1
|
Solomou G, Young AMH, Bulstrode HJCJ. Microglia and macrophages in glioblastoma: landscapes and treatment directions. Mol Oncol 2024; 18:2906-2926. [PMID: 38712663 PMCID: PMC11619806 DOI: 10.1002/1878-0261.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Glioblastoma is the most common primary malignant tumour of the central nervous system and remains uniformly and rapidly fatal. The tumour-associated macrophage (TAM) compartment comprises brain-resident microglia and bone marrow-derived macrophages (BMDMs) recruited from the periphery. Immune-suppressive and tumour-supportive TAM cell states predominate in glioblastoma, and immunotherapies, which have achieved striking success in other solid tumours have consistently failed to improve survival in this 'immune-cold' niche context. Hypoxic and necrotic regions in the tumour core are found to enrich, especially in anti-inflammatory and immune-suppressive TAM cell states. Microglia predominate at the invasive tumour margin and express pro-inflammatory and interferon TAM cell signatures. Depletion of TAMs, or repolarisation towards a pro-inflammatory state, are appealing therapeutic strategies and will depend on effective understanding and classification of TAM cell ontogeny and state based on new single-cell and spatial multi-omic in situ profiling. Here, we explore the application of these datasets to expand and refine TAM characterisation, to inform improved modelling approaches, and ultimately underpin the effective manipulation of function.
Collapse
Affiliation(s)
- Georgios Solomou
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Adam M. H. Young
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Harry J. C. J. Bulstrode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
2
|
Reale A, Gatta A, Shaik AKB, Shallak M, Chiaravalli AM, Cerati M, Zaccaria M, La Rosa S, Calistri A, Accolla RS, Forlani G. An oncolytic HSV-1 vector induces a therapeutic adaptive immune response against glioblastoma. J Transl Med 2024; 22:862. [PMID: 39334370 PMCID: PMC11430576 DOI: 10.1186/s12967-024-05650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults with the lowest survival rates five years post-diagnosis. Oncolytic viruses (OVs) selectively target and damage cancer cells, and for this reason they are being investigated as new therapeutic tools also against GBM. METHODS An oncolytic herpes simplex virus type 1 (oHSV-1) with deletions in the γ34.5 neurovirulence gene and the US12 gene, expressing enhanced green fluorescent protein (EGFP-oHSV-1) as reporter gene was generated and tested for its capacity to infect and kill the murine GL261 glioblastoma (GBM) cell line. Syngeneic mice were orthotopically injected with GL261cells. Seven days post-implantation, EGFP-oHSV-1 was administered intratumorally. Twenty-one days after parental tumor challenge in the opposite brain hemisphere, mice were sacrified and their brains were analysed by immunohistochemistry to assess tumor presence and cell infiltrate. RESULTS oHSV-1 replicates and induces cell death of GL261 cells in vitro. A single intracranial injection of EGFP-oHSV-1 in established GL261 tumors significantly prolongs survival in all treated mice compared to placebo treatment. Notably, 45% of treated mice became long-term survivors, and rejected GL261 cells upon rechallenge in the contralateral brain hemisphere, indicating an anamnestic antitumoral immune response. Post-mortem analysis revealed a profound modification of the tumor microenvironment with increased infiltration of CD4 + and CD8 + T lymphocytes, intertumoral vascular collapse and activation and redistribution of macrophage, microglia, and astroglia in the tumor area, with the formation of intense fibrotic tissue suggestive of complete rejection in long-term survivor mice. CONCLUSIONS EGFP-oHSV1 demonstrates potent antitumoral activity in an immunocompetent GBM model as a monotherapy, resulting from direct cell killing combined with the stimulation of a protective adaptive immune response. These results open the way to possible application of our strategy in clinical setting.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Andrea Gatta
- Department of Medicine and Technological Innovation, University of Insubria, via O.Rossi 9, Varese, 21100, Italy
| | - Amruth Kaleem Basha Shaik
- Department of Medicine and Technological Innovation, University of Insubria, via O.Rossi 9, Varese, 21100, Italy
| | - Mariam Shallak
- Department of Medicine and Technological Innovation, University of Insubria, via O.Rossi 9, Varese, 21100, Italy
| | | | - Michele Cerati
- Unit of Pathology, ASST Sette-Laghi, Varese, 21100, Italy
| | - Martina Zaccaria
- Department of Medicine and Technological Innovation, University of Insubria, via O.Rossi 9, Varese, 21100, Italy
| | - Stefano La Rosa
- Department of Medicine and Technological Innovation, University of Insubria, via O.Rossi 9, Varese, 21100, Italy
- Unit of Pathology, ASST Sette-Laghi, Varese, 21100, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Roberto Sergio Accolla
- Department of Medicine and Technological Innovation, University of Insubria, via O.Rossi 9, Varese, 21100, Italy.
| | - Greta Forlani
- Department of Medicine and Technological Innovation, University of Insubria, via O.Rossi 9, Varese, 21100, Italy.
| |
Collapse
|
3
|
Lecoultre M, Walker PR, El Helali A. Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med 2024; 24:202. [PMID: 39196415 PMCID: PMC11358230 DOI: 10.1007/s10238-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Oncolytic viruses (OV) are a promising strategy in cancer immunotherapy. Their capacity to promote anti-tumoral immunity locally raises hope that cancers unresponsive to current immunotherapy approaches could be tackled more efficiently. In this context, tumor-associated macrophages (TAM) must be considered because of their pivotal role in cancer immunity. Even though TAM tend to inhibit anti-tumoral responses, their ability to secrete pro-inflammatory cytokines and phagocytose cancer cells can be harnessed to promote therapeutic cancer immunity. OVs have the potential to promote TAM pro-inflammatory functions that favor anti-tumoral immunity. But in parallel, TAM pro-inflammatory functions induce OV clearance in the tumor, thereby limiting OV efficacy and highlighting that the interaction between OV and TAM is a double edge sword. Moreover, engineered OVs were recently developed to modulate specific TAM functions such as phagocytic activity. The potential of circulating monocytes to deliver OV into the tumor after intravenous administration is also emerging. In this review, we will present the interaction between OV and TAM, the potential of engineered OV to modulate specific TAM functions, and the promising role of circulating monocytes in OV delivery to the tumor.
