H, Dai J, Sheng X, Si L, Cui C, Bai X, Mao L, Lian B, Wang X, Yan X, Li S, Zhou L, Flaherty KT, Guo J, Kong Y. Genetic Aberrations in the CDK4 Pathway Are Associated with Innate Resistance to PD-1 Blockade in Chinese Patients with Non-Cutaneous Melanoma. Clin Cancer Res 2019; 25:6511-6523. [PMID: 31375512 DOI: 10.1158/1078-0432.ccr-19-0475] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/18/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE PD-1 checkpoint blockade immunotherapy induces long and durable response in patients with advanced melanoma. However, only a subset of patients with melanoma benefit from this approach. The mechanism triggering the innate resistance of anti-PD-1 therapy remains unclear.Experimental Design: Whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) analyses were performed in a training cohort (n = 31) using baseline tumor biopsies of patients with advanced melanoma treated with the anti-PD-1 antibody. Copy-number variations (CNVs) for the genes CDK4, CCND1, and CDKN2A were assayed using a TaqMan copy-number assay in a validation cohort (n = 85). The effect of CDK4/6 inhibitors combined with anti-PD-1 antibody monotherapy was evaluated in PD-1-humanized mouse (C57BL/6-hPD-1) and humanized immune system (HIS) patient-derived xenograft (PDX) models. RESULTS WES revealed several significant gene copy-number gains in the patients of no clinical benefit cohort, such as 12q14.1 loci, which harbor CDK4. The association between CDK4 gain and innate resistance to anti-PD-1 therapy was validated in 85 patients with melanoma (P < 0.05). RNA-Seq analysis of CDK4-normal cell lines and CDK4-normal tumors showed altered transcriptional output in TNFα signaling via NF-κB, inflammatory response, and IFNγ response gene set. In addition, CDK4/6 inhibitor (palbociclib) treatment increased PD-L1 protein levels and enhanced efficacy (P < 0.05) in the C57BL/6-hPD-1 melanoma cell and the HIS PDX model. CONCLUSIONS In summary, we discovered that genetic aberrations in the CDK4 pathway are associated with innate resistance to anti-PD-1 therapy in patients with advanced melanoma. Moreover, our study provides a strong rationale for combining CDK4/6 inhibitors with anti-PD-1 antibody for the treatment of advanced melanomas.
Collapse
Affiliation(s)
- Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junya Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jinyu Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Yin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyuan Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xieqia Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Currently, there are no U.S. Food and Drug Administration-approved or effective treatment options for advanced-stage uveal melanoma. In this article, we focus on therapeutic targets in pathways/mechanisms associated with common mutations in uveal melanoma. We review the challenges associated with targeting of these pathways and novel treatment strategies. RECENT FINDINGS Common mutations that promote uveal melanoma initiation and progression include alterations in G protein subunit alpha q/11 (GNAQ/GNA11) and breast cancer gene 1-associated protein 1 (BAP1). Mutant GNAQ/GNA11 induces constitutive activation of tumorigenic pathways such as extracellular signal-regulated kinase (ERK)1/2 and yes-associated protein. Inhibition of mitogen-activated protein kinase kinase (MEK) downstream of ERK1/2, however, was shown in trials to have limited clinical benefit. Recent reports suggested that combination therapies of MEK inhibition and modulators of mechanisms of drug resistance may improve tumor responses to MEK inhibitors. BAP1 has been shown to be involved in modulating chromatin dynamics and deubiquitination of proteins. Hence, epigenetic inhibitors are being investigated in BAP1 mutant uveal melanoma. However, other functions of BAP1, such as in DNA damage repair and cell cycle regulation, indicate additional targets for treatment of BAP1 mutant uveal melanoma. In addition, the frequent delayed development of uveal melanoma macrometastases is likely due to cellular dormancy mechanisms. Nuclear receptor subfamily 2, group F, member 1 and transforming growth factor beta 2 were among factors that have been shown in other cancers to induce dormant phenotypes. SUMMARY Findings from studies in uveal melanoma and in other cancers provide evidence for potential strategies that may be tested preclinically and clinically in advanced-stage uveal melanoma to improve treatment outcome and overall survival of patients.
