1
|
Toh SY, Leong HS, Chong FT, Rodrigues-Junior DM, Ren MJ, Kwang XL, Lau DPX, Lee PH, Vettore AL, Teh BT, Tan DSW, Iyer NG. Therapeutic application of extracellular vesicular EGFR isoform D as a co-drug to target squamous cell cancers with tyrosine kinase inhibitors. Dev Cell 2024; 59:2189-2202.e8. [PMID: 39089249 DOI: 10.1016/j.devcel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Targeting wild-type epidermal growth factor receptor (EGFR) using tyrosine kinase inhibitors (TKIs) never achieved its purported success in cancers such as head and neck squamous cell carcinoma, which are largely EGFR-dependent. We had previously shown that exceptional responders to TKIs have a genetic aberration that results in overexpression of an EGFR splice variant, isoform D (IsoD). IsoD lacks an integral transmembrane and kinase domain and is secreted in extracellular vesicles (EVs) in TKI-sensitive patient-derived cultures. Remarkably, the exquisite sensitivity to TKIs could be transferred to TKI-resistant tumor cells, and IsoD protein in the EV is necessary and sufficient to transfer the phenotype in vitro and in vivo across multiple models and drugs. This drug response requires an intact endocytic mechanism, binding to full-length EGFR, and signaling through Src-phosphorylation within the endosomal compartment. We propose a therapeutic strategy using EVs containing EGFR IsoD as a co-drug to expand the use of TKI therapy to EGFR-driven cancers.
Collapse
Affiliation(s)
- Shen Yon Toh
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Dorival Mendes Rodrigues-Junior
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Meng Jie Ren
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Dawn P X Lau
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Po-Hsien Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Andre Luiz Vettore
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Daniel S W Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Academic Clinical Program in Oncology, Duke-NUS Medical School, Singapore, Singapore; Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Natsume M, Niwa M, Ichikawa S, Okamoto T, Tsutsui H, Usukura D, Murata T, Abe R, Shimonaka M, Nishida T, Shiina I, Obata Y. Brefeldin A and M-COPA block the export of RTKs from the endoplasmic reticulum via simultaneous inactivation of ARF1, ARF4, and ARF5. J Biol Chem 2024; 300:107327. [PMID: 38679330 PMCID: PMC11127164 DOI: 10.1016/j.jbc.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Normal receptor tyrosine kinases (RTKs) need to reach the plasma membrane (PM) for ligand-induced activation, whereas its cancer-causing mutants can be activated before reaching the PM in organelles, such as the Golgi/trans-Golgi network (TGN). Inhibitors of protein export from the endoplasmic reticulum (ER), such as brefeldin A (BFA) and 2-methylcoprophilinamide (M-COPA), can suppress the activation of mutant RTKs in cancer cells, suggesting that RTK mutants cannot initiate signaling in the ER. BFA and M-COPA block the function of ADP-ribosylation factors (ARFs) that play a crucial role in ER-Golgi protein trafficking. However, among ARF family proteins, the specific ARFs inhibited by BFA or M-COPA, that is, the ARFs involved in RTKs transport from the ER, remain unclear. In this study, we showed that M-COPA blocked the export of not only KIT but also PDGFRA/EGFR/MET RTKs from the ER. ER-retained RTKs could not fully transduce anti-apoptotic signals, thereby leading to cancer cell apoptosis. Moreover, a single knockdown of ARF1, ARF3, ARF4, ARF5, or ARF6 could not block ER export of RTKs, indicating that BFA/M-COPA treatment cannot be mimicked by the knockdown of only one ARF member. Interestingly, simultaneous transfection of ARF1, ARF4, and ARF5 siRNAs mirrored the effect of BFA/M-COPA treatment. Consistent with these results, in vitro pulldown assays showed that BFA/M-COPA blocked the function of ARF1, ARF4, and ARF5. Taken together, these results suggest that BFA/M-COPA targets at least ARF1, ARF4, and ARF5; in other words, RTKs require the simultaneous activation of ARF1, ARF4, and ARF5 for their ER export.