Collapse
Affiliation(s)
- Marc Lecoultre
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China
- Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Paul R Walker
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Immunobiology of Brain Tumours Laboratory, Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Aya El Helali
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China.
| |
Collapse
|
4
|
Shi X, Sun K, Li L, Xian J, Wang P, Jia F, Xu F. Oncolytic Activity of Sindbis Virus with the Help of GM-CSF in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7195. [PMID: 39000311 PMCID: PMC11241666 DOI: 10.3390/ijms25137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector. The potential of this mutated vector for liver cancer therapy was verified at the cellular level and in vivo, respectively, and the changes in the tumor microenvironment after treatment were also described. The results showed that the Sindbis virus could effectively infect hepatocellular carcinoma cell lines and induce cell death. Furthermore, the addition of GM-CSF enhanced the tumor-killing effect of the Sindbis virus and increased the number of immune cells in the intra-tumor microenvironment during the treatment. In particular, SINV-GM-CSF was able to efficiently kill tumors in a mouse tumor model of hepatocellular carcinoma by regulating the elevation of M1-type macrophages (which have a tumor-resistant ability) and the decrease in M2-type macrophages (which have a tumor-promoting capacity). Overall, SINV-GM-CSF is an attractive vector platform with clinical potential for use as a safe and effective oncolytic virus.
Collapse
Affiliation(s)
- Xiangwei Shi
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyixin Sun
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Li
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingwen Xian
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Fan Jia
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
5
|
Karandikar PV, Suh L, Gerstl JVE, Blitz SE, Qu QR, Won SY, Gessler FA, Arnaout O, Smith TR, Peruzzi PP, Yang W, Friedman GK, Bernstock JD. Positioning SUMO as an immunological facilitator of oncolytic viruses for high-grade glioma. Front Cell Dev Biol 2023; 11:1271575. [PMID: 37860820 PMCID: PMC10582965 DOI: 10.3389/fcell.2023.1271575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.
Collapse
Affiliation(s)
- Paramesh V. Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lyle Suh
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Qing Rui Qu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sae-Yeon Won
- Department of Neurosurgery, University of Rostock, Rostock, Germany
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Yang
- Department of Anesthesiology, Multidisciplinary Brain Protection Program, Duke University Medical Center, Durham, NC, United States
| | - Gregory K. Friedman
- Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Liu J, Piranlioglu R, Ye F, Shu K, Lei T, Nakashima H. Immunosuppressive cells in oncolytic virotherapy for glioma: challenges and solutions. Front Cell Infect Microbiol 2023; 13:1141034. [PMID: 37234776 PMCID: PMC10206241 DOI: 10.3389/fcimb.2023.1141034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma is a highly aggressive form of brain cancer characterized by the abundance of myeloid lineage cells in the tumor microenvironment. Tumor-associated macrophages and microglia (TAM) and myeloid-derived suppressor cells (MDSCs), play a pivotal role in promoting immune suppression and tumor progression. Oncolytic viruses (OVs) are self-amplifying cytotoxic agents that can stimulate local anti-tumor immune responses and have the potential to suppress immunosuppressive myeloid cells and recruit tumor-infiltrating T lymphocytes (TILs) to the tumor site, leading to an adaptive immune response against tumors. However, the impact of OV therapy on the tumor-resident myeloid population and the subsequent immune responses are not yet fully understood. This review provides an overview of how TAM and MDSC respond to different types of OVs, and combination therapeutics that target the myeloid population to promote anti-tumor immune responses in the glioma microenvironment.
Collapse
Affiliation(s)
- Junfeng Liu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Raziye Piranlioglu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Liu S, Li M, Sun F, Zhang J, Liu F. Enhancing the immune effect of oHSV-1 therapy through TLR3 signaling in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:901-912. [PMID: 36030435 DOI: 10.1007/s00432-022-04272-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, with patients having a low overall survival rate. Oncolytic viruses (OVs) have been shown effective as monotherapy or combined with immunotherapy in the treatment of UM. Oncolytic herpes simplex type I virus (oHSV-1) was found to alter gene expression and immune function in UMs. We investigated whether a combination treatment would be more effective in treating UM and reactive immune cells. METHODS RNA sequencing analysis were used to identify the effect of oHSV-1 infection in UM cells and protein changes were validated by western blot. Cell viability assays were performed through UM cell lines (MUM2B, 92.1, and MP41) and retinal pigment epithelial cell line (ARPE-19) to identify the efficacy and safety of the combination treatment. Western blot, qRT-PCR, cell viability assay and immunocytochemistry were performed to discover the reactivation of immune cells (U937 and HMC3). RESULTS Through RNA sequencing analysis and in vitro molecular biology assays, this study tested the ability of oHSV-1 combined with the TLR3 agonist poly(I:C) to re-activate the TLR3 meditated NF-ƙB signaling pathway and further increase the anti-tumor activity of UM cells and macrophages, including the stimulation of macrophage polarization and proliferation. CONCLUSIONS These findings indicate that the treatment of UM with a combination of oHSV-1 and poly(I:C) generates immune responses and enhances anti-tumoral activity, suggesting the need for further investigations and clinical trials of this combination.
Collapse
Affiliation(s)
- Sisi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiao Minxiang 1, Dongcheng District, Beijing, 100730, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Fengqiao Sun
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Shengming Kexueyuan 1, Changping District, Beijing, 102206, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
9
|
Li W, Ling L, Xiang L, Ding P, Yue W. Identification and validation of a risk model and molecular subtypes based on tryptophan metabolism-related genes to predict the clinical prognosis and tumor immune microenvironment in lower-grade glioma. Front Cell Neurosci 2023; 17:1146686. [PMID: 36925967 PMCID: PMC10011102 DOI: 10.3389/fncel.2023.1146686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Background Lower-grade glioma (LGG) is one of the most common malignant tumors in the central nervous system (CNS). Accumulating evidence have demonstrated that tryptophan metabolism is significant in tumor. Therefore, this study aims to comprehensively clarify the relationship between tryptophan metabolism-related genes (TRGs) and LGGs. Methods The expression level of TRGs in LGG and normal tissues was first analyzed. Next, the key TRGs with prognostic value and differential expression in LGGs were identified using the least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, a risk model was constructed and Consensus clustering analysis was conducted based on the expression level of key TRGs. Then, the prognostic value, clinicopathological factors, and tumor immune microenvironment (TIME) characteristics between different risk groups and molecular subtypes were analyzed. Finally, the expression, prognosis, and TIME of each key TRGs were analyzed separately in LGG patients. Results A total of 510 patients with LGG from The Cancer Genome Atlas (TCGA) dataset and 1,152 normal tissues from the Genotype-Tissue Expression (GTEx) dataset were included to evaluate the expression level of TRGs. After LASSO regression analysis, we identified six key TRGs and constructed a TRGs risk model. The survival analysis revealed that the risk model was the independent predictor in LGG patients. And the nomogram containing risk scores and independent clinicopathological factors could accurately predict the prognosis of LGG patients. In addition, the results of the Consensus cluster analysis based on the expression of the six TRGs showed that it could classify the LGG patients into two distinct clusters, with significant differences in prognosis, clinicopathological factors and TIME between these two clusters. Finally, we validated the expression, prognosis and immune infiltration of six key TRGs in patients with LGG. Conclusion This study demonstrated that tryptophan metabolism plays an important role in the progression of LGG. In addition, the risk model and the molecular subtypes we constructed not only could be used as an indicator to predict the prognosis of LGG patients but also were closely related to the clinicopathological factors and TIME of LGG patients. Overall, our study provides theoretical support for the ultimate realization of precision treatment for patients with LGG.
