1
|
Sun Y, Guo G, Zhang Y, Chen X, Lu Y, Hong R, Xiong J, Li J, Hu X, Wang S, Liu Y, Zhang Z, Yang X, Nan Y, Huang Q. IKBKE promotes the ZEB2-mediated EMT process by phosphorylating HMGA1a in glioblastoma. Cell Signal 2024; 116:111062. [PMID: 38242271 DOI: 10.1016/j.cellsig.2024.111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jinbiao Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xue Hu
- Department of Clinical Nutrition, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China
| | - Shuaishuai Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315000, China
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
2
|
Wen S, Zhao P, Chen S, Deng B, Fang Q, Wang J. The impact of MCCK1, an inhibitor of IKBKE kinase, on acute B lymphocyte leukemia cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5164-5180. [PMID: 38872531 DOI: 10.3934/mbe.2024228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a malignant blood disorder, particularly detrimental to children and adolescents, with recurrent or unresponsive cases contributing significantly to cancer-associated fatalities. IKBKE, associated with innate immunity, tumor promotion, and drug resistance, remains poorly understood in the context of B-ALL. Thus, this research aimed to explore the impact of the IKBKE inhibitor MCCK1 on B-ALL cells. The study encompassed diverse experiments, including clinical samples, in vitro and in vivo investigations. Quantitative real-time fluorescence PCR and protein blotting revealed heightened IKBKE mRNA and protein expression in B-ALL patients. Subsequent in vitro experiments with B-ALL cell lines demonstrated that MCCK1 treatment resulted in reduced cell viability and survival rates, with flow cytometry indicating cell cycle arrest. In vivo experiments using B-ALL mouse tumor models substantiated MCCK1's efficacy in impeding tumor proliferation. These findings collectively suggest that IKBKE, found to be elevated in B-ALL patients, may serve as a promising drug target, with MCCK1 demonstrating potential for inducing apoptosis in B-ALL cells both in vitro and in vivo.
Collapse
Affiliation(s)
| | - Peng Zhao
- Hematology Department, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Siyu Chen
- The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400000, China
| | - Bo Deng
- Guizhou Medical University, Guiyang 550004, China
| | - Qin Fang
- Pharmacy Department, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jishi Wang
- Hematology Department, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
3
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Xu Y, Xu H, Ling T, Cui Y, Zhang J, Mu X, Zhou D, Zhao T, Li Y, Su Z, You Q. Inhibitor of nuclear factor kappa B kinase subunit epsilon regulates murine acetaminophen toxicity via RIPK1/JNK. Cell Biol Toxicol 2023; 39:2709-2724. [PMID: 36757501 DOI: 10.1007/s10565-023-09796-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Drug-induced liver injury (DILI) still poses a major clinical challenge and is a leading cause of acute liver failure. Inhibitor of nuclear factor kappa B kinase subunit epsilon (IKBKE) is essential for inflammation and metabolic disorders. However, it is unclear how IKBKE regulates cellular damage in acetaminophen (APAP)-induced acute liver injury. Here, we found that the deficiency of IKBKE markedly aggravated APAP-induced acute liver injury by targeting RIPK1. We showed that APAP-treated IKBKE-deficient mice exhibited severer liver injury, worse mitochondrial integrity, and enhanced glutathione depletion than wild-type mice. IKBKE deficiency may directly upregulate the expression of total RIPK1 and the cleaved RIPK1, resulting in sustained JNK activation and increased translocation of RIPK1/JNK to mitochondria. Moreover, deficiency of IKBKE enhanced the expression of pro-inflammatory factors and inflammatory cell infiltration in the liver, especially neutrophils and monocytes. Inhibition of RIPK1 activity by necrostatin-1 significantly reduced APAP-induced liver damage. Thus, we have revealed a negative regulatory function of IKBKE, which acts as an RIPK1/JNK regulator to mediate APAP-induced hepatotoxicity. Targeting IKBKE/RIPK1 may serve as a potential therapeutic strategy for acute or chronic liver injury.
Collapse
Affiliation(s)
- Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Haozhe Xu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yachao Cui
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Junwei Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Xianmin Mu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Desheng Zhou
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Ting Zhao
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Su
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China.
