1
|
Shelton WJ, Zandpazandi S, Nix JS, Gokden M, Bauer M, Ryan KR, Wardell CP, Vaske OM, Rodriguez A. Long-read sequencing for brain tumors. Front Oncol 2024; 14:1395985. [PMID: 38915364 PMCID: PMC11194609 DOI: 10.3389/fonc.2024.1395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Brain tumors and genomics have a long-standing history given that glioblastoma was the first cancer studied by the cancer genome atlas. The numerous and continuous advances through the decades in sequencing technologies have aided in the advanced molecular characterization of brain tumors for diagnosis, prognosis, and treatment. Since the implementation of molecular biomarkers by the WHO CNS in 2016, the genomics of brain tumors has been integrated into diagnostic criteria. Long-read sequencing, also known as third generation sequencing, is an emerging technique that allows for the sequencing of longer DNA segments leading to improved detection of structural variants and epigenetics. These capabilities are opening a way for better characterization of brain tumors. Here, we present a comprehensive summary of the state of the art of third-generation sequencing in the application for brain tumor diagnosis, prognosis, and treatment. We discuss the advantages and potential new implementations of long-read sequencing into clinical paradigms for neuro-oncology patients.
Collapse
Affiliation(s)
- William J Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sara Zandpazandi
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - J Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
2
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Crucitta S, Pasqualetti F, Gonnelli A, Ruglioni M, Luculli GI, Cantarella M, Ortenzi V, Scatena C, Paiar F, Naccarato AG, Danesi R, Del Re M. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. BMC Cancer 2024; 24:31. [PMID: 38172718 PMCID: PMC10763009 DOI: 10.1186/s12885-023-11726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA, liquid biopsy) is a powerful tool to detect molecular alterations. However, depending on tumor characteristics, biology and anatomic localization, cfDNA detection and analysis may be challenging. Gliomas are enclosed into an anatomic sanctuary, which obstacles the release of cfDNA into the peripheral blood. Therefore, the advantages of using liquid biopsy for brain tumors is still to be confirmed. The present study evaluates the ability of liquid biopsy to detect IDH1 mutations and its correlation with survival and clinical characteristics of glioma patients. METHODS Blood samples obtained from glioma patients were collected after surgery prior to the adjuvant therapy. cfDNA was extracted from plasma and IDH1 p.R132H mutation analysis was performed on a digital droplet PCR. χ2-test and Cohen k were used to assess the correlation between plasma and tissue IDH1 status, while Kaplan Meier curve and Cox regression analysis were applied to survival analysis. Statistical calculations were performed by MedCalc and GraphPad Prism software. RESULTS A total of 67 samples were collected. A concordance between IDH1 status in tissue and in plasma was found (p = 0.0024), and the presence of the IDH1 mutation both in tissue (138.8 months vs 24.4, p < 0.0001) and cfDNA (116.3 months vs 35.8, p = 0.016) was associated with longer median OS. A significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS was demonstrated by univariate Cox regression analysis. No statistically significant association between IDH1 mutation and tumor grade was found (p = 0.10). CONCLUSIONS The present study demonstrates that liquid biopsy may be used in brain tumors to detect IDH1 mutation which represents an important prognostic biomarker in patients with different types of gliomas, being associated to OS.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandra Gonnelli
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Cantarella
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Valerio Ortenzi
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono, 7, Milano, 20122, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Buccilli B, Rodriguez Molina MA, Redrovan Palomeque DP, Herrera Sabán CA, C Caliwag FM, Contreras Flores CJS, Abeysiriwardana CWJ, Diarte E, Arruarana VS, Calderon Martinez E. Liquid Biopsies for Monitoring Medulloblastoma: Circulating Tumor DNA as a Biomarker for Disease Progression and Treatment Response. Cureus 2024; 16:e51712. [PMID: 38313884 PMCID: PMC10838584 DOI: 10.7759/cureus.51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Pediatric brain tumors, including medulloblastoma (MB), represent a significant challenge in clinical oncology. Early diagnosis, accurate monitoring of therapeutic response, and the detection of minimal residual disease (MRD) are crucial for improving outcomes in these patients. This review aims to explore recent advancements in liquid biopsy techniques for monitoring pediatric brain tumors, with a specific focus on medulloblastoma. The primary research question is how liquid biopsy techniques can be effectively utilized for these purposes. Liquid biopsies, particularly the analysis of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF), are investigated as promising noninvasive tools. This comprehensive review examines the components of liquid biopsies, including ctDNA, cell-free DNA (cfDNA), and microRNA (miRNA). Their applications in diagnosis, prognosis, and MRD assessment are critically assessed. The review also discusses the role of liquid biopsies in categorizing medulloblastoma subgroups, risk stratification, and the identification of therapeutic targets. Liquid biopsies have shown promising applications in the pediatric brain tumor field, particularly in medulloblastoma. They offer noninvasive means of diagnosis, monitoring treatment response, and detecting MRD. These biopsies have played a pivotal role in subgroup classification and risk stratification of medulloblastoma patients, aiding in the identification of therapeutic targets. However, challenges related to sensitivity and specificity are noted. In conclusion, this review highlights the growing importance of liquid biopsies, specifically ctDNA analysis in CSF, in pediatric brain tumor management, with a primary focus on medulloblastoma. Liquid biopsies have the potential to revolutionize patient care by enabling early diagnosis, accurate monitoring, and MRD detection. Nevertheless, further research is essential to validate their clinical utility fully. The evolving landscape of liquid biopsy applications underscores their promise in improving outcomes for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
- Department of Neurosurgery, Mount Sinai Hospital, New York, USA
| | | | | | - Cindy A Herrera Sabán
- Department of General Practice, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, San Carlos, GTM
| | - Fides M C Caliwag
- Department of General Practice, Ateneo School of Medicine and Public Health, Pasig City, PHL
| | | | | | - Edna Diarte
- Department of Medicine, Universidad Autónoma de Sinaloa, Culiacán, MEX
| | - Victor S Arruarana
- Department of Internal Medicine, Brookdale University Hospital Medical Center, New York, USA
| | | |
Collapse
|
5
|
Abdulhaleem M, Hunting JC, Wang Y, Smith MR, Agostino RDJ, Lycan T, Farris MK, Ververs J, Lo HW, Watabe K, Topaloglu U, Li W, Whitlow C, Su J, Wang G, Chan MD, Xing F, Ruiz J. Use of comprehensive genomic profiling for biomarker discovery for the management of non-small cell lung cancer brain metastases. Front Oncol 2023; 13:1214126. [PMID: 38023147 PMCID: PMC10661935 DOI: 10.3389/fonc.2023.1214126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background Clinical biomarkers for brain metastases remain elusive. Increased availability of genomic profiling has brought discovery of these biomarkers to the forefront of research interests. Method In this single institution retrospective series, 130 patients presenting with brain metastasis secondary to Non-Small Cell Lung Cancer (NSCLC) underwent comprehensive genomic profiling conducted using next generation circulating tumor deoxyribonucleic acid (DNA) (Guardant Health, Redwood City, CA). A total of 77 genetic mutation identified and correlated with nine clinical outcomes using appropriate statistical tests (general linear models, Mantel-Haenzel Chi Square test, and Cox proportional hazard regression models). For each outcome, a genetic signature composite score was created by summing the total genes wherein genes predictive of a clinically unfavorable outcome assigned a positive score, and genes with favorable clinical outcome assigned negative score. Results Seventy-two genes appeared in at least one gene signature including: 14 genes had only unfavorable associations, 36 genes had only favorable associations, and 22 genes had mixed effects. Statistically significant associated signatures were found for the clinical endpoints of brain metastasis velocity, time to distant brain failure, lowest radiosurgery dose, extent of extracranial metastatic disease, concurrent diagnosis of brain metastasis and NSCLC, number of brain metastases at diagnosis as well as distant brain failure. Some genes were solely associated with multiple favorable or unfavorable outcomes. Conclusion Genetic signatures were derived that showed strong associations with different clinical outcomes in NSCLC brain metastases patients. While these data remain to be validated, they may have prognostic and/or therapeutic impact in the future. Statement of translation relevance Using Liquid biopsy in NSCLC brain metastases patients, the genetic signatures identified in this series are associated with multiple clinical outcomes particularly these ones that lead to early or more numerous metastases. These findings can be reverse-translated in laboratory studies to determine if they are part of the genetic pathway leading to brain metastasis formation.
Collapse
Affiliation(s)
- Mohammed Abdulhaleem
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John C. Hunting
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Margaret R. Smith
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ralph D’ jr. Agostino
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Lycan
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael K. Farris
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James Ververs
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Umit Topaloglu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Michael D. Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jimmy Ruiz
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
6
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P, Punyadeera C. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci 2023; 30:65. [PMID: 37559138 PMCID: PMC10413618 DOI: 10.1186/s12929-023-00953-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- University Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia.
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold coast, QLD, Australia.
| |
Collapse
|
7
|
Xu Y, Cai J, Zhong K, Wen Y, Cai L, He G, Liao H, Zhang C, Fu S, Chen T, Cai J, Zhong X, Chen C, Huang M, Cheng Y, Pan M. Plasma-only circulating tumor DNA analysis detects minimal residual disease and predicts early relapse in hepatocellular carcinoma patients undergoing curative resection. Front Oncol 2023; 13:1119744. [PMID: 36959801 PMCID: PMC10028131 DOI: 10.3389/fonc.2023.1119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Background Minimal residual disease (MRD) is considered an essential factor leading to relapse within 2 years (early relapse) after radical surgery, which is challenging to be detected by conventional imaging. Circulating tumor DNA (ctDNA) provides a novel approach for detecting MRD and predicting clinical outcomes. Here, we tried to construct a fixed panel for plasma-only ctDNA NGS to enable tumor-uninformed MRD detection in hepatocellular carcinoma (HCC). Methods Here, we performed the followings: (i) profiling genomic alteration spectrum of ctDNA from the Chinese HCC cohort consisting of 493 individuals by NGS; (ii) screening of MRD monitoring genes; and (iii) performance evaluation of MRD monitoring genes in predicting early relapse in the ZJZS2020 cohort comprising 20 HCC patients who underwent curative resection. Results A total of 493 plasma samples from the Chinese HCC cohort were detected using a 381/733-gene NGS panel to characterize the mutational spectrum of ctDNA. Most patients (94.1%, 464/493) had at least one mutation in ctDNA. The variants fell most frequently in TP53 (45.1%), LRP1B (20.2%), TERT (20.2%), FAT1 (16.2%), and CTNNB1 (13.4%). By customized filtering strategy, 13 MRD monitoring genes were identified, and any plasma sample with one or more MRD monitoring gene mutations was considered MRD-positive. In the ZJZS2020 cohort, MRD positivity presented a sensitivity of 75% (6/8) and a specificity of 100% (6/6) in identifying early postoperative relapse. The Kaplan-Meier analysis revealed a significantly short relapse-free survival (RFS; median RFS, 4.2 months vs. NR, P=0.002) in the MRD-positive patients versus those with MRD negativity. Cox regression analyses revealed MRD positivity as an independent predictor of poor RFS (HR 13.00, 95% CI 2.60-69.00, P=0.002). Conclusions We successfully developed a 13-gene panel for plasma-only MRD detection, which was effective and convenient for predicting the risk of early postoperative relapse in HCC.