Collapse
Affiliation(s)
- Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Peng Ding
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
10
|
Bulstrode H, Girdler GC, Gracia T, Aivazidis A, Moutsopoulos I, Young AMH, Hancock J, He X, Ridley K, Xu Z, Stockley JH, Finlay J, Hallou C, Fajardo T, Fountain DM, van Dongen S, Joannides A, Morris R, Mair R, Watts C, Santarius T, Price SJ, Hutchinson PJA, Hodson EJ, Pollard SM, Mohorianu I, Barker RA, Sweeney TR, Bayraktar O, Gergely F, Rowitch DH. Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron 2022; 110:3936-3951.e10. [PMID: 36174572 PMCID: PMC7615581 DOI: 10.1016/j.neuron.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 02/02/2023]
Abstract
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
Collapse
Affiliation(s)
- Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Gemma C Girdler
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tannia Gracia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Ilias Moutsopoulos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adam M H Young
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Hancock
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Xiaoling He
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Katherine Ridley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zhaoyang Xu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John H Stockley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Finlay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Clement Hallou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Teodoro Fajardo
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Virology, Royal London Hospital, Barts Health NHS Trust, London E1 2ES, UK
| | | | | | - Alexis Joannides
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robert Morris
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard Mair
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Thomas Santarius
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen J Price
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J A Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emma J Hodson
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Trevor R Sweeney
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; The Pirbright Institute, Guildford, Surrey GU24 0NF, UK
| | | | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - David H Rowitch
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
11
|
Minott JA, van Vloten JP, Chan L, Mehrani Y, Bridle BW, Karimi K. The Role of Neutrophils in Oncolytic Orf Virus-Mediated Cancer Immunotherapy. Cells 2022; 11:cells11182858. [PMID: 36139433 PMCID: PMC9496759 DOI: 10.3390/cells11182858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neutrophils are innate leukocytes with diverse effector functions that allow them to respond to pathogens rapidly. Accumulating evidence has highlighted these cells’ complex roles in the host’s response to viral infections and tumor progression. Oncolytic virotherapy is emerging as a promising treatment modality in the armamentarium of cancer therapeutics. Oncolytic viruses preferentially kill cancer cells and stimulate tumor-associated inflammation, resulting in tumor regression. Assessing the activity of individual effector cell subsets following oncolytic virotherapy is important in identifying their contribution to antitumor immunity. In this study, we investigated the role of neutrophils in oncolytic Orf-virus-mediated immunotherapy in a murine model of pulmonary melanoma metastases. The systemic administration of the Orf virus stimulated a dramatic increase in the number of leukocytes in circulation and within the tumor microenvironment, most of which were neutrophils. Analysis of tumor-burdened lungs shortly after therapy revealed significant numbers of phenotypically immature neutrophils, with the enhanced expression of molecules affiliated with activation, migration, and cytotoxicity. Neutrophils stimulated by Orf virus therapy were directly tumoricidal through tumor necrosis factor-α-mediated effects and were required for optimal antitumor efficacy following Orf virus therapy. Taken together, these data reveal neutrophils as a crucial innate effector to consider when investigating oncolytic virotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
12
|
Mealiea D, McCart JA. Cutting both ways: the innate immune response to oncolytic virotherapy. Cancer Gene Ther 2022; 29:629-646. [PMID: 34453122 DOI: 10.1038/s41417-021-00351-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs), above and beyond infecting and lysing malignant cells, interact with the immune system in complex ways that have important therapeutic significance. While investigation into these interactions is still in its early stages, important insights have been made over the past two decades that will help improve the clinical efficacy of OV-based management strategies in cancer care moving forward. The inherent immunosuppression that defines the tumor microenvironment can be modified by OV infection, and the subsequent recruitment and activation of innate immune cells, in particular, is central to this. Indeed, neutrophils, macrophages, natural killer cells, and dendritic cells, as well as other populations such as myeloid-derived suppressor cells, are key to the immune escape that allows tumors to survive, but their natural response to infection can be exploited by virotherapy. While stimulation of innate immune cells by OVs can initiate antitumor responses, related antiviral activity can limit virus spread and direct cytopathogenic effects. In this review, we highlight how each innate immune cell population influences this balance of antitumor and antiviral forces during virotherapy, some of the important molecular pathways that have been identified, and specific therapeutic targets that have emerged through this work. We discuss the importance of OV-based combination therapies in optimizing antiviral and antitumor innate immune responses stimulated by virotherapy toward tumor eradication, and how these processes vary depending on the tumor and OV in question. Rather than concentrating on a particular OV species in the review, we present the range of effects that have been documented across OV types to emphasize the context-specific nature of these interactions and how this is important in the design of future OV-based treatment approaches.
Collapse
Affiliation(s)
- David Mealiea
- Department of Surgery, University of Toronto, Toronto, ON, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | - J Andrea McCart
- Department of Surgery, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
13
|
Chlorogenic Acid Alleviates the Inflammatory Stress of LPS-Induced BV2 Cell via Interacting with TLR4-Mediated Downstream Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6282167. [PMID: 35633920 PMCID: PMC9132620 DOI: 10.1155/2022/6282167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
Background Neuroinflammation is related with the inflammatory stress of brain tissue induced by the activation of microglial in the central nervous system (CNS), which is still an intractable disease for modern clinical system. Chlorogenic acid has multiple biological activities such as antivirus and anti-inflammation, while few researches have revealed its therapeutic functions in neuroinflammation. Methods BV2 cells were treated with lipopolysaccharide (LPS) to establish neuroinflammation cell models, and the effects and mechanism of chlorogenic acid in improving the inflammatory progression were investigated. In brief, the toxicity of chlorogenic acid on BV2 cells was detected with MTT assay. The levels of the inflammatory factors including TNF-α, IL-6, IL-1β, and IFN-α were measured with ELISA, and the abundances of TLR4, MyD88, TRIF, and NF-κB were observed by qRT-PCR and western blot. Results Chlorogenic acid did not exhibit obvious toxic and side effects on BV2 cells. The levels of TNF-α, IL-6, IL-1β, and IFN-α were observably upregulated in BV2 cells after treating with LPS. Chlorogenic acid significantly reduced the levels of TNF-α, IL-6, IL-1β, and IFN-α. Moreover, the abundances of TLR4, MyD88, TRIF, and NF-κB were increased in LPS-induced BV2 cells, while chlorogenic acid could obviously reduce their expressions. Conclusion This study suggests that chlorogenic acid can improve the inflammatory stress of LPS-induced BV2 cell via interacting with the TLR4-mediated downstream pathway, which is a potential drug for neuroinflammation treatment.