| | - Qiang You
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Zhu L, Guo G, Jin Y, Hu A, Liu Y. IKBKE regulates angiogenesis by modulating VEGF expression and secretion in glioblastoma. Tissue Cell 2023; 84:102180. [PMID: 37573607 DOI: 10.1016/j.tice.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE As a noncanonical inflammatory kinase, IKBKE is frequently overexpressed and activated and has been identified as an oncogenic protein in glioblastoma. However, the potential function and underlying mechanism of IKBKE contributing to tumor angiogenesis remain elusive. METHODS First, we analyzed the correlation between IKBKE and VEGF expression in glioma samples by immunohistochemistry (IHC). Second, HUVEC-related assays and Western blot were used to detect the regulatory effect of IKBKE on angiogenesis by modulating VEGF expression. Third, IKBKE depletion could alleviate the influence of VEGF expression on IHC of intracranial glioma model. RESULTS We demonstrate that depletion of IKBKE markedly inhibits tumor growth and angiogenesis in glioblastoma. Mechanistically, IKBKE induces VEGF expression and secretion by regulating AKT/FOXO3a in glioblastoma. CONCLUSIONS This study reveals that IKBKE is a novel oncogenic molecule that induces angiogenesis through the promotion of VEGF expression and highlights the potential of targeting IKBKE for glioblastoma therapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yuwei Jin
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| | - Yang Liu
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
6
|
Xie W, Jiang Q, Wu X, Wang L, Gao B, Sun Z, Zhang X, Bu L, Lin Y, Huang Q, Li J, Guo J. IKBKE phosphorylates and stabilizes Snail to promote breast cancer invasion and metastasis. Cell Death Differ 2022; 29:1528-1540. [PMID: 35066576 PMCID: PMC9345937 DOI: 10.1038/s41418-022-00940-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
IKBKE, a non-canonical inflammatory kinase, is frequently amplified or activated, and plays predominantly oncogenic roles in human cancers, especially in breast cancer. However, the potential function and underlying mechanism of IKBKE contributing to breast cancer metastasis remain largely elusive. Here, we report that depletion of Ikbke markedly decreases polyoma virus middle T antigen (PyVMT)-induced mouse mammary tumorigenesis and subsequent lung metastasis. Biologically, ectopic expression of IKBKE accelerates, whereas depletion of IKBKE attenuates breast cancer invasiveness and migration in vitro and tumor metastasis in vivo. Mechanistically, IKBKE tightly controls the stability of transcriptional factor Snail in different layers, in particular by directly phosphorylating Snail, which markedly blocks the E3 ligase β-TRCP1-mediated Snail degradation, resulting in breast cancer epithelial-mesenchymal transition (EMT) and metastasis. These findings together reveal a novel oncogenic function of IKBKE in promoting breast cancer metastasis by governing Snail abundance, and highlight the potential of targeting IKBKE for metastatic breast cancer therapies.
Collapse
|
7
|
Gilbert S, Péant B, Mes-Masson AM, Saad F. IKKe Inhibitor Amlexanox Promotes Olaparib Sensitivity through the C/EBP-b-Mediated Transcription of Rad51 in Castrate-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153684. [PMID: 35954347 PMCID: PMC9367422 DOI: 10.3390/cancers14153684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Most men with advanced hormone-sensitive prostate cancer (HSPC) treated with androgen deprivation therapy will develop castrate resistant prostate cancer (CRPC), a lethal form of prostate cancer (PC). Our group has previously shown that IKKε expression is stronger in CRPC tumors and correlates with aggressive PC. Moreover, we have shown that IKKε depletion or inhibition (BX795, Amlexanox) decrease CRPC cell proliferation and tumor volume in an in vivo mouse model. We also demonstrate that IKKε inhibitors specifically target CRPC to induce a senescent phenotype as well as DNA damage and genomic instability. In this study, we demonstrated that IKKε depletion or inhibition block C/EBP-β recruitment on Rad51 promoter to decrease promoter activity. We have also shown that Amlexanox treatment sensitizes CRPC cells to Olaparib in vitro and in mouse models. Taken together, targeting IKKε with Amlexanox combined with Olaparib may lead to additional effective therapeutic strategies in the management of patients with CRPC. Abstract The progression of prostate cancer (PC) is often characterized by the development of castrate-resistant PC (CRPC). Patients with CRPC are treated with a variety of agents including new generation hormonal therapies or chemotherapy. However, as the cancer develops more resistance mechanisms, these drugs eventually become less effective and finding new therapeutic approaches is critical to improving patient outcomes. Previously, we have shown that IKKε depletion and IKKε inhibitors, BX795 and Amlexanox, decrease CRPC cell proliferation in vitro and in vivo and that IKKε inhibitors induce a senescence phenotype accompanied by increased DNA damage and genomic instability in CRPC cells. Here, we describe a new role for IKKε in DNA damage repair involving Rad51 and examine the therapeutic potential of Amlexanox combined with the PARP inhibitor Olaparib in CRPC cell lines. Combining Amlexanox with Olaparib decreased CRPC cell proliferation and enhanced DNA damage through the inhibition of Olaparib-induced Rad51 recruitment and expression in CRPC cells or IKKε-depleted PC-3 cells. We demonstrated that Rad51 promoter activity, measured by luciferase assay, was decreased with Amlexanox treatment or IKKε depletion and that Amlexanox treatment decreased the occupancy of transcription factor C/EBP-β on the Rad51 promoter. Our mouse model also showed that Amlexanox combined with Olaparib inhibited tumor growth of CRPC xenografts. Our study highlights a new role for IKKε in DNA damage repair through the regulation of Rad51 transcription and provides a rationale for the combination of Amlexanox and Olaparib in the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sophie Gilbert
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
| | - Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-514-890-8000 (ext. 25496)
| | - Fred Saad
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
- Department of Surgery, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
8
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
10
|