Collapse
Affiliation(s)
- Yuyan Xu
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianpeng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaihang Zhong
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaohong Wen
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guolin He
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hangyu Liao
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shunjun Fu
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Xuefeng Zhong
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Chunzhu Chen
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Mengli Huang
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Yuan Cheng
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Eibl RH, Schneemann M. Liquid biopsy and glioblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:28-41. [PMID: 36937320 PMCID: PMC10017188 DOI: 10.37349/etat.2023.00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 02/27/2023] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor. Despite a century of research efforts, the survival of patients has not significantly improved. Currently, diagnosis is based on neuroimaging techniques followed by histopathological and molecular analysis of resected or biopsied tissue. A recent paradigm shift in diagnostics ranks the molecular analysis of tissue samples as the new gold standard over classical histopathology, thus correlating better with the biological behavior of glioblastoma and clinical prediction, especially when a tumor lacks the typical hallmarks for glioblastoma. Liquid biopsy aims to detect and quantify tumor-derived content, such as nucleic acids (DNA/RNA), circulating tumor cells (CTCs), or extracellular vesicles (EVs) in biofluids, mainly blood, cerebrospinal fluid (CSF), or urine. Liquid biopsy has the potential to overcome the limitations of both neuroimaging and tissue-based methods to identify early recurrence and to differentiate tumor progression from pseudoprogression, without the risks of repeated surgical biopsies. This review highlights the origins and time-frame of liquid biopsy in glioblastoma and points to recent developments, limitations, and challenges of adding liquid biopsy to support the clinical management of glioblastoma patients.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
- Correspondence: Robert H. Eibl, c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland.
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
9
|
Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol 2022; 34:705-712. [PMID: 36093876 DOI: 10.1097/cco.0000000000000902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Oncology Unit, Pisa University Hospital
| | - Milena Rizzo
- Noncoding RNA group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa
| | | | | | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
10
|
Malapelle U, Pisapia P, Pepe F, Russo G, Buono M, Russo A, Gomez J, Khorshid O, Mack PC, Rolfo C, Troncone G. The evolving role of liquid biopsy in lung cancer. Lung Cancer 2022; 172:53-64. [PMID: 35998482 DOI: 10.1016/j.lungcan.2022.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022]
Abstract
Liquid biopsy has revolutionized the management of cancer patients. In particular, liquid biopsy-based testing has proven to be highly beneficial for identifying actionable cancer markers, especially when solid tissue biopsies are insufficient or unattainable. Beyond the predictive role, liquid biopsy may be a useful tool for comprehensive tumor genotyping, identification of emergent resistance mechanisms, monitoring of minimal residual disease, early detection, and cancer interception. The application of next generation sequencing to liquid biopsy has led to the "quantum leap" of predictive molecular pathology. Here, we review the evolving role of liquid biopsy in lung cancer.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mauro Buono
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Jorge Gomez
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA
| | - Ola Khorshid
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Philip C Mack
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Hassan S, Shehzad A, Khan SA, Miran W, Khan S, Lee YS. Diagnostic and Therapeutic Potential of Circulating-Free DNA and Cell-Free RNA in Cancer Management. Biomedicines 2022; 10:2047. [PMID: 36009594 PMCID: PMC9405989 DOI: 10.3390/biomedicines10082047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
Abstract
Over time, molecular biology and genomics techniques have been developed to speed up the early diagnosis and clinical management of cancer. These therapies are often most effective when administered to the subset of malignancies harboring the target identified by molecular testing. Important advances in applying molecular testing involve circulating-free DNA (cfDNA)- and cell-free RNA (cfRNA)-based liquid biopsies for the diagnosis, prognosis, prediction, and treatment of cancer. Both cfDNA and cfRNA are sensitive and specific biomarkers for cancer detection, which have been clinically proven through multiple randomized and prospective trials. These help in cancer management based on the noninvasive evaluation of size, quantity, and point mutations, as well as copy number alterations at the tumor site. Moreover, personalized detection of ctDNA helps in adjuvant therapeutics and predicts the chances of recurrence of cancer and resistance to cancer therapy. Despite the controversial diagnostic values of cfDNA and cfRNA, many clinical trials have been completed, and the Food and Drug Administration has approved many multigene assays to detect genetic alterations in the cfDNA of cancer patients. In this review, we underpin the recent advances in the physiological roles of cfDNA and cfRNA, as well as their roles in cancer detection by highlighting recent clinical trials and their roles as prognostic and predictive markers in cancer management.
Collapse
Affiliation(s)
- Sadia Hassan
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- Department of Chemical Engineering, School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Salman Khan
- Department of pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Young-Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
12
|
Liu Z, Han Y, Dang Q, Xu H, Zhang Y, Duo M, Lv J, Li H, Kong Y, Han X. Roles of circulating tumor DNA in PD-1/PD-L1 immune checkpoint Inhibitors: Current evidence and future directions. Int Immunopharmacol 2022; 111:109173. [PMID: 35998502 DOI: 10.1016/j.intimp.2022.109173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022]
Abstract
Circulating tumor DNA (ctDNA) sequencing holds considerable promise for early diagnosis and detection of surveillance and minimal residual disease. Blood ctDNA monitors specific cancers by detecting the alterations found in cancer cells, such as apoptosis and necrosis. Due to the short half-life, ctDNA reflects the actual burden of other treatments on tumors. In addition, ctDNA might be preferable to monitor tumor development and treatment compared with invasive tissue biopsy. ctDNA-based liquid biopsy brings remarkable strength to targeted therapy and precision medicine. Notably, multiple ctDNA analysis platforms have been broadly applied in clinical immunotherapy. Through targeted sequencing, early variations in ctDNA could predict response to immune checkpoint inhibitor (ICI). Several studies have demonstrated a correlation between ctDNA kinetics and anti-PD1 antibodies. The need for further research and development remains, although this biomarker holds significant prospects for early cancer detection. This review focuses on describing the basis of ctDNA and its current utilities in oncology and immunotherapy, either for clinical management or early detection, highlighting its advantages and inherent limitations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengjie Duo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huanyun Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
13
|
Roma C, Sacco A, Forgione L, Esposito Abate R, Lambiase M, Dotolo S, Maiello MR, Frezzetti D, Nasti G, Morabito A, De Luca A, Normanno N. Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics. Diagnostics (Basel) 2022; 12:diagnostics12081956. [PMID: 36010306 PMCID: PMC9406879 DOI: 10.3390/diagnostics12081956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Targeted sequencing of circulating cell-free DNA (cfDNA) is used in routine clinical diagnostics for the identification of predictive biomarkers in cancer patients in an advanced stage. The presence of KRAS mutations associated with clonal hematopoiesis of indeterminate potential (CHIP) might represent a confounding factor. We used an amplicon-based targeted sequencing panel, covering selected regions of 52 genes, for circulating cell-free total nucleic acid (cfTNA) analysis of 495 plasma samples from cancer patients. The cfDNA test failed in 4 cases, while circulating cell-free RNA (cfRNA) sequencing was invalid in 48 cases. In the 491 samples successfully tested on cfDNA, at least one genomic alteration was found in 222 cases (45.21%). We identified 316 single nucleotide variants (SNVs) in 21 genes. The most frequently mutated gene was TP53 (74 variants), followed by KRAS (71), EGFR (56), PIK3CA (33) and BRAF (19). Copy number variations (CNVs) were detected in 36 cases, while sequencing of cfRNA revealed 6 alterations. Analysis with droplet digital PCR (ddPCR) of peripheral blood leukocyte (PBL)-derived genomic DNA did not identify any KRAS mutations in 39 cases that showed KRAS mutations at cfDNA analysis. These findings suggest that the incidence of CHIP-associated KRAS mutations is relatively rare in routine clinical diagnostics.
Collapse
Affiliation(s)
- Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Matilde Lambiase
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Guglielmo Nasti
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
14
|
Donato UM, Donato S, Galligan A. A Four-Year-Old Female With a Rare P53 Gene Mutation Diagnosed With Li-Fraumeni Syndrome and Concomitant Metastatic Rhabdomyosarcoma: A Case Report. Cureus 2022; 14:e27009. [PMID: 35989815 PMCID: PMC9386298 DOI: 10.7759/cureus.27009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
|
15
|
Chan HT, Chin YM, Low SK. Circulating Tumor DNA-Based Genomic Profiling Assays in Adult Solid Tumors for Precision Oncology: Recent Advancements and Future Challenges. Cancers (Basel) 2022; 14:3275. [PMID: 35805046 PMCID: PMC9265547 DOI: 10.3390/cancers14133275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Genomic profiling using tumor biopsies remains the standard approach for the selection of approved molecular targeted therapies. However, this is often limited by its invasiveness, feasibility, and poor sample quality. Liquid biopsies provide a less invasive approach while capturing a contemporaneous and comprehensive tumor genomic profile. Recent advancements in the detection of circulating tumor DNA (ctDNA) from plasma samples at satisfactory sensitivity, specificity, and detection concordance to tumor tissues have facilitated the approval of ctDNA-based genomic profiling to be integrated into regular clinical practice. The recent approval of both single-gene and multigene assays to detect genetic biomarkers from plasma cell-free DNA (cfDNA) as companion diagnostic tools for molecular targeted therapies has transformed the therapeutic decision-making procedure for advanced solid tumors. Despite the increasing use of cfDNA-based molecular profiling, there is an ongoing debate about a 'plasma first' or 'tissue first' approach toward genomic testing for advanced solid malignancies. Both approaches present possible advantages and disadvantages, and these factors should be carefully considered to personalize and select the most appropriate genomic assay. This review focuses on the recent advancements of cfDNA-based genomic profiling assays in advanced solid tumors while highlighting the major challenges that should be tackled to formulate evidence-based guidelines in recommending the 'right assay for the right patient at the right time'.