Collapse
|
14
|
Gospel of malignant Glioma: Oncolytic virus therapy. Gene 2022; 818:146217. [PMID: 35093451 DOI: 10.1016/j.gene.2022.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Glioma accounts for nearly 80% of all intracranial malignant tumors. It is a major challenge to society as it is causes to impaired brain function in many patients. Currently, gliomas are mainly treated with surgery, postoperative radiotherapy, and chemotherapy. However, the curative effects of these treatments are not satisfactory. Oncolytic virus (OV) is a novel treatment which works by activating the immune functions and inducing apoptosis of tumor cells. The OV propagates indefinitely in the host cell, eventually leading to the death of host cell. Subsequently, a large number of antigens and signal molecules are released which exert antitumor immunity. Several preclinical and clinical studies have shown that G207, DNX2401, Zika and other viruses have important roles in malignant tumors. For example, these viruses can reduce the growth of tumor cells without causing severe complications. However, the known OVs have not been clearly classified. Herein, we divided OVs into neurotropic and non-neurophilic OVs based on whether the OVs are naturally neurotropic or not. The therapeutic effects of each group were compared. Finally, challenges encountered in the clinical application of OVs in the treatment of malignant gliomas were summarized.
Collapse
|
15
|
Otani Y, Yoo JY, Shimizu T, Kurozumi K, Date I, Kaur B. Implications of immune cells in oncolytic herpes simplex virotherapy for glioma. Brain Tumor Pathol 2022; 39:57-64. [PMID: 35384530 DOI: 10.1007/s10014-022-00431-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022]
Abstract
Despite current progress in treatment, glioblastoma (GBM) remains a lethal primary malignant tumor of the central nervous system. Although immunotherapy has recently achieved remarkable survival effectiveness in multiple malignancies, none of the immune checkpoint inhibitors (ICIs) for GBM have shown anti-tumor efficacy in clinical trials. GBM has a characteristic immunosuppressive tumor microenvironment (TME) that results in the failure of ICIs. Oncolytic herpes simplex virotherapy (oHSV) is the most advanced United States Food and Drug Administration-approved virotherapy for advanced metastatic melanoma patients. Recently, another oHSV, Delytact®, was granted conditional approval in Japan against GBM, highlighting it as a promising treatment. Since oncolytic virotherapy can recruit abundant immune cells and modify the immune TME, oncolytic virotherapy for immunologically cold GBM will be an attractive therapeutic option for GBM. However, as these immune cells have roles in both anti-tumor and anti-viral immunity, fine-tuning of the TME using oncolytic virotherapy will be important to maximize the therapeutic efficacy. In this review, we discuss the current knowledge of oHSV, with a focus on the role of immune cells as friend or foe in oncolytic virotherapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, Matsuyama Shimin Hospital, 2-6-5 Otemachi, Matsuyama, Ehime, 790-0067, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
16
|
Blitz SE, Kappel AD, Gessler FA, Klinger NV, Arnaout O, Lu Y, Peruzzi PP, Smith TR, Chiocca EA, Friedman GK, Bernstock JD. Tumor-Associated Macrophages/Microglia in Glioblastoma Oncolytic Virotherapy: A Double-Edged Sword. Int J Mol Sci 2022; 23:1808. [PMID: 35163730 PMCID: PMC8836356 DOI: 10.3390/ijms23031808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy is a rapidly progressing field that uses oncolytic viruses (OVs) to selectively infect malignant cells and cause an antitumor response through direct oncolysis and stimulation of the immune system. Despite demonstrated pre-clinical efficacy of OVs in many cancer types and some favorable clinical results in glioblastoma (GBM) trials, durable increases in overall survival have remained elusive. Recent evidence has emerged that tumor-associated macrophage/microglia (TAM) involvement is likely an important factor contributing to OV treatment failure. It is prudent to note that the relationship between TAMs and OV therapy failures is complex. Canonically activated TAMs (i.e., M1) drive an antitumor response while also inhibiting OV replication and spread. Meanwhile, M2 activated TAMs facilitate an immunosuppressive microenvironment thereby indirectly promoting tumor growth. In this focused review, we discuss the complicated interplay between TAMs and OV therapies in GBM. We review past studies that aimed to maximize effectiveness through immune system modulation-both immunostimulatory and immunosuppressant-and suggest future directions to maximize OV efficacy.
Collapse
Affiliation(s)
- Sarah E. Blitz
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
| | - Ari D. Kappel
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Florian A. Gessler
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany;
| | - Neil V. Klinger
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Omar Arnaout
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Timothy R. Smith
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ennio A. Chiocca
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Joshua D. Bernstock
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
17
|
Hong B, Sahu U, Mullarkey MP, Kaur B. Replication and Spread of Oncolytic Herpes Simplex Virus in Solid Tumors. Viruses 2022; 14:v14010118. [PMID: 35062322 PMCID: PMC8778098 DOI: 10.3390/v14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a highly promising treatment for solid tumors. Intense research and development efforts have led to first-in-class approval for an oHSV for melanoma, but barriers to this promising therapy still exist that limit efficacy. The process of infection, replication and transmission of oHSV in solid tumors is key to obtaining a good lytic destruction of infected cancer cells to kill tumor cells and release tumor antigens that can prime anti-tumor efficacy. Intracellular tumor cell signaling and tumor stromal cells present multiple barriers that resist oHSV activity. Here, we provide a review focused on oncolytic HSV and the essential viral genes that allow for virus replication and spread in order to gain insight into how manipulation of these pathways can be exploited to potentiate oHSV infection and replication among tumor cells.
Collapse
|
18
|
Ye Z, Ai X, Zhao L, Fei F, Wang P, Zhou S. Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics. Oncogene 2021; 40:6059-6070. [PMID: 34556813 DOI: 10.1038/s41388-021-02010-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant type of intracranial tumors with poor prognosis. Accumulating evidence suggests that phenotypic alterations of infiltrating myeloid cells in the tumor microenvironment are important for GBM progression. Conventional tumor immunotherapy commonly targets T-cells, while innate immunity as a therapeutic target is an emerging field. Targeting infiltrating myeloid cells that induce immune suppression in the TME provides a novel direction to improve the prognosis of patients with GBM. The factors released by tumor cells recruit myeloid cells into tumor bed and reprogram infiltrating myeloid cells into immunostimulatory/immunosuppressive phenotypes. Reciprocally, infiltrating myeloid cells, especially microglia/macrophages, regulate GBM progression and affect therapeutic efficacy. Herein, we revisited biological characteristics and functions of infiltrating myeloid cells and discussed the recent advances in immunotherapies targeting infiltrating myeloid cells in GBM. With an evolving understanding of the complex interactions between infiltrating myeloid cells and tumor cells in the tumor microenvironment, we will expand novel immunotherapeutic regimens targeting infiltrating myeloid cells in GBM treatment and improve the outcomes of GBM patients.