Collapse
Affiliation(s)
- Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Mariko Niwa
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Sho Ichikawa
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takuma Okamoto
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Hisazumi Tsutsui
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Daiki Usukura
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Murata
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba, Japan
| | - Motoyuki Shimonaka
- Faculty of Science, Department of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, Tokyo, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Isamu Shiina
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Chan SM, Raglow Z, Pal A, Gitlin SD, Legendre M, Thomas D, Mehta RK, Tan M, Nyati MK, Rehemtulla A, Markovitz DM. A molecularly engineered lectin destroys EGFR and inhibits the growth of non-small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585535. [PMID: 38562773 PMCID: PMC10983887 DOI: 10.1101/2024.03.18.585535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Survival rates for non-small cell lung cancer (NSCLC) remain low despite the advent of novel therapeutics. Tyrosine kinase inhibitors (TKIs) targeting mutant epidermal growth factor receptor (EGFR) in NSCLC have significantly improved mortality but are plagued with challenges--they can only be used in the small fraction of patients who have susceptible driver mutations, and resistance inevitably develops. Aberrant glycosylation on the surface of cancer cells is an attractive therapeutic target as these abnormal glycosylation patterns are typically specific to cancer cells and are not present on healthy cells. H84T BanLec (H84T), a lectin previously engineered by our group to separate its antiviral activity from its mitogenicity, exhibits precision binding of high mannose, an abnormal glycan present on the surface of many cancer cells, including NSCLC. Here, we show that H84T binds to and inhibits the growth of diverse NSCLC cell lines by inducing lysosomal degradation of EGFR and leading to cancer cell death through autophagy. This is a mechanism distinct from EGFR TKIs and is independent of EGFR mutation status; H84T inhibited proliferation of both cell lines expressing wild type EGFR and those expressing mutant EGFR that is resistant to all TKIs. Further, H84T binds strongly to multiple and diverse clinical samples of both pulmonary adenocarcinoma and squamous cell carcinoma. H84T is thus a promising potential therapeutic in NSCLC, with the ability to circumvent the challenges currently faced by EGFR TKIs.
Collapse
|
4
|
Guan K, Liu K, Jiang Y, Bian J, Gao Y, Dong E, Li Z. Nanoparticles Internalization through HIP-55-Dependent Clathrin Endocytosis Pathway. NANO LETTERS 2023; 23:11477-11484. [PMID: 38084909 DOI: 10.1021/acs.nanolett.3c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanoparticles are promising tools for biomedicine. Many nanoparticles are internalized to function. Clathrin-mediated endocytosis is one of the most important mechanisms for nanoparticle internalization. However, the regulatory mechanism of clathrin-mediated nanoparticle endocytosis is still unclear. Here, we report that the adapter protein HIP-55 regulates clathrin-mediated nanoparticle endocytosis. CdSe/ZnS quantum dots (QDs), a typical nanoparticle, enter cells through the HIP-55-dependent clathrin endocytosis pathway. Both pharmacological inhibitor and genetic intervention demonstrate that QDs enter cells through clathrin-mediated endocytosis. HIP-55 can interact with clathrin and promote clathrin-mediated QDs endocytosis. Furthermore, HIP-55 ΔADF which is defective in F-actin binding fails to promote QDs endocytosis, indicating HIP-55 promotes clathrin-mediated QDs endocytosis depending on interaction with F-actin. In vivo, HIP-55 knockout also inhibits endocytosis of QDs. These findings reveal that HIP-55 acts as an intrinsic regulator for clathrin-mediated nanoparticle endocytosis, providing new insight into the nanoparticle internalization and a new strategy for nanodrug enrichment in target cells.