Collapse
Affiliation(s)
- Hiu Ting Chan
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
| | - Yoon Ming Chin
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
- Cancer Precision Medicine, Inc., Kawasaki 213-0012, Japan
| | - Siew-Kee Low
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
| |
Collapse
|
16
|
Cabezas-Camarero S, García-Barberán V, Pérez-Alfayate R, Casado-Fariñas I, Sloane H, Jones FS, Pérez-Segura P. Detection of IDH1 Mutations in Plasma Using BEAMing Technology in Patients with Gliomas. Cancers (Basel) 2022; 14:cancers14122891. [PMID: 35740557 PMCID: PMC9221506 DOI: 10.3390/cancers14122891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In contrast with other solid tumors, only a few, small studies have shown the feasibility of detecting different biomarkers in the peripheral blood (PB) of patients with gliomas. A prospective study was conducted, enrolling 10 patients with gliomas where 33 consecutive PB samples were analyzed. Among the six patients with isocitrate dehydrogenase 1 (IDH1)-mutant tumors that were surveyed, circulating tumor DNA (ctDNA) was detected in PB in three of them (50%), at timepoints at which the patients were either untreated or exhibited progressive disease. While no false positives were identified, the false-negative rate was high, reaching 86% (18/21). Finally, in one of the IDH1-mutant cases, the Beads, Emulsion, Amplification and Magnetics (BEAMing) digital PCR technology detected one of the two IDH1 mutations that had been detected in the patient’s tumor sample in plasma, 7 years prior to its detection in blood. Abstract Molecular testing using blood-based liquid biopsy approaches has not been widely investigated in patients with glioma. A prospective single-center study enrolled patients with gliomas ranging from grade II to IV. Peripheral blood (PB) was drawn at different timepoints for circulating tumour DNA (ctDNA) monitoring. Next-generation sequencing (NGS) was used for the study of isocitrate dehydrogenase 1 (IDH1) mutations in the primary tumor. Beads, Emulsion, Amplification and Magnetics (BEAMing) was used for the study of IDH1 mutations in plasma and correlated with the NGS results in the tumor. Between February 2017 and July 2018, ten patients were enrolled, six with IDH1-mutant and four with IDH1 wild-type gliomas. Among the six IDH-mutant gliomas, three had the same IDH1 mutation detected in plasma (50%), and the IDH1-positive ctDNA result was obtained in patients either at diagnosis (no treatment) or during progressive disease. While the false-negative rate reached 86% (18/21), 15 out of the 18 (83%) plasma-negative results were from PB collected from the six IDH-mutant patients at times at which there was no accompanying evidence of tumor progression, as assessed by MRI. There were no false-positive cases in plasma collected from patients with IDH1 wild-type tumors. BEAMing detected IDH1 mutations in the plasma of patients with gliomas, with a modest clinical sensitivity (true positivity rate) but with 100% clinical specificity, with complete agreement between the mutant loci detected in tumor and plasma. Larger prospective studies should be conducted to expand on these findings, and further explore the clearance of mutations in PB from IDH1-positive patients in response to therapy.
Collapse
Affiliation(s)
- Santiago Cabezas-Camarero
- Head & Neck Cancer, Neuro-Oncology and Genetic Counseling Unit, Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Paseo del Profesor Martín Lagos S/N, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-330-3000
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory, Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain;
| | - Rebeca Pérez-Alfayate
- Department of Neurosurgery, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain;
| | - Isabel Casado-Fariñas
- Pathology Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain;
| | - Hillary Sloane
- Medical affairs Division, Sysmex Inostics, Inc., Baltimore, MD 21205, USA; (H.S.); (F.S.J.)
| | - Frederick S. Jones
- Medical affairs Division, Sysmex Inostics, Inc., Baltimore, MD 21205, USA; (H.S.); (F.S.J.)
| | - Pedro Pérez-Segura
- Head & Neck Cancer, Neuro-Oncology and Genetic Counseling Unit, Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Paseo del Profesor Martín Lagos S/N, 28040 Madrid, Spain;
| |
Collapse
|
17
|
Chikuie N, Urabe Y, Ueda T, Hamamoto T, Taruya T, Kono T, Yumii K, Takeno S. Utility of plasma circulating tumor DNA and tumor DNA profiles in head and neck squamous cell carcinoma. Sci Rep 2022; 12:9316. [PMID: 35661138 PMCID: PMC9167274 DOI: 10.1038/s41598-022-13417-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Early recurrence detection of head and neck squamous cell carcinoma (HNSCC) is important for improving prognosis. Recently, circulating tumor DNA (ctDNA) has been reported to be useful in early detection or treatment response determination in various carcinomas. This study aimed to identify the utility of ctDNA for predicting recurrent metastasis in patients with HNSCC. We collected pre-treatment tissues (malignant and normal tissues) and multiple plasma samples before and after treatment for 20 cases of HNSCC treated with radical therapy. ctDNA was detected in pre-treatment plasma in 10 cases; however, there were no significant associations with tumor recurrence and staging. During follow-up, ctDNA was detected in 5 of the 7 plasma samples of recurrent cases but not in the 13 recurrence-free cases. Moreover, there was a significant difference in post-treatment relapse-free survival time between the groups with and without detected ctDNA (20.6 ± 7.7 vs. 9.6 ± 9.1 months, respectively; log-rank test, p < 0.01). Moreover, for two of the five cases with ctDNA detected after treatment, ctDNA detection was a more sensitive predictor of recurrence than imaging studies. ctDNA detection during treatment follow-up was useful in patients with HNSCC for predicting the response to treatment and recurrent metastasis.
Collapse
Affiliation(s)
- Nobuyuki Chikuie
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuji Urabe
- Division of Regeneration and Medicine Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Tsutomu Ueda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takao Hamamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takayuki Taruya
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takashi Kono
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kohei Yumii
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Sachio Takeno
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
18
|
Waliany S, Wakelee H, Ramchandran K, Das M, Huang J, Myall N, Li C, Pagtama J, Tisch AH, Neal JW. Characterization of ERBB2 (HER2) Alterations in Metastatic Non-small Cell Lung Cancer and Comparison of Outcomes of Different Trastuzumab-based Regimens. Clin Lung Cancer 2022; 23:498-509. [PMID: 35753988 DOI: 10.1016/j.cllc.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION About 3%-5% of mNSCLC have ERBB2 (HER2) alterations, but currently, there are no FDA-approved targeted therapies for this indication. We compared treatment response between trastuzumab-based and non-targeted regimens in ERBB2-mutant mNSCLC. METHODS This retrospective, single-institution study included patients with mNSCLC with ERBB2 alterations identified by next-generation sequencing. Best overall response was determined using Response Evaluation Criteria in Solid Tumors 1.1. RESULTS We identified 3 groups of patients: ERBB2-mutant/EGFR-wildtype mNSCLC (n = 33), ERBB2-amplified/EGFR-wildtype mNSCLC without concurrent ERBB2 mutations (n = 6), and ERBB2-altered/EGFR-mutant mNSCLC (n = 8). Observed mutations included A775_G776insYVMA (n = 23), Gly778_Pro780dup (n = 4), Ser310Phe (n = 3), and others (n = 5). Among the 33 with ERBB2-mutant/EGFR-wildtype mNSCLC, those with and without A775_G776insYVMA had significantly different median overall survival (OS) of 17.7 and 52.9 months, respectively (Cox regression multivariable HR: 5.03, 95% CI: 1.37-18.51, P = .02). In those with mNSCLC with A775_G776insYVMA, trastuzumab-based therapies were associated with greater OS (20.3 vs. 9.8 months; multivariable HR: 0.19, 95% CI: 0.04-0.87, P = .032). Objective response and disease control rates (median tumor size change) in the 33 patients with ERBB2-mutant/EGFR-wildtype mNSCLC were 40.0% and 80.0% (-35.8%), respectively, for patients treated with trastuzumab deruxtecan; 0% and 30.0% (-5.2%) for trastuzumab emtansine; and 7.1% and 50.0% (-13.0%) for trastuzumab/chemotherapy combinations. CONCLUSION In ERBB2-mutant/EGFR-wildtype mNSCLC, while most trastuzumab-based regimens had modest activity in this real-world analysis, trastuzumab deruxtecan had highest response rates and best tumor size reduction. Receipt of any trastuzumab-based regimen was associated with greater OS with A775_G776insYVMA. There remains an unmet need for approved targeted therapies for ERBB2-mutant/EGFR-wildtype NSCLC.
Collapse
Affiliation(s)
- Sarah Waliany
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Heather Wakelee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA; Division of Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford, CA
| | - Kavitha Ramchandran
- Department of Medicine, Stanford University School of Medicine, Stanford, CA; Division of Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford, CA
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, CA; Division of Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford, CA; Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA
| | - Jane Huang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA; Division of Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford, CA
| | - Nathaniel Myall
- Department of Medicine, Stanford University School of Medicine, Stanford, CA; Division of Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford, CA
| | - Connie Li
- Stanford Cancer Institute, Stanford, CA
| | | | | | - Joel W Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, CA; Division of Oncology, Stanford University School of Medicine, Stanford, CA; Stanford Cancer Institute, Stanford, CA.
| |
Collapse
|
19
|
Yang X, Xu X, Zhang C, Ji T, Wan T, Liu W. The diagnostic value and prospects of gene mutations in circulating tumor DNA for head and neck cancer monitoring. Oral Oncol 2022; 128:105846. [DOI: 10.1016/j.oraloncology.2022.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
20
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
21
|
Gunderson CC, Radhakrishnan R, Gomathinayagam R, Husain S, Aravindan S, Moore KM, Dhanasekaran DN, Jayaraman M. Circulating Tumor Cell-Free DNA Genes as Prognostic Gene Signature for Platinum Resistant Ovarian Cancer Diagnosis. Biomark Insights 2022; 17:11772719221088404. [PMID: 35370397 PMCID: PMC8966103 DOI: 10.1177/11772719221088404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical management of gynecological cancer begins by optimal debulking with first-line platinum-based chemotherapy. However, in ~80% patients, ovarian cancer will recur and is lethal. Prognostic gene signature panel identifying platinum-resistance enables better patient stratification for precision therapy. Retrospectively collected serum from 11 "poor" (<6 months progression free interval [PFI]) and 22 "favorable" (>24 months PFI) prognosis patients, were evaluated using circulating cell-free DNA (cfDNA). DNA from both groups showed 50 to 10 000 bp fragments. Pairwise analysis of sequenced cfDNA from patients showed that gene dosages were higher for 29 genes and lower for 64 genes in poor than favorable prognosis patients. Gene ontology analysis of higher dose genes predominantly grouped into cytoskeletal proteins, while lower dose genes, as hydrolases and receptors. Higher dosage genes searched for cancer-relatedness in Reactome database indicated 15 genes were referenced with cancer. Among them 3 genes, TGFBR2, ZMIZ2, and NRG2, were interacting with more than 4 cancer-associated genes. Protein expression analysis of tumor samples indicated that TGFBR2 was downregulated and ZMIZ2 was upregulated in poor prognosis patients. Our results indicate that the cfDNA gene dosage combined with protein expression in tumor samples can serve as gene signature panel for prognosis determination amongst ovarian cancer patients.
Collapse
Affiliation(s)
- Camille C Gunderson
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rohini Gomathinayagam
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanam Husain
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sheeja Aravindan
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathleen M Moore
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Muralidharan Jayaraman, Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, 975 NE 10th Street, BRC416, Oklahoma City, OK 73104, USA.
| |
Collapse
|
22
|
Zhao W, Zhang M, Wang G, Liu E, Jiang G, Zhang Y, Zhang D, Jian X, Zhao H, Zhang C, Li W. The GNAQ T96S mutation abrogates the ability of wild-type GNAQ to induce apoptosis by phosphorylating ANXA2 in natural killer/T cell lymphoma. Cancer Sci 2022; 113:2288-2296. [PMID: 35293080 PMCID: PMC9277252 DOI: 10.1111/cas.15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Our previous study identified Annexin A2 (ANXA2) as a Gaq-interacting partner in natural killer/T cell lymphoma (NKTCL) cells transfected with the GNAQ T96S mutation vector by immunoprecipitation and mass spectrometry; however, the detailed molecular mechanisms by which GNAQ T96S might regulate ANXA2 remain to be defined in NKTCL. Herein, we found that the GNAQ T96S mutation significantly promotes the phosphorylation of ANXA2 at the Y24 site, whereas phosphorylation of ANXA2 abolishes the ability of wild-type GNAQ to trigger cell apoptosis. Further investigation revealed that a GNAQ T96S peptide inhibitor induced apoptosis by competing with ANXA2 binding to GNAQ T96S in NKTCL cells. In vivo animal experiments demonstrated that a GNAQ T96S peptide inhibitor suppresses the growth of NKTCL cells carrying the GNAQ T96S mutation. Our current data suggest a role for GNAQ T96S/Src/ANXA2 in mediating the apoptosis of NKTCL cells, and the GNAQ T96S peptide may be a promising agent for therapy in NKTCL patients.