Liu Y, Guo G, Lu Y, Chen X, Zhu L, Zhao L, Li C, Zhang Z, Jin X, Dong J, Yang X, Huang Q. Silencing IKBKE inhibits the migration and invasion of glioblastoma by promoting Snail1 degradation. Clin Transl Oncol 2021; 24:816-828. [PMID: 34741724 DOI: 10.1007/s12094-021-02726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors in adults and has high mortality and relapse rates. Over the past few years, great advances have been made in the diagnosis and treatment of GBM, but unfortunately, the five-year overall survival rate of GBM patients is approximately 5.1%. Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE) is a major oncogenic protein in tumors and can promote evil development of GBM. Snail1, a key inducer of the epithelial-mesenchymal transition (EMT) transcription factor, is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumors remains unclear. Our study aimed to investigate the mechanism of IKBKE regulating Snail1 in GBM. METHODS First, we analyzed the correlation between the expression of IKBKE and the tumor grade and prognosis through public databases and laboratory specimen libraries. Second, immunohistochemistry (IHC) and western blot were used to detect the correlation between IKBKE and Snail expression in glioma samples and cell lines. Western blot and immunofluorescence (IF) experiments were used to detect the quality and distribution of IKBKE and Snail1 proteins. Third, In situ animal model of intracranial glioma to detect the regulatory effect of IKBKE on intracranial tumors. RESULTS In this study, Our study reveals a new connection between IKBKE and Snail1, where IKBKE can directly bind to Snail1, translocate Snail1 into the nucleus from the cytoplasm. Downregulation of IKBKE results in Snail1 destabilization and impairs the tumor cell migration and invasion capabilities. CONCLUSION Our studies suggest that the IKBKE-Snail1 axis may serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Y Liu
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - G Guo
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Y Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - X Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - L Zhu
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - L Zhao
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - C Li
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Z Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, 315000, Zhejiang, China
| | - X Jin
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300052, China
| | - J Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - X Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Q Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
11
|
Yang J, Xu Z, Wu WKK, Chu Q, Zhang Q. GraphSynergy: a network-inspired deep learning model for anticancer drug combination prediction. J Am Med Inform Assoc 2021; 28:2336-2345. [PMID: 34472609 PMCID: PMC8510276 DOI: 10.1093/jamia/ocab162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To develop an end-to-end deep learning framework based on a protein-protein interaction (PPI) network to make synergistic anticancer drug combination predictions. MATERIALS AND METHODS We propose a deep learning framework named Graph Convolutional Network for Drug Synergy (GraphSynergy). GraphSynergy adapts a spatial-based Graph Convolutional Network component to encode the high-order topological relationships in the PPI network of protein modules targeted by a pair of drugs, as well as the protein modules associated with a specific cancer cell line. The pharmacological effects of drug combinations are explicitly evaluated by their therapy and toxicity scores. An attention component is also introduced in GraphSynergy, which aims to capture the pivotal proteins that play a part in both PPI network and biomolecular interactions between drug combinations and cancer cell lines. RESULTS GraphSynergy outperforms the classic and state-of-the-art models in predicting synergistic drug combinations on the 2 latest drug combination datasets. Specifically, GraphSynergy achieves accuracy values of 0.7553 (11.94% improvement compared to DeepSynergy, the latest published drug combination prediction algorithm) and 0.7557 (10.95% improvement compared to DeepSynergy) on DrugCombDB and Oncology-Screen datasets, respectively. Furthermore, the proteins allocated with high contribution weights during the training of GraphSynergy are proved to play a role in view of molecular functions and biological processes, such as transcription and transcription regulation. CONCLUSION The introduction of topological relations between drug combination and cell line within the PPI network can significantly improve the capability of synergistic drug combination identification.
Collapse
Affiliation(s)
- Jiannan Yang
- School of Data Science, City University of Hong Kong, Hong Kong,
S.A.R. of China
| | - Zhongzhi Xu
- Hong Kong Jockey Club Centre for Suicide Research and Prevention, The
University of Hong Kong, Hong Kong, S.A.R. of China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, Chinese University of Hong
Kong, Hong Kong, S.A.R. of China
| | - Qian Chu
- Department of Thoracic Oncology, Tongji Hospital, Huazhong University of
Science and Technology, Wuhan, China
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Hong Kong,
S.A.R. of China
| |
Collapse
|
12
|
Xiong J, Guo G, Guo L, Wang Z, Chen Z, Nan Y, Cao Y, Li R, Yang X, Dong J, Jin X, Yang W, Huang Q. Amlexanox Enhances Temozolomide-Induced Antitumor Effects in Human Glioblastoma Cells by Inhibiting IKBKE and the Akt-mTOR Signaling Pathway. ACS OMEGA 2021; 6:4289-4299. [PMID: 33644550 PMCID: PMC7906592 DOI: 10.1021/acsomega.0c05399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 05/05/2023]
Abstract
Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of IKBKE, for GBM. We found that the combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration, and invasion in primary glioma cells and in the human glioma cell line, U87 MG. As expected, TMZ enhanced the expression of p-AMPK and amlexanox led to the reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that compared to other groups treated with each component alone, TMZ combined with amlexanox effectively reversed the TMZ-induced activation of Akt and inhibited the phosphorylation of mTOR. In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. These results suggest that amlexanox sensitized the primary glioma cells and U87 MG cells to TMZ at least partially through the suppression of IKBKE activation and the attenuation of TMZ-induced Akt activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.