Collapse
Affiliation(s)
- Kaihang Guan
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Kai Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Yunqi Jiang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Yang Gao
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
5
|
Thomas BJ, Guldenpfennig C, Guan Y, Winkler C, Beecher M, Beedy M, Berendzen AF, Ma L, Daniels MA, Burke DH, Porciani D. Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102046. [PMID: 37869258 PMCID: PMC10589377 DOI: 10.1016/j.omtn.2023.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
A significant fraction of non-small cell lung cancer (NSCLC) cases are due to oncogenic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Anti-EGFR antibodies have shown limited clinical benefit for NSCLC, whereas tyrosine kinase inhibitors (TKIs) are effective, but resistance ultimately occurs. The current landscape suggests that alternative ligands that target wild-type and mutant EGFRs are desirable for targeted therapy or drug delivery development. Here we evaluate NSCLC targeting using an anti-EGFR aptamer (MinE07). We demonstrate that interaction sites of MinE07 overlap with clinically relevant antibodies targeting extracellular domain III and that MinE07 retains binding to EGFR harboring the most common oncogenic and resistance mutations. When MinE07 was linked to an anti-c-Met aptamer, the EGFR/c-Met bispecific aptamer (bsApt) showed superior labeling of NSCLC cells in vitro relative to monospecific aptamers. However, dual targeting in vivo did not improve the recognition of NSCLC xenografts compared to MinE07. Interestingly, biodistribution of Cy7-labeled bsApt differed significantly from Alexa Fluor 750-labeled bsApt. Overall, our findings demonstrate that aptamer formulations containing MinE07 can target ectopic lung cancer without additional stabilization or PEGylation and highlights the potential of MinE07 as a targeting reagent for the recognition of NSCLC harboring clinically relevant EGFRs.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Caitlyn Guldenpfennig
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Yue Guan
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Calvin Winkler
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Margaret Beecher
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Michaela Beedy
- Department of Biochemistry, Westminster College, Fulton, MO 65251, USA
| | - Ashley F. Berendzen
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Lin SJ, Lin MC, Liu TJ, Tsai YT, Tsai MT, Lee FJS. Endosomal Arl4A attenuates EGFR degradation by binding to the ESCRT-II component VPS36. Nat Commun 2023; 14:7859. [PMID: 38030597 PMCID: PMC10687025 DOI: 10.1038/s41467-023-42979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Ligand-induced epidermal growth factor receptor (EGFR) endocytosis followed by endosomal EGFR signaling and lysosomal degradation plays important roles in controlling multiple biological processes. ADP-ribosylation factor (Arf)-like protein 4 A (Arl4A) functions at the plasma membrane to mediate cytoskeletal remodeling and cell migration, whereas its localization at endosomal compartments remains functionally unknown. Here, we report that Arl4A attenuates EGFR degradation by binding to the endosomal sorting complex required for transport (ESCRT)-II component VPS36. Arl4A plays a role in prolonging the duration of EGFR ubiquitinylation and deterring endocytosed EGFR transport from endosomes to lysosomes under EGF stimulation. Mechanistically, the Arl4A-VPS36 direct interaction stabilizes VPS36 and ESCRT-III association, affecting subsequent recruitment of deubiquitinating-enzyme USP8 by CHMP2A. Impaired Arl4A-VPS36 interaction enhances EGFR degradation and clearance of EGFR ubiquitinylation. Together, we discover that Arl4A negatively regulates EGFR degradation by binding to VPS36 and attenuating ESCRT-mediated late endosomal EGFR sorting.
Collapse
Affiliation(s)
- Shin-Jin Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Ming-Chieh Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Tsai-Jung Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Yueh-Tso Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
| | - Ming-Ting Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| |
Collapse
|
7
|
Jiao D, Chen Y, Liu X, Tang X, Chen J, Liu Y, Jiang C, Chen Q. Targeting MET endocytosis or degradation to overcome HGF-induced gefitinib resistance in EGFR-sensitive mutant lung adenocarcinoma. Biochem Biophys Res Commun 2023; 682:371-380. [PMID: 37844446 DOI: 10.1016/j.bbrc.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
The overexpression of hepatic growth factor(HGF) is one of the important reasons for the development of gefitinib resistance in EGFR-sensitive mutant lung adenocarcinoma cells. Targeting the HGF receptor MET through endocytosis inhibition or degradation induction has been proposed as a potential strategy to overcome this resistance. However, the effectiveness of this approach remains needs to be evaluated. In this study, we observed that MET receptors undergo persistent endocytosis but rarely enter the degradation pathway in HGF-overexpressing cells. We showed that MET endocytosis can be inhibited by using gene silence method or MET inhibitors. CHC or DNM2 gene silence slightly increases the sensitivity of resistant cells to gefitinib without affecting MET activity, while GRB2 gene silence can simultaneously inhibit MET endocytosis and reduce MET activity, resulting in a significant reversal effect of gefitinib resistance. Similarly, MET inhibitors significantly reverse drug resistance, accompanied by simultaneous inhibition of MET endocytosis and activity, highlighting the importance of both endocytosis and activity in HGF-induced gefitinib resistance. Additionally, we demonstrated that promoting MET degradation through deubiquitinase (USP8 or USP32) gene silence is another effective method for reversing drug resistance. Overall, our findings suggest that targeting MET receptor endocytosis and degradation is an attractive strategy for overcoming HGF-induced gefitinib resistance in EGFR-sensitive mutant lung adenocarcinoma.
