1
|
Deng S, Kim J, Pomraning KR, Gao Y, Evans JE, Hofstad BA, Dai Z, Webb-Robertson BJ, Powell SM, Novikova IV, Munoz N, Kim YM, Swita M, Robles AL, Lemmon T, Duong RD, Nicora C, Burnum-Johnson KE, Magnuson J. Identification of a specific exporter that enables high production of aconitic acid in Aspergillus pseudoterreus. Metab Eng 2023; 80:163-172. [PMID: 37778408 DOI: 10.1016/j.ymben.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.
Collapse
Affiliation(s)
- Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - James E Evans
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Bobbie-Jo Webb-Robertson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Samantha M Powell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Irina V Novikova
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Rylan D Duong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Jon Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
2
|
Itaconic acid production is regulated by LaeA in Aspergillus pseudoterreus. Metab Eng Commun 2022; 15:e00203. [PMID: 36065328 PMCID: PMC9440423 DOI: 10.1016/j.mec.2022.e00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity. The Itaconic acid biosynthetic gene cluster is regulated by laeA. LaeA is required for production of itaconic acid. Overexpression of laeA attenuates genes involved in phosphate acquisition. Global regulator engineering increases robustness of itaconic acid production.
Collapse
|
3
|
Wang H, Jiang Y, Jin H, Wang C. ERBB2 promoter demethylation and immune cell infiltration promote a poor prognosis for cancer patients. Front Oncol 2022; 12:1012138. [PMID: 36172165 PMCID: PMC9511046 DOI: 10.3389/fonc.2022.1012138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Receptor tyrosine-protein kinase erbB-2 (ERBB2) expression is a critical factor for the prognosis of various cancers. ERBB2 enrichment indicates a poor prognosis in some cancer types but could be a favorable prognostic factor in others. Methods We analyzed DNA methylation, mRNA, protein, immune cell infiltration, and related signaling pathways using TIMER2.0, GEPIA2, STRING, and UALCAN portal datasets in tumor tissues of diverse cancer types and their matched normal tissues. Results ERBB2 promoter demethylation increases transcript protein amplification and promotes a poor prognosis for cancer patients. ERBB2 gain-of-function procures immune cell infiltration for tumor growth and drives away T regulatory cells, which suppress or downregulate induction and proliferation of effector T cells. The downstream signaling pathways, such as tumor proliferation, ECM-related genes, and degradation of ECM, are involved in ERBB2 gene demethylation and immune activation in cancer progression. Conclusion ERBB2 gene demethylation leads to a poor prognosis in cancer patients, which is strongly influenced by the composition and abundance of tumor immune cell infiltration. ERBB2 demethylation could be used in clinical practice to identify immune profiles and direct therapeutic strategies.
Collapse
Affiliation(s)
- Hongting Wang
- School of Pharmacy, Drug Research and Development Center, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu, China
- School of Basic Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Hongting Wang, ; Cunqin Wang,
| | - Yongxu Jiang
- School of Pharmacy, Drug Research and Development Center, Wannan Medical College, Wuhu, China
| | - Huanhuan Jin
- School of Pharmacy, Drug Research and Development Center, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu, China
| | - Cunqin Wang
- School of Pharmacy, Drug Research and Development Center, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu, China
- *Correspondence: Hongting Wang, ; Cunqin Wang,
| |
Collapse
|
4
|
Pomraning KR, Dai Z, Munoz N, Kim YM, Gao Y, Deng S, Kim J, Hofstad BA, Swita MS, Lemmon T, Collett JR, Panisko EA, Webb-Robertson BJM, Zucker JD, Nicora CD, De Paoli H, Baker SE, Burnum-Johnson KE, Hillson NJ, Magnuson JK. Integration of Proteomics and Metabolomics Into the Design, Build, Test, Learn Cycle to Improve 3-Hydroxypropionic Acid Production in Aspergillus pseudoterreus. Front Bioeng Biotechnol 2021; 9:603832. [PMID: 33898398 PMCID: PMC8058442 DOI: 10.3389/fbioe.2021.603832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Biological engineering of microorganisms to produce value-added chemicals is a promising route to sustainable manufacturing. However, overproduction of metabolic intermediates at high titer, rate, and yield from inexpensive substrates is challenging in non-model systems where limited information is available regarding metabolic flux and its control in production conditions. Integrated multi-omic analyses of engineered strains offers an in-depth look at metabolites and proteins directly involved in growth and production of target and non-target bioproducts. Here we applied multi-omic analyses to overproduction of the polymer precursor 3-hydroxypropionic acid (3HP) in the filamentous fungus Aspergillus pseudoterreus. A synthetic pathway consisting of aspartate decarboxylase, beta-alanine pyruvate transaminase, and 3HP dehydrogenase was designed and built for A. pseudoterreus. Strains with single- and multi-copy integration events were isolated and multi-omics analysis consisting of intracellular and extracellular metabolomics and targeted and global proteomics was used to interrogate the strains in shake-flask and bioreactor conditions. Production of a variety of co-products (organic acids and glycerol) and oxidative degradation of 3HP were identified as metabolic pathways competing with 3HP production. Intracellular accumulation of nitrogen as 2,4-diaminobutanoate was identified as an off-target nitrogen sink that may also limit flux through the engineered 3HP pathway. Elimination of the high-expression oxidative 3HP degradation pathway by deletion of a putative malonate semialdehyde dehydrogenase improved the yield of 3HP by 3.4 × after 10 days in shake-flask culture. This is the first report of 3HP production in a filamentous fungus amenable to industrial scale biomanufacturing of organic acids at high titer and low pH.