Collapse
Affiliation(s)
- Jinbiao Xiong
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Gaochao Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Lianmei Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zengguang Wang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zhijuan Chen
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Nan
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yiyao Cao
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Ruilong Li
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Xuejun Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Jun Dong
- Department
of Neurosurgery, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, China
| | - Xun Jin
- Tianjin
Medical University Cancer Institute and Hospital, Tianjin 300052, China
- National
Clinical Research Center for Cancer, Tianjin 300052, China
- Key
Laboratory of Cancer Prevention and Therapy, Tianjin 300052, China
- Tianjin’s
Clinical Research Center for Cancer, Tianjin 300052, China
| | - Weidong Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- . Tel: (+86)13820763396
| | - Qiang Huang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
- . Tel: (+86)13820689221
| |
Collapse
|
13
|
Cao Y, Li L, Liu Y, Chen G, Tao Z, Wang R, Chen W. I- κB Kinase- ε Deficiency Attenuates the Development of Angiotensin II-Induced Myocardial Hypertrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6429197. [PMID: 33628362 PMCID: PMC7886514 DOI: 10.1155/2021/6429197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/20/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
I-κB kinase-ε (IKKε) is a member of the IKK complex and a proinflammatory regulator that is active in many diseases. Angiotensin II (Ang II) is a vasoconstricting peptide hormone, and Ang II-induced myocardial hypertrophy is a common cardiovascular disease that can result in heart failure. In this study, we sought to determine the role of IKKε in the development of Ang II-induced myocardial hypertrophy in mice. Wild-type (WT) and IKKε-knockout (IKKε-KO) mice were generated and infused with saline or Ang II for 8 weeks. We found that WT mouse hearts have increased IKKε expression after 8 weeks of Ang II infusion. Our results further indicated that IKKε-KO mice have attenuated myocardial hypertrophy and alleviated heart failure compared with WT mice. Additionally, Ang II-induced expression of proinflammatory and collagen factors was much lower in the IKKε-KO mice than in the WT mice. Apoptosis and pyroptosis were also ameliorated in IKKε-KO mice. Mechanistically, IKKε bound to extracellular signal-regulated kinase (ERK) and the mitogen-activated protein kinase p38, resulting in MAPK/ERK kinase (MEK) phosphorylation, and IKKε deficiency inhibited the phosphorylation of MEK-ERK1/2 and p38 in mouse heart tissues after 8 weeks of Ang II infusion. The findings of our study reveal that IKKε plays an important role in the development of Ang II-induced myocardial hypertrophy and may represent a potential therapeutic target for the management of myocardial hypertrophy.
Collapse
Affiliation(s)
- Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Bainbridge A, Walker S, Smith J, Patterson K, Dutt A, Ng YM, Thomas HD, Wilson L, McCullough B, Jones D, Maan A, Banks P, McCracken SR, Gaughan L, Robson CN, Coffey K. IKBKE activity enhances AR levels in advanced prostate cancer via modulation of the Hippo pathway. Nucleic Acids Res 2020; 48:5366-5382. [PMID: 32324216 PMCID: PMC7261174 DOI: 10.1093/nar/gkaa271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Resistance to androgen receptor (AR) targeting therapeutics in prostate cancer (PC) is a significant clinical problem. Mechanisms by which this is accomplished include AR amplification and expression of AR splice variants, demonstrating that AR remains a key therapeutic target in advanced disease. For the first time we show that IKBKE drives AR signalling in advanced PC. Significant inhibition of AR regulated gene expression was observed upon siRNA-mediated IKBKE depletion or pharmacological inhibition due to inhibited AR gene expression in multiple cell line models including a LNCaP derivative cell line resistant to the anti-androgen, enzalutamide (LNCaP-EnzR). Phenotypically, this resulted in significant inhibition of proliferation, migration and colony forming ability suggesting that targeting IKBKE could circumvent resistance to AR targeting therapies. Indeed, pharmacological inhibition in the CWR22Rv1 xenograft mouse model reduced tumour size and enhanced survival. Critically, this was validated in patient-derived explants where enzymatic inactivation of IKBKE reduced cell proliferation and AR expression. Mechanistically, we provide evidence that IKBKE regulates AR levels via Hippo pathway inhibition to reduce c-MYC levels at cis-regulatory elements within the AR gene. Thus, IKBKE is a therapeutic target in advanced PC suggesting repurposing of clinically tested IKBKE inhibitors could be beneficial to castrate resistant PC patients.
