1
|
Cheng K, Ge L, Song M, Li W, Zheng J, Liu J, Luo Y, Sun P, Xu S, Cheng Z, Yu J, Liu J. Preclinical Evaluation and Pilot Clinical Study of CD137 PET Radiotracer for Noninvasive Monitoring Early Responses of Immunotherapy. J Nucl Med 2024:jnumed.124.268068. [PMID: 39667816 DOI: 10.2967/jnumed.124.268068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Given the variability in the effectiveness of immune checkpoint blocking therapy among patients and tumor types, development of noninvasive methods for longitudinal assessment of immune cell function and early tumor response is crucial for precision immunotherapy. CD137 (4-1BB), a marker of activated T cells, plays a significant role in immunotherapy. However, its potential as an imaging biomarker for activated T cells in the tumor microenvironment has not been explored. This study introduces a bicyclic peptide-based probe that targets CD137 for noninvasive PET imaging of tumor-infiltrating activated T cells. Methods: A bicyclic peptide-based probe, [18F]AlF-NOTA-BCP137, was first designed and synthesized for quantitative and longitudinal whole-body visualization of CD137 dynamics. Initially, [18F]AlF-NOTA-BCP137 was assessed in mouse models with varying CD137 expression levels. Next, [18F]AlF-NOTA-BCP137 was used for longitudinal monitoring of systemic CD137 changes in a humanized tumor-bearing mouse model. Lastly, the probe was further evaluated in a small group of patients with hepatocellular carcinoma undergoing immunotherapy or combination immunotherapy. Results: [18F]AlF-NOTA-BCP137 PET accurately characterized CD137 expression in homologous transplanted mouse models and tumor patients. The findings from animal studies indicated that uptake of [18F]AlF-NOTA-BCP137 was predictive of the early therapeutic response to combination immunotherapies and was positively associated with the increased survival rates of mice with tumors. A preliminary clinical study involving small patient cohorts demonstrated that [18F]AlF-NOTA-BCP137 imaging effectively predicted early patient responses to immunotherapeutic interventions. Conclusion: [18F]AlF-NOTA-BCP137 PET imaging of CD137 is a promising and reliable method for evaluating the efficacy of multiple combination immunotherapies and merits further validation in larger-scale clinical trials. This approach has the potential for early noninvasive visualization of individual patient responses in combination cancer immunotherapy and will aid in tailoring personalized strategies for patients.
Collapse
Affiliation(s)
- Kai Cheng
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miaomiao Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wanhu Li
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinsong Zheng
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingru Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuxi Luo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Pengfei Sun
- Department of Hepato-Biliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; and
| | - Shengnan Xu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Jinming Yu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China;
| | - Jie Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China;
| |
Collapse
|
2
|
Raymakers L, Demmers TJ, Meijer GJ, Molenaar IQ, van Santvoort HC, Intven MPW, Leusen JHW, Olofsen PA, Daamen LA. The Effect of Radiation Treatment of Solid Tumors on Neutrophil Infiltration and Function: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 120:845-861. [PMID: 39009323 DOI: 10.1016/j.ijrobp.2024.07.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Radiation therapy (RT) initiates a local and systemic immune response which can induce antitumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial antitumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT-induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for patients with cancer it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to 3 weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 and arginase 1, as well as neutrophil extracellular trap formation. RT was also associated with increased reactive oxygen species production by neutrophils, which can both improve and inhibit antitumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a protumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Thijs J Demmers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lois A Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Kim Y, Jeon SH, Kim S, Kang MH, Han MG, Lee SY, Kim IA. In vitro-irradiated cancer vaccine enhances anti-tumor efficacy of radiotherapy and PD-L1 blockade in a syngeneic murine breast cancer model. Radiother Oncol 2024; 200:110480. [PMID: 39159681 DOI: 10.1016/j.radonc.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND PURPOSE Local radiotherapy (RT) exerts immunostimulatory effects by inducing immunogenic cell death. However, it remains unknown whether in vitro-irradiated tumor cells can elicit anti-tumor responses and enhance the efficacy of local RT and immune checkpoint inhibitors when injected in vivo. METHODS AND MATERIALS We tested the "in vitro-irradiated cancer vaccine (ICV)", wherein tumor cells killed by varying doses of irradiation and their supernatants are intravenously injected. We examined the efficacy of combining local RT (24 Gy in three fractions), PD-L1 blockade, and the ICV in a murine breast cancer model. The immune cell profiles were analyzed via flow cytometry and immunohistochemistry. The cytokine levels were measured by multiplex immunoassays. RESULTS The ICV significantly increased the effector memory phenotype and interferon-γ production capacity in splenic CD8+ T cells. The in vitro-irradiated products contained immune response-related molecules. When combined with local RT and PD-L1 blockade, the ICV significantly delayed the growth of irradiated and non-irradiated tumors. The triple combination therapy increased the proportions of CD8+ T cells and effector memory CD8+ T cells while decreasing the proportion of CTLA-4+ exhausted CD8+ T cells within tumor microenvironment. Additionally, plasma level of interferon-γ and proliferation of effector T cells in the spleen and tumor-draining lymph nodes were significantly increased by the triple combination therapy. CONCLUSIONS The ICV enhanced the therapeutic efficacy of local RT and PD-L1 blockade by augmenting anti-tumor immune responses. Our findings suggest a therapeutic potential of in vitro-irradiation products of tumor cells.
Collapse
Affiliation(s)
- Yoomin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seongmin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Min Guk Han
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Yup Lee
- Korea Nuclear Engineering Co., Ltd, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Miao N, Cao D, Jin J, Ma G, Yu H, Qu J, Li G, Gao C, Dong D, Xia F, Li W. Tumor cell-intrinsic Piezo2 drives radioresistance by impairing CD8+ T cell stemness maintenance. J Exp Med 2024; 221:e20231486. [PMID: 39167075 PMCID: PMC11338319 DOI: 10.1084/jem.20231486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.
Collapse
Affiliation(s)
- Naijun Miao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Cao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsi Jin
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guizhi Ma
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihui Yu
- School of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Junwen Qu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiping Li
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Caixia Gao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Dong Dong
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenwen Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Hu Y, Paris S, Sahoo N, Wang Q, Wang Q, Barsoumian HB, Huang A, Da Silva J, Bienassis C, Leyton CSK, Voss TA, Masrorpour F, Riad T, Leuschner C, Puebla-Osorio N, Gandhi S, Nguyen QN, Wang J, Cortez MA, Welsh JW. Superior antitumor immune response achieved with proton over photon immunoradiotherapy is amplified by the nanoradioenhancer NBTXR3. J Nanobiotechnology 2024; 22:597. [PMID: 39354474 PMCID: PMC11445951 DOI: 10.1186/s12951-024-02855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Recent findings suggest that immunoradiotherapy (IRT), combining photon radiotherapy (XRT) or proton radiotherapy (PRT) with immune checkpoint blockade, can enhance systemic tumor control. However, the comparative efficacy of XRT and PRT in IRT remains understudied. To address this, we compared outcomes between XRT + αPD1 and PRT + αPD1 in murine αPD1-resistant lung cancer (344SQR). We also assessed the impact of the nanoparticle radioenhancer NBTXR3 on both XRT + αPD1 and PRT + αPD1 for tumor control and examined the tumor immune microenvironment using single-cell RNA sequencing (scRNAseq). Additionally, mice cured by NBTXR3 + PRT + αPD1 were rechallenged with three lung cancer cell lines to evaluate memory antitumor immunity. PRT + αPD1 showed superior local tumor control and abscopal effects compared to XRT + αPD1. NBTXR3 + PRT + αPD1 significantly outperformed NBTXR3 + XRT + αPD1 in tumor control, promoting greater infiltration of antitumor lymphocytes into irradiated tumors. Unirradiated tumors treated with NBTXR3 + PRT + αPD1 had more NKT cells, CD4 T cells, and B cells, with fewer Tregs, than those treated with NBTXR3 + XRT + αPD1. NBTXR3 + PRT + αPD1 also stimulated higher expression of IFN-γ, GzmB, and Nkg7 in lymphocytes, reduced the TGF-β pathway, and increased tumor necrosis factor alpha expression compared to NBTXR3 + XRT + αPD1. Moreover, NBTXR3 + PRT + αPD1 resulted in greater M1 macrophage polarization in both irradiated and unirradiated tumors. Mice achieving remission through NBTXR3 + PRT + αPD1 exhibited a robust memory immune response, effectively inhibiting growth of subsequent tumors from three distinct lung cancer cell lines. Proton IRT combined with NBTXR3 offers enhanced tumor control and survival rates over photon-based treatments in managing αPD1-resistant lung cancer, indicating its potential as a potent systemic therapy.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qianxia Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Jordan Da Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Célia Bienassis
- Department of Translational Science, Nanobiotix, Paris, France
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Thomas Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Berzaghi R, Gundersen K, Dille Pedersen B, Utne A, Yang N, Hellevik T, Martinez-Zubiaurre I. Immunological signatures from irradiated cancer-associated fibroblasts. Front Immunol 2024; 15:1433237. [PMID: 39308864 PMCID: PMC11412886 DOI: 10.3389/fimmu.2024.1433237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Cancer-associated fibroblasts (CAFs) are abundant and influential elements of the tumor microenvironment (TME), giving support to tumor development in multiple ways. Among other mechanisms, CAFs are important regulators of immunological processes occurring in tumors. However, CAF-mediated tumor immunomodulation in the context of radiotherapy remains poorly understood. In this study, we explore effects of radiation on CAF-derived immunoregulatory signals to the TME. Methods Primary CAF cultures were established from freshly collected human NSCLC lung tumors. CAFs were exposed to single-high or fractionated radiation regimens (1x18Gy or 3x6Gy), and the expression of different immunoregulatory cell-associated and secreted signaling molecules was analyzed 48h and 6 days after initiation of treatment. Analyses included quantitative measurements of released damage-associated molecular patterns (DAMPs), interferon (IFN) type I responses, expression of immune regulatory receptors, and secretion of soluble cytokines, chemokines, and growth factors. CAFs are able to survive ablative radiation regimens, however they enter into a stage of premature cell senescence. Results Our data show that CAFs avoid apoptosis and do not contribute by release of DAMPs or IFN-I secretion to radiation-mediated tumor immunoregulation. Furthermore, the secretion of relevant immunoregulatory cytokines and growth factors including TGF-β, IL-6, IL-10, TNFα, IL-1β, VEGF, CXCL12, and CXCL10 remain comparable between non-irradiated and radiation-induced senescent CAFs. Importantly, radiation exposure modifies the cell surface expression of some key immunoregulatory receptors, including upregulation of CD73 and CD276. Discussion Our data suggest that CAFs do not participate in the release of danger signals or IFN-I secretion following radiotherapy. The immune phenotype of CAFs and radiation-induced senescent CAFs is similar, however, the observed elevation of some cell surface immunological receptors on irradiated CAFs could contribute to the establishment of an enhanced immunosuppressive TME after radiotherapy.