Collapse
Affiliation(s)
- Zengpanpan Ye
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaolin Ai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Fan Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
19
|
Hofman L, Lawler SE, Lamfers MLM. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021; 13:v13081570. [PMID: 34452439 PMCID: PMC8402704 DOI: 10.3390/v13081570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment (TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current scientific literature in this field in order to give a comprehensive overview of the interactions of OVs and macrophages and their effects on the TME. The innate immune system has a central influence on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages have now also been found to mediate transport of OV particles and, after TME infiltration, to be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive. These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is therefore multifaceted, but based on research applying relevant, immunocompetent tumour models, macrophages are considered to have a central function in anti-cancer activity. These novel insights hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial inhibition of cancer immune evasion, could contribute to improved patient survival.
Collapse
Affiliation(s)
- Laura Hofman
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA;
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-010-703-5993
| |
Collapse
|
20
|
The Effect of Herpes Simplex Virus-Type-1 (HSV-1) Oncolytic Immunotherapy on the Tumor Microenvironment. Viruses 2021; 13:v13071200. [PMID: 34206677 PMCID: PMC8310320 DOI: 10.3390/v13071200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The development of cancer causes disruption of anti-tumor immunity required for surveillance and elimination of tumor cells. Immunotherapeutic strategies aim for the restoration or establishment of these anti-tumor immune responses. Cancer immunotherapies include immune checkpoint inhibitors (ICIs), adoptive cellular therapy (ACT), cancer vaccines, and oncolytic virotherapy (OVT). The clinical success of some of these immunotherapeutic modalities, including herpes simplex virus type-1 derived OVT, resulted in Food and Drug Administration (FDA) approval for use in treatment of human cancers. However, a significant proportion of patients do not respond or benefit equally from these immunotherapies. The creation of an immunosuppressive tumor microenvironment (TME) represents an important barrier preventing success of many immunotherapeutic approaches. Mechanisms of immunosuppression in the TME are a major area of current research. In this review, we discuss how oncolytic HSV affects the tumor microenvironment to promote anti-tumor immune responses. Where possible we focus on oncolytic HSV strains for which clinical data is available, and discuss how these viruses alter the vasculature, extracellular matrix and immune responses in the tumor microenvironment.
Collapse
|
21
|
Zhou Z, Tian J, Zhang W, Xiang W, Ming Y, Chen L, Zhou J. Multiple strategies to improve the therapeutic efficacy of oncolytic herpes simplex virus in the treatment of glioblastoma. Oncol Lett 2021; 22:510. [PMID: 33986870 DOI: 10.3892/ol.2021.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
Oncolytic viruses have attracted widespread attention as biological anticancer agents that can selectively kill tumor cells without affecting normal cells. Although progress has been made in therapeutic strategies, the prognosis of patients with glioblastoma (GBM) remains poor and no ideal treatment approach has been developed. Recently, oncolytic herpes simplex virus (oHSV) has been considered a promising novel treatment approach for GBM. However, the therapeutic efficacy of oHSV in GBM, with its intricate pathophysiology, remains unsatisfactory due to several obstacles, such as limited replication and attenuated potency of oHSV owing to deletions or mutations in virulence genes, and ineffective delivery of the therapeutic virus. Multiple strategies have attempted to identify the optimal strategy for the successful clinical application of oHSV. Several preclinical trials have demonstrated that engineering novel oHSVs, developing combination therapies and improving methods for delivering oHSV to tumor cells seem to hold promise for improving the efficacy of this virotherapy.
Collapse
Affiliation(s)
- Zhengjun Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Junjie Tian
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wenyan Zhang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
22
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
23
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
24
|
Liu S, Zhang J, Fang S, Zhang Q, Zhu G, Tian Y, Zhao M, Liu F. Macrophage polarization contributes to the efficacy of an oncolytic HSV-1 targeting human uveal melanoma in a murine xenograft model. Exp Eye Res 2021; 202:108285. [PMID: 33039456 DOI: 10.1016/j.exer.2020.108285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Uveal melanoma (UM), the most common primary malignant tumor of the eye in adults, is difficult-to-treat. UM has a relatively high mortality secondary to distant metastasis and poor overall survival with existing therapies. The oncolytic virus herpes simplex virus type-1 (HSV-1) has been approved for clinical use in melanoma. This double-stranded DNA virus was suspected to directly activate lysis specifically in neoplastic cells. We tested the antitumor efficacy of recombinant oncolytic HSV-1-EGFP (oHSV-EGFP) in UM and characterized the local and systemic antitumor innate immune response in a murine xenograft model. We first determined the efficacy of the oncolytic virus in 92.1, MUM2B and MP41 cell lines. In murine xenograft models, oHSV-EGFP reduced intraocular tumors as well as systemic subcutaneous tumors. A significant change in cytokines was observed in viral infected cells, especially a rise in IFNγ. In vivo analyses showed increased anti-tumorigenic M1 macrophages and decreased pro-tumorigenic M2 macrophages in peripheral blood, and intraocular and distant tumors after intravitreal viral treatment. Increased infiltration of natural killer cells and mature dendritic cells was also detected after viral treatment. In addition, no virus was detected in major organs after the treatment. Our data support that oHSV-EGFP is effective, neoplasm specific, immune active and safe, providing possible clinical translatable options to treat ocular and metastatic UM.
Collapse
Affiliation(s)
- Sisi Liu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
25
|
Modeling oncolytic virus dynamics in the tumor microenvironment using zebrafish. Cancer Gene Ther 2020; 28:769-784. [PMID: 32647136 DOI: 10.1038/s41417-020-0194-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
We have adapted a zebrafish (Danio rerio) tumor xenograft model for use in the study of oncolytic virotherapy. Following implantation of mammalian cancer cells into the perivitelline space of developing zebrafish embryos, both local and intravenous oncolytic virus treatments produce a tumor-specific infection with measurable antitumor effects. Tumor cells are injected at 48 h post fertilization, with oncolytic virus treatment then being administered 24 h later to allow for an initial period of tumor development and angiogenesis. Confocal fluorescent imaging is used to quantify dynamics within the tumor environment. The natural translucency of zebrafish at the embryo stage, coupled with the availability of strains with fluorescent immune and endothelial cell reporter lines, gives the model broad potential to allow for real time, in vivo investigation of important events within tumors throughout the course of virotherapy. Zebrafish xenografts offer a system with biologic fidelity to processes in human cancer development that influence oncolytic virus efficacy, and to our knowledge this is the first demonstration of the model's use in the context of virotherapy. Compared with other models, our protocol offers a powerful, inexpensive approach to evaluating novel oncolytic viruses and oncolytic virus-based combination therapies, with potential application to investigating the impacts of virotherapy on immune response, tumor vasculature, and metastatic disease.