Collapse
Affiliation(s)
- Alex Bainbridge
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Scott Walker
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Joseph Smith
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kathryn Patterson
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Aparna Dutt
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yi Min Ng
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Huw D Thomas
- Drug Discovery, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Wilson
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Benjamin McCullough
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dominic Jones
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arussa Maan
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Peter Banks
- Bio Screening Facility, Newcastle University, Cookson Building, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Stuart R McCracken
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Luke Gaughan
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
15
|
Yi L, Guo G, Li J, Fan X, Li T, Tong L, Liu P, Wang X, Yuan F, Yu S, Huang Q, Yang X. IKBKE, a prognostic factor preferentially expressed in mesenchymal glioblastoma, modulates tumoral immunosuppression through the STAT3/PD‐L1 pathway. Clin Transl Med 2020. [PMCID: PMC7418810 DOI: 10.1002/ctm2.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Li Yi
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of Oncology‐Pathology, Karolinska InstitutetKarolinska University Hospital Solna Stockholm Sweden
| | - Gaochao Guo
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of Neurosurgery, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jiabo Li
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Xiaoguang Fan
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Tao Li
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Luqing Tong
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of NeurosurgeryJohns Hopkins University School of Medicine Baltimore MD USA
| | - Peidong Liu
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of NeurosurgeryJohns Hopkins University School of Medicine Baltimore MD USA
| | - Xuya Wang
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Feng Yuan
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Shengping Yu
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Qiang Huang
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Xuejun Yang
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| |
Collapse
|
16
|
Challa S, Husain K, Kim R, Coppola D, Batra SK, Cheng JQ, Malafa MP. Targeting the IκB Kinase Enhancer and Its Feedback Circuit in Pancreatic Cancer. Transl Oncol 2020; 13:481-489. [PMID: 32004866 PMCID: PMC6994835 DOI: 10.1016/j.tranon.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with an overall median 5-year survival rate of 8%. This poor prognosis is because of the development of resistance to chemotherapy and radiation therapy and lack of effective targeted therapies. IκB kinase enhancer (IKBKE) overexpression was previously implicated in chemoresistance. Because IKBKE is frequently elevated in PDAC and IKBKE inhibitors are currently in clinical trials, we evaluated IKBKE as a therapeutic target in this disease. Depletion of IKBKE was found to significantly reduce PDAC cell survival, growth, cancer stem cell renewal, and cell migration and invasion. Notably, IKBKE inhibitor CYT387 and IKBKE knockdown dramatically activated the MAPK pathway. Phospho-RTK array analyses showed that IKBKE inhibition leads to rapid upregulation of ErbB3 and IGF-1R expression, which results in MAPK-ERK pathway activation-thereby limiting the efficacy of IKBKE inhibitors. Furthermore, IKBKE inhibition leads to stabilization of FOXO3a, which is required for RTK upregulation on IKBKE inhibition. Finally, we demonstrated that the IKBKE inhibitors synergize with the MEK inhibitor trametinib to significantly induce cell death and inhibit tumor growth and liver metastasis in an orthotopic PDAC mouse model.
Collapse
Affiliation(s)
| | | | | | - Domenico Coppola
- Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jin Q Cheng
- Departments of Molecular Oncology, Tampa, FL, USA
| | | |
Collapse
|
17
|
IKK Epsilon Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Inhibiting Inflammation, Oxidative Stress, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3602824. [PMID: 32064021 PMCID: PMC6998751 DOI: 10.1155/2020/3602824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/06/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder that is considered a chronic inflammatory disease. However, the precise molecular mechanisms involved in AAA have not been fully elucidated. Recently, significant progress has been made in understanding the function and mechanism of action of inhibitor of kappa B kinase epsilon (IKKε) in inflammatory and metabolic diseases. The angiotensin II- (Ang II-) induced or pharmacological inhibitors were established to test the effects of IKKε on AAA in vivo. After mice were continuously stimulated with Ang II for 28 days, morphologically, we found that knockout of IKKε reduced AAA formation and drastically reduced maximal diameter and severity. We also observed a decrease in elastin degradation and medial destruction, which were independent of systolic blood pressure or plasma cholesterol concentrations. Western blot analyses and immunohistochemical staining were carried out to measure IKKε expression in AAA tissues and cell lines. AAA phenotype of mice was measured by ultrasound and biochemical indexes. In zymography, immunohistology staining, immunofluorescence staining, and reactive oxygen species (ROS) analysis, TUNEL assay was used to examine the effects of IKKε on AAA progression in AAA mice. IKKε deficiency significantly inhibited inflammatory macrophage infiltration, matrix metalloproteinase (MMP) activity, ROS production, and vascular smooth muscle cell (VSMC) apoptosis. We used primary mouse aortic VSMC isolated from apolipoprotein E (Apoe) -/- and Apoe-/-IKKε -/- mice. Mechanistically, IKKε deficiency blunted the activation of the ERK1/2 pathway. The IKKε inhibitor, amlexanox, has the same impact in AAA. Our results demonstrate a critical role of IKKε in AAA formation induced by Ang II in Apoe-/- mice. Targeting IKKε may constitute a novel therapeutic strategy to prevent AAA progression.
Collapse
|
18
|
Yin M, Wang X, Lu J. Advances in IKBKE as a potential target for cancer therapy. Cancer Med 2020; 9:247-258. [PMID: 31733040 PMCID: PMC6943080 DOI: 10.1002/cam4.2678] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon), a member of the nonclassical IKK family, plays an important role in the regulation of inflammatory reactions, activation and proliferation of immune cells, and metabolic diseases. Recent studies have demonstrated that IKBKE plays a crucial regulatory role in malignant tumor development. In recent years, IKBKE, an important oncoprotein in several kinds of tumors, has been widely found to regulate a variety of cytokines and signaling pathways. IKBKE promotes the growth, proliferation, invasion, and drug resistance of various cancers. This paper makes a detailed review that focuses on the recent discoveries of IKBKE in the malignant tumors, and puts forward that IKBKE is becoming an important therapeutic target for clinical treatment, which has been more and more realized.