Collapse
Affiliation(s)
- Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristian Gundersen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Brede Dille Pedersen
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Amalie Utne
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Nannan Yang
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Markussen A, Johansen JS, Larsen FO, Theile S, Hasselby JP, Willemoe GL, Lorentzen T, Madsen K, Høgdall E, Poulsen TS, Wilken EE, Geertsen P, Behrens CP, Svane IM, Nielsen D, Chen IM. Nivolumab with or without Ipilimumab Combined with Stereotactic Body Radiotherapy in Patients with Metastatic Biliary Tract Cancer: A Randomized Phase 2 Study. Clin Cancer Res 2024; 30:3428-3437. [PMID: 38874506 DOI: 10.1158/1078-0432.ccr-24-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE The purpose of this study was to evaluate the clinical benefits of nivolumab with/without ipilimumab combined with stereotactic body radiotherapy (SBRT) in patients with pretreated metastatic biliary tract cancer (mBTC). PATIENTS AND METHODS The study was a phase 2 randomized trial with Simon's optimal two-stage design requiring 36 evaluable patients per group after second stage. Sixty-one patients were included from September 2018 to January 2022 and randomized (1:1) to receive SBRT (15 Gy × 1 on day 1 to a primary or metastatic lesion) and nivolumab (3 mg/kg intravenously on day 1 and every 2 weeks) with/without ipilimumab (1 mg/kg intravenously on day 1 and every 6 weeks). Primary endpoint was clinical benefit rate (CBR), defined as the percentage of patients with complete response, partial response, or stable disease. Decision to continue accrual into the second stage depended on the CBR from the first stage. RESULTS Forty-two patients received SBRT/nivolumab/ipilimumab with a CBR of 31.0% [95% confidence interval (CI), 17.6-47.1]. Five patients (11.9%) achieved partial response with median duration of 4.4 months (range, 1.1-21.5). Nineteen patients received SBRT/nivolumab. This group was closed after the initial stage based on a CBR of 10.5% (95% CI, 1.3-33.1). Adverse events were graded with National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. Grade ≥3 treatment-related adverse events occurred in 13 (31%) and 3 (16%) patients in the SBRT/nivolumab/ipilimumab and SBRT/nivolumab groups, respectively. One patient died from immune-related hepatitis in the SBRT/nivolumab/ipilimumab group. CONCLUSIONS Combining SBRT, nivolumab, and ipilimumab is well tolerated, feasible, and shows response in a subgroup of patients with mBTC.
Collapse
Affiliation(s)
- Alice Markussen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Finn O Larsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Susann Theile
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Jane P Hasselby
- Department of Pathology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Gro L Willemoe
- Department of Pathology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Torben Lorentzen
- Department of Gastroenterology, Unit of Surgical Ultrasound, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Kasper Madsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Estrid Høgdall
- Department of Pathology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Tim S Poulsen
- Department of Pathology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Eva E Wilken
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Poul Geertsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Claus P Behrens
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Inge M Svane
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Dorte Nielsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
8
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
9
|
Yu L, Zou R, He J, Qu C. Role of radiation in chimeric antigen receptor T-cell therapy for patients with relapsed/refractory non-Hodgkin lymphoma: Current studies and future prospects. Crit Rev Oncol Hematol 2024; 199:104390. [PMID: 38782146 DOI: 10.1016/j.critrevonc.2024.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment approach for patients with relapsed/refractory non-Hodgkin lymphoma (R/R NHL). However, the long-term prognosis has been discouraging. Moreover, the urgent resolution of two critical issues is necessary: minimize tumor burden before CAR-T infusion and control fatal toxicities post CAR-T therapy. By combining radiotherapy (RT), the safety and efficacy of CAR-T can be improved. RT can serve as bridging therapy, reducing the tumor burden before CAR-T infusion, thus enabling safe and successful CAR-T infusion, and as salvage therapy in cases of CAR-T therapy failure. This review aims to discuss the current evidence supporting the use of RT in CAR-T therapy for patients with R/R NHL. Although most studies have shown a positive role of RT in combined modality treatments for patients undergoing CAR-T therapy, the synergy gained from these remains uncertain. Furthermore, the optimal dose/fraction and radiation response require further investigation.
Collapse
Affiliation(s)
- Lingzi Yu
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| | - Rui Zou
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| | - Jiajie He
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| | - Changju Qu
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| |
Collapse
|
10
|
Salomon N, Helm A, Selmi A, Fournier C, Diken M, Schrörs B, Scholz M, Kreiter S, Durante M, Vascotto F. Carbon Ion and Photon Radiation Therapy Show Enhanced Antitumoral Therapeutic Efficacy With Neoantigen RNA-LPX Vaccines in Preclinical Colon Carcinoma Models. Int J Radiat Oncol Biol Phys 2024; 119:936-945. [PMID: 38163521 DOI: 10.1016/j.ijrobp.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.
Collapse
Affiliation(s)
- Nadja Salomon
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Alexander Helm
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Abderaouf Selmi
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Mustafa Diken
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Schrörs
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Sebastian Kreiter
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marco Durante
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany; Technical University Darmstadt, Institute of Condensed Matter Physics, Darmstadt, Germany; University Federico II, Department of Physics "Ettore Pancini", Naples, Italy
| | - Fulvia Vascotto
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Budhu S, Kim K, Yip W, La Rosa S, Jebiwott S, Cai L, Holland A, Thomas J, Preise D, Somma A, Gordon B, Scherz A, Wolchok JD, Erinjeri J, Merghoub T, Coleman JA. Comparative study of immune response to local tumor destruction modalities in a murine breast cancer model. Front Oncol 2024; 14:1405486. [PMID: 38957315 PMCID: PMC11217310 DOI: 10.3389/fonc.2024.1405486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Immunotherapy is revolutionizing the management of multiple cancer types. However, only a subset of patients responds to immunotherapy. One mechanism of resistance is the absence of immune infiltrates within the tumor. In situ vaccine with local means of tumor destruction that can induce immunogenic cell death have been shown to enhance tumor T cell infiltration and increase efficacy of immune checkpoint blockade. Methods Here, we compare three different forms of localize tumor destruction therapies: radiation therapy (RT), vascular targeted photodynamic therapy (VTP) and cryoablation (Cryo), which are known to induce immunogenic cell death, with their ability to induce local and systemic immune responses in a mouse 4T1 breast cancer model. The effects of combining RT, VTP, Cryo with anti-PD1 was also assessed. Results We observed that RT, VTP and Cryo significantly delayed tumor growth and extended overall survival. In addition, they also induced regression of non-treated distant tumors in a bilateral model suggesting a systemic immune response. Flow cytometry showed that VTP and Cryo are associated with a reduction in CD11b+ myeloid cells (granulocytes, monocytes, and macrophages) in tumor and periphery. An increase in CD8+ T cell infiltration into tumors was observed only in the RT group. VTP and Cryo were associated with an increase in CD4+ and CD8+ cells in the periphery. Conclusion These data suggest that cell death induced by VTP and Cryo elicit similar immune responses that differ from local RT.
Collapse
Affiliation(s)
- Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wesley Yip
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen La Rosa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sylvia Jebiwott
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Liqun Cai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Jasmine Thomas
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dina Preise
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alex Somma
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Benjamin Gordon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Avigdor Scherz
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jedd D. Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Immunology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Joseph Erinjeri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Jonathan A. Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
12
|
Ma J, Yuan H, Zhang J, Sun X, Yi L, Li W, Li Z, Fu C, Zheng L, Xu X, Wang X, Wang F, Yin D, Yuan J, Xu C, Li Z, Peng X, Wang J. An ultrasound-activated nanoplatform remodels tumor microenvironment through diverse cell death induction for improved immunotherapy. J Control Release 2024; 370:501-515. [PMID: 38703950 DOI: 10.1016/j.jconrel.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Although nanomaterial-based nanomedicine provides many powerful tools to treat cancer, most focus on the "immunosilent" apoptosis process. In contrast, ferroptosis and immunogenic cell death, two non-apoptotic forms of programmed cell death (PCD), have been shown to enhance or alter the activity of the immune system. Therefore, there is a need to design and develop nanoplatforms that can induce multiple modes of cell death other than apoptosis to stimulate antitumor immunity and remodel the immunosuppressive tumor microenvironment for cancer therapy. In this study, a new type of multifunctional nanocomposite mainly consisting of HMME, Fe3+ and Tannic acid, denoted HFT NPs, was designed and synthesized to induce multiple modes of cell death and prime the tumor microenvironment (TME). The HFT NPs consolidate two functions into one nano-system: HMME as a sonosensitizer for the generation of reactive oxygen species (ROS) 1O2 upon ultrasound irradiation, and Fe3+ as a GSH scavenger for the induction of ferroptosis and the production of ROS ·OH through inorganic catalytic reactions. The administration of HFT NPs and subsequent ultrasound treatment caused cell death through the consumption of GSH, the generation of ROS, ultimately inducing apoptosis, ferroptosis, and immunogenic cell death (ICD). More importantly, the combination of HFT NPs and ultrasound irradiation could reshape the TME and recruit more T cell infiltration, and its combination with immune checkpoint blockade anti-PD-1 antibody could eradicate tumors with low immunogenicity and a cold TME. This new nano-system integrates sonodynamic and chemodynamic properties to achieve outstanding therapeutic outcomes when combined with immunotherapy. Collectively, this study demonstrates that it is possible to potentiate cancer immunotherapy through the rational and innovative design of relatively simple materials.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Haitao Yuan
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Jingjing Zhang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, PR China
| | - Weihua Li
- Medical Imaging Department, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, PR China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi Province 037009, PR China
| | - Chunjin Fu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Liuhai Zheng
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Xiaolong Xu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Xiaoxian Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Fujing Wang
- Department of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Da Yin
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Jimin Yuan
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China.