Collapse
Affiliation(s)
- Wugan Zhao
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Min Zhang
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Guannan Wang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Enjie Liu
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Guozhong Jiang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Yanping Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Dandan Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Xiangyu Jian
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Haiyu Zhao
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Chongli Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Wencai Li
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| |
Collapse
|
23
|
Diez-Fraile A, De Ceulaer J, Derpoorter C, Spaas C, De Backer T, Lamoral P, Abeloos J, Lammens T. Tracking the Molecular Fingerprint of Head and Neck Cancer for Recurrence Detection in Liquid Biopsies. Int J Mol Sci 2022; 23:ijms23052403. [PMID: 35269544 PMCID: PMC8910330 DOI: 10.3390/ijms23052403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
The 5-year relative survival for patients with head and neck cancer, the seventh most common form of cancer worldwide, was reported as 67% in developed countries in the second decade of the new millennium. Although surgery, radiotherapy, chemotherapy, or combined treatment often elicits an initial satisfactory response, relapses are frequently observed within two years. Current surveillance methods, including clinical exams and imaging evaluations, have not unambiguously demonstrated a survival benefit, most probably due to a lack of sensitivity in detecting very early recurrence. Recently, liquid biopsy monitoring of the molecular fingerprint of head and neck squamous cell carcinoma has been proposed and investigated as a strategy for longitudinal patient care. These innovative methods offer rapid, safe, and highly informative genetic analysis that can identify small tumors not yet visible by advanced imaging techniques, thus potentially shortening the time to treatment and improving survival outcomes. In this review, we provide insights into the available evidence that the molecular tumor fingerprint can be used in the surveillance of head and neck squamous cell carcinoma. Challenges to overcome, prior to clinical implementation, are also discussed.
Collapse
Affiliation(s)
- Araceli Diez-Fraile
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Joke De Ceulaer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
| | - Christophe Spaas
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tom De Backer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Philippe Lamoral
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Johan Abeloos
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-2480
| |
Collapse
|
24
|
Biomarker-Based Evaluation of Treatment Response and Surveillance of HPV-Associated Squamous Cell Carcinoma. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-021-00386-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Pagès M, Rotem D, Gydush G, Reed S, Rhoades J, Ha G, Lo C, Fleharty M, Duran M, Jones R, Becker S, Haller M, Sinai CE, Goumnerova L, Golub TR, Love JC, Ligon KL, Wright KD, Adalsteinsson VA, Beroukhim R, Bandopadhayay P. Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro Oncol 2022; 24:1352-1363. [PMID: 34984433 PMCID: PMC9340641 DOI: 10.1093/neuonc/noab299] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The ability to identify genetic alterations in cancers is essential for precision medicine; however, surgical approaches to obtain brain tumor tissue are invasive. Profiling circulating tumor DNA (ctDNA) in liquid biopsies has emerged as a promising approach to avoid invasive procedures. Here, we systematically evaluated the feasibility of profiling pediatric brain tumors using ctDNA obtained from plasma, cerebrospinal fluid (CSF), and urine. METHODS We prospectively collected 564 specimens (257 blood, 240 urine, and 67 CSF samples) from 258 patients across all histopathologies. We performed ultra-low-pass whole-genome sequencing (ULP-WGS) to assess copy number variations and estimate tumor fraction and developed a pediatric CNS tumor hybrid capture panel for deep sequencing of specific mutations and fusions. RESULTS ULP-WGS detected copy number alterations in 9/46 (20%) CSF, 3/230 (1.3%) plasma, and 0/153 urine samples. Sequencing detected alterations in 3/10 (30%) CSF, 2/74 (2.7%) plasma, and 0/2 urine samples. The only positive results were in high-grade tumors. However, most samples had insufficient somatic mutations (median 1, range 0-39) discoverable by the sequencing panel to provide sufficient power to detect tumor fractions of greater than 0.1%. CONCLUSIONS Children with brain tumors harbor very low levels of ctDNA in blood, CSF, and urine, with CSF having the most DNA detectable. Molecular profiling is feasible in a small subset of high-grade tumors. The level of clonal aberrations per genome is low in most of the tumors, posing a challenge for detection using whole-genome or even targeted sequencing methods. Substantial challenges therefore remain to genetically characterize pediatric brain tumors from liquid biopsies.
Collapse
Affiliation(s)
- Mélanie Pagès
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA,GHU-Paris—Sainte-Anne Hospital, Department of Neuropathology, Paris University, Paris, France,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Denisse Rotem
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Gregory Gydush
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Sarah Reed
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Justin Rhoades
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Gavin Ha
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Christopher Lo
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Mark Fleharty
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Madeleine Duran
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Robert Jones
- Department of Oncologic Pathology, Dana Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, USA
| | - Sarah Becker
- Department of Oncologic Pathology, Dana Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, USA
| | - Michaela Haller
- Department of Oncologic Pathology, Dana Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, USA
| | - Claire E Sinai
- Department of Oncologic Pathology, Dana Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, USA
| | - Liliana Goumnerova
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Todd R Golub
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | | | - Keith L Ligon
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA,Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Karen D Wright
- Karen Wright, MD, MS, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA ()
| | - Viktor A Adalsteinsson
- Viktor A. Adalsteinsson, PhD, Broad Institute, 450 Main Street, Cambridge, MA 02142, USA ()
| | - Rameen Beroukhim
- Corresponding Authors: Rameen Beroukhim, MD, PhD, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA ()
| | - Pratiti Bandopadhayay
- Pratiti Bandopadhayay, MBBS, PhD, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA ()
| |
Collapse
|
26
|
An Overview of Intracranial Ependymomas in Adults. Cancers (Basel) 2021; 13:cancers13236128. [PMID: 34885237 PMCID: PMC8656831 DOI: 10.3390/cancers13236128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Ependymomas are neuroepithelial tumors arising from the central nervous system. They can form anywhere along the neuraxis. In adults, these tumors predominantly occur in the spine. Local therapy with surgery and radiotherapy represents the most effective treatment while systemic chemotherapy should be used in recurrent cases. However, in recent years, a deeper knowledge of molecular mechanisms of these tumors has been made, allowing for new potential systemic treatments. Here, we review these treatment approaches and provide an overview on the molecular characteristics of ependymomas. Abstract Ependymomas are rare primary central nervous system tumors. They can form anywhere along the neuraxis, but in adults, these tumors predominantly occur in the spine and less frequently intracranially. Ependymal tumors represent a heterogenous group of gliomas, and the WHO 2016 classification is based essentially on a grading system, with ependymomas classified as grade I, II (classic), or III (anaplastic). In adults, surgery is the primary initial treatment, while radiotherapy is employed as an adjuvant treatment in some cases of grade II and in all cases of anaplastic ependymoma; chemotherapy is reserved for recurrent cases. In recent years, important and interesting advances in the molecular characterization of ependymomas have been made, allowing for the identification of nine molecular subgroups of ependymal tumors and moving toward subgroup-specific patients with improved risk stratification for treatment-decisions and future prospective trials. New targeted agents or immunotherapies for ependymoma patients are being explored for recurrent disease. This review summarizes recent molecular advances in the diagnosis and treatment of intracranial ependymomas including surgery, radiation therapy and systemic therapies.
Collapse
|
27
|
Eibl RH, Schneemann M. Liquid Biopsy and Primary Brain Tumors. Cancers (Basel) 2021; 13:5429. [PMID: 34771592 PMCID: PMC8582521 DOI: 10.3390/cancers13215429] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Two decades of "promising results" in liquid biopsy have led to both continuing disappointment and hope that the new era of minimally invasive, personalized analysis can be applied for better diagnosis, prognosis, monitoring, and therapy of cancer. Here, we briefly highlight the promises, developments, and challenges related to liquid biopsy of brain tumors, including circulating tumor cells, cell-free nucleic acids, extracellular vesicles, and miRNA; we further discuss the urgent need to establish suitable biomarkers and the right standards to improve modern clinical management of brain tumor patients with the use of liquid biopsy.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
28
|
Hudečková M, Koucký V, Rottenberg J, Gál B. Gene Mutations in Circulating Tumour DNA as a Diagnostic and Prognostic Marker in Head and Neck Cancer-A Systematic Review. Biomedicines 2021; 9:1548. [PMID: 34829777 PMCID: PMC8615469 DOI: 10.3390/biomedicines9111548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023] Open
Abstract
(1) Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is one of the most common malignancies globally. An early diagnosis of this disease is crucial, and the detection of gene mutations in circulating tumour DNA (ctDNA) through a liquid biopsy is a promising non-invasive diagnostic method. This review aims to provide an overview of ctDNA mutations in HNSCC patients and discuss the potential use of this tool in diagnosis and prognosis. (2) Methods: A systematic search for articles published in the English language between January 2000 and April 2021 in the Medline and Scopus databases was conducted. (3) Results: A total of 10 studies published in nine publications were selected and analysed. Altogether, 390 samples were obtained from HNSCC patients, and 79 control samples were evaluated. The most often explored gene mutation in ctDNA was TP53. (4) Conclusions: The examination of a larger group of gene mutations and the use of a combination of multiple detection methods contribute to a higher detection rate of mutated ctDNA. More studies are necessary to verify these conclusions and to translate them into clinical practice.