Collapse
Affiliation(s)
- Min Yin
- Department of OncologyJinan Fifth People's HospitalJinanPR China
| | - Xin Wang
- Department of OncologyRenmin Hospital of Wuhan UniversityHubei ProvinceWuhanPR China
- Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong UniversityShandong Academy of Medical ScienceJinanPR China
| | - Jie Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical UniversityJinanPR China
| |
Collapse
|
19
|
Guo G, Sun Y, Hong R, Xiong J, Lu Y, Liu Y, Lu J, Zhang Z, Guo C, Nan Y, Huang Q. IKBKE enhances TMZ-chemoresistance through upregulation of MGMT expression in glioblastoma. Clin Transl Oncol 2019; 22:1252-1262. [PMID: 31865606 DOI: 10.1007/s12094-019-02251-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/24/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most common and aggressive malignant type of brain tumor. Despite advances in diagnosis and therapy, the prognosis of patients with GBM has remained dismal. Multidrug resistance and high recurrence are two of the major challenges in successfully treating brain tumors. IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) is a major oncogenic protein in tumors and can inhibit glioblastoma cell proliferation, migration, and tumorigenesis. Our study aimed to investigate the mechanism of IKBKE enhancing the resistance of glioma cells to temozolomide. METHODS For the in vitro experiments, LN18 and U118 glioblastoma cells were treated with a combination of sh/oe-IKBKE lentivirus and TMZ. Cell proliferation was determined by the EdU assay and colony formation assays. Apoptosis was analyzed by the TUNEL assay. In vivo, LN18 NC and LN18 sh-IKBKE cells were implanted into the cerebrums of nude mice to detect the effect of combination therapy. The protein and mRNA levels were assayed by western blot, immunohistochemistry, and qRT-PCR. RESULTS In this study, we demonstrated that IKBKE enhances the resistance of glioblastoma cells to temozolomide (TMZ) by activating the AKT/NF-κB signaling pathway to upregulate the expression of the DNA repair enzyme o6-methylguanine-dna methyltransferase (MGMT). In glioblastoma cells, IKBKE knockdown enhances apoptosis and suppresses cell proliferation, clone formation, and tumor development in vivo induced by TMZ. However, overexpression of IKBKE reduces the effects of TMZ. CONCLUSION Our studies suggest that inhibition of IKBKE can enhance the therapeutic effect of TMZ on GBM in vitro and in vivo, providing new research directions and therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- G Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Y Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - R Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - J Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Y Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Y Liu
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - J Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Jinan, 250014, Shandong, China
| | - Z Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, 315000, Zhejiang, China
| | - C Guo
- Department of Clinical Pharmacology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Y Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Q Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
20
|
Identification of an IKBKE inhibitor with antitumor activity in cancer cells overexpressing IKBKE. Cytokine 2019; 116:78-87. [DOI: 10.1016/j.cyto.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/21/2022]
|
21
|
Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018; 7:cells7090139. [PMID: 30223576 PMCID: PMC6162516 DOI: 10.3390/cells7090139] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
Collapse
|
22
|
Göktuna Sİ. IKBKE inhibits TSC1 to activate the mTOR/S6K pathway for oncogenic transformation. Turk J Biol 2018; 42:268-278. [PMID: 30814890 DOI: 10.3906/biy-1801-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
IKBKE (IKKε) has emerged as a key modulator of multiple substrates, controlling oncogenic pathways in various malignancies. mTOR signaling, required for cellular growth, proliferation, and vascular angiogenesis in cancer, is potentially one of the pathways regulated by IKKε. Upon activation by various stimuli, PI3K/AKT or similar effectors can relieve the inhibitory effect of the TSC1/TSC2 complex through their phosphorylation to favor mTOR/S6K activation in the downstream. Therefore, any activity that interferes with PI3K/AKT or their downstream targets, such as TSC1/2 or GSK3α/β, may activate the mTOR/S6K pathway for oncogenic transformation in normal cells. Previous studies have shown that PI3K/AKT can be directly phosphoregulated by IKKε. Here, we propose a new regulatory function for IKKε in the mTOR/S6K pathway through its direct interaction with TSC1, leading to TSC1 phosphorylation, which is vital to suppress its inhibitory role in mTOR activation. Experimentally, upon IKKε deficiency in colorectal cancer cells, we observed that S6K activity was diminished while TSC1 levels were found to be stabilized. We hypothesized that these observations may result from direct interaction between IKKε and TSC1. Indeed, the interaction of these two proteins involves the phosphoregulation of TSC1 in various cell lines. Therefore, we propose a mechanism where IKKε, through regulating TSC1 stability in cancer cells, may create an alternative regulatory loop for the activation of mTOR signaling. These results can potentially be important for the development of novel therapeutic strategies targeting mTOR signaling.
Collapse
Affiliation(s)
- Serkan İsmail Göktuna
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University , Ankara , Turkey.,Laboratory of Medical Chemistry, Interdisciplinary Genomics and Genoproteomics Research Center (GIGA), University of Liege , Liege , Belgium.,National Nanotechnology Research Center (UNAM), Bilkent University , Ankara , Turkey
| |
Collapse
|
23
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
24
|
Zhang H, Liu Q, Su W, Wang J, Sun Y, Zhang J, Shang K, Chen Z, Cheng S, Wu H. Genome-wide analysis of differentially expressed genes and the modulation of PEDV infection in Vero E6 cells. Microb Pathog 2018; 117:247-254. [PMID: 29408315 PMCID: PMC7125602 DOI: 10.1016/j.micpath.2018.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
PEDV remains one of the most important swine diseases that infects pigs of all ages. It causes devastating viral enteric disease in piglets with a high mortality rate, leading to significant threats and huge economic loss to the pork industry. In this study, a transcriptomic shotgun sequencing (RNA-Seq) procedure was used to study gene responses against PEDV infection. Genome-wide analysis of differentially expressed genes (DEGs) was performed in Vero E6 cells post-PEDV infection. mTOR signaling pathway activator-MHY1485, and inhibitor-PP242 were used to study the antiviral function. Results revealed that the IRF3 was significantly up-regulated post-PEDV infection. Although most of the IFN-regulatory and –related genes evaluated in this study were either down-regulated or remained unchanged, IL11 behaved significantly up-regulated, with the peak at 16 hpi. Nearly 90% of PEDV infections were suppressed in the PP242 pretreated cells whereas the reverse effect was observed in the MYH1485 pretreated cells. Results indicated that the mTOR signaling pathway played a vital role in the PEDV antiviral regulation in the Vero E6 cells. Future studies will contribute to better understand the cellular antiviral mechanism against PEDV. RNA-Seq was used to study gene responses against PEDV infection. Genome-wide analysis of DEGs was performed in Vero E6 cells post-PEDV infection. The mTOR signaling pathway activator and inhibitor can affect the PEDV infection rate.