| | - Chengchao Xu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Zhijie Li
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China.
| | - Jigang Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China; Department of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Jazieh K, Yoon H, Zhu M. Advances in Immunotherapy in Esophagogastric Cancer. Hematol Oncol Clin North Am 2024; 38:599-616. [PMID: 38493074 DOI: 10.1016/j.hoc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Immune checkpoint inhibitors are rapidly transforming the care of patients with esophagogastric cancer. Particularly, anti-PD-1 therapy has demonstrated promising efficacy in metastatic and resectable disease. In this review, the authors discuss landmark clinical trials, highlight challenges and opportunities in this field, and propose potential directions for future work.
Collapse
Affiliation(s)
- Khalid Jazieh
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | - Harry Yoon
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Mojun Zhu
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
15
|
Yu B, Gao Y, Li J, Gao F, Zhang J, Li L, Feng X, Zuo D, Jin X, Chen W, Li Q. Killing two birds with one stone: Abscopal effect mechanism and its application prospect in radiotherapy. Crit Rev Oncol Hematol 2024; 196:104325. [PMID: 38462151 DOI: 10.1016/j.critrevonc.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Abscopal effects are characterized by the emergence of neoplasms in regions unrelated to the primary radiation therapy site, displaying a gradual attenuation or regression throughout the progression of radiation therapy, which have been of interest to scientists since Mole's proposal in 1953. The incidence of abscopal effects in radiation therapy is intricately linked to the immune system, with both innate and adaptive immune responses playing crucial roles. Biological factors impacting abscopal effects ultimately exert their influence on the intricate workings of the immune system. Although abscopal effects are rarely observed in clinical cases, the underlying mechanism remains uncertain. This article examines the biological and physical factors influencing abscopal effects of radiotherapy. Through a review of preclinical and clinical studies, this article aims to offer a comprehensive understanding of abscopal effects and proposes new avenues for future research in this field. The findings presented in this article serve as a valuable reference for researchers seeking to explore this topic in greater depth.
Collapse
Affiliation(s)
- Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou 730070, China
| | - Jiaxin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Public Health, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Feng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashan Zuo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Wang S, Mu X, Wang X, Chen L, Lu C, Song L. Peripheral Blood CD8 + CD28 + T Cells as an Independent Predictor of Treatment Response and Survival After Concurrent Chemoradiotherapy in Pediatric High-Grade Glioma Patients. Clin Med Insights Oncol 2024; 18:11795549241227421. [PMID: 38322666 PMCID: PMC10845990 DOI: 10.1177/11795549241227421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Backgroud The tumor immune microenvironment influences the efficiency of concurrent chemoradiotherapy (CCRT) in high-grade glioma (HGG). This study investigated peripheral blood T lymphocyte subsets as clinical indicators of therapeutic response and prognosis in pediatric high-grade glioma (pHGG). Methods This retrospective study included 77 patients with postoperative pHGG who were treated concurrently with temozolomide and external beam radiotherapy between January 1, 2012, and December 31, 2018. The median follow-up was 26 (range: 5-106) months. Peripheral venous blood samples were collected before and after CCRT. The proportions of peripheral blood T lymphocytes and their association with treatment outcome and survival were determined. Results Sixty-four (83.1%) patients achieved complete remission, partial remission, and stable disease, and 13 (16.9%) patients had progressive disease. Higher CD3+ T cell, CD4+ T cell, and CD8+ CD28+ T cell ratios were predictive of better response, while a higher CD8+ CD28- T cell ratio was predictive of poorer response. Binary logistic regression analysis showed that the CD8+ CD28+ T cell ratio was a significant independent predictor of CCRT response (odds ratio [OR] = 53.521, 95% confidence interval [CI] = 4.294-667.119, P = .002). Univariate and multivariate analysis of prognostic factors associated with survival showed that the CD8+ CD28+ T lymphocyte ratio was a significant independent predictor of progression-free survival (hazard ratio [HR] = 1.80, 95% CI = 1.06-3.08, P = .03), but none of the subsets were significantly associated with overall survival. Conclusion Peripheral blood T lymphocytes have potential as predictors of CCRT response and prognosis in pHGG.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Mu
- Department of Radiotherapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Li Chen
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Linan Song
- Department of Radiotherapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Viswanath D, Park J, Misra R, Pizzuti VJ, Shin SH, Doh J, Won YY. Nanotechnology-enhanced radiotherapy and the abscopal effect: Current status and challenges of nanomaterial-based radio-immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1924. [PMID: 37632203 DOI: 10.1002/wnan.1924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation-induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen-presenting cells, and (3) co-delivering immune checkpoint inhibitors along with radio-enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial-enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio-immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Rahul Misra
- Analytical Sciences, Sanofi, Toronto, Ontario, Canada
| | - Vincenzo J Pizzuti
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sung-Ho Shin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Junsang Doh
- SOFT Foundry Institute, Seoul National University, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, Republic of Korea
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
19
|
Holicek P, Guilbaud E, Klapp V, Truxova I, Spisek R, Galluzzi L, Fucikova J. Type I interferon and cancer. Immunol Rev 2024; 321:115-127. [PMID: 37667466 DOI: 10.1111/imr.13272] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Type I interferon (IFN) is a class of proinflammatory cytokines with a dual role on malignant transformation, tumor progression, and response to therapy. On the one hand, robust, acute, and resolving type I IFN responses have been shown to mediate prominent anticancer effects, reflecting not only their direct cytostatic/cytotoxic activity on (at least some) malignant cells, but also their pronounced immunostimulatory functions. In line with this notion, type I IFN signaling has been implicated in the antineoplastic effects of various immunogenic therapeutics, including (but not limited to) immunogenic cell death (ICD)-inducing agents and immune checkpoint inhibitors (ICIs). On the other hand, weak, indolent, and non-resolving type I IFN responses have been demonstrated to support tumor progression and resistance to therapy, reflecting the ability of suboptimal type I IFN signaling to mediate cytoprotective activity, promote stemness, favor tolerance to chromosomal instability, and facilitate the establishment of an immunologically exhausted tumor microenvironment. Here, we review fundamental aspects of type I IFN signaling and their context-dependent impact on malignant transformation, tumor progression, and response to therapy.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York, USA
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
20
|
Luri-Rey C, Gomis G, Glez-Vaz J, Manzanal A, Martinez Riaño A, Rodriguez Ruiz ME, Teijeira A, Melero I. Cytotoxicity as a form of immunogenic cell death leading to efficient tumor antigen cross-priming. Immunol Rev 2024; 321:143-151. [PMID: 37822051 DOI: 10.1111/imr.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Antigen cross-priming of CD8+ T cells is a critical process necessary for the effective expansion and activation of CD8+ T cells endowed with the ability to recognize and destroy tumor cells. The cross-presentation of tumor antigens to cross-prime CD8+ T cells is mainly mediated, if not only, by a subset of professional antigen-presenting cells termed type-1 conventional dendritic cells (cDC1). The demise of malignant cells can be immunogenic if it occurs in the context of premortem stress. These ways of dying are termed immunogenic cell death (ICD) and are associated with biochemical features favoring cDC1 for the efficient cross-priming of tumor antigens. Immunosurveillance and the success of immunotherapies heavily rely on the ability of cytotoxic immune cells, primarily CD8+ T cells and NK cells, to detect and eliminate tumor cells through mechanisms collectively known as cytotoxicity. Recent studies have revealed the significance of NK- and CTL-mediated cytotoxicity as a prominent form of immunogenic cell death, resulting in mechanisms that promote and sustain antigen-specific immune responses. This review focuses on the mechanisms underlying the cross-presentation of antigens released during tumor cell killing by cytotoxic immune cells, with an emphasis on the role of cDC1 cells. Indeed, cDC1s are instrumental in the effectiveness of most immunotherapies, underscoring the significance of tumor antigen cross-priming in contexts of immunogenic cell death. The notion of the potent immunogenicity of cell death resulting from NK or cytotoxic T lymphocyte (CTL)-mediated cytotoxicity has far-reaching implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Almudena Manzanal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Ana Martinez Riaño
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Sodji QH, Forsberg MH, Cappabianca D, Kerr CP, Sarko L, Shea A, Adam DP, Eickhoff JC, Ong IM, Hernandez R, Weichert J, Bednarz BP, Saha K, Sondel PM, Capitini CM, Morris ZS. Comparative Study of the Effect of Radiation Delivered by Lutetium-177 or Actinium-225 on Anti-GD2 Chimeric Antigen Receptor T Cell Viability and Functions. Cancers (Basel) 2023; 16:191. [PMID: 38201618 PMCID: PMC10778389 DOI: 10.3390/cancers16010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Chimeric antigen receptor (CAR) T cells have been relatively ineffective against solid tumors. Low-dose radiation which can be delivered to multiple sites of metastases by targeted radionuclide therapy (TRT) can elicit immunostimulatory effects. However, TRT has never been combined with CAR T cells against solid tumors in a clinical setting. This study investigated the effects of radiation delivered by Lutetium-177 (177Lu) and Actinium-225 (225Ac) on the viability and effector function of CAR T cells in vitro to evaluate the feasibility of such therapeutic combinations. After the irradiation of anti-GD2 CAR T cells with various doses of radiation delivered by 177Lu or 225Ac, their viability and cytotoxic activity against GD2-expressing human CHLA-20 neuroblastoma and melanoma M21 cells were determined by flow cytometry. The expression of the exhaustion marker PD-1, activation marker CD69 and the activating receptor NKG2D was measured on the irradiated anti-GD2 CAR T cells. Both 177Lu and 225Ac displayed a dose-dependent toxicity on anti-GD2 CAR T cells. However, radiation enhanced the cytotoxic activity of these CAR T cells against CHLA-20 and M21 irrespective of the dose tested and the type of radionuclide. No significant changes in the expression of PD-1, CD69 and NKG2D was noted on the CAR T cells following irradiation. Given a lower CAR T cell viability at equal doses and an enhancement of cytotoxic activity irrespective of the radionuclide type, 177Lu-based TRT may be preferred over 225Ac-based TRT when evaluating a potential synergism between these therapies in vivo against solid tumors.