Collapse
Affiliation(s)
- Demin Jiao
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Yu Chen
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Xiang Liu
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Xiali Tang
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Yongyang Liu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chunyan Jiang
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China.
| | - Qingyong Chen
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
9
|
Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: effect of dimerization, dynamics, and mutation. Front Oncol 2023; 13:1258371. [PMID: 37752992 PMCID: PMC10518470 DOI: 10.3389/fonc.2023.1258371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Spontaneous dimerization of EGF receptors (EGFR) and dysregulation of EGFR signaling has been associated with the development of different cancers. Under normal physiological conditions and to maintain homeostatic cell growth, once EGFR signaling occurs, it needs to be attenuated. Activated EGFRs are rapidly internalized, sorted through early endosomes, and ultimately degraded in lysosomes by a process generally known as receptor down-regulation. Through alterations to EGFR trafficking, tumors develop resistance to current treatment strategies, thus highlighting the necessity for combination treatment strategies that target EGFR trafficking. This review covers EGFR structure, trafficking, and altered surface expression of EGFR receptors in cancer, with a focus on how therapy targeting EGFR trafficking may aid tyrosine kinase inhibitor treatment of cancer.
Collapse
Affiliation(s)
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
10
|
Takahashi JI, Nakamura S, Onuma I, Zhou Y, Yokoyama S, Sakurai H. Synchronous intracellular delivery of EGFR-targeted antibody-drug conjugates by p38-mediated non-canonical endocytosis. Sci Rep 2022; 12:11561. [PMID: 35798841 PMCID: PMC9262980 DOI: 10.1038/s41598-022-15838-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Monoclonal antibodies targeting the epidermal growth factor receptor (EGFR), including cetuximab and panitumumab, have been used in clinic settings to treat cancer. They have also recently been applied to antibody–drug conjugates (ADCs); however, their clinical efficacy is limited by several issues, including lower internalization efficiency. The binding of cetuximab to the extracellular domain of EGFR suppresses ligand-induced events; therefore, we focus on ligand-independent non-canonical EGFR endocytosis for the delivery of ADCs into cells. Tumor necrosis factor-α (TNF-α) strongly induces the endocytosis of the cetuximab-EGFR complex within 15 min via the p38 phosphorylation of EGFR in a tyrosine kinase-independent manner. A secondary antibody conjugated with saporin, a ribosome-inactivating protein, also undergoes internalization with the complex and enhances its anti-proliferative activity. Anti-cancer agents, including cisplatin and temozolomide, also induce the p38-mediated internalization. The results of the present study demonstrate that synchronous non-canonical EGFR endocytosis may be a feasible strategy for promoting the therapeutic efficacy of EGFR-targeting ADCs in clinical settings.
Collapse
Affiliation(s)
- Jun-Ichiro Takahashi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiori Nakamura
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Iimi Onuma
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
11
|
Xiao D, Hu X, Peng M, Deng J, Zhou S, Xu S, Wu J, Yang X. Inhibitory role of proguanil on the growth of bladder cancer via enhancing EGFR degradation and inhibiting its downstream signaling pathway to induce autophagy. Cell Death Dis 2022; 13:499. [PMID: 35614042 PMCID: PMC9132982 DOI: 10.1038/s41419-022-04937-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
A major reason for the high mortality of patients with bladder cancer (BC) is that chemotherapy and surgery are only effective for very limited patients. Thus, developing novel treatment options becomes an urgent need for improving clinical outcomes and the quality of life for BC patients. Here, we demonstrated that proguanil significantly inhibited the growth of BC in vitro and in vivo. Importantly, our results indicated that the sensitivity of BC cells to proguanil is positively correlated with the expression of epidermal growth factor receptor (EGFR). Mechanistically, proguanil specifically targeted EGFR and promoted EGFR binding to Caveolin-1, enhanced its endocytosis in a Clathrin-independent manner, and then recruited c-Cbl to promote EGFR ubiquitination and degradation through the lysosomal pathway. Further studies suggested that proguanil induced autophagy by destabilizing EGFR and inhibiting its downstream signaling pathway. Thus, this study reveals the novel mechanism of proguanil on anticancer activity and implies the potential benefits of this drug in the treatment of BC.