Collapse
|
16
|
Posch C, Sanlorenzo M, Ma J, Kim ST, Zekhtser M, Ortiz-Urda S. MEK/CDK4,6 co-targeting is effective in a subset of NRAS, BRAF and 'wild type' melanomas. Oncotarget 2018; 9:34990-34995. [PMID: 30405888 PMCID: PMC6201855 DOI: 10.18632/oncotarget.26204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 11/25/2022] Open
Abstract
Targeted therapy has become a cornerstone for the treatment of melanoma patients. Targeting NRAS function is particularly challenging. To date, only single MEK inhibitor treatment was able to show minimal clinical efficacy. The discovery that co-targeting of MEK and CDK4,6 has antitumor activity created excitement for patients and clinicians; however, it is largely unknown if only NRAS mutant patients might benefit from MEK/CDK4,6 blockade. In this study we investigate response patterns of NRAS, BRAF mutant and ‘wild type’ melanoma cells in vitro and in vivo when challenged with inhibitors of MEK, CDK4,6 and the combination of both. Data revealed, that in vitro growth response patterns of cells treated with the MEK/CDK4,6 combination correspond to in vivo efficacy of MEK/CDK4,6 co-targeting in melanoma xenograft models. Strikingly, this was consistently observed in NRAS and BRAF mutant, as well as in ‘wild type’ melanoma cells. Additionally, cells displaying elevated p-Rb levels after single MEK inhibition, showed more effective growth reduction with MEK/CDK4,6 co-targeting compared to single MEK inhibitor treatment in vivo. Findings indicate that combined MEK/CDK4,6 inhibition could offer an effectively therapeutic modality in a subset of BRAF and NRAS mutant, as well as ‘wild type’ melanoma patients.
Collapse
Affiliation(s)
- Christian Posch
- Technical University of Munich, Department of Dermatology and Allergy, 80802 Munich, Germany.,University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 94115 San Francisco, USA.,Faculty of Medicine, Sigmund Freud University, 1020, Vienna, Austria
| | - Martina Sanlorenzo
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 94115 San Francisco, USA.,Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jeffrey Ma
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 94115 San Francisco, USA
| | - Sarasa T Kim
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 94115 San Francisco, USA
| | - Mitchell Zekhtser
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 94115 San Francisco, USA
| | - Susana Ortiz-Urda
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 94115 San Francisco, USA
| |
Collapse
|
17
|
de Leeuw R, McNair C, Schiewer MJ, Neupane NP, Brand LJ, Augello MA, Li Z, Cheng LC, Yoshida A, Courtney SM, Hazard ES, Hardiman G, Hussain MH, Diehl JA, Drake JM, Kelly WK, Knudsen KE. MAPK Reliance via Acquired CDK4/6 Inhibitor Resistance in Cancer. Clin Cancer Res 2018; 24:4201-4214. [PMID: 29739788 PMCID: PMC6125187 DOI: 10.1158/1078-0432.ccr-18-0410] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Purpose: Loss of cell-cycle control is a hallmark of cancer, which can be targeted with agents, including cyclin-dependent kinase-4/6 (CDK4/6) kinase inhibitors that impinge upon the G1-S cell-cycle checkpoint via maintaining activity of the retinoblastoma tumor suppressor (RB). This class of drugs is under clinical investigation for various solid tumor types and has recently been FDA-approved for treatment of breast cancer. However, development of therapeutic resistance is not uncommon.Experimental Design: In this study, palbociclib (a CDK4/6 inhibitor) resistance was established in models of early stage, RB-positive cancer.Results: This study demonstrates that acquired palbociclib resistance renders cancer cells broadly resistant to CDK4/6 inhibitors. Acquired resistance was associated with aggressive in vitro and in vivo phenotypes, including proliferation, migration, and invasion. Integration of RNA sequencing analysis and phosphoproteomics profiling revealed rewiring of the kinome, with a strong enrichment for enhanced MAPK signaling across all resistance models, which resulted in aggressive in vitro and in vivo phenotypes and prometastatic signaling. However, CDK4/6 inhibitor-resistant models were sensitized to MEK inhibitors, revealing reliance on active MAPK signaling to promote tumor cell growth and invasion.Conclusions: In sum, these studies identify MAPK reliance in acquired CDK4/6 inhibitor resistance that promotes aggressive disease, while nominating MEK inhibition as putative novel therapeutic strategy to treat or prevent CDK4/6 inhibitor resistance in cancer. Clin Cancer Res; 24(17); 4201-14. ©2018 AACR.