Collapse
Affiliation(s)
- Markéta Hudečková
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| | - Vladimír Koucký
- Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, 15000 Prague, Czech Republic;
| | - Jan Rottenberg
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| | - Břetislav Gál
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| |
Collapse
|
29
|
Rincon-Torroella J, Khela H, Bettegowda A, Bettegowda C. Biomarkers and focused ultrasound: the future of liquid biopsy for brain tumor patients. J Neurooncol 2021; 156:33-48. [PMID: 34613580 PMCID: PMC8714625 DOI: 10.1007/s11060-021-03837-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023]
Abstract
Introduction Despite advances in modern medicine, brain tumor patients are still monitored purely by clinical evaluation and imaging. Traditionally, invasive strategies such as open or stereotactic biopsies have been used to confirm the etiology of clinical and imaging changes. Liquid biopsies can enable physicians to noninvasively analyze the evolution of a tumor and a patient’s response to specific treatments. However, as a consequence of biology and the current limitations in detection methods, no blood or cerebrospinal fluid (CSF) brain tumor-derived biomarkers are used in routine clinical practice. Enhancing the presence of tumor biomarkers in blood and CSF via brain-blood barrier (BBB) disruption with MRI-guided focused ultrasound (MRgFUS) is a very compelling strategy for future management of brain tumor patients. Methods A literature review on MRgFUS-enabled brain tumor liquid biopsy was performed using Medline/Pubmed databases and clinical trial registries. Results The therapeutic applications of MRgFUS to target brain tumors have been under intense investigation. At high-intensity, MRgFUS can ablate brain tumors and target tissues, which needs to be balanced with the increased risk for damage to surrounding normal structures. At lower-intensity and pulsed-frequency, MRgFUS may be able to disrupt the BBB transiently. Thus, while facilitating intratumoral or parenchymal access to standard or novel therapeutics, BBB disruption with MRgFUS has opened the possibility of enhanced detection of brain tumor-derived biomarkers. Conclusions In this review, we describe the concept of MRgFUS-enabled brain tumor liquid biopsy and present the available preclinical evidence, ongoing clinical trials, limitations, and future directions of this application.
Collapse
Affiliation(s)
- Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe St, Phipps 118, Baltimore, MD, 21128, USA
| | - Harmon Khela
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe St, Phipps 118, Baltimore, MD, 21128, USA
| | - Anya Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe St, Phipps 118, Baltimore, MD, 21128, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe St, Phipps 118, Baltimore, MD, 21128, USA.
| |
Collapse
|
30
|
Macías M, Cañada-Higueras E, Alegre E, Bielsa A, Gracia J, Patiño-García A, Ferrer-Costa R, Sendino T, Andueza MP, Mateos B, Rodríguez J, Corral J, Gúrpide A, Lopez-Picazo JM, Perez-Gracia JL, Gil-Bazo I, Alkorta-Aranburu G, González Á. Performance comparison of two next-generation sequencing panels to detect actionable mutations in cell-free DNA in cancer patients. Clin Chem Lab Med 2021; 58:1341-1348. [PMID: 32623849 DOI: 10.1515/cclm-2019-1267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Background Genomic alterations studies in cell-free DNA (cfDNA) have increasing clinical use in oncology. Next-generation sequencing (NGS) technology provides the most complete mutational analysis, but nowadays limited data are available related to the comparison of results reported by different platforms. Here we compare two NGS panels for cfDNA: Oncomine™ Pan-Cancer Cell-Free Assay (Thermo Fisher Scientific), suitable for clinical laboratories, and Guardant360® (GuardantHealth), with more genes targeted but only available in an outsourcing laboratory. Methods Peripheral blood was obtained from 16 advanced cancer patients in which Guardant360® (G360) was requested as part of their clinical assistance. Blood samples were sent to be analyzed with G360 panel, and an additional blood sample was drawn to obtain and analyze cfDNA with Oncomine™ Pan-Cancer (OM) panel in an Ion GeneStudio S5™ System. Results cfDNA analysis globally rendered 101 mutations. Regarding the 55/101 mutations claimed to be included by manufacturers in both panels, 17 mutations were reported only by G360, 10 only by OM and 28 by both. In those coincident cases, there was a high correlation between the variant allele fractions (VAFs) calculated with each panel (r = 0.979, p < 0.01). Regarding the six actionable mutations with an FDA-approved therapy reported by G360, one was missed with OM. Also, 12 mutations with clinical trials available were reported by G360 but not by OM. Conclusions In summary, G360 and OM can produce different mutational profile in the same sample, even in genes included in both panels, which is especially important if these mutations are potentially druggable.
Collapse
Affiliation(s)
- Mónica Macías
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Estibaliz Alegre
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Arancha Bielsa
- CIMA LAB Diagnostics Universidad de Navarra, Pamplona, Spain
| | - Javier Gracia
- CIMA LAB Diagnostics Universidad de Navarra, Pamplona, Spain
| | - Ana Patiño-García
- CIMA LAB Diagnostics Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roser Ferrer-Costa
- Department of Biochemistry, Hospital Universitari Vall D'Hebron, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Teresa Sendino
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - María P Andueza
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Beatriz Mateos
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Rodríguez
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jesús Corral
- CIMA LAB Diagnostics Universidad de Navarra, Pamplona, Spain
| | - Alfonso Gúrpide
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - José M Lopez-Picazo
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose L Perez-Gracia
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Gil-Bazo
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Álvaro González
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
31
|
Burcher KM, Faucheux AT, Lantz JW, Wilson HL, Abreu A, Salafian K, Patel MJ, Song AH, Petro RM, Lycan T, Furdui CM, Topaloglu U, D’Agostino RB, Zhang W, Porosnicu M. Prevalence of DNA Repair Gene Mutations in Blood and Tumor Tissue and Impact on Prognosis and Treatment in HNSCC. Cancers (Basel) 2021; 13:3118. [PMID: 34206538 PMCID: PMC8267691 DOI: 10.3390/cancers13133118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors are currently approved for a limited number of cancers and targetable mutations in DNA damage repair (DDR) genes. In this single-institution retrospective study, the profiles of 170 patients with head and neck squamous cell cancer (HNSCC) and available tumor tissue DNA (tDNA) and circulating tumor DNA (ctDNA) results were analyzed for mutations in a set of 18 DDR genes as well as in gene subsets defined by technical and clinical significance. Mutations were correlated with demographic and outcome data. The addition of ctDNA to the standard tDNA analysis contributed to identification of a significantly increased incidence of patients with mutations in one or more genes in each of the study subsets of DDR genes in groups of patients older than 60 years, patients with laryngeal primaries, patients with advanced stage at diagnosis and patients previously treated with chemotherapy and/or radiotherapy. Patients with DDR gene mutations were found to be significantly less likely to have primary tumors within the in oropharynx or HPV-positive disease. Patients with ctDNA mutations in all subsets of DDR genes analyzed had significantly worse overall survival in univariate and adjusted multivariate analysis. This study underscores the utility of ctDNA analysis, alone, and in combination with tDNA, for defining the prevalence and the role of DDR gene mutations in HNSCC. Furthermore, this study fosters research promoting the utilization of PARP inhibitors in HNSCC precision oncology treatments.
Collapse
Affiliation(s)
- Kimberly M. Burcher
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Andrew T. Faucheux
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Jeffrey W. Lantz
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Harper L. Wilson
- University of Kentucky Medical Center, Lexington, KY 40536, USA;
| | - Arianne Abreu
- Campbell University School of Osteopathic Medicine (CUSOM), Lillington, NC 27546, USA;
| | - Kiarash Salafian
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Manisha J. Patel
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Alexander H. Song
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Robin M. Petro
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Thomas Lycan
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Cristina M. Furdui
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Umit Topaloglu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Ralph B. D’Agostino
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Wei Zhang
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Mercedes Porosnicu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| |
Collapse
|
32
|
Pierik AS, Leemans CR, Brakenhoff RH. Resection Margins in Head and Neck Cancer Surgery: An Update of Residual Disease and Field Cancerization. Cancers (Basel) 2021; 13:2635. [PMID: 34071997 PMCID: PMC8198309 DOI: 10.3390/cancers13112635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Surgery is one of the mainstays of head and neck cancer treatment, and aims at radical resection of the tumor with 1 cm tumor-free margins to obtain locoregional control. Surgical margins are evaluated by histopathological examination of the resection specimen. It has been long an enigma that approximately 10-30% of surgically treated head and neck cancer patients develop locoregional recurrences even though the resection margins were microscopically tumor-free. However, the origins of these recurrences have been elucidated by a variety of molecular studies. Recurrences arise either from minimal residual disease, cancer cells in the surgical margins that escape detection by the pathologist when examining the specimen, or from precancerous mucosal changes that may remain unnoticed. Head and neck tumors develop in mucosal precursor changes that are sometimes visible but mostly not, fueling research into imaging modalities such as autofluorescence, to improve visualization. Mostly unnoticed, these precancerous changes may stay behind when the tumor is resected, and subsequent malignant progression will cause a local relapse. This led to a clinical trial of autofluorescence-guided surgery, of which the results were reported in 2020. This review focuses on the most recent literature of the improved diagnosis of the resection margins of surgically treated head and neck cancer patients, the pathobiological origin of recurrent disease, and relevant biomarkers to predict local relapse. Directions for further research will be discussed, including potential options for improved and personalized treatment, based on the most recently published data.
Collapse
Affiliation(s)
| | | | - Ruud H. Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam Tumor Biology and Immunology Section, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.S.P.); (C.R.L.)
| |
Collapse
|
33
|
Liquid Biopsies in Head and Neck Cancer: Current State and Future Challenges. Cancers (Basel) 2021; 13:cancers13081874. [PMID: 33919778 PMCID: PMC8070729 DOI: 10.3390/cancers13081874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancers are the seventh most frequent malignancy worldwide, consisting of a heterogeneous group of cancers that develop in the oral cavity, pharynx, and larynx, with head and neck squamous cell carcinoma (HNSCC) being the most common pathology. Due to limitations with screening and physical examination, HNSCC often presents in advanced disease states and is thus associated with poor survival. In this setting, liquid biopsies, or obtaining patient bodily fluid samples for cancer diagnosis and prognosis, may play a dramatic role in optimizing care for HNSCC patients. In recent years, there have been dramatic advancements in investigations focused on optimizing and implementing liquid biopsies in general, and specifically for HNSCC patients. Moving forward, there remain significant challenges in liquid biopsy technological development, as well as opportunities for the development of HNSCC liquid biopsy clinical trials and treatment paradigms. In this review, we discuss the current state of liquid biopsy technologies via circulating tumor cells, circulating tumor DNA and exosomes, approaches in head and neck cancer, challenges to optimization and application of liquid biopsies for clinical study, and future prospects for this field of research as it applies to head and neck cancer.
Collapse
|
34
|
Overcoming therapy resistance in EGFR-mutant lung cancer. NATURE CANCER 2021; 2:377-391. [PMID: 35122001 DOI: 10.1038/s43018-021-00195-8] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) have dramatically changed the clinical prospects of patients with non-small cell lung cancer harboring epidermal growth factor receptor (EGFR)-activating mutations. Despite prolonged disease control and high tumor response rates, all patients eventually progress on EGFR TKI treatment. Here, we review the mechanisms of acquired EGFR TKI resistance, the methods for monitoring its appearance, as well as current and future efforts to define treatment strategies to overcome resistance.