Collapse
Affiliation(s)
- Di Xiao
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Xin Hu
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Mei Peng
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Jun Deng
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Sichun Zhou
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Simeng Xu
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Jingtao Wu
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Xiaoping Yang
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China ,grid.411427.50000 0001 0089 3695Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan China
| |
Collapse
|
12
|
Martin-Fernandez ML. Fluorescence Imaging of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14030686. [PMID: 35158954 PMCID: PMC8833717 DOI: 10.3390/cancers14030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related deaths, with a low (<21%) 5-year survival rate. Lung cancer is often driven by the misfunction of molecules on the surface of cells of the epithelium, which orchestrate mechanisms by which these cells grow and proliferate. Beyond common non-specific treatments, such as chemotherapy or radiotherapy, among molecular-specific treatments, a number of small-molecule drugs that block cancer-driven molecular activity have been developed. These drugs initially have significant success in a subset of patients, but these patients systematically develop resistance within approximately one year of therapy. Substantial efforts towards understanding the mechanisms of resistance have focused on the genomics of cancer progression, the response of cells to the drugs, and the cellular changes that allow resistance to develop. Fluorescence microscopy of many flavours has significantly contributed to the last two areas, and is the subject of this review. Abstract Non-small cell lung cancer (NSCLC) is a complex disease often driven by activating mutations or amplification of the epidermal growth factor receptor (EGFR) gene, which expresses a transmembrane receptor tyrosine kinase. Targeted anti-EGFR treatments include small-molecule tyrosine kinase inhibitors (TKIs), among which gefitinib and erlotinib are the best studied, and their function more often imaged. TKIs block EGFR activation, inducing apoptosis in cancer cells addicted to EGFR signals. It is not understood why TKIs do not work in tumours driven by EGFR overexpression but do so in tumours bearing classical activating EGFR mutations, although the latter develop resistance in about one year. Fluorescence imaging played a crucial part in research efforts to understand pro-survival mechanisms, including the dysregulation of autophagy and endocytosis, by which cells overcome the intendedly lethal TKI-induced EGFR signalling block. At their core, pro-survival mechanisms are facilitated by TKI-induced changes in the function and conformation of EGFR and its interactors. This review brings together some of the main advances from fluorescence imaging in investigating TKI function and places them in the broader context of the TKI resistance field, highlighting some paradoxes and suggesting some areas where super-resolution and other emerging methods could make a further contribution.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
| |
Collapse
|
13
|
Ribociclib Induces Broad Chemotherapy Resistance and EGFR Dependency in ESR1 Wildtype and Mutant Breast Cancer. Cancers (Basel) 2021; 13:cancers13246314. [PMID: 34944934 PMCID: PMC8699146 DOI: 10.3390/cancers13246314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
While endocrine therapy is highly effective for the treatment of oestrogen receptor-α (ERα)-positive breast cancer, a significant number of patients will eventually experience disease progression and develop treatment-resistant, metastatic cancer. The majority of resistant tumours remain dependent on ERα-action, with activating ESR1 gene mutations occurring in 15-40% of advanced cancers. Therefore, there is an urgent need to discover novel effective therapies that can eradicate cancer cells with aberrant ERα and to understand the cellular response underlying their action. Here, we evaluate the response of MCF7-derived, CRISPR-Cas9-generated cell lines expressing mutant ERα (Y537S) to a large number of drugs. We report sensitivity to numerous clinically approved inhibitors, including CDK4/6 inhibitor ribociclib, which is a standard-of-care therapy in the treatment of metastatic ERα-positive breast cancer and currently under evaluation in the neoadjuvant setting. Ribociclib treatment induces senescence in both wildtype and mutant ERα breast cancer models and leads to a broad-range drug tolerance. Strikingly, viability of cells undergoing ribociclib-induced cellular senescence is maintained via engagement of EGFR signalling, which may be therapeutically exploited in both wildtype and mutant ERα-positive breast cancer. Our study highlights a wide-spread reduction in sensitivity to anti-cancer drugs accompanied with an acquired vulnerability to EGFR inhibitors following CDK4/6 inhibitor treatment.