Collapse
Affiliation(s)
- Hewei Zhang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Qinfang Liu
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Weiwei Su
- Sinovet (Jiangsu) Biopharmaceuticals Co., Ltd, Taizhou, Jiangsu, China
| | - Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yaru Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Junfeng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, South Korea
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, South Korea
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| | - Hua Wu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| |
Collapse
|
25
|
Geng B, Zhang C, Wang C, Che Y, Mu X, Pan J, Xu C, Hu S, Yang J, Zhao T, Xu Y, Lv Y, Wen H, Liu Z, You Q. IκB-kinase-ε in the tumor microenvironment is essential for the progression of gastric cancer. Oncotarget 2017; 8:75298-75307. [PMID: 29088866 PMCID: PMC5650421 DOI: 10.18632/oncotarget.20778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/30/2017] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is critical for tumor growth and metastasis, but the underlying molecular mechanisms are poorly understood. Recent studies have shown that IκB-kinase-ε (IKKε) is involved in the proliferation and migration of certain cancers. However, the functional role of IKKε in the progression of gastric cancer (GC) remains unknown. In this study, we found that high levels of IKKε expression in GC tumors were correlated with more advanced disease and poor overall survival of patients. Silencing of IKKε effectively suppressed the migratory and invasive capabilities of human GC cells in vitro and tumorigenicity and metastasis in vivo. Further analysis revealed that IKKε was also highly expressed in tumor-infiltrating lymphocytes. Moreover, it was involved in tumor-infiltrating T-cell-mediated invasion and metastasis. Knockdown of IKKε elevated T-cell antitumor immunity. These findings suggest that IKKε may be a novel prognostic marker and a potential therapeutic target in human GCs.
Collapse
Affiliation(s)
- Biao Geng
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Chen Zhang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Chao Wang
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ying Che
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xianmin Mu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Jinshun Pan
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Che Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Shi Hu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Jing Yang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ting Zhao
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yue Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yuanfang Lv
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Hao Wen
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Laboratory for Aging & Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
26
|
Amlexanox, a selective inhibitor of IKBKE, generates anti-tumoral effects by disrupting the Hippo pathway in human glioblastoma cell lines. Cell Death Dis 2017; 8:e3022. [PMID: 29048430 PMCID: PMC5596579 DOI: 10.1038/cddis.2017.396] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent form of malignant brain tumor. Amlexanox, a novel compound, has been shown to have anti-cancer potential. In this study, the anti-tumoral effects and the underlying mechanisms of amlexanox were investigated. Amlexanox significantly suppressed proliferation and invasion and induced apoptosis in glioblastoma cells. Furthermore, we found that amlexanox altered the protein expression of the Hippo pathway by downregulating IKBKE. Our data indicates that IKBKE directly targets LATS1/2 and induces degradation of LATS1/2, thereby inhibiting the activity of the Hippo pathway. In vivo results further confirmed the tumor inhibitory effect of amlexanox via the downregulation of IKBKE, and amlexanox induced no apparent toxicity. Collectively, our studies suggest that amlexanox is a promising therapeutic agent for the treatment of GBM.
Collapse
|
27
|
Todd I, Negm OH, Reps J, Radford P, Figueredo G, McDermott EM, Drewe E, Powell RJ, Bainbridge S, Hamed M, Crouch S, Garibaldi J, St-Gallay S, Fairclough LC, Tighe PJ. A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing. Pharmacol Res 2017; 125:188-200. [PMID: 28860008 DOI: 10.1016/j.phrs.2017.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022]
Abstract
TNF receptor associated periodic syndrome (TRAPS) is an autoinflammatory disease caused by mutations in TNF Receptor 1 (TNFR1). Current therapies for TRAPS are limited and do not target the pro-inflammatory signalling pathways that are central to the disease mechanism. Our aim was to identify drugs for repurposing as anti-inflammatories based on their ability to down-regulate molecules associated with inflammatory signalling pathways that are activated in TRAPS. This was achieved using rigorously optimized, high through-put cell culture and reverse phase protein microarray systems to screen compounds for their effects on the TRAPS-associated inflammatory signalome. 1360 approved, publically available, pharmacologically active substances were investigated for their effects on 40 signalling molecules associated with pro-inflammatory signalling pathways that are constitutively upregulated in TRAPS. The drugs were screened at four 10-fold concentrations on cell lines expressing both wild-type (WT) TNFR1 and TRAPS-associated C33Y mutant TNFR1, or WT TNFR1 alone; signalling molecule levels were then determined in cell lysates by the reverse-phase protein microarray. A novel mathematical methodology was developed to rank the compounds for their ability to reduce the expression of signalling molecules in the C33Y-TNFR1 transfectants towards the level seen in the WT-TNFR1 transfectants. Seven high-ranking drugs were selected and tested by RPPA for effects on the same 40 signalling molecules in lysates of peripheral blood mononuclear cells (PBMCs) from C33Y-TRAPS patients compared to PBMCs from normal controls. The fluoroquinolone antibiotic lomefloxacin, as well as others from this class of compounds, showed the most significant effects on multiple pro-inflammatory signalling pathways that are constitutively activated in TRAPS; lomefloxacin dose-dependently significantly reduced expression of 7/40 signalling molecules across the Jak/Stat, MAPK, NF-κB and PI3K/AKT pathways. This study demonstrates the power of signalome screening for identifying candidates for drug repurposing.