Collapse
Affiliation(s)
- Quaovi H. Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (C.P.K.); (A.S.); (P.M.S.); (Z.S.M.)
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (M.H.F.); (C.M.C.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
| | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (M.H.F.); (C.M.C.)
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (D.C.); (L.S.)
| | - Caroline P. Kerr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (C.P.K.); (A.S.); (P.M.S.); (Z.S.M.)
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lauren Sarko
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (D.C.); (L.S.)
| | - Amanda Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (C.P.K.); (A.S.); (P.M.S.); (Z.S.M.)
| | - David P. Adam
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| | - Jens C. Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (J.C.E.); (I.M.O.)
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (J.C.E.); (I.M.O.)
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Reinier Hernandez
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| | - Jamey Weichert
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| | - Bryan P. Bednarz
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| | - Krishanu Saha
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (D.C.); (L.S.)
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (C.P.K.); (A.S.); (P.M.S.); (Z.S.M.)
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (M.H.F.); (C.M.C.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (M.H.F.); (C.M.C.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (C.P.K.); (A.S.); (P.M.S.); (Z.S.M.)
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (M.H.F.); (C.M.C.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; (R.H.); (J.W.); (B.P.B.); (K.S.)
| |
Collapse
|
22
|
Enell Smith K, Fritzell S, Nilsson A, Barchan K, Rosén A, Schultz L, Varas L, Säll A, Rose N, Håkansson M, von Schantz L, Ellmark P. ATOR-1017 (evunzekibart), an Fc-gamma receptor conditional 4-1BB agonist designed for optimal safety and efficacy, activates exhausted T cells in combination with anti-PD-1. Cancer Immunol Immunother 2023; 72:4145-4159. [PMID: 37796298 PMCID: PMC10700433 DOI: 10.1007/s00262-023-03548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND 4-1BB (CD137) is a co-stimulatory receptor highly expressed on tumor reactive effector T cells and NK cells, which upon stimulation prolongs persistence of tumor reactive effector T and NK cells within the tumor and induces long-lived memory T cells. 4-1BB agonistic antibodies have been shown to induce strong anti-tumor effects that synergize with immune checkpoint inhibitors. The first generation of 4-1BB agonists was, however, hampered by dose-limiting toxicities resulting in suboptimal dose levels or poor agonistic activity. METHODS ATOR-1017 (evunzekibart), a second-generation Fc-gamma receptor conditional 4-1BB agonist in IgG4 format, was designed to overcome the limitations of the first generation of 4-1BB agonists, providing strong agonistic effect while minimizing systemic immune activation and risk of hepatoxicity. The epitope of ATOR-1017 was determined by X-ray crystallography, and the functional activity was assessed in vitro and in vivo as monotherapy or in combination with anti-PD1. RESULTS ATOR-1017 binds to a unique epitope on 4-1BB enabling ATOR-1017 to activate T cells, including cells with an exhausted phenotype, and NK cells, in a cross-linking dependent, FcγR-conditional, manner. This translated into a tumor-directed and potent anti-tumor therapeutic effect in vivo, which was further enhanced with anti-PD-1 treatment. CONCLUSIONS These preclinical data demonstrate a strong safety profile of ATOR-1017, together with its potent therapeutic effect as monotherapy and in combination with anti-PD1, supporting further clinical development of ATOR-1017.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna Säll
- Alligator Bioscience AB, Lund, Sweden
| | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Bella Á, Melero I, Berraondo P, Aranda F. The significance of the omentum in locoregional immunotherapy for peritoneal carcinomatosis. Oncoimmunology 2023; 12:2285106. [PMID: 38126032 PMCID: PMC10732655 DOI: 10.1080/2162402x.2023.2285106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Our recent research has unveiled the potential of locoregional immunotherapy. Cytokine-armored viral vectors, such as modified vaccinia virus Ankara vector encoding single-chain interleukin-12 (MVA.scIL-12), can target the omentum and elicit a robust tumor-specific immune response, all the while minimizing toxicity.
Collapse
Affiliation(s)
- Ángela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology and Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine and Oxford Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| |
Collapse
|
24
|
Zhang W, Chen M, Xiang Q, Sun S, Cao H, Xie C, Qiu H. Boosting the abscopal effect with chemoradiotherapy/immunotherapy combination in metastatic cervical cancer: a case report. Immunotherapy 2023; 15:1239-1247. [PMID: 37491886 DOI: 10.2217/imt-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
The prognosis for patients with distant-organ metastatic cervical cancer (CC) is poor owing to the lack of effective treatment modalities. We present a case of CC with lung metastasis that achieved partial remission of the cervical mass after two cycles of chemotherapy, while the pulmonary nodules remained stable. Moreover, the level of the tumor marker squamous cell carcinoma antigen was slightly higher than before. The patient was recommended to receive pelvic concurrent chemoradiotherapy combined with camrelizumab. Remarkably, after undergoing 16 cycles of immunotherapy, the patient's primary cervical mass and pulmonary nodules were in complete remission, and the tumor marker had returned to normal levels. This inspiring case demonstrates that a combination of chemo-/radio-/immunotherapy can be effective in treating lung metastatic CC and can also enhance the abscopal effect.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation & Medical Oncology, Central Hospital of Xianning City, Tongji Xianning Hospital of Huazhong University of Science & Technology, Xianning, 437000, China
| | - Min Chen
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qingming Xiang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shaoxing Sun
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hong Cao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Conghua Xie
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Qiu
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
25
|
Mitsou JD, Tseveleki V, Dimitrakopoulos FI, Konstantinidis K, Kalofonos H. Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment. Cancers (Basel) 2023; 15:3758. [PMID: 37568574 PMCID: PMC10417359 DOI: 10.3390/cancers15153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
This preliminary study seeks to determine the effect of R&P denervation on tumor growth and survival in immunocompetent rats bearing an aggressive and metastatic breast solid tumor. A novel microsurgical approach was applied "in situ", aiming to induce R&P denervation through the division of every single nerve fiber connecting the host with the primary tumor via its complete detachment and re-attachment, by resecting and reconnecting its supplying artery and vein (anastomosis). This preparation, known as microsurgical graft or flap, is radically denervated by definition, but also effectively delays or even impedes the return of innervation for a significant period of time, thus creating a critical and therapeutic time window. Mammary adenocarcinoma cells (HH-16.cl4) were injected into immunocompetent Sprague Dawley adult rats. When the tumors reached a certain volume, the subjects entered the study. The primary tumor, including a substantial amount of peritumoral tissue, was surgically isolated on a dominant artery and vein, which was resected and reconnected using a surgical microscope (orthotopic tumor auto-transplantation). Intending to simulate metastasis, two or three tumors were simultaneously implanted and only one was treated, using the surgical technique described herein. Primary tumor regression was observed in all of the microsurgically treated subjects, associated with a potent systemic anticancer effect and prolonged survival. In stark contrast, the subjects received a close to identical surgical operation; however, with the intact neurovascular connection, they did not achieve the therapeutic result. Animals bearing multiple tumors and receiving the same treatment in only one tumor exhibited regression in both the "primary" and remote- untreated tumors at a clinically significant percentage, with regression occurring in more than half of the treated subjects. A novel therapeutic approach is presented, which induces the permanent regression of primary and, notably, remote tumors, as well as, evidently, the naturally occurring metastatic lesions, at a high rate. This strategy is aligned with the impetus that comes from the current translational research data, focusing on the abrogation of the neuro-tumoral interaction as an alternative treatment strategy. More data regarding the clinical significance of this are expected to come up from a pilot clinical trial that is ongoing.
Collapse
Affiliation(s)
- John D. Mitsou
- Department of Plastic and Reconstructive Surgery, Athens Medical Center, 15125 Maroussi, Greece
| | - Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Foteinos-Ioannis Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504 Rio, Greece;
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| | - Konstantinos Konstantinidis
- Department of General Robotic, Laparoscopic and Oncologic Surgery, Athens Medical Center, 15125 Maroussi, Greece;
| | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| |
Collapse
|
26
|
Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol 2023; 14:1199273. [PMID: 37465670 PMCID: PMC10350567 DOI: 10.3389/fimmu.2023.1199273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Women worldwide are more likely to develop breast cancer (BC) than any other type of cancer. The treatment of BC depends on the subtype and stage of the cancer, such as surgery, radiotherapy, chemotherapy, and immunotherapy. Although significant progress has been made in recent years, advanced or metastatic BC presents a poor prognosis, due to drug resistance and recurrences. During embryonic development, myeloid-derived suppressor cells (MDSCs) develop that suppress the immune system. By inhibiting anti-immune effects and promoting non-immune mechanisms such as tumor cell stemness, epithelial-mesenchymal transformation (EMT) and angiogenesis, MDSCs effectively promote tumor growth and metastasis. In various BC models, peripheral tissues, and tumor microenvironments (TME), MDSCs have been found to amplification. Clinical progression or poor prognosis are strongly associated with increased MDSCs. In this review, we describe the activation, recruitment, and differentiation of MDSCs production in BC, the involvement of MDSCs in BC progression, and the clinical characteristics of MDSCs as a potential BC therapy target.