Collapse
|
14
|
Betriu N, Andreeva A, Semino CE. Erlotinib Promotes Ligand-Induced EGFR Degradation in 3D but Not 2D Cultures of Pancreatic Ductal Adenocarcinoma Cells. Cancers (Basel) 2021; 13:4504. [PMID: 34572731 PMCID: PMC8470972 DOI: 10.3390/cancers13184504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
The epithelial growth factor receptor (EGFR) is a tyrosine kinase receptor that participates in many biological processes such as cell proliferation. In addition, EGFR is overexpressed in many epithelial cancers and therefore is a target for cancer therapy. Moreover, EGFR responds to lots of stimuli by internalizing into endosomes from where it can be recycled to the membrane or further sorted into lysosomes where it undergoes degradation. Two-dimensional cell cultures have been classically used to study EGFR trafficking mechanisms in cancer cells. However, it has been widely demonstrated that in 2D cultures cells are exposed to a non-physiological environment as compared to 3D cultures that provide the normal cellular conformation, matrix dimensionality and stiffness, as well as molecular gradients. Therefore, the microenvironment of solid tumors is better recreated in 3D culture models, and this is why they are becoming a more physiological alternative to study cancer physiology. Here, we develop a new model of EGFR internalization and degradation upon erlotinib treatment in pancreatic ductal adenocarcinoma (PDAC) cells cultured in a 3D self-assembling peptide scaffold. In this work, we show that treatment with the tyrosine kinase inhibitor erlotinib promotes EGFR degradation in 3D cultures of PDAC cell lines but not in 2D cultures. We also show that this receptor degradation does not occur in normal fibroblast cells, regardless of culture dimensionality. In conclusion, we demonstrate not only that erlotinib has a distinct effect on tumor and normal cells but also that pancreatic ductal adenocarcinoma cells respond differently to drug treatment when cultured in a 3D microenvironment. This study highlights the importance of culture systems that can more accurately mimic the in vivo tumor physiology.
Collapse
Affiliation(s)
| | | | - Carlos E. Semino
- Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University, 08017 Barcelona, Spain; (N.B.); (A.A.)
| |
Collapse
|
15
|
Nászai M, Bellec K, Yu Y, Román-Fernández A, Sandilands E, Johansson J, Campbell AD, Norman JC, Sansom OJ, Bryant DM, Cordero JB. RAL GTPases mediate EGFR-driven intestinal stem cell proliferation and tumourigenesis. eLife 2021; 10:e63807. [PMID: 34096503 PMCID: PMC8216719 DOI: 10.7554/elife.63807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Endocytosis
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Humans
- Hyperplasia
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases/metabolism
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- ral GTP-Binding Proteins/genetics
- ral GTP-Binding Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Máté Nászai
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Karen Bellec
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Yachuan Yu
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Alvaro Román-Fernández
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Emma Sandilands
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Joel Johansson
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | | | - Jim C Norman
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Owen J Sansom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - David M Bryant
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Julia B Cordero
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| |
Collapse
|
16
|
Xu H, Yang X, Xuan X, Wu D, Zhang J, Xu X, Zhao Y, Ma C, Li D. STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway. Neoplasia 2021; 23:607-623. [PMID: 34102455 PMCID: PMC8190130 DOI: 10.1016/j.neo.2021.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Tumor metastasis is a leading cause of death in lung adenocarcinoma (LUAD) patients, but the molecular events that regulate metastasis have not been completely elucidated. STAMBP is a deubiquitinating enzyme of the Jab1/MPN metalloenzyme family that regulates the stability of substrates in cells by specifically removing ubiquitin molecules. We found that STAMBP expression was increased in the cytoplasm of tumor cells from LUAD patients. The STAMBP level was closely associated with tumor size, lymph node invasion and neoplasm disease stage. A high STAMBP level predicted poor overall survival and disease-free survival in LUAD patients. STAMBP overexpression promoted cell migration and invasion, whereas STAMBP knockdown attenuated these processes in LUAD cells after epidermal growth factor treatment. Mechanistically, increased STAMBP expression promoted the stabilization of Epidermal growth factor receptor (EGFR), whereas STAMBP knockdown induced the degradation of EGFR. STAMBP may deubiquitinate EGFR by localizing in early endosomes and increase EGFR membrane localization in LUAD cells. The overexpression of STAMBP triggered the activation of MAPK signaling after epidermal growth factor treatment. In contrast, this activation was attenuated in STAMBP knockdown cells. Small molecule inhibitors of EGFR and MAPK signaling pathway may block STAMBP-induced cell mobility and invasion as well as ERK activation in cells. Importantly, STAMBP knockdown suppressed LUAD tumor growth and metastasis by regulating the EGFR-mediated ERK activation in a xenograft mouse model. Our findings identified STAMBP as a novel potential target for LUAD therapy.
Collapse
Affiliation(s)
- Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaomei Yang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaofeng Xuan
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Di Wu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Jieru Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xinchun Xu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Ultrasound, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Yuanjie Zhao
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China.