Collapse
Affiliation(s)
- Ian Todd
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Ola H Negm
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK; Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Jenna Reps
- Advanced Data Analysis Centre, School of Computer Science, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Paul Radford
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Grazziela Figueredo
- Advanced Data Analysis Centre, School of Computer Science, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Elizabeth M McDermott
- Nottingham University Hospitals National Health Service Trust, Queen's Medical Centre Campus, Nottingham NG7 2UH, UK
| | - Elizabeth Drewe
- Nottingham University Hospitals National Health Service Trust, Queen's Medical Centre Campus, Nottingham NG7 2UH, UK
| | - Richard J Powell
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Susan Bainbridge
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Mohamed Hamed
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Sharon Crouch
- Business Engagement and Innovation Services, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Jon Garibaldi
- Advanced Data Analysis Centre, School of Computer Science, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Steve St-Gallay
- Sygnature Discovery Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK.
| | - Patrick J Tighe
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
28
|
Williams V, Grosset AA, Zamorano Cuervo N, St-Pierre Y, Sylvestre MP, Gaboury L, Grandvaux N. Detection of IKKε by immunohistochemistry in primary breast cancer: association with EGFR expression and absence of lymph node metastasis. BMC Cancer 2017; 17:356. [PMID: 28532474 PMCID: PMC5441089 DOI: 10.1186/s12885-017-3321-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background IKKε is an oncogenic kinase that was found amplified and overexpressed in a substantial percentage of human breast cancer cell lines and primary tumors using genomic and gene expression analyses. Molecular studies have provided the rational for a key implication of IKKε in breast cancer cells proliferation and invasiveness through the phosphorylation of several substrates. Methods Here, we performed immunohistochemical detection of IKKε expression on tissue microarrays constituted of 154 characterized human breast cancer tumors. We further determined the association with multiple clinicopathological parameters and 5-years overall, disease-free and distant disease free survival. Results We observed expression of IKKε in 60.4% of the breast cancer tumors. IKKε expression status showed no association with a panel of markers used for molecular classification of the tumors, including ER/PR/HER2 status, or with the molecular subtypes. However, IKKε expression was inversely associated with lymph node metastasis status (p = 0.0032). Additionally, we identified a novel association between IKKε and EGFR expression (p = 0.0011). Conclusions The unexpected observation of an inverse association between IKKε and lymph node metastasis advocates for larger scale immunohistochemical profiling of primary breast tumors to clarify the role of IKKε in metastasis. This study suggests that breast cancer tumors expressing EGFR and IKKε may be potential targets for drugs aiming at inhibiting IKKε activity or expression.
Collapse
Affiliation(s)
- Virginie Williams
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Qc, Montréal, Canada
| | - Andrée-Anne Grosset
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada.,INRS-Institut Armand-Frappier, INRS, 531 Boul. des Prairies, Laval, Qc H7V 1B7, Canada.,IRIC, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, INRS, 531 Boul. des Prairies, Laval, Qc H7V 1B7, Canada
| | - Marie-Pierre Sylvestre
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada.,Department of Social and Preventive Medicine, Ecole de santé publique, Université de Montréal, Qc, Montréal, Canada
| | - Louis Gaboury
- IRIC, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Qc, Montréal, Canada.
| |
Collapse
|
29
|
Zhang J, Tian M, Xia Z, Feng P. Roles of IκB kinase ε in the innate immune defense and beyond. Virol Sin 2016; 31:457-465. [PMID: 28063014 DOI: 10.1007/s12250-016-3898-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
IκB kinase ε (IKKε) is a non-canonical IκB kinase that is extensively studied in the context of innate immune response. Recently, significant progress has been made in understanding the role of IKKε in interferon (IFN) signaling. In addition to its roles in innate immunity, recent studies also demonstrate that IKKε is a key regulator of the adaptive immune response. Specifically, IKKε functions as a negative feedback kinase to curtail CD8 T cell response, implying that it can be a potential therapeutic target to boost antiviral and antitumor T cell immunity. In this review, we highlight the roles of IKKε in regulating IFN signaling and T cell immunity, and discuss a few imminent questions that remain to be answered.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA.
| | - Mao Tian
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, 410008, China
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA
| |
Collapse
|