Collapse
|
35
|
Okamura R, Piccioni DE, Boichard A, Lee S, Jimenez RE, Sicklick JK, Kato S, Kurzrock R. High prevalence of clonal hematopoiesis-type genomic abnormalities in cell-free DNA in invasive gliomas after treatment. Int J Cancer 2021; 148:2839-2847. [PMID: 33497479 PMCID: PMC8048515 DOI: 10.1002/ijc.33481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/03/2023]
Abstract
Plasma cell‐free DNA (cfDNA) is emerging as an important diagnostic tool in cancer. However, cfDNA alterations may differ from those in tissue and sometimes may reflect processes unrelated to the cancer, including clonal hematopoiesis (CH). We examined plasma cfDNA, tested by next‐generation sequencing (NGS), for characterized alterations (excluding variants of unknown significance) in 135 patients with invasive glioma. Overall, 21% (28/135) had ≥1 alteration; 17% (23/135) had CH‐type cfDNA mutations. Temozolomide (a mutagenic alkylating agent) with concurrent radiation therapy prior to blood draw was significantly associated with an increase in CH‐type mutations, even after age, race/ethnicity, and WHO‐grade were considered as confounders (odds ratio [95% confidence interval, CI] 8.98 [1.13‐71.46]; P = .04; multivariable analysis). Further, of 18 patients with invasive glioma who had both cfDNA and tissue DNA NGS and had ≥1 cfDNA alteration, 16 (89%) had ≥1 cfDNA alteration not found in their tissue DNA, including CH‐type alterations in genes such as TP53 (most common), ATM, GNAS, and JAK2. Altogether, 87% of cfDNA alterations (20/23) observed in the 18 patients were implicated in CH. Finally, examining all 135 patients, CH‐type cfDNA mutations were an independent prognostic factor for shorter survival (hazard ratio [95% CI] 3.28 [1.28‐8.40]; P = .01). These findings emphasize that not all characterized cfDNA alterations detected in patients with solid tumors are cancer‐related. Importantly, in patients with invasive gliomas who have had prior temozolomide and radiation, CH‐related alterations in cfDNA are frequent and correlate with poor outcomes. What's new? Tissue biopsy for brain tumors presents significant challenges, making less‐invasive molecular profiling with plasma cell‐free DNA (cfDNA) an appealing alternative. However, whether alterations detected in cfDNA, including clonal hematopoiesis (CH), reflect processes in brain tumor tissue remains uncertain. In this investigation of CH‐associated mutations in plasma‐derived cfDNA from patients with invasive gliomas, 87 percent of characterized cfDNA alterations were implicated in CH, indicating that not all cfDNA alterations are cancer‐related. In addition, temozolomide/radiation therapy prior to blood draw for cfDNA was associated with potential CH‐type cfDNA mutation detection. Potential CH‐type cfDNA alterations were an independent predictor of shorter overall survival.
Collapse
Affiliation(s)
- Ryosuke Okamura
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA
| | - David E Piccioni
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA.,Division of Neuro-oncology, Department of Neurosciences, UC San Diego Moores Cancer Center, La Jolla, California, USA
| | - Amélie Boichard
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA
| | - Suzanna Lee
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA
| | - Rebecca E Jimenez
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA.,Division of Surgical Oncology, Department of Surgery, UC San Diego Moores Cancer Center, La Jolla, California, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, UC San Diego Moores Cancer Center, La Jolla, California, USA
| |
Collapse
|
36
|
Aili Y, Maimaitiming N, Mahemuti Y, Qin H, Wang Y, Wang Z. Liquid biopsy in central nervous system tumors: the potential roles of circulating miRNA and exosomes. Am J Cancer Res 2020; 10:4134-4150. [PMID: 33414991 PMCID: PMC7783770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023] Open
Abstract
The Central nervous system (CNS) tumor still remains the most lethal cancer, and It is hard to diagnose at an earlier stage on most occasions. It is found that recurrent disease is finally observed in patients who occurred chemo-resistance after completely primary treatment. It is a challenge that monitoring treatment efficacy and tumor recurrence of CNS tumors are full of risks and difficulties by brain biopsies. However, the brain biopsies are considered as an invasive technique with low specificity and low sensitivity. In contrast, the liquid biopsy is based on blood and cerebrospinal fluid (CSF) test, which is going to acceptable among the patients through it's minimally invasive and serial bodily fluids. The advantages of liquid biopsy are to follow the development of tumors, provide new insights in real time, and accurate medical care. The major analytical constituents of liquid biopsy contain the Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating cell-free microRNAs (cfmiRNAs), and circulating exosomes. Liquid biopsy has been widely utilized in CNS tumors in recent years, and the CTCs and ctDNA have become the hot topics for researching. In this review, we are going to explain the clinical potential of liquid biopsy biomarkers in CNS tumor by testing circulating miRNAs and exosomes to evaluate diagnose, prognosis, and response to treatment.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Nuersimanguli Maimaitiming
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Hu Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang, PR China
- Bazhou People’s HospitalXinjiang, PR China
| |
Collapse
|
37
|
Wilson HL, D'Agostino RB, Meegalla N, Petro R, Commander S, Topaloglu U, Zhang W, Porosnicu M. The Prognostic and Therapeutic Value of the Mutational Profile of Blood and Tumor Tissue in Head and Neck Squamous Cell Carcinoma. Oncologist 2020; 26:e279-e289. [PMID: 33098199 PMCID: PMC7873320 DOI: 10.1002/onco.13573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to explore the genomic landscape of head and neck squamous cell carcinoma (HNSCC) in circulation (circulating tumor DNA [ctDNA]) and tumor (tumor tissue DNA [tDNA]) and understand the implications of ctDNA sequencing for prognosis and precision oncology treatments. MATERIALS AND METHODS This is a retrospective review of 75 patients with HNSCC for both tDNA and ctDNA. Results were analyzed for concordance between tDNA and ctDNA and for their individual and combined association with demographics, survival, and presence and extent of disease at last visit (DLV). RESULTS The five most frequently altered genes were TP53, CDKN2A, TERT, BRCA2, and NOTCH1. Twenty percent of patients had NOTCH1 alterations in tDNA, with none found in ctDNA. Concordance among altered genes was 13.0%, and 65.3% of patients had actionable ctDNA alterations. ctDNA alterations were significantly associated with decreased overall survival (OS) and presence and extent of DLV. In DNA repair genes, alterations in ctDNA alone and combined with tDNA were significantly associated with decreased OS and presence of DLV. Similar significant associations were found in TP53 for ctDNA alone and combined with tDNA. DNA repair gene alterations in ctDNA and unique ctDNA alterations within partially concordant genes were significantly associated with decreased OS in multivariate analysis. CONCLUSION This study illustrates the circulating and tumor genomic profile in the largest HNSCC cohort to date, underscoring the potential utility of ctDNA in prognostication and precision oncology treatment. For the first time, the presence of ctDNA alterations and specific ctDNA sequencing results were shown to be significantly associated with poor prognosis in HNSCC. IMPLICATIONS FOR PRACTICE The use of precision genomic targeted therapies in head and neck squamous cell carcinoma (HNSCC) lags behind many other cancers, and poor survival in advanced stages indicates the urgent need for improved treatment options. This exploratory analysis of circulating tumor DNA (ctDNA) and tumor tissue DNA (tDNA) sequencing in the largest cohort to date of patients with HNSCC provides a novel depiction of the ctDNA genome, with two thirds of patients having actionable ctDNA alterations. This study reports for the first time the prognostic value of ctDNA sequencing, with the presence of ctDNA alterations, specific ctDNA alterations in DNA repair genes and TP53, and unique ctDNA alterations within partially concordant genes predicting poor survival.
Collapse
Affiliation(s)
- Harper L Wilson
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Division of Public Health Sciences, Winston-Salem, North Carolina, USA
| | - Nuwan Meegalla
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Robin Petro
- Department of Internal Medicine, Section on Hematology Oncology, Winston-Salem, North Carolina, USA
| | - Sara Commander
- Department of Internal Medicine, Section on Hematology Oncology, Winston-Salem, North Carolina, USA
| | - Umit Topaloglu
- Department of Cancer Biology, Winston-Salem, North Carolina, USA
| | - Wei Zhang
- Department of Cancer Biology, Winston-Salem, North Carolina, USA.,Center of Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section on Hematology Oncology, Winston-Salem, North Carolina, USA
| |
Collapse
|
38
|
Zhang Q, Fu Q, Bai X, Liang T. Molecular Profiling-Based Precision Medicine in Cancer: A Review of Current Evidence and Challenges. Front Oncol 2020; 10:532403. [PMID: 33194591 PMCID: PMC7652987 DOI: 10.3389/fonc.2020.532403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Matched therapy based on next-generation sequencing is now a part of routine care to guide the treatment of patients with advanced solid tumors. However, whether and to what extent patients can benefit from this strategy on a large scale remains uncertain. In the past decade, several clinical studies were performed in this field, among which only one was a randomized trial. We reviewed the literature on this topic and summarize the existing data about the efficacy of this treatment strategy. Currently, the evidence is promising but not solid. Multiple ongoing trials are also summarized. We also discuss the limitations of this treatment strategy and certain unsolved important problems, including how to select the sample and target level, how to interpret the results, and the problem of drug accessibility. All these issues should receive more attention in future clinical trial design and the application of target therapy in cancer treatment.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Qihan Fu
- The Key Laboratory of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
39
|
Circulating tumour DNA in metastatic breast cancer to guide clinical trial enrolment and precision oncology: A cohort study. PLoS Med 2020; 17:e1003363. [PMID: 33001984 PMCID: PMC7529214 DOI: 10.1371/journal.pmed.1003363] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Metastatic breast cancer (mBC) is a heterogenous disease with increasing availability of targeted therapies as well as emerging genomic markers of therapeutic resistance, necessitating timely and accurate molecular characterization of disease. As a minimally invasive test, analysis of circulating tumour DNA (ctDNA) is well positioned for real-time genomic profiling to guide treatment decisions. Here, we report the results of a prospective testing program established to assess the feasibility of ctDNA analysis to guide clinical management of mBC patients. METHODS AND FINDINGS Two hundred thirty-four mBC patients (median age 54 years) were enrolled between June 2015 and October 2018 at the Peter MacCallum Cancer Centre, Melbourne, Australia. Median follow-up was 15 months (range 1-46). All patient samples at the time of enrolment were analysed in real time for the presence of somatic mutations. Longitudinal plasma testing during the course of patient management was also undertaken in a subset of patients (n = 67, 28.6%), according to clinician preference, for repeated molecular profiling or disease monitoring. Detection of somatic mutations from patient plasma was performed using a multiplexed droplet digital PCR (ddPCR) approach to identify hotspot mutations in PIK3CA, ESR1, ERBB2, and AKT1. In parallel, subsets of samples were also analysed via next-generation sequencing (targeted panel sequencing and low-coverage whole-genome sequencing [LC-WGS]). The sensitivity of ddPCR and targeted panel sequencing to identify actionable mutations was compared. Results were discussed at a multidisciplinary breast cancer meeting prior to treatment decisions. ddPCR and targeted panel sequencing identified at least 1 actionable mutation at baseline in 80/234 (34.2%) and 62/159 (39.0%) of patients tested, respectively. Combined, both methods detected an actionable alteration in 104/234 patients (44.4%) through baseline or serial ctDNA testing. LC-WGS was performed on 27 patients from the cohort, uncovering several recurrently amplified regions including 11q13.3 encompassing CCND1. Increasing ctDNA levels were associated with inferior overall survival, whether assessed by ddPCR, targeted sequencing, or LC-WGS. Overall, the ctDNA results changed clinical management in 40 patients including the direct recruitment of 20 patients to clinical trials. Limitations of the study were that it was conducted at a single site and that 31.3% of participants were lost to follow-up. CONCLUSION In this study, we found prospective ctDNA testing to be a practical and feasible approach that can guide clinical trial enrolment and patient management in mBC.