Collapse
Affiliation(s)
- Haoyu Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuntao Zhou
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yanming Yang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Li P, Zhou D, Chen D, Cheng Y, Chen Y, Lin Z, Zhang X, Huang Z, Cai J, Huang W, Lin Y, Ke H, Long J, Zou Y, Ye S, Lan P. Tumor-secreted IFI35 promotes proliferation and cytotoxic activity of CD8 + T cells through PI3K/AKT/mTOR signaling pathway in colorectal cancer. J Biomed Sci 2023; 30:47. [PMID: 37380972 DOI: 10.1186/s12929-023-00930-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND A large proportion of the patients with cancer do not respond to immunotherapies. Recent studies suggested an important role for tumor-infiltrating cytotoxic T lymphocytes (CTL) in enhancing response to immunotherapy. Here, we aim to identify gene that induce proliferative and cytotoxic states of CD8+ T cells, and to investigate its effect on CAR-T cells against colorectal cancer. METHODS Correlation between the expression of IFI35 with the activation and cytotoxicity of CD8+ T cells was assessed with TCGA and proteomic databases. Then we constructed murine colon cancer cells over-expressing IFI35 and tested their effect on anti-tumor immunity in both immunodeficient and immunocompetent mouse models. Flow cytometry and immunohistochemistry were performed to assess the immune microenvironment. Western blot analysis was used to identify the potential down-stream signaling pathway regulated by IFI35. We further investigated the efficacy of the rhIFI35 protein in combination with immunotherapeutic treatment. RESULTS The transcriptional and proteomic analysis of the activation and cytotoxicity of CD8+ T cells in human cancer samples demonstrated that IFI35 expression is correlated with increased CD8+ T cell infiltration and predicted a better outcome in colorectal cancer. The number and cytotoxicity of CD8+ T cells were significantly increased in IFI35-overexpressing tumors. Mechanistically, we identified that the IFNγ-STAT1-IRF7 axis stimulated IFI35 expression, and that IFI35-mediated regulation of CD8+ T cell proliferation and cytotoxicity was dependent on PI3K/AKT/mTOR signaling pathway in vitro. Furthermore, IFI35 protein enhanced the efficacy of CAR-T cells against colorectal cancer cells. CONCLUSION Our findings identify IFI35 as a new biomarker that can enhance the proliferation and function of CD8+ T cells, as well as increase the efficacy of CAR-T cells against colorectal cancer cells.
Collapse
Affiliation(s)
- Peisi Li
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dawang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-Sen University Cancer Center, Guangdong, Guangzhou, People's Republic of China
| | - Dongwen Chen
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yikan Cheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuan Chen
- School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhensen Lin
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Zhang
- Guangzhou Biosyngen Co., Ltd., Guangdong, People's Republic of China
| | - Zhihong Huang
- Guangzhou Biosyngen Co., Ltd., Guangdong, People's Republic of China
| | - Jiawei Cai
- Department of General Surgery (Department of Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, People's Republic of China
| | - Wenfeng Huang
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yanyun Lin
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Haoxian Ke
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiahui Long
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yifeng Zou
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Department of General Surgery (Department of Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, People's Republic of China.
| | - Shubiao Ye
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Department of General Surgery (Department of Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Ping Lan
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Department of General Surgery (Department of Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
28
|
Hu Y, Paris S, Sahoo N, Bertolet G, Wang Q, Wang Q, Barsoumian HB, Da Silva J, Huang A, Doss DJ, Pollock DP, Hsu E, Selene N, Leyton CSK, Voss TA, Masrorpour F, Ganjoo S, Leuschner C, Pietz JT, Puebla-Osorio N, Gandhi S, Nguyen QN, Wang J, Cortez MA, Welsh JW. Nanoparticle-enhanced proton beam immunoradiotherapy drives immune activation and durable tumor rejection. JCI Insight 2023; 8:e167749. [PMID: 37345658 PMCID: PMC10371249 DOI: 10.1172/jci.insight.167749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
The combination of radiation therapy (RT) and immunotherapy has emerged as a promising treatment option in oncology. Historically, x-ray radiation (XRT) has been the most commonly used form of RT. However, proton beam therapy (PBT) is gaining recognition as a viable alternative, as it has been shown to produce similar outcomes to XRT while minimizing off-target effects. The effects of PBT on the antitumor immune response have only just begun to be described, and to our knowledge no studies to date have examined the effect of PBT as part of a combinatorial immunoradiotherapeutic strategy. Here, using a 2-tumor model of lung cancer in mice, we show that PBT in tandem with an anti-PD1 antibody substantially reduced growth in both irradiated and unirradiated tumors. This was accompanied by robust activation of the immune response, as evidenced by whole-tumor and single-cell RNA sequencing showing upregulation of a multitude of immune-related transcripts. This response was further significantly enhanced by the injection of the tumor to be irradiated with NBTXR3 nanoparticles. Tumors of mice treated with the triple combination exhibited increased infiltration and activation of cytotoxic immune cells. This triple combination eradicated both tumors in 37.5% of the treated mice and showed robust long-term immunity to cancer.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | | | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qianxia Wang
- Department of Radiation Physics, and
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordan Da Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nanez Selene
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordan T Pietz
- Department of Strategic Communication, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Mukherjee D, Romano E, Walshaw R, Zeef LAH, Banyard A, Kitcatt SJ, Cheadle EJ, Tuomela K, Pendharkar S, Al-Deka A, Salerno B, Raby S, Mills IG, Honeychurch J, Illidge TM. Reprogramming the immunosuppressive tumor microenvironment results in successful clearance of tumors resistant to radiation therapy and anti-PD-1/PD-L1. Oncoimmunology 2023; 12:2223094. [PMID: 37332616 PMCID: PMC10274532 DOI: 10.1080/2162402x.2023.2223094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Despite breakthroughs in immune checkpoint inhibitors (ICI), the majority of tumors, including those poorly infiltrated by CD8+ T cells or heavily infiltrated by immunosuppressive immune effector cells, are unlikely to result in clinically meaningful tumor responses. Radiation therapy (RT) has been combined with ICI to potentially overcome this resistance and improve response rates but reported clinical trial results have thus far been disappointing. Novel approaches are required to overcome this resistance and reprogram the immunosuppressive tumor microenvironment (TME) and address this major unmet clinical need. Using diverse preclinical tumor models of prostate and bladder cancer, including an autochthonous prostate tumor (Pten-/-/trp53-/-) that respond poorly to radiation therapy (RT) and anti-PD-L1 combinations, the key drivers of this resistance within the TME were profiled and used to develop rationalized combination therapies that simultaneously enhance activation of anti-cancer T cell responses and reprogram the immunosuppressive TME. The addition of anti-CD40mAb to RT resulted in an increase in IFN-y signaling, activation of Th-1 pathways with an increased infiltration of CD8+ T-cells and regulatory T-cells with associated activation of the CTLA-4 signaling pathway in the TME. Anti-CTLA-4mAb in combination with RT further reprogrammed the immunosuppressive TME, resulting in durable, long-term tumor control. Our data provide novel insights into the underlying mechanisms of the immunosuppressive TME that result in resistance to RT and anti-PD-1 inhibitors and inform therapeutic approaches to reprogramming the immune contexture in the TME to potentially improve tumor responses and clinical outcomes.
Collapse
Affiliation(s)
- Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Erminia Romano
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Richard Walshaw
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Leo A. H. Zeef
- Bioinformatics Core Facility, Michael Smith Building, The University of Manchester, Manchester, UK
| | - Antonia Banyard
- Mass and Flow Cytometry Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Stephen J. Kitcatt
- Scientific Computing Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Eleanor J. Cheadle
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Karoliina Tuomela
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Swati Pendharkar
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Aws Al-Deka
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Beatrice Salerno
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Sophie Raby
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Patrick G. Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Tim M. Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
31
|
Su C, Himes JE, Kirsch DG. Relationship between the tumor microenvironment and the efficacy of the combination of radiotherapy and immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:201-232. [PMID: 37438018 DOI: 10.1016/bs.ircmb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Activating and recruiting the immune system is critical for successful cancer treatment. Since the discovery of immune checkpoint inhibitors, immunotherapy has become the standard of care for many types of cancers. However, many patients fail to respond to immunotherapy. Further research is needed to understand the mechanisms of resistance and adjuvant therapies that can help sensitize patients to immunotherapies. Here, we will discuss how radiotherapy can change the tumor microenvironment and work synergistically with immunotherapy. We will examine different pre-clinical models focusing on their limitations and their unique advantages in studying the efficacy of treatments and the tumor microenvironment. We will also describe emerging findings from clinical trials testing the combination of immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Chang Su
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - Jonathon E Himes
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, United States; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
32
|
Garate-Soraluze E, Serrano-Mendioroz I, Rodriguez-Ruiz M. Methods to assess radiation induced abscopal responses in mice. Methods Cell Biol 2023; 180:81-92. [PMID: 37890934 DOI: 10.1016/bs.mcb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Radiotherapy (RT) can work together with the immune system to eliminate cancer. It can cause immunogenic cell death and facilitate tumor neoantigen presentation and thereby the cross-priming of tumor-specific T-lymphocytes, turning irradiated tumors into in-situ vaccines. Accumulating preclinical and clinical evidence indicates that RT in conjunction with ICB leads to systemic anti-tumor immune responses, thus stimulating interest in using ICB to overcome primary and acquired cancer resistance to radiotherapy. However, the systemic effects (abscopal effects) obtained to date are far from being acceptable for clinical translation. In this context, multiple preclinical mouse models have demonstrated that a variety of immunotherapy agents can be delivered locally to enhance antitumor immunity both in a local and systemic fashion. Using two slightly asynchronous and anatomically distant subcutaneous B16OVA tumors in syngeneic immunocompetent hosts (C57BL/6), we describe the feasibility of a local immunotherapy treatment given in combination with external beam irradiation, which exerts immune-mediated antitumor effects in mice and humans upon intratumoral delivery. With minor variations, the same technique can be easily applied to a variety of mouse transplantable tumors.