Collapse
Affiliation(s)
- Renée de Leeuw
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Lucas J Brand
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael A Augello
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhen Li
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Larry C Cheng
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Akihiro Yoshida
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Sean M Courtney
- Center for Genomic Medicine Bioinformatics, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - E Starr Hazard
- Center for Genomic Medicine Bioinformatics, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Library Science and Informatics, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Hardiman
- Center for Genomic Medicine Bioinformatics, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Maha H Hussain
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Justin M Drake
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Wm Kevin Kelly
- Department of Medical Oncology, Urology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Medical Oncology, Urology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferon University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Sumi T, Hirai S, Yamaguchi M, Tanaka Y, Tada M, Niki T, Takahashi H, Sakuma Y. Trametinib downregulates survivin expression in RB1-positive KRAS -mutant lung adenocarcinoma cells. Biochem Biophys Res Commun 2018; 501:253-258. [DOI: 10.1016/j.bbrc.2018.04.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
|
19
|
Romano G, Chen PL, Song P, McQuade JL, Liang RJ, Liu M, Roh W, Duose DY, Carapeto FCL, Li J, Teh JLF, Aplin AE, Chen M, Zhang J, Lazar AJ, Davies MA, Futreal PA, Amaria RN, Zhang DY, Wargo JA, Kwong LN. A Preexisting Rare PIK3CAE545K Subpopulation Confers Clinical Resistance to MEK plus CDK4/6 Inhibition in NRAS Melanoma and Is Dependent on S6K1 Signaling. Cancer Discov 2018; 8:556-567. [PMID: 29496665 PMCID: PMC5932238 DOI: 10.1158/2159-8290.cd-17-0745] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/22/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022]
Abstract
Combined MEK and CDK4/6 inhibition (MEKi + CDK4i) has shown promising clinical outcomes in patients with NRAS-mutant melanoma. Here, we interrogated longitudinal biopsies from a patient who initially responded to MEKi + CDK4i therapy but subsequently developed resistance. Whole-exome sequencing and functional validation identified an acquired PIK3CAE545K mutation as conferring drug resistance. We demonstrate that PIK3CAE545K preexisted in a rare subpopulation that was missed by both clinical and research testing, but was revealed upon multiregion sampling due to PIK3CAE545K being nonuniformly distributed. This resistant population rapidly expanded after the initiation of MEKi + CDK4i therapy and persisted in all successive samples even after immune checkpoint therapy and distant metastasis. Functional studies identified activated S6K1 as both a key marker and specific therapeutic vulnerability downstream of PIK3CAE545K-induced resistance. These results demonstrate that difficult-to-detect preexisting resistance mutations may exist more often than previously appreciated and also posit S6K1 as a common downstream therapeutic nexus for the MAPK, CDK4/6, and PI3K pathways.Significance: We report the first characterization of clinical acquired resistance to MEKi + CDK4i, identifying a rare preexisting PIK3CAE545K subpopulation that expands upon therapy and exhibits drug resistance. We suggest that single-region pretreatment biopsy is insufficient to detect rare, spatially segregated drug-resistant subclones. Inhibition of S6K1 is able to resensitize PIK3CAE545K-expressing NRAS-mutant melanoma cells to MEKi + CDK4i. Cancer Discov; 8(5); 556-67. ©2018 AACR.See related commentary by Sullivan, p. 532See related article by Teh et al., p. 568This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei-Ling Chen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, Texas
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roger J Liang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mingguang Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whijae Roh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fernando C L Carapeto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica L F Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Cutaneous Biology and Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Merry Chen
- Department of Neurooncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rodabe N Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Y Zhang
- Department of Bioengineering, Rice University, Houston, Texas