Collapse
Affiliation(s)
- Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ziyu Dai
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yuqian Gao
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Shuang Deng
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Joonhoon Kim
- Pacific Northwest National Laboratory, Richland, WA, United States.,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Beth A Hofstad
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Marie S Swita
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Teresa Lemmon
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - James R Collett
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ellen A Panisko
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Jeremy D Zucker
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carrie D Nicora
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Nathan J Hillson
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, United States.,Joint BioEnergy Institute, Emeryville, CA, United States
| |
Collapse
|
5
|
Gao Y, Fillmore TL, Munoz N, Bentley GJ, Johnson CW, Kim J, Meadows JA, Zucker JD, Burnet MC, Lipton AK, Bilbao A, Orton DJ, Kim YM, Moore RJ, Robinson EW, Baker SE, Webb-Robertson BJM, Guss AM, Gladden JM, Beckham GT, Magnuson JK, Burnum-Johnson KE. High-Throughput Large-Scale Targeted Proteomics Assays for Quantifying Pathway Proteins in Pseudomonas putida KT2440. Front Bioeng Biotechnol 2020; 8:603488. [PMID: 33425868 PMCID: PMC7793925 DOI: 10.3389/fbioe.2020.603488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Targeted proteomics is a mass spectrometry-based protein quantification technique with high sensitivity, accuracy, and reproducibility. As a key component in the multi-omics toolbox of systems biology, targeted liquid chromatography-selected reaction monitoring (LC-SRM) measurements are critical for enzyme and pathway identification and design in metabolic engineering. To fulfill the increasing need for analyzing large sample sets with faster turnaround time in systems biology, high-throughput LC-SRM is greatly needed. Even though nanoflow LC-SRM has better sensitivity, it lacks the speed offered by microflow LC-SRM. Recent advancements in mass spectrometry instrumentation significantly enhance the scan speed and sensitivity of LC-SRM, thereby creating opportunities for applying the high speed of microflow LC-SRM without losing peptide multiplexing power or sacrificing sensitivity. Here, we studied the performance of microflow LC-SRM relative to nanoflow LC-SRM by monitoring 339 peptides representing 132 enzymes in Pseudomonas putida KT2440 grown on various carbon sources. The results from the two LC-SRM platforms are highly correlated. In addition, the response curve study of 248 peptides demonstrates that microflow LC-SRM has comparable sensitivity for the majority of detected peptides and better mass spectrometry signal and chromatography stability than nanoflow LC-SRM.
Collapse
Affiliation(s)
- Yuqian Gao
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Nathalie Munoz
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Gayle J Bentley
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,National Renewable Energy Laboratory, Golden, CO, United States
| | - Christopher W Johnson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,National Renewable Energy Laboratory, Golden, CO, United States
| | - Joonhoon Kim
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jamie A Meadows
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Sandia National Laboratories, Livermore, CA, United States
| | - Jeremy D Zucker
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Meagan C Burnet
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Anna K Lipton
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Aivett Bilbao
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Young-Mo Kim
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ronald J Moore
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Errol W Robinson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Scott E Baker
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Bobbie-Jo M Webb-Robertson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam M Guss
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - John M Gladden
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Sandia National Laboratories, Livermore, CA, United States
| | - Gregg T Beckham
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,National Renewable Energy Laboratory, Golden, CO, United States
| | - Jon K Magnuson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kristin E Burnum-Johnson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
6
|
Bramer LM, Stratton KG, White AM, Bleeker AH, Kobold MA, Waters KM, Metz TO, Rodland KD, Webb-Robertson BJM. P-Mart: Interactive Analysis of Ion Abundance Global Proteomics Data. J Proteome Res 2019; 18:1426-1432. [PMID: 30667224 DOI: 10.1021/acs.jproteome.8b00840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of mass-spectrometry-based techniques for global protein profiling of biomedical or environmental experiments has become a major focus in research centered on biomarker discovery; however, one of the most important issues recently highlighted in the new era of omics data generation is the ability to perform analyses in a robust and reproducible manner. This has been hypothesized to be one of the issues hindering the ability of clinical proteomics to successfully identify clinical diagnostic and prognostic biomarkers of disease. P-Mart ( https://pmart.labworks.org ) is a new interactive web-based software environment that enables domain scientists to perform quality-control processing, statistics, and exploration of large-complex proteomics data sets without requiring statistical programming. P-Mart is developed in a manner that allows researchers to perform analyses via a series of modules, explore the results using interactive visualization, and finalize the analyses with a collection of output files documenting all stages of the analysis and a report to allow reproduction of the analysis.
Collapse
Affiliation(s)
- Lisa M Bramer
- Computing & Analytics Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Kelly G Stratton
- Computing & Analytics Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Amanda M White
- Computing & Analytics Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Ameila H Bleeker
- Computing & Analytics Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Markus A Kobold
- Computing & Analytics Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Katrina M Waters
- Biological Sciences Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Thomas O Metz
- Biological Sciences Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Karin D Rodland
- Biological Sciences Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States.,Department of Cell, Developmental, and Cancer Biology , Oregon Health & Science University , Portland , Oregon 97221 , United States
| | - Bobbie-Jo M Webb-Robertson
- Computing & Analytics Division , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| |
Collapse
|