Collapse
Affiliation(s)
- Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - María Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
33
|
Gao X, Yi L, Jiang C, Li S, Wang X, Yang B, Li W, Che N, Wang J, Zhang H, Zhang S. PCSK9 regulates the efficacy of immune checkpoint therapy in lung cancer. Front Immunol 2023; 14:1142428. [PMID: 37025995 PMCID: PMC10070680 DOI: 10.3389/fimmu.2023.1142428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) secreted by tumors was reported as a deleterious factor that led to the reduction of lymphocyte infiltration and the poorer efficacy of ICIs in vivo. This study aimed to explore whether PCSK9 expression in tumor tissue could predict the response of advanced non-small cell lung cancer (NSCLC) to anti-PD-1 immunotherapy and the synergistic antitumor effect of the combination of the PCSK9 inhibitor with the anti-CD137 agonist. One hundred fifteen advanced NSCLC patients who received anti-PD-1 immunotherapy were retrospectively studied with PCSK9 expression in baseline NSCLC tissues detected by immunohistochemistry (IHC). The mPFS of the PCSK9lo group was significantly longer than that of the PCSK9hi group [8.1 vs. 3.6 months, hazard ratio (HR): 3.450; 95% confidence interval (CI), 2.166-5.496]. A higher objective response rate (ORR) and a higher disease control rate (DCR) were observed in the PCSK9lo group than in the PCSK9hi group (54.4% vs. 34.5%, 94.7% vs. 65.5%). Reduction and marginal distribution of CD8+ T cells were observed in PCSK9hi NSCLC tissues. Tumor growth was retarded by the PCSK9 inhibitor and the anti-CD137 agonist alone in the Lewis lung carcinoma (LLC) mice model and further retarded by the PCSK9 inhibitor in combination with the CD137 agonist with long-term survival of the host mice with noticeable increases of CD8+ and GzmB+ CD8+ T cells and reduction of Tregs. Together, these results suggested that high PCSK9 expression in baseline tumor tissue was a deleterious factor for the efficacy of anti-PD-1 immunotherapy in advanced NSCLC patients. The PCSK9 inhibitor in combination with the anti-CD137 agonist could not only enhance the recruitment of CD8+ and GzmB+ CD8+ T cells but also deplete Tregs, which may be a novel therapeutic strategy for future research and clinical practice.
Collapse
Affiliation(s)
- Xiang Gao
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chang Jiang
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Shuping Li
- Department of Cardiology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Weiying Li
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Liu S, Liao Y, Chen Y, Yang H, Hu Y, Chen Z, Fu S, Wu J. Effect of triple therapy with low-dose total body irradiation and hypo-fractionated radiation plus anti-programmed cell death protein 1 blockade on abscopal antitumor immune responses in breast cancer. Int Immunopharmacol 2023; 117:110026. [PMID: 36934673 DOI: 10.1016/j.intimp.2023.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Immunostimulatory effects of radiotherapy can be synergistically augmented with immune checkpoint blockade to act both on irradiated tumor lesions and distant, non-irradiated tumor sites. Our hypothesis was that low-dose total body irradiation (L-TBI) combined with hypo-fractionated radiotherapy (H-RT) and anti-programmed cell death protein 1 (aPD-1) checkpoint blockade would enhance the systemic immune response. We tested the efficacy of this triple therapy (L-TBI + H-RT + aPD-1) in BALB/c mice with bilateral breast cancer xenografts. The L-TBI dose was 0.1 Gy. The primary tumor was treated with H-RT (8 Gy × 3). The PD-1 monoclonal antibody was injected intraperitoneally, and the secondary tumors not receiving H-RT were monitored for response. The triple therapy significantly delayed both primary and secondary tumor growths, improved survival rates, and reduced the number of lung metastasis lesions. It increased the activated dendritic and CD8+ T cell populations and reduced the infiltration of myeloid-derived suppressor cells in the secondary tumor microenvironment relative to other groups. Thus, L-TBI could be a potential therapeutic modality, and when combined with H-RT and aPD-1, the therapeutic effect could be enhanced significantly.
Collapse
Affiliation(s)
- Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hanshan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuru Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
35
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
36
|
Melero I, Sanmamed MF, Glez-Vaz J, Luri-Rey C, Wang J, Chen L. CD137 (4-1BB)-Based Cancer Immunotherapy on Its 25th Anniversary. Cancer Discov 2023; 13:552-569. [PMID: 36576322 DOI: 10.1158/2159-8290.cd-22-1029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, we reported that agonist anti-CD137 monoclonal antibodies eradicated transplanted mouse tumors because of enhanced CD8+ T-cell antitumor immunity. Mouse models indicated that anti-CD137 agonist antibodies synergized with various other therapies. In the clinic, the agonist antibody urelumab showed evidence for single-agent activity against melanoma and non-Hodgkin lymphoma but caused severe liver inflammation in a fraction of the patients. CD137's signaling domain is included in approved chimeric antigen receptors conferring persistence and efficacy. A new wave of CD137 agonists targeting tumors, mainly based on bispecific constructs, are in early-phase trials and are showing promising safety and clinical activity. SIGNIFICANCE CD137 (4-1BB) is a costimulatory receptor of T and natural killer lymphocytes whose activity can be exploited in cancer immunotherapy strategies as discovered 25 years ago. Following initial attempts that met unacceptable toxicity, new waves of constructs acting agonistically on CD137 are being developed in patients, offering signs of clinical and pharmacodynamic activity with tolerable safety profiles.
Collapse
Affiliation(s)
- Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, Connecticut
| |
Collapse
|
37
|
Prognostic impact of PD-L1 and TIGIT expression in non-small cell lung cancer following concurrent chemo-radiotherapy. Sci Rep 2023; 13:3270. [PMID: 36841853 PMCID: PMC9968298 DOI: 10.1038/s41598-023-29724-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
We investigated the effect of preoperative therapy for non-small cell lung cancer on programmed death-ligand 1 (PD-L1), programmed death-1 (PD-1), poliovirus receptor (CD155), and T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) expression and prognosis with the cases of 28 patients received preoperative concurrent chemo-radiotherapy (cCRT) and 27 received preoperative drug therapy. The post-treatment PD-L1 expression was higher in cCRT group than in the drug therapy (50.0% vs 5.0%, p = 0.000), whereas that of CD155 did not significantly differ (40.0% vs 60.0%, p = 0.131). The PD-1 expression was not significantly different between the cCRT and drug therapy groups (51.1% vs 42.9%, p = 0.076), while the TIGIT was significantly higher in the cCRT group (41.5% vs 34.0%, p = 0.008). The patients who received cCRT resulted in elevated PD-L1and TIGIT values had a worse prognosis (p = 0.008). The PD-L1 and TIGIT expression after cCRT was significantly higher than after drug treatment. The cCRT population with high expression of both had a significantly poorer prognosis, indicating elevation of PD-L1 and TIGIT after cCRT as a negative prognostic factor. Combination therapy with anti-PD-L1 and anti-TIGIT antibodies after cCRT may contribute to an improved prognosis.
Collapse
|
38
|
Labiano S, Serrano-Mendioroz I, Rodriguez-Ruiz ME. Flow cytometry-assisted quantification of immune cells infiltrating irradiated tumors in mice. Methods Cell Biol 2023; 174:1-16. [PMID: 36710044 DOI: 10.1016/bs.mcb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
The immunomodulatory properties of local hypofractionated radiotherapy are known to promote the generation of anti-tumor immune responses. Such responses are largely due to the infiltration of cytotoxic lymphocytes (TILs) into the tumors that are able to destroy malignant lesions. In this context, characterizing the tumor immune microenvironment following radiotherapy is crucial for the study of its mechanism of action. Flow cytometry-based analyses are frequently used to elucidate changes in the tumor immune microenvironment. The use of a fluorochrome-conjugated antibody panel is currently a standard technique to assess the number and phenotype of immune cell populations infiltrating the tumors. Here, we describe a method to isolate and quantify TILs based on flow-cytometry in mammary carcinoma-bearing mice that undergo a local hypofractionated radiotherapy regimen consisting of 3 consecutive doses of 8 Gy. With some adaptations, this protocol can be successfully applied to a diverse range of transplantable and inducible solid mouse tumors of different origins.
Collapse
Affiliation(s)
- Sara Labiano
- Department of Pediatrics, University Clinic of Navarra, Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - María Esperanza Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Departments of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
39
|
Colciago RR, Fischetti I, Giandini C, La Rocca E, Rancati T T, Rejas Mateo A, Colombo MP, Lozza L, Chiodoni C, Jachetti E, De Santis MC. Overview of the synergistic use of radiotherapy and immunotherapy in cancer treatment: current challenges and scopes of improvement. Expert Rev Anticancer Ther 2023; 23:135-145. [PMID: 36803369 DOI: 10.1080/14737140.2023.2173175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Oncological treatments are changing rapidly due to the advent of several targeted anticancer drugs and regimens. The primary new area of research in oncological medicine is the implementation of a combination of novel therapies and standard care. In this scenario, radioimmunotherapy is one of the most promising fields, as proven by the exponential growth of publications in this context during the last decade. AREAS COVERED This review provides an overview of the synergistic use of radiotherapy and immunotherapy and addresses questions like the importance of this subject, aspects clinicians look for in patients to administer this combined therapy, individuals who would benefit the most from this treatment, how to achieve abscopal effect and when does radio-immunotherapy become standard clinical practice. EXPERT OPINION Answers to these queries generate further issues that need to be addressed and solved. The abscopal and bystander effects are not utopia, rather physiological phenomena that occur in our bodies. Nevertheless, substantial evidence regarding the combination of radioimmunotherapy is lacking. In conclusion, joining forces and finding answers to all these open questions is of paramount importance.