Collapse
|
40
|
Mansour H, Ouhajjou A, Bajic VB, Incitti R. Next-Generation Sequencing at High Sequencing Depth as a Tool to Study the Evolution of Metastasis Driven by Genetic Change Events of Lung Squamous Cell Carcinoma. Front Oncol 2020; 10:1215. [PMID: 32903616 PMCID: PMC7438761 DOI: 10.3389/fonc.2020.01215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background: The aim of this study is to report tumoral genetic mutations observed at high sequencing depth in a lung squamous cell carcinoma (SqCC) sample. We describe the findings and differences in genetic mutations that were studied by deep next-generation sequencing methods on the primary tumor and liver metastasis samples. In this report, we also discuss how these differences may be involved in determining the tumor progression leading to the metastasis stage. Methods: We followed one lung SqCC patient who underwent FDG-PET scan imaging, before and after three months of treatment. We sequenced 26 well-known cancer-related genes, at an average of ~6,000 × sequencing coverage, in two spatially distinct regions, one from a primary lung tumor metastasis and the other from a distal liver metastasis, which was present before the treatment. Results: A total of 3,922,196 read pairs were obtained across all two samples' sequenced locations. Merged mapped reads showed several variants, from which we selected 36 with high confidence call. While we found 83% of genetic concordance between the distal metastasis and primary tumor, six variants presented substantial discordance. In the liver metastasis sample, we observed three de novo genetic changes, two on the FGFR3 gene and one on the CDKN2A gene, and the frequency of one variant found on the FGFR2 gene has been increased. Two genetic variants in the HRAS gene, which were present initially in the primary tumor, have been completely lost in the liver tumor. The discordant variants have coding consequences as follows: FGFR3 (c.746C>G, p. Ser249Cys), CDKN2A (c.47_50delTGGC, p. Leu16Profs*9), and HRAS (c.182A>C, p. Gln61Pro). The pathogenicity prediction scores for the acquired variants, assessed using several databases, reported these variants as pathogenic, with a gain of function for FGFR3 and a loss of function for CDKN2A. The patient follow-up using imaging with 18F-FDG PET/CT before and after four cycles of treatment shows discordant tumor progression in metastatic liver compared to primary lung tumor. Conclusions: Our results report the occurrence of several genetic changes between primary tumor and distant liver metastasis in lung SqCC, among which non-silent mutations may be associated with tumor evolution during metastasis.
Collapse
Affiliation(s)
- Hicham Mansour
- GES-LCM2E, FPN, Mohamed First University, Oujda, Morocco
| | | | - Vladimir B Bajic
- CBRC, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Roberto Incitti
- CBRC, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
41
|
Leick KM, Kazarian AG, Rajput M, Tomanek-Chalkley A, Miller A, Shrader HR, McCarthy A, Coleman KL, Kasi PM, Chan CHF. Peritoneal Cell-Free Tumor DNA as Biomarker for Peritoneal Surface Malignancies. Ann Surg Oncol 2020; 27:5065-5071. [PMID: 32648179 DOI: 10.1245/s10434-020-08832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Disease burden in patients with peritoneal carcinomatosis (PC) is difficult to estimate. We evaluate whether peritoneal cell-free tumor DNA can be used as a measure of disease burden. PATIENTS AND METHODS Malignant ascites or peritoneal lavage fluids were collected from patients with PC under approved IRB protocol. Cell-free DNA was extracted from peritoneal fluid. Droplet digital PCR (ddPCR) was performed using a commercially available KRAS G12/G13 screening kit. Mutant allele frequency (MAF) was calculated based on the numbers of KRAS wild-type and mutant droplets. Clinicopathological, treatment and outcome data were abstracted and correlated with MAF of cell-free KRAS mutant DNA. RESULTS Cell-free KRAS mutant DNA was detected in 15/37 (40%) malignant peritoneal fluids with a MAF of 0.1% to 26.2%. While peritoneal cell-free KRAS mutant DNA was detected in all the patients with KRAS mutant tumors (N = 10), 3/16 (19%) patients with KRAS wild-type tumors also had peritoneal cell-free KRAS mutant DNA. We also found that 71% (5/7) of patients with disease amenable to cytoreductive surgery (CRS) had a MAF of < 1% (median: 0.5%, range: 0.1-4.7%), while 75% (6/8) of patients with unresectable disease had a MAF of > 1% (median: 4.4%, range: 0.1-26.2%). CONCLUSIONS This pilot proof-of-principle study suggests that peritoneal cell-free tumor DNA detected by ddPCR may enable prediction of disease burden and a measure of disease amenable to CRS in patients with PC.
Collapse
Affiliation(s)
- Katie M Leick
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | | | - Maheen Rajput
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | | | - Ann Miller
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | | | - Ashley McCarthy
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Kristen L Coleman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Pashtoon M Kasi
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Carlos H F Chan
- Department of Surgery, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
42
|
The Role of Liquid Biopsies in Detecting Molecular Tumor Biomarkers in Brain Cancer Patients. Cancers (Basel) 2020; 12:cancers12071831. [PMID: 32650387 PMCID: PMC7408771 DOI: 10.3390/cancers12071831] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal primary central nervous system cancers with a median overall survival of only 12-15 months. The best documented treatment is surgical tumor debulking followed by chemoradiation and adjuvant chemotherapy with temozolomide, but treatment resistance and therefore tumor recurrence, is the usual outcome. Although advances in molecular subtyping suggests GBM can be classified into four subtypes, one concern about using the original histology for subsequent treatment decisions is that it only provides a static snapshot of heterogeneous tumors that may undergo longitudinal changes over time, especially under selective pressure of ongoing therapy. Liquid biopsies obtained from bodily fluids like blood and cerebro-spinal fluid (CSF) are less invasive, and more easily repeated than surgery. However, their deployment for patients with brain cancer is only emerging, and possibly suppressed clinically due to the ongoing belief that the blood brain barrier prevents the egress of circulating tumor cells, exosomes, and circulating tumor nucleic acids into the bloodstream. Although brain cancer liquid biopsy analyses appear indeed challenging, advances have been made and here we evaluate the current literature on the use of liquid biopsies for detection of clinically relevant biomarkers in GBM to aid diagnosis and prognostication.
Collapse
|
43
|
Pall AH, Jakobsen KK, Grønhøj C, von Buchwald C. Circulating tumour DNA alterations as biomarkers for head and neck cancer: a systematic review. Acta Oncol 2020; 59:845-850. [PMID: 32223478 DOI: 10.1080/0284186x.2020.1742930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a significant global burden. The development of a diagnostic or recurrence monitoring test could evolve from the exploitation of molecular markers such as tumour-specific DNA alterations in plasma. The aim of this study was to report specific genetic alterations of DNA in plasma from HNSCC patients, report the diagnostic accuracy, and discuss potentials for a diagnostic or recurrence monitoring test based on circulating tumour DNA (ctDNA).Methods: A systematic search was performed in PubMed, Embase, and Cochrane Library for articles published in English between 1 January 1980 and 24 October 2018. The search terms used were related to ctDNA methylations and mutations in HNSCC patients.Results: We identified 16 studies from four countries (p = 1156 patients, c = 601 controls) examining ctDNA alterations of HNSCC patients. CtDNA methylations were significantly increased in HNSCC patients compared to controls. Five studies investigated ctDNA mutations in HNSCC. The most frequent examined gene mutation was TP53. Eleven studies investigated ctDNA methylations in HNSCC. Nine studies calculated the diagnostic accuracy of ctDNA methylations in HNSCC compared to controls. The most frequent examined gene methylations were CDKN2A, DAPK1, RASSF1, and P15.Conclusion: We found that increasing the number of ctDNA genetic methylations resulted in an increase in diagnostic sensitivity accuracy. No studies investigating ctDNA mutations included a control group. A combination of multiple human ctDNA gene alterations with viral ctDNA are promising tools for developing a ctDNA biomarker for HNSCC.
Collapse
Affiliation(s)
- Amalie Hartvig Pall
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Mes SW, Brink A, Sistermans EA, Straver R, Oudejans CBM, Poell JB, Leemans CR, Brakenhoff RH. Comprehensive multiparameter genetic analysis improves circulating tumor DNA detection in head and neck cancer patients. Oral Oncol 2020; 109:104852. [PMID: 32590298 DOI: 10.1016/j.oraloncology.2020.104852] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 06/07/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Tumor-specific genetic aberrations in cell-free DNA (cfDNA) from plasma are promising biomarkers for diagnosis of recurrent head and neck squamous cell carcinoma (HNSCC). However, the sensitivity when using somatic mutations only in cfDNA is suboptimal. Here, we combined detection of copy number aberrations (CNAs), human papillomavirus (HPV) DNA and somatic mutations in a single sequencing workflow. METHODS Pretreatment plasmas of 40 patients and 20 non-cancer controls were used for analysis. Plasma DNA underwent low-coverage whole genome sequencing (lcWGS) to detect both CNAs and HPV-DNA, and deep sequencing to detect mutations in 12 frequently altered cancer driver genes in HNSCC using the same sequencing library. A specific analysis pipeline line was developed for data mining. The corresponding tumors were analyzed using slightly adapted protocols. RESULTS Using the developed method, somatic mutations and CNAs were detected in plasma DNA of HNSCC patients in 67% and 52%, respectively. HPV-DNA in plasma was detected in 100% of patients with HPV-positive tumors, and not in plasma of patients with HPV-negative tumors or non-cancer controls. Combined analysis increased the detection rate of tumor DNA in plasma to 78%. The detection rate was significantly associated with the stage of disease of the tumor. Neither HPV status nor location of the primary tumor influenced detection of CNAs or somatic mutations in plasma. CONCLUSIONS This study demonstrates that the combined analysis of CNAs, HPV and somatic mutations in plasma of HNSCC patients is feasible and contributes to a higher sensitivity of the assay compared to single modality analyses.