Collapse
|
26
|
Guo G, Wang S, Hao Y, Ren Y, Wu Y, Zhang J, Liu D. STAT1 is a modulator of the expression of frequently rearranged in advanced T-cell lymphomas 1 expression in U251 cells. Oncol Lett 2020; 20:248-256. [PMID: 32565951 PMCID: PMC7285825 DOI: 10.3892/ol.2020.11555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/08/2020] [Indexed: 11/08/2022] Open
Abstract
Aberrant expression of frequently rearranged in advanced T-cell lymphomas 1 (FRAT1) contributes to poor prognosis in a number of carcinomas. However, its role in glioma remains controversial. In the present study, gene expression profiling was performed using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) functional enrichment and ingenuity pathway analysis (IPA) to evaluate the differential expression of genes and proteins in FRAT1 knockdown U251 glioma cells in comparison with the control. Western blot analysis was conducted to assess the expression levels of FRAT1 and STAT1. A total of 895 downregulated genes were identified in FRAT1-silenced U251 cells. The most enriched processes determined by GO and KEGG analysis of the 895 differentially expressed genes were associated with proliferation, migration and invasion. According to IPA, significant canonical pathways, including the interferon, hepatic fibrosis and Wnt/β-catenin signaling pathways, were identified to be the major enriched pathways. The elevated expression of STAT1 in U251 cells was validated. These results highlighted the regulatory role of FRAT1 in glioma cells with upregulated STAT1 expression.
Collapse
Affiliation(s)
- Geng Guo
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Shule Wang
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yining Hao
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yeqing Ren
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yongqiang Wu
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Jianping Zhang
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Dong Liu
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
27
|
Li L, Liu S, Han D, Tang B, Ma J. Delivery and Biosafety of Oncolytic Virotherapy. Front Oncol 2020; 10:475. [PMID: 32373515 PMCID: PMC7176816 DOI: 10.3389/fonc.2020.00475] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, oncolytic virotherapy has emerged as a promising anticancer therapy. Oncolytic viruses destroy cancer cells, without damaging normal tissues, through virus self-replication and antitumor immunity responses, showing great potential for cancer treatment. However, the clinical guidelines for administering oncolytic virotherapy remain unclear. Delivery routes for oncolytic virotherapy to patients vary in existing studies, depending on the tumor sites and the objective of studies. Moreover, the biosafety of oncolytic virotherapy, including mainly uncontrolled adverse events and long-term complications, remains a serious concern that needs to be accurately measured. This review provides a comprehensive and detailed overview of the delivery and biosafety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Lizhi Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shixin Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Duoduo Han
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, National Health Commission Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
28
|
Rider PJF, Uche IK, Sweeny L, Kousoulas KG. Anti-viral immunity in the tumor microenvironment: implications for the rational design of herpes simplex virus type 1 oncolytic virotherapy. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:193-199. [PMID: 33344108 DOI: 10.1007/s40588-019-00134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose of review The design of novel herpes simplex type I (HSV-1)-derived oncolytic virotherapies is a balancing act between safety, immunogenicity and replicative potential. We have undertaken this review to better understand how these considerations can be incorporated into rational approaches to the design of novel herpesvirus oncolytic virotherapies. Recent findings Several recent papers have demonstrated that enhancing the potential of HSV-1 oncolytic viruses to combat anti-viral mechanisms present in the tumor microenvironment leads to greater efficacy than their parental viruses. Summary It is not entirely clear how the immunosuppressive tumor microenvironment affects oncolytic viral replication and spread within tumors. Recent work has shown that the manipulation of specific cellular and molecular mechanisms of immunosuppression operating within the tumor microenvironment can enhance the efficacy of oncolytic virotherapy. We anticipate that future work will integrate greater knowledge of immunosuppression in tumor microenvironments with design of oncolytic virotherapies.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ifeanyi K Uche
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Larissa Sweeny
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA.,Louisiana State University Health Sciences Center, New Orleans, Louisiana USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
29
|
Yoo JY, Swanner J, Otani Y, Nair M, Park F, Banasavadi-Siddegowda Y, Liu J, Jaime-Ramirez AC, Hong B, Geng F, Guo D, Bystry D, Phelphs M, Quadri H, Lee TJ, Kaur B. Oncolytic HSV therapy increases trametinib access to brain tumors and sensitizes them in vivo. Neuro Oncol 2019; 21:1131-1140. [PMID: 31063549 PMCID: PMC7571492 DOI: 10.1093/neuonc/noz079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hyperactivation of the RAS-RAF-MEK-ERK signaling pathway is exploited by glioma cells to promote their growth and evade apoptosis. MEK activation in tumor cells can increase replication of ICP34.5-deleted herpes simplex virus type 1 (HSV-1), but paradoxically its activation in tumor-associated macrophages promotes a pro-inflammatory signaling that can inhibit virus replication and propagation. Here we investigated the effect of blocking MEK signaling in conjunction with oncolytic HSV-1 (oHSV) for brain tumors. METHODS Infected glioma cells co-cultured with microglia or macrophages treated with or without trametinib were used to test trametinib effect on macrophages/microglia. Enzyme-linked immunosorbent assay, western blotting, and flow cytometry were utilized to evaluate the effect of the combination therapy. Pharmacokinetic (PK) analysis of mouse plasma and brain tissue was used to evaluate trametinib delivery to the CNS. Intracranial human and mouse glioma-bearing immune deficient and immune competent mice were used to evaluate the antitumor efficacy. RESULT Oncolytic HSV treatment rescued trametinib-mediated feedback reactivation of the mitogen-activated protein kinase signaling pathway in glioma. In vivo, PK analysis revealed enhanced blood-brain barrier penetration of trametinib after oHSV treatment. Treatment by trametinib, a MEK kinase inhibitor, led to a significant reduction in microglia- and macrophage-derived tumor necrosis factor alpha (TNFα) secretion in response to oHSV treatment and increased survival of glioma-bearing mice. Despite the reduced TNFα production observed in vivo, the combination treatment activated CD8+ T-cell mediated immunity and increased survival in a glioma-bearing immune-competent mouse model. CONCLUSION This study provides a rationale for combining oHSV with trametinib for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica Swanner