Collapse
Affiliation(s)
- Riccardo Ray Colciago
- Department of Radiation Oncology, School of Medicine and Surgery - University of Milan Bicocca, Milan Italy.,Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Irene Fischetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Carlotta Giandini
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eliana La Rocca
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Tiziana Rancati T
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alicia Rejas Mateo
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Laura Lozza
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | | |
Collapse
|
40
|
Serrano-Mendioroz I, Garate-Soraluze E, Rodriguez-Ruiz ME. A simple method to assess clonogenic survival of irradiated cancer cells. Methods Cell Biol 2023; 174:127-136. [PMID: 36710046 DOI: 10.1016/bs.mcb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The clonogenic assay is an in vitro method based on the ability of a single cell to proliferate indefinitely into a colony. This assay is the gold standard method to analyze cell viability and quantify reproductive cell survival fraction after treatment with ionizing radiation and other cytotoxic agents in vitro. After the cytotoxic effect, only some cells retain their ability to grow from one cell and form colonies. The colony is defined to consist of at least 50 cells. The radiosensitivity of each cell line may vary. Thus, characterizing cell sensitivity following radiation is crucial to choose the optimum radiotherapy dose. Here, we describe a method to test the in vitro capability of cell lines to form colonies following radiation treatment. This assay allows to analyze the efficacy of specific treatments on the cell reproductivity of cell lines With some adaptations, this protocol can be essentially applied to analyze the cell proliferation rate after different doses of irradiation on many different cell lines.
Collapse
Affiliation(s)
- Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - María Esperanza Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Departments of Radiation Oncology, Clínica Universidad de Navarra, Pamplona Spain.
| |
Collapse
|
41
|
Cao W, Chen G, Wu L, Yu KN, Sun M, Yang M, Jiang Y, Jiang Y, Xu Y, Peng S, Han W. Ionizing Radiation Triggers the Antitumor Immunity by Inducing Gasdermin E-Mediated Pyroptosis in Tumor Cells. Int J Radiat Oncol Biol Phys 2023; 115:440-452. [PMID: 35918054 DOI: 10.1016/j.ijrobp.2022.07.1841] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To understand pyroptosis induced by ionizing radiation and its implications for radiation therapy, we explored the involved factors, possible mechanisms of radiation-induced pyroptosis and consequent antitumor immunity. METHODS AND MATERIALS The occurrence of pyroptosis was assessed by cell morphology, lactate dehydrogenase release, Annexin V/PI staining and the cleavage of Gasdermin E (GSDME). Cell radiosensitivity was tested with MTT and colony survival assays. Xenograft tumor volume, Ki-67, CD8+ lymphocytes, and ELISA were used to evaluate the effect of GSDME on tumor suppression after irradiation. RESULTS Irradiation induced pyroptosis in GSDME high-expressing tumor cell lines covering lung, liver, breast, and glioma cancers. Cleavage of GSDME occurred in a dose- and time-dependent manner after irradiation, and pyroptosis could be induced by various kinds of irradiation. The combination of chemotherapy drugs for DNA damage (cisplatin or etoposide) or demethylation (decitabine or azacytidine) and irradiation significantly enhanced the occurrence of pyroptosis. Moreover, we revealed that the Caspase 9/Caspase 3/GSDME pathway was involved in irradiation-induced pyroptosis. Notably, enhanced tumor suppression was observed in Balb/c mice bearing GSDME-overexpressing 4T1 tumors compared with those bearing vector tumors for the promotion of antitumor immunity, which was manifested as distinctly elevated levels of cytotoxic T lymphocytes and release of the related cytokines rather than the direct effect of pyroptosis on tumor cell radiosensitivity. CONCLUSIONS As an immunogenic cell death caused by radiation, pyroptosis promotes antitumor immunity after irradiation. Our findings may provide new insights to improve the efficacy of tumor radiation therapy.
Collapse
Affiliation(s)
- Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; University of Science and Technology of China, Hefei, P. R. China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P.R. China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P.R. China
| | - Mingyu Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yanyi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yuan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; University of Science and Technology of China, Hefei, P. R. China
| | - Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; University of Science and Technology of China, Hefei, P. R. China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, P. R. China.
| |
Collapse
|
42
|
Yuan H, Gui R, Wang Z, Fang F, Zhao H. Gut microbiota: A novel and potential target for radioimmunotherapy in colorectal cancer. Front Immunol 2023; 14:1128774. [PMID: 36798129 PMCID: PMC9927011 DOI: 10.3389/fimmu.2023.1128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate, and is a major burden on human health worldwide. Gut microbiota regulate human immunity and metabolism through producing numerous metabolites, which act as signaling molecules and substrates for metabolic reactions in various biological processes. The importance of host-gut microbiota interactions in immunometabolic mechanisms in CRC is increasingly recognized, and interest in modulating the microbiota to improve patient's response to therapy has been raising. However, the specific mechanisms by which gut microbiota interact with immunotherapy and radiotherapy remain incongruent. Here we review recent advances and discuss the feasibility of gut microbiota as a regulatory target to enhance the immunogenicity of CRC, improve the radiosensitivity of colorectal tumor cells and ameliorate complications such as radiotoxicity. Currently, great breakthroughs in the treatment of non-small cell lung cancer and others have been achieved by radioimmunotherapy, but radioimmunotherapy alone has not been effective in CRC patients. By summarizing the recent preclinical and clinical evidence and considering regulatory roles played by microflora in the gut, such as anti-tumor immunity, we discuss the potential of targeting gut microbiota to enhance the efficacy of radioimmunotherapy in CRC and expect this review can provide references and fresh ideas for the clinical application of this novel strategy.
Collapse
Affiliation(s)
- Hanghang Yuan
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| |
Collapse
|
43
|
Yegya-Raman N, Wright CM, LaRiviere MJ, Baron JA, Lee DY, Landsburg DJ, Svoboda J, Nasta SD, Gerson JN, Barta SK, Chong EA, Schuster SJ, Maity A, Facciabene A, Paydar I, Plastaras JP. Salvage radiotherapy for relapsed/refractory non-Hodgkin lymphoma following CD19 chimeric antigen receptor T-cell (CART) therapy. Clin Transl Radiat Oncol 2023; 39:100587. [PMID: 36718252 PMCID: PMC9883177 DOI: 10.1016/j.ctro.2023.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/18/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Background and purpose CD19-targeting chimeric antigen receptor T-cell (CART) therapy is a promising treatment for relapsed/refractory non-Hodgkin lymphoma, but most patients experience post-CART progression. We describe our institutional experience of salvage radiotherapy (SRT) in this setting. Materials and methods Of 94 patients who received CART therapy from 2018 to 2020, 21 received SRT for post-CART progression. Patients were divided into two groups: locoregional disease (n = 9 [43 %], all disease encompassable within an RT field) and advanced disease (n = 12 [57 %]). Patterns of failure, progression-free survival (PFS), overall survival (OS), and toxicity were assessed. Results Median time from CART infusion to SRT was 4.0 months (range, 0.6-11.5 months). In the locoregional disease group, 8/9 patients (89 %) were treated with comprehensive SRT to a median dose of 37.5 Gy in a median of 15 fractions. In the advanced disease group, all patients (n = 12) were treated with focal SRT to a median dose of 20.8 Gy in a median of 5 fractions. Median follow-up post-SRT was 15.2 months. In-field response was observed in 8/9 (89 %) in the locoregional disease and 8/9 (89 %) evaluable patients in the advanced disease groups. 17/18 evaluable patients (94 %) patients experienced post-SRT progression, all with a distant component. Median OS was 7.4 months; 21 months for locoregional disease versus 2.4 months for advanced disease (p = 0.0002). Median PFS was 1.1 month, and similarly poor regardless of group. No grade ≥ 3 toxicities occurred. Conclusions SRT post-CART therapy appears safe with encouraging in-field response but high rates of out-of-field progression, even for those presenting with locoregional disease, highlighting the need for integration of novel systemic agents.
Collapse
Affiliation(s)
- Nikhil Yegya-Raman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher M. Wright
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J. LaRiviere
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jonathan A. Baron
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Y. Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Landsburg
- Department of Medicine, Hematology/Oncology Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Jakub Svoboda
- Department of Medicine, Hematology/Oncology Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Sunita D. Nasta
- Department of Medicine, Hematology/Oncology Division, University of Pennsylvania, Philadelphia, PA, United States
| | - James N. Gerson
- Department of Medicine, Hematology/Oncology Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan K. Barta
- Department of Medicine, Hematology/Oncology Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Elise A. Chong
- Department of Medicine, Hematology/Oncology Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Schuster
- Department of Medicine, Hematology/Oncology Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ima Paydar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - John P. Plastaras
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States,Corresponding author at: Department of Radiation Oncology, University of Pennsylvania, PCAM/TRC 4 West, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
44
|
Ji X, Jiang W, Wang J, Zhou B, Ding W, Liu S, Huang H, Chen G, Sun X. Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Front Immunol 2023; 13:1106644. [PMID: 36713375 PMCID: PMC9877461 DOI: 10.3389/fimmu.2022.1106644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy is one of the mainstays of cancer treatment. More than half of cancer patients receive radiation therapy. In addition to the well-known direct tumoricidal effect, radiotherapy has immunomodulatory properties. When combined with immunotherapy, radiotherapy, especially high-dose radiotherapy (HDRT), exert superior systemic effects on distal and unirradiated tumors, which is called abscopal effect. However, these effects are not always effective for cancer patients. Therefore, many studies have focused on exploring the optimized radiotherapy regimens to further enhance the antitumor immunity of HDRT and reduce its immunosuppressive effect. Several studies have shown that low-dose radiotherapy (LDRT) can effectively reprogram the tumor microenvironment, thereby potentially overcoming the immunosuppressive stroma induced by HDRT. However, bridging the gap between preclinical commitment and effective clinical delivery is challenging. In this review, we summarized the existing studies supporting the combined use of HDRT and LDRT to synergistically enhance antitumor immunity, and provided ideas for the individualized clinical application of multimodal radiotherapy (HDRT+LDRT) combined with immunotherapy.