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neurooncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Teh JLF, Cheng PF, Purwin TJ, Nikbakht N, Patel P, Chervoneva I, Ertel A, Fortina PM, Kleiber I, HooKim K, Davies MA, Kwong LN, Levesque MP, Dummer R, Aplin AE. In Vivo E2F Reporting Reveals Efficacious Schedules of MEK1/2-CDK4/6 Targeting and mTOR-S6 Resistance Mechanisms. Cancer Discov 2018; 8:568-581. [PMID: 29496664 DOI: 10.1158/2159-8290.cd-17-0699] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/24/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Targeting cyclin-dependent kinases 4/6 (CDK4/6) represents a therapeutic option in combination with BRAF inhibitor and/or MEK inhibitor (MEKi) in melanoma; however, continuous dosing elicits toxicities in patients. Using quantitative and temporal in vivo reporting, we show that continuous MEKi with intermittent CDK4/6 inhibitor (CDK4/6i) led to more complete tumor responses versus other combination schedules. Nevertheless, some tumors acquired resistance that was associated with enhanced phosphorylation of ribosomal S6 protein. These data were supported by phospho-S6 staining of melanoma biopsies from patients treated with CDK4/6i plus targeted inhibitors. Enhanced phospho-S6 in resistant tumors provided a therapeutic window for the mTORC1/2 inhibitor AZD2014. Mechanistically, upregulation or mutation of NRAS was associated with resistance in in vivo models and patient samples, respectively, and mutant NRAS was sufficient to enhance resistance. This study utilizes an in vivo reporter model to optimize schedules and supports targeting mTORC1/2 to overcome MEKi plus CDK4/6i resistance.Significance: Mutant BRAF and NRAS melanomas acquire resistance to combined MEK and CDK4/6 inhibition via upregulation of mTOR pathway signaling. This resistance mechanism provides the preclinical basis to utilize mTORC1/2 inhibitors to improve MEKi plus CDK4/6i drug regimens. Cancer Discov; 8(5); 568-81. ©2018 AACR.See related commentary by Sullivan, p. 532See related article by Romano et al., p. 556This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Jessica L F Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Neda Nikbakht
- Department of Cutaneous Biology and Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Prem Patel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo M Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ines Kleiber
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Kim HooKim
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitch P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Cutaneous Biology and Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Martin CA, Cullinane C, Kirby L, Abuhammad S, Lelliott EJ, Waldeck K, Young RJ, Brajanovski N, Cameron DP, Walker R, Sanij E, Poortinga G, Hannan RD, Pearson RB, Hicks RJ, McArthur GA, Sheppard KE. Palbociclib synergizes with BRAF and MEK inhibitors in treatment naïve melanoma but not after the development of BRAF inhibitor resistance. Int J Cancer 2018; 142:2139-2152. [PMID: 29243224 DOI: 10.1002/ijc.31220] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/09/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023]
Abstract
Increased CDK4 activity occurs in the majority of melanomas and CDK4/6 inhibitors in combination with BRAF and MEK inhibitors are currently in clinical trials for the treatment of melanoma. We hypothesize that the timing of the addition of CDK4/6 inhibitors to the current BRAF and MEK inhibitor regime will impact on the efficacy of this triplet drug combination. The efficacy of BRAF, MEK and CDK4/6 inhibitors as single agents and in combination was assessed in human BRAF mutant cell lines that were treatment naïve, BRAF inhibitor tolerant or had acquired resistance to BRAF inhibitors. Xenograft studies were then performed to test the in vivo efficacy of the BRAF and CDK4/6 inhibitor combination. Melanoma cells that had developed early reversible tolerance or acquired resistance to BRAF inhibition remained sensitive to palbociclib. In drug-tolerant cells, the efficacy of the combination of palbociclib with BRAF and/or MEK inhibitors was equivalent to single agent palbociclib. Similarly, acquired BRAF inhibitor resistance cells lost efficacy to the palbociclib and BRAF combination. In contrast, upfront treatment of melanoma cells with palbociclib in combination with BRAF and/or MEK inhibitors induced either cell death or senescence and was superior to a BRAF plus MEK inhibitor combination. In vivo palbociclib plus BRAF inhibitor induced rapid and sustained tumor regression without the development of therapy resistance. In summary, upfront dual targeting of CDK4/6 and mutant BRAF signaling enables tumor cells to evade resistance to monotherapy and is required for robust and sustained tumor regression. Melanoma patients whose tumors have acquired resistance to BRAF inhibition are less likely to have favorable responses to subsequent treatment with the triplet combination of BRAF, MEK and CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Claire A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia
| | - Carleen Cullinane
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Laura Kirby
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia
| | - Shatha Abuhammad
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Emily J Lelliott
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Kelly Waldeck
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia
| | - Richard J Young
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia
| | - Natalie Brajanovski
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia
| | - Donald P Cameron
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia
| | - Rachael Walker
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia
| | - Elaine Sanij
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Department of Pathology, University of Melbourne, Parkville, Vic, Australia
| | - Gretchen Poortinga
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, Vic, Australia
| | - Ross D Hannan
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Qld, Australia.,The John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Richard B Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, Australia
| | - Rodney J Hicks
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Grant A McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, Vic, Australia
| | - Karen E Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
22
|
Harris AL, Lee SE, Dawson LK, Marlow LA, Edenfield BH, Durham WF, Flotte TJ, Thompson M, Small DL, Synnott AJ, Markovic SN, Copland JA. Targeting the cyclin dependent kinase and retinoblastoma axis overcomes standard of care resistance in BRAF V600E -mutant melanoma. Oncotarget 2017. [PMID: 29541385 PMCID: PMC5834273 DOI: 10.18632/oncotarget.23649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patient-derived tumor xenograft (PDTX) mouse models were used to discover new therapies for naïve and drug resistant BRAFV600E -mutant melanoma. Tumor histology, oncogenic protein expression, and antitumor activity were comparable between patient and PDTX-matched models thereby validating PDTXs as predictive preclinical models of therapeutic response in patients. PDTX models responsive and non-responsive to BRAF/MEK standard of care (SOC) therapy were used to identify efficacious combination therapies. One such combination includes a CDK4/6 inhibitor that blocks cell cycle progression. The rationale for this is that the retinoblastoma protein (pRb) is 95% wildtype in BRAF mutant melanoma. We discovered that 77/77 stage IV metastatic melanoma tissues were positive for inactive phosphorylated pRb (pRb-Ser780). Rb is hyperphosphorylated and inactivated by CDK4/6:cyclin D1 and when restored to its hypophosphorylated active form blocks cell cycle progression. The addition of a CDK4/6 inhibitor to SOC therapy was superior to SOC. Importantly, triple therapy in an upfront treatment and salvage therapy setting provided sustained durable response. We also showed that CDK4/6 blockade resensitized drug resistant melanoma to SOC therapy. Durable response was associated with sustained suppression of pRb-Ser780. Thus, reactivation of pRb may prove to be a clinical biomarker of response and the mechanism responsible for durable response. In light of recent clinical trial data using this triple therapy against BRAFV600E -mutant melanoma, our findings demonstrating superior and prolonged durable response in PDTX models portend use of this therapeutic strategy against naïve and SOC resistant BRAFV600E -mutant metastatic melanoma coupled with pRB-Ser780 as a biomarker of response.
Collapse
Affiliation(s)
| | | | | | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Thomas J Flotte
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
23
|
Haass NK, Gabrielli B. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities. Exp Dermatol 2017; 26:649-655. [PMID: 28109167 DOI: 10.1111/exd.13303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches.
Collapse
Affiliation(s)
- Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia.,The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- Mater Medical Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|