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mitra Nair
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Yeshavanth Banasavadi-Siddegowda
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
- Surgical Neurology Branch, NINDS, NIH, Bethesda, Maryland
| | - Joseph Liu
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bangxing Hong
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Feng Geng
- Department of Radiation Oncology, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Deliang Guo
- Department of Radiation Oncology, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Darlene Bystry
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mitch Phelphs
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | - Tae Jin Lee
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
30
|
McCormack RM, Kaur B. Immune therapy, a double-edged sword for oncolytic viruses. Expert Opin Biol Ther 2019; 19:1111-1113. [PMID: 31382785 DOI: 10.1080/14712598.2019.1650911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ryan M McCormack
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston , Houston , TX , USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston , Houston , TX , USA
| |
Collapse
|
31
|
Wirsching HG, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino PJ, Amankulor N, Campbell JS, McFerrin L, Pattwell SS, Ene C, Hicks A, Ball M, Yan J, Zhang J, Kumasaka D, Pierce RH, Weller M, Finer M, Quéva C, Glorioso JC, Houghton AM, Holland EC. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight 2019; 4:128217. [PMID: 31292299 DOI: 10.1172/jci.insight.128217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Oncolytic viruses induce local tumor destruction and inflammation. Whether virotherapy can also overcome immunosuppression in noninfected tumor areas is under debate. To address this question, we have explored immunologic effects of oncolytic herpes simplex viruses (oHSVs) in a genetically engineered mouse model of isocitrate dehydrogenase (IDH) wild-type glioblastoma, the most common and most malignant primary brain tumor in adults. Our model recapitulates the genomics, the diffuse infiltrative growth pattern, and the extensive macrophage-dominant immunosuppression of human glioblastoma. Infection with an oHSV that was armed with a UL16-binding protein 3 (ULBP3) expression cassette inhibited distant tumor growth in the absence of viral spreading (abscopal effect) and yielded accumulation of activated macrophages and T cells. There was also abscopal synergism of oHSVULBP3 with anti-programmed cell death 1 (anti-PD-1) against distant, uninfected tumor areas; albeit consistent with clinical trials in patients with glioblastoma, monotherapy with anti-PD-1 was ineffective in our model. Arming oHSV with ULBP3 led to upregulation of antigen processing and presentation gene sets in myeloid cells. The cognate ULBP3 receptor NKG2D, however, is not present on myeloid cells, suggesting a noncanonical mechanism of action of ULBP3. Overall, the myeloid-dominant, anti-PD-1-sensitive abscopal effect of oHSVULBP3 warrants further investigation in patients with IDH wild-type glioblastoma.
Collapse
Affiliation(s)
- Hans-Georg Wirsching
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paola Grandi
- Department of Microbiology and Molecular Genetics and.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, Division of Neuropathology, and
| | - Nduka Amankulor
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Lisa McFerrin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Siobhan S Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chibawanye Ene
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | | | | | - James Yan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jenny Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Debrah Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurosurgery, University of Washington, Seattle, Washington, USA.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Prionisti I, Bühler LH, Walker PR, Jolivet RB. Harnessing Microglia and Macrophages for the Treatment of Glioblastoma. Front Pharmacol 2019; 10:506. [PMID: 31231208 PMCID: PMC6560150 DOI: 10.3389/fphar.2019.00506] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of brain tumors, with a dismal prognosis. During the course of the disease, microglia and macrophages both infiltrate the tumor microenvironment and contribute considerably in glioma development. Thus, tumor-associated microglia and macrophages have recently emerged as potentially key therapeutic targets. Here, we review the physiology of microglia and their responses in brain cancer. We further discuss current treatment options for GBM using radiotherapy, and novel advances in our knowledge of microglia physiology, with emphasis on the recently discovered pathway that controls the baseline motility of microglia processes. We argue that the latter pathway is an interesting therapeutic avenue to pursue for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Ioanna Prionisti
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, Geneva, Switzerland
| | - Léo H. Bühler
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Paul R. Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals – University of Geneva, Geneva, Switzerland
| | - Renaud B. Jolivet
- Département de Physique Nucléaire et Corpusculaire (DPNC), University of Geneva, Geneva, Switzerland
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| |
Collapse
|
33
|
Hua L, Wakimoto H. Oncolytic herpes simplex virus therapy for malignant glioma: current approaches to successful clinical application. Expert Opin Biol Ther 2019; 19:845-854. [PMID: 31046478 DOI: 10.1080/14712598.2019.1614557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION With the approval of talimogene laherparepvec (T-VEC) for advanced malignant melanoma, virotherapy using oncolytic herpes simplex virus (oHSV) is now emerging as a viable therapeutic option for cancer patients, including malignant gliomas. AREAS COVERED This review summarizes the most recent literature to provide cutting-edge knowledge about preclinical and clinical development of oHSV therapy for malignant gliomas, presenting current approaches to overcome obstacles to successful clinical application of oHSV in neuro-oncology. EXPERT OPINION Current strategies to improve the efficacy of oHSV therapy include engineering new viruses, modulation of innate and adaptive immune responses, combination with other treatments, and developing new oHSV delivery. All of these could rapidly be translated into clinical investigations, following several clinical trials that are currently ongoing.