Collapse
|
45
|
Yang H, Hu Y, Kong D, Chen P, Yang L. Intralesional Bacillus Calmette-Guérin injections and hypo-fractionated radiation synergistically induce systemic antitumor immune responses. Int Immunopharmacol 2023; 114:109542. [PMID: 36521291 DOI: 10.1016/j.intimp.2022.109542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Radiotherapy, an important treatment for multiple malignancies, produces systemic anti-tumor effects in combination with immunotherapies, especially immune checkpoint inhibitors (ICBs). However, for some patients who do not respond to ICB treatment or show ICB-induced autoimmune symptoms, new alternatives need to be explored. Innovative immunomodulatory strategies, including the administration of immunostimulants, could be used to improve the immunogenicity induced by radiotherapy. In this study, we explored the synergistic effect of Bacillus Calmette-Guérin (BCG) combined with hypo-fractionated radiotherapy (H-RT) in inducing anti-tumor immune responses. We observed the systemic and abscopal effects of this combination in mice with 4 T1 breast cancer. H-RT combined with BCG could remodel the immune microenvironment and alleviate leukocyte-like responses by increasing the infiltration of CD8 + T cells, promoting the maturation of dendritic cells (DCs), decreasing the infiltration of immunosuppressive cells, and downregulating the expression of immunosuppressive cytokines. Therefore, this combination could enhance the systemic anti-tumor response, leading to the regression of untreated synchronous tumors and a decrease in the systemic metastatic burden. These results highlight the potential of BCG in assisting antitumor therapy and the therapeutic potential of this combination treatment.
Collapse
Affiliation(s)
- Hanshan Yang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing 400000, China; Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuru Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Deyi Kong
- Department of Encephalopathy, Jiang 'an Hospital of Traditional Chinese Medicine, Yibin 644000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linglin Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
46
|
Jiang C, Tian Q, Xu X, Li P, He S, Chen J, Yao B, Zhang J, Yang Z, Song S. Enhanced antitumor immune responses via a new agent [ 131I]-labeled dual-target immunosuppressant. Eur J Nucl Med Mol Imaging 2023; 50:275-286. [PMID: 36242616 PMCID: PMC9816240 DOI: 10.1007/s00259-022-05986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023]
Abstract
Radionuclides theranostic are ideal "partners" for bispecific antibodies to explore the immune response of patients and synergistic treatment. A bispecific single-domain antibody-Fc fusion protein, KN046, exhibits a good treatment effect by binding to programmed cell death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). An ionizing-radiation stimulus mediated by a low-dose of [131I] may be used for immunopotentiation. In this study, we established [131I]-labeled KN046 as a novel radioimmunotherapy agent to treat malignant melanoma and explored the mechanism. METHODS After intravenous injection of [131I]-KN046, SPECT/CT imaging was applied to identify candidate targets for KN046 immunotherapy. [18F]-FDG and [68 Ga]-NOTA-GZP (granzyme B-specific PET imaging agent) micro-PET/CT imaging was used to assess the immune response in vivo after [131I]-KN046 treatment. The synergistic treatment effect of [131I]-KN046 was evaluated by exploring the [131I]-based radionuclide-induced release of tumor immunogenicity-related antigens as well as the histology and survival of tumor-bearing mice after treatment. RESULTS The constructed [131I]-KN046 exhibited high affinity and specificity for PD-L1/CTLA-4 immune targets and had excellent in vivo intratumoral retention capability so as to achieve good antitumor efficacy. More importantly, the combination of low-dose [131I] and KN046-enhanced immunosensitivity increased the immunotherapy response rates significantly. Exposure of tumor cells to [131I]-KN046 led to upregulated expression of MHC-I and Fas surface molecules and significant increases in the degree of T-cell activation and counts of tumor-infiltrating immunocytes. CONCLUSION Use of low-dose [131I] combined with a dual-target immunosuppressant could be exploited to identify the subset of treatment responders but also exhibited great potential for enhancing antitumor immune responses.
Collapse
Affiliation(s)
- Chunjuan Jiang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Panli Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Bolin Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Ziyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.
| |
Collapse
|
47
|
Rodriguez-Ruiz ME, Serrano-Mendioroz I, Garate-Soraluze E, Sánchez-Mateos P, Barrio-Alonso C, Rodríguez López I, Diaz Pascual V, Arbea Moreno L, Alvarez M, Sanmamed MF, Perez-Gracia JL, Escuin-Ordinas H, Quintero M, Melero I. Intratumoral BO-112 in combination with radiotherapy synergizes to achieve CD8 T-cell-mediated local tumor control. J Immunother Cancer 2023; 11:e005011. [PMID: 36631161 PMCID: PMC9835951 DOI: 10.1136/jitc-2022-005011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Radioimmunotherapy combines irradiation of tumor lesions with immunotherapy to achieve local and abscopal control of cancer. Most immunotherapy agents are given systemically, but strategies for delivering immunotherapy locally are under clinical scrutiny to maximize efficacy and avoid toxicity. Local immunotherapy, by injecting various pathogen-associated molecular patterns, has shown efficacy both preclinically and clinically. BO-112 is a viral mimetic based on nanoplexed double-stranded RNA (poly I:C) which exerts immune-mediated antitumor effects in mice and humans on intratumoral delivery. BO-112 and focal irradiation were used to make the proof-of-concept for local immunotherapy plus radiation therapy combinations. METHODS Murine transplantable tumor cell lines (TS/A, MC38 and B16-OVA) were used to show increased immunogenic features under irradiation, as well as in bilateral tumor models in which only one of the lesions was irradiated or/and injected with BO-112. Flow cytometry and multiplex tissue immunofluorescence were used to determine the effects on antitumor immunity. Depletions of immune cell populations and knockout mice for the IFNAR and BATF-3 genes were used to delineate the immune system requirements for efficacy. RESULTS In cultures of TS/A breast cancer cells, the combination of irradiation and BO-112 showed more prominent features of immunogenic tumor cell death in terms of calreticulin exposure. Injection of BO-112 into the tumor lesion receiving radiation achieved excellent control of the treated tumor and modest delays in contralateral tumor progression. Local effects were associated with more prominent infiltrates of antitumor cytotoxic tumor lymphocytes (CTLs). Importantly, local irradiation plus BO-112 in one of the tumor lesions that enhanced the therapeutic effects of radiotherapy on distant irradiated lesions that were not injected with BO-112. Hence, this beneficial effect of local irradiation plus BO-112 on a tumor lesion enhanced the therapeutic response to radiotherapy on distant non-injected lesions. CONCLUSION This study demonstrates that local BO-112 immunotherapy and focal irradiation may act in synergy to achieve local tumor control. Irradiation plus BO-112 in one of the tumor lesions enhanced the therapeutic effects on distant irradiated lesions that were not injected with BO-112, suggesting strategies to treat oligometastatic patients with lesions susceptible to radiotherapy and with at least one tumor accessible for repeated BO-112 intratumoral injections.
Collapse
Affiliation(s)
- Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | | | - Celia Barrio-Alonso
- Departments of immunology and pathology, Hospital Gregorio Marañon, Madrid, Spain
| | - Inmaculada Rodríguez López
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Victor Diaz Pascual
- Departments of medical physic, Clínica Universidad de Navarra, Pamplona, Spain
| | - Leire Arbea Moreno
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose Luis Perez-Gracia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
48
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
49
|
Chemotherapy to potentiate the radiation-induced immune response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:143-173. [PMID: 36997268 DOI: 10.1016/bs.ircmb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Chemoradiation (CRT) is a conventional therapy used in local cancers, especially when they are locally advanced. Studies have shown that CRT induces strong anti-tumor responses involving several immune effects in pre-clinical models and humans. In this review, we have described the various immune effects involved in CRT efficacy. Indeed, effects such as immunological cell death, activation and maturation of antigen-presenting cells, and activation of an adaptive anti-tumor immune response are attributed to CRT. As often described in other therapies, various immunosuppressive mechanisms mediated, in particular, by Treg and myeloid populations may reduce the CRT efficacy. We have therefore discussed the relevance of combining CRT with other therapies to potentiate the CRT-induced anti-tumor effects.
Collapse
|
50
|
Rajeev-Kumar G, Pitroda SP. Synergizing radiotherapy and immunotherapy: Current challenges and strategies for optimization. Neoplasia 2022; 36:100867. [PMID: 36563632 PMCID: PMC9798173 DOI: 10.1016/j.neo.2022.100867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous clinical studies are investigating the integration of radiotherapy and immune checkpoint inhibitors (ICI) in the management of advanced or metastatic solid cancers based on preclinical evidence demonstrating a synergistic interaction between these treatments. However, it remains unclear how to optimally integrate these therapeutic modalities in the treatment of cancer patients. Beyond disease-specific factors there exists numerous unanswered questions regarding optimal sequencing of radiation and ICI, as well as, radiation dosing and target selection. Here, we examine the available clinical evidence for combination radiation and ICI approaches and propose strategies to expand investigations of the potential synergy in cancer patients.
Collapse
|