Collapse
Affiliation(s)
- Steven W Mes
- Department of Otolaryngology - Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Arjen Brink
- Department of Otolaryngology - Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Erik A Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Roy Straver
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Cees B M Oudejans
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jos B Poell
- Department of Otolaryngology - Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - C René Leemans
- Department of Otolaryngology - Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology - Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
45
|
Henriksen TV, Reinert T, Christensen E, Sethi H, Birkenkamp-Demtröder K, Gögenur M, Gögenur I, Zimmermann BG, Dyrskjøt L, Andersen CL. The effect of surgical trauma on circulating free DNA levels in cancer patients-implications for studies of circulating tumor DNA. Mol Oncol 2020; 14:1670-1679. [PMID: 32471011 PMCID: PMC7400779 DOI: 10.1002/1878-0261.12729] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Detection of circulating tumor DNA (ctDNA) post‐treatment is an emerging marker of residual disease. ctDNA constitutes only a minor fraction of the cell‐free DNA (cfDNA) circulating in cancer patients, complicating ctDNA detection. This is exacerbated by trauma‐induced cfDNA. To guide optimal blood sample timing, we investigated the duration and magnitude of surgical trauma‐induced cfDNA in patients with colorectal or bladder cancer. DNA levels were quantified in paired plasma samples collected before and up to 6 weeks after surgery from 436 patients with colorectal cancer and 47 patients with muscle‐invasive bladder cancer. To assess whether trauma‐induced cfDNA fragments are longer than ordinary cfDNA fragments, the concentration of short (< 1 kb) and long (> 1 kb) fragments was determined for 91 patients. Previously reported ctDNA data from 91 patients with colorectal cancer and 47 patients with bladder cancer were used to assess how trauma‐induced DNA affects ctDNA detection. The total cfDNA level increased postoperatively—both in patients with colorectal cancer (mean threefold) and bladder cancer (mean eightfold). The DNA levels were significantly increased up to 4 weeks after surgery in both patient cohorts (P = 0.0005 and P ≤ 0.0001). The concentration of short, but not long, cfDNA fragments increased postoperatively. Of 25 patients with radiological relapse, eight were ctDNA‐positive and 17 were ctDNA‐negative in the period with trauma‐induced DNA. Analysis of longitudinal samples revealed that five of the negative patients became positive shortly after the release of trauma‐induced cfDNA had ceased. In conclusion, surgery was associated with elevated cfDNA levels, persisting up to 4 weeks, which may have masked ctDNA in relapse patients. Trauma‐induced cfDNA was of similar size to ordinary cfDNA. To mitigate the impact of trauma‐induced cfDNA on ctDNA detection, it is recommended that a second blood sample collected after week 4 is analyzed for patients initially ctDNA negative.
Collapse
Affiliation(s)
- Tenna V Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Emil Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Mikail Gögenur
- Center for Surgical Sciences, Zealand University Hospital, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Sciences, Zealand University Hospital, Køge, Denmark
| | | | | | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
46
|
Popescu B, Oașă ID, Bertesteanu SVG, Balalau C, Manole F, Domuta M, Oancea ALA. Strategies to improve activity and results of the head and neck tumor board. JOURNAL OF CLINICAL AND INVESTIGATIVE SURGERY 2020. [DOI: 10.25083/2559.5555/5.1/9.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
47
|
Vessies DCL, Greuter MJE, van Rooijen KL, Linders TC, Lanfermeijer M, Ramkisoensing KL, Meijer GA, Koopman M, Coupé VMH, Vink GR, Fijneman RJA, van den Broek D. Performance of four platforms for KRAS mutation detection in plasma cell-free DNA: ddPCR, Idylla, COBAS z480 and BEAMing. Sci Rep 2020; 10:8122. [PMID: 32415199 PMCID: PMC7229219 DOI: 10.1038/s41598-020-64822-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/21/2020] [Indexed: 01/13/2023] Open
Abstract
Multiple platforms are commercially available for the detection of circulating cell-free tumour DNA (ctDNA) from liquid biopsies. Since platforms have different input and output variables, deciding what platform to use for a given clinical or research question can be daunting. This study aimed to provide insight in platform selection criteria by comparing four commercial platforms that detect KRAS ctDNA hotspot mutations: Bio-Rad droplet digital PCR (ddPCR), BioCartis Idylla, Roche COBAS z480 and Sysmex BEAMing. Platform sensitivities were determined using plasma samples from metastatic colorectal cancer (mCRC) patients and synthetic reference samples, thereby eliminating variability in amount of plasma analysed and ctDNA isolation methods. The prevalence of KRAS nucleotide alterations was set against platform-specific breadth of target. Platform comparisons revealed that ddPCR and BEAMing detect more KRAS mutations amongst mCRC patients than Idylla and COBAS z480. Maximum sample throughput was highest for ddPCR and COBAS z480. Total annual costs were highest for BEAMing and lowest for Idylla and ddPCR. In conclusion, when selecting a platform for detection of ctDNA hotspot mutations the desired test sensitivity, breadth of target, maximum sample throughput, and total annual costs are critical factors that should be taken into consideration. Based on the results of this study, laboratories will be able to select the optimal platform for their needs.
Collapse
Affiliation(s)
- D C L Vessies
- Netherlands Cancer Institute, department of laboratory medicine, Amsterdam, The Netherlands.
| | - M J E Greuter
- Amsterdam University Medical Centers, location VUmc, department of epidemiology and biostatistics, Amsterdam, The Netherlands
| | - K L van Rooijen
- University Medical Center Utrecht, department of medical oncology, Utrecht University, Utrecht, The Netherlands
| | - T C Linders
- Netherlands Cancer Institute, department of laboratory medicine, Amsterdam, The Netherlands
| | - M Lanfermeijer
- Netherlands Cancer Institute, department of laboratory medicine, Amsterdam, The Netherlands
| | - K L Ramkisoensing
- Netherlands Cancer Institute, department of laboratory medicine, Amsterdam, The Netherlands
| | - G A Meijer
- Netherlands Cancer Institute, department of pathology, Amsterdam, The Netherlands
| | - M Koopman
- University Medical Center Utrecht, department of medical oncology, Utrecht University, Utrecht, The Netherlands
| | - V M H Coupé
- Amsterdam University Medical Centers, location VUmc, department of epidemiology and biostatistics, Amsterdam, The Netherlands
| | - G R Vink
- University Medical Center Utrecht, department of medical oncology, Utrecht University, Utrecht, The Netherlands.,Netherlands Comprehensive Cancer Organisation, department of research, Utrecht, The Netherlands
| | - R J A Fijneman
- Netherlands Cancer Institute, department of pathology, Amsterdam, The Netherlands
| | - D van den Broek
- Netherlands Cancer Institute, department of laboratory medicine, Amsterdam, The Netherlands
| |
Collapse
|
48
|
SLAM-MS: Mutation scanning of stem-loop amplicons with TaqMan probes by quantitative DNA melting analysis. Sci Rep 2020; 10:5476. [PMID: 32214156 PMCID: PMC7096437 DOI: 10.1038/s41598-020-62173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
DNA Melting Analysis (DMA) with a TaqMan probe covering the mutation “hot spot” is a simple, sensitive, and “closed tube” method of mutation detection. However, DMA requires asymmetric PCR to produce single-stranded amplicons capable of interacting with TaqMan probes. This makes quantitative analysis impossible owing to low amplification efficiency. Moreover, bi-strand mutation detection necessitates two independent PCRs. The SLAM-MS (Stem-Loop AMplicon Mutation Scanning) assay, in which symmetric PCR is performed using primers with 5'-universal primer sequence (UPS), has been developed to detect KRAS mutations. Some of the resulting amplicons, sense and antisense, adopt single-stranded stem-loop conformation and become unable to renature, but able to hybridize with TaqMan probes. Hybrids of stem-loops and complementary TaqMan probes are suitable for melting analysis and simultaneous bi-strand mutation scanning. In addition, the areas under the melting peaks are determined by the PeakFit software, a non-linear iterative curve fitting program, to evaluate the wild-type/mutant allele ratio. Thus, the SLAM-MS assay permits quantification of both the number of copies of the target sequence and the percentage of mutant alleles. For mutant enrichment, the SLAM-MS assay uses TaqMan probes as PCR blocking agents allowing an ~10 times higher mutation detection sensitivity than High Resolution Melting (HRM) assay.
Collapse
|
49
|
Huang A, Wang YP, Wang J, Fu PY, Zhang X, Cao Y, Fan J, Yang XR, Zhou J. Limited bias effect of intratumoral heterogeneity on genetic profiling of hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:112-120. [PMID: 32175113 DOI: 10.21037/jgo.2019.09.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Utilization of next-generation sequencing (NGS) to identify potential therapeutic targets and then prescribe matched agents provides new hope for patients with advanced cancer, such as hepatocellular carcinoma (HCC). However, intratumoral heterogeneity (ITH) challenges precise genomic profiling and may lead to target treatment failure. This study aims to evaluate whether and to what extent would genetic profiling be biased by ITH in HCC. We datamined publications focusing on the ITH of HCC and extracted the sequencing and clinicopathological information to make data reanalysis. Potential therapeutic targets and driver genes in HCC were specially pooled as reference to analyze the bias effect of ITH on genetic profiling. Five studies which analyzed ITH using NGS of multi-site samples were enrolled, with a total of 207 tumor samples from 36 HCC patients. The ITH ranged from 5.21% to 88.27% and no correlations between ITH extent and sample numbers, sequencing depth, or clinicopathological parameters were observed. In total, 72 therapeutic and 15 candidate driver genes were pooled as reference. Totally, 38.8% HCCs were found to be drugable in single-site sample, of which only 19.4% might be biased by ITH. Of the driver genes, 86% could be detected in single-site sample. HCC is a highly heterogeneous disease. While ITH indeed hinders comprehensive and precise HCC genome profiling, it has limited influences on identification of actionable and driver mutations. Single-site sampling/biopsy assayed with targeted deep sequencing might be efficient in the clinical management of HCC.
Collapse
Affiliation(s)
- Ao Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yu-Peng Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Jian Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Pei-Yao Fu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xin Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ya Cao
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Central South University, Ministry of Education, Changsha 410078, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.,State Key Laboratory of Genetic Engineering Fudan University, Shanghai 200433, China
| |
Collapse
|
50
|
Botezatu IV, Kondratova VN, Shelepov VP, Mazurenko NN, Tsyganova IV, Susova OY, Lichtenstein AV. Asymmetric mutant-enriched polymerase chain reaction and quantitative DNA melting analysis of KRAS mutation in colorectal cancer. Anal Biochem 2020; 590:113517. [PMID: 31782995 DOI: 10.1016/j.ab.2019.113517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/03/2023]
Abstract
Identification of mutant genes in tumor tissues and blood plasma (solid and liquid biopsy samples, respectively) is a necessity for individualized treatment of cancer patients. Here we report the use of a novel mutant-enriched PCR - quantitative DNA melting curve analysis (mePCR-qDMA) with TaqMan probes. The TaqMan probes served as blocking agents during PCR and as hybridization probes during DNA melting curve analyses. The end-point measurement of melt peaks areas by PeakFit software, a nonlinear iterative curve-fitting program, permitted quantification of the mutant/wild-type allele ratios. Approximately 6% and 0.1% of mutant KRAS allele in an excess of wild-type allele is detected with the standard and mePCR-qDMA processes, respectively. The application of the approach was tested for detecting the KRAS codon 12/13 mutation in paired tumor and blood plasma samples from 20 colorectal cancer patients. KRAS mutants were detected in 7 and 18 FFPE tumor samples, and in 3 and 7 plasma samples by the standard and mePCR-qDMA process, respectively. The results were confirmed by Sanger sequencing. This simple, rapid, cost-effective, and quantitative method carried out in a closed-tube format could be applied for the clinical analyses of other cancer genes.
Collapse
Affiliation(s)
- Irina V Botezatu
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Valentina N Kondratova
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Valery P Shelepov
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Natalia N Mazurenko
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Irina V Tsyganova
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Olga Y Susova
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Anatoly V Lichtenstein
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia.
| |
Collapse
|