Collapse
Affiliation(s)
- Lingyang Hua
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Hiroaki Wakimoto
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
34
|
Reale A, Vitiello A, Conciatori V, Parolin C, Calistri A, Palù G. Perspectives on immunotherapy via oncolytic viruses. Infect Agent Cancer 2019; 14:5. [PMID: 30792754 PMCID: PMC6371415 DOI: 10.1186/s13027-018-0218-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND With few exceptions, current chemotherapy and radiotherapy protocols only obtain a slightly prolonged survival with severe adverse effects in patients with advanced solid tumors. In particular, most solid malignancies not amenable to radical surgery still carry a dismal prognosis, which unfortunately is also the case for relapsing disease after surgery. Even though targeted therapies obtained good results, clinical experience showed that tumors eventually develop resistance. On the other hand, earlier attempts of cancer immunotherapy failed to show consistent efficacy. More recently, a deeper knowledge of immunosuppression in the tumor microenvironment (TME) allowed the development of effective drugs: in particular, monoclonal antibodies targeting the so-called immune checkpoint molecules yielded striking and lasting effects in some tumors. Unfortunately, these monoclonal antibodies are not effective in a majority of patients and are ineffective in several solid malignancies. Furthermore, due to their mechanism of action, checkpoint inhibitors often elicit autoimmune-like disease. MAIN BODY The use of viruses as oncolytic agents (OVs) was considered in the past, while only recently OVs revealed a connection with immunotherapy. However, their antitumoral potential has remained largely unexplored, due to safety concerns and some limitations in the techniques to manipulate viruses. OV research was recently revived by a better knowledge of viral/cancer biology and advances in the methodologies to delete virulence/immune-escape related genes from even complex viral genomes or "to arm" OVs with appropriate transgenes. Recently, the first oncolytic virus, the HSV-1 based Talimogene Laherparepvec (T-VEC), was approved for the treatment of non-resectable melanoma in USA and Europe. CONCLUSION OVs have the potential to become powerful agents of cancer immune and gene therapy. Indeed, in addition to their selective killing activity, they can act as versatile gene expression platforms for the delivery of therapeutic genes. This is particularly true for viruses with a large DNA genome, that can be manipulated to address the multiple immunosuppressive features of the TME. This review will focus on the open issues, on the most promising lines of research in the OV field and, more in general, on how OVs could be improved to achieve real clinical breakthroughs in cancers that are usually difficult to treat by immunotherapy.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| |
Collapse
|
35
|
Engineering oncolytic vaccinia virus with functional peptides through mild and universal strategy. Anal Bioanal Chem 2018; 411:925-933. [PMID: 30523361 DOI: 10.1007/s00216-018-1519-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Oncolytic virotherapy is one of promising tumor therapy modalities. However, its therapeutic efficacy is still limited due to the immunogenicity and poor tumor-targeting capability. In this report, an engineered oncolytic vaccinia virus (OVV) was constructed by site-specifically introducing azide groups to the envelope of OVV during the in situ assembling process of virions. Subsequently, dibenzocyclooctynes (DBCO) derivate T7 peptide and DBCO derivate self-peptide were simultaneously conjugated to the azide-modified OVV (azide-OVV) via copper-free click chemistry. The infectivity of peptide-conjugated virus was well kept. Meanwhile, both of the targeting capacity to transferrin receptor (TfR)-overexpressed tumor cells and the in vivo blood circulation time increased. Therefore, the growth of TfR-positive tumor could be significantly inhibited after intravenously injecting the engineered OVV, while no noticeable side effects. This construction strategy can be popularized to other enveloped oncolytic virus (OV), thus a universal engineering platform can be provided for OV cancer therapy. Graphical Abstract An engineered oncolytic vaccinia virus (OVV) was constructed by bioconjugating DBCO derivate T7 peptide and DBCO derivate self-peptide with azide-modified OVV via copper-free click chemistry. As a result, the tumor inhibit effect was significantly enhanced attributed to the prolonged in vivo circulation time and improved targeting recognition capability.
Collapse
|
36
|
Myelolytic Treatments Enhance Oncolytic Herpes Virotherapy in Models of Ewing Sarcoma by Modulating the Immune Microenvironment. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:62-74. [PMID: 30505937 PMCID: PMC6249791 DOI: 10.1016/j.omto.2018.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022]
Abstract
Ewing sarcoma is a highly aggressive cancer that promotes the infiltration and activation of pro-tumor M2-like macrophages. Oncolytic virotherapy that selectively infects and destroys cancer cells is a promising option for treating Ewing sarcoma. The effect of tumor macrophages on oncolytic virus therapy, however, is variable among solid tumors and is unknown in Ewing sarcoma. We tested the effects of macrophage reduction using liposomal clodronate (Clodrosome) and trabectedin on the antitumor efficacy of intratumoral oncolytic herpes simplex virus, rRp450, in two Ewing sarcoma xenograft models. Both agents enhanced antitumor efficacy without increasing virus replication. The most profound effects were in A673 with only a transient effect on response rates in TC71. Interestingly, A673 was more dependent than TC71 on macrophages for its tumorigenesis. We found Clodrosome and virus together induced expression of antitumorigenic genes and reduced expression of protumorigenic genes in both the tumor-associated macrophages and the overall tumor stroma. Trabectedin reduced intratumoral natural killer (NK) cells, myeloid-derived suppressor cells, and M2-like macrophages, and prevented their increase following virotherapy. Our data suggest that a combination of trabectedin and oncolytic herpes virotherapy warrants testing in the clinical setting.
Collapse
|
37
|
Peters C, Paget M, Tshilenge KT, Saha D, Antoszczyk S, Baars A, Frost T, Martuza RL, Wakimoto H, Rabkin SD. Restriction of Replication of Oncolytic Herpes Simplex Virus with a Deletion of γ34.5 in Glioblastoma Stem-Like Cells. J Virol 2018; 92:e00246-18. [PMID: 29793956 PMCID: PMC6052301 DOI: 10.1128/jvi.00246-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses, including herpes simplex viruses (HSVs), are a new class of cancer therapeutic engineered to infect and kill cancer cells while sparing normal tissue. To ensure that oncolytic HSV (oHSV) is safe in the brain, all oHSVs in clinical trial for glioma lack the γ34.5 genes responsible for neurovirulence. However, loss of γ34.5 attenuates growth in cancer cells. Glioblastoma (GBM) is a lethal brain tumor that is heterogeneous and contains a subpopulation of cancer stem cells, termed GBM stem-like cells (GSCs), that likely promote tumor progression and recurrence. GSCs and matched serum-cultured GBM cells (ScGCs), representative of bulk or differentiated tumor cells, were isolated from the same patient tumor specimens. ScGCs are permissive to replication and cell killing by oHSV with deletion of the γ34.5 genes (γ34.5- oHSV), while patient-matched GSCs were not, implying an underlying biological difference between stem and bulk cancer cells. GSCs specifically restrict the synthesis of HSV-1 true late (TL) proteins, without affecting viral DNA replication or transcription of TL genes. A global shutoff of cellular protein synthesis also occurs late after γ34.5- oHSV infection of GSCs but does not affect the synthesis of early and leaky late viral proteins. Levels of phosphorylated eIF2α and eIF4E do not correlate with cell permissivity. Expression of Us11 in GSCs rescues replication of γ34.5- oHSV. The difference in degrees of permissivity between GSCs and ScGCs to γ34.5- oHSV illustrates a selective translational regulatory pathway in GSCs that may be operative in other stem-like cells and has implications for creating oHSVs.IMPORTANCE Herpes simplex virus (HSV) can be genetically engineered to endow cancer-selective replication and oncolytic activity. γ34.5, a key neurovirulence gene, has been deleted in all oncolytic HSVs in clinical trial for glioma. Glioblastoma stem-like cells (GSCs) are a subpopulation of tumor cells thought to drive tumor heterogeneity and therapeutic resistance. GSCs are nonpermissive for γ34.5- HSV, while non-stem-like cancer cells from the same patient tumors are permissive. GSCs restrict true late protein synthesis, despite normal viral DNA replication and transcription of all kinetic classes. This is specific for true late translation as early and leaky late transcripts are translated late in infection, notwithstanding shutoff of cellular protein synthesis. Expression of Us11 in GSCs rescues the replication of γ34.5- HSV. We have identified a cell type-specific innate response to HSV-1 that limits oncolytic activity in glioblastoma.
Collapse
Affiliation(s)
- Cole Peters
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Paget
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kizito-Tshitoko Tshilenge
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Slawomir Antoszczyk
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anouk Baars
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Frost
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Martuza
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|