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Lead Contact.
| |
Collapse
|
17
|
Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene 2021; 40:4079-4093. [PMID: 34079087 DOI: 10.1038/s41388-021-01841-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease, notably cancer. Since their discovery, several mechanisms of RTK dysregulation have been identified, resulting in multiple cancer types displaying 'oncogenic addiction' to RTKs. As a result, RTKs have represented a major class for targeted therapeutics over the past two decades, with numerous small molecule-based tyrosine kinase inhibitor (TKI) therapeutics having been developed and clinically approved for several cancers. However, many of the current RTK inhibitor treatments eventually result in the rapid development of acquired resistance and subsequent tumor relapse. Recent technological advances and tools are being generated for the identification of novel RTK small molecule therapeutics. These newer technologies will be important for the identification of diverse types of RTK inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.
Collapse
|
18
|
Du X, Yang B, An Q, Assaraf YG, Cao X, Xia J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation (N Y) 2021; 2:100103. [PMID: 34557754 PMCID: PMC8454558 DOI: 10.1016/j.xinn.2021.100103] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery that mutations in the EGFR gene are detected in up to 50% of lung adenocarcinoma patients, along with the development of highly efficacious epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), has revolutionized the treatment of this frequently occurring lung malignancy. Indeed, the clinical success of these TKIs constitutes a critical milestone in targeted cancer therapy. Three generations of EGFR-TKIs are currently approved for the treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). The first-generation TKIs include erlotinib, gefitinib, lapatinib, and icotinib; the second-generation ErbB family blockers include afatinib, neratinib, and dacomitinib; whereas osimertinib, approved by the FDA on 2015, is a third-generation TKI targeting EGFR harboring specific mutations. Compared with the first- and second-generation TKIs, third-generation EGFR inhibitors display a significant advantage in terms of patient survival. For example, the median overall survival in NSCLC patients receiving osimertinib reached 38.6 months. Unfortunately, however, like other targeted therapies, new EGFR mutations, as well as additional drug-resistance mechanisms emerge rapidly after treatment, posing formidable obstacles to cancer therapeutics aimed at surmounting this chemoresistance. In this review, we summarize the molecular mechanisms underlying resistance to third-generation EGFR inhibitors and the ongoing efforts to address and overcome this chemoresistance. We also discuss the current status of fourth-generation EGFR inhibitors, which are of great value in overcoming resistance to EGFR inhibitors that appear to have greater therapeutic benefits in the clinic. EGFR gene mutations are detected in about 50% of non-small cell lung cancer (NSCLC) patients worldwide The three generations of EGFR tyrosine kinase inhibitors (TKIs) are critical milestones for NSCLC patients Like other targeted therapies, new EGFR mutations and coupled drug resistances emerge rapidly after TKI treatment, posing formidable obstacles to cancer management The investigational fourth-generation EGFR inhibitors are of great promise, through a number of novel mechanisms, in overcoming these resistances after third-generation TKI treatment, and will bring more benefits to NSCLC patients
Collapse
Affiliation(s)
- Xiaojing Du
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Biwei Yang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
19
|
Luo Y, Ma S, Sun Y, Peng S, Zeng Z, Han L, Li S, Sun W, Xu J, Tian X, Wang F, Wu Q, Xiao Y, Zhang J, Gong Y, Xie C. MUC3A induces PD-L1 and reduces tyrosine kinase inhibitors effects in EGFR-mutant non-small cell lung cancer. Int J Biol Sci 2021; 17:1671-1681. [PMID: 33994852 PMCID: PMC8120466 DOI: 10.7150/ijbs.57964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
The immune checkpoint ligand programmed death-ligand 1 (PD-L1) and the transmembrane mucin (MUC) 3A are upregulated in non-small cell lung cancer (NSCLC), contributing to the aggressive pathogenesis and poor prognosis. Here, we report that knocking down the oncogenic MUC3A suppresses the PD-L1 expression in NSCLC cells. MUC3A is a potent regulator of epidermal growth factor receptor (EGFR) stability, and MUC3A deficiency downregulates the activation of the PI3K/Akt and MAPK pathways, which subsequently reduces the expression of PD-L1. Furthermore, knockdown of MUC3A and tyrosine kinase inhibitors (TKIs) in EGFR-mutant NSCLC cells play a synergistic effect on inhibited proliferation and promoted apoptosis in vitro. In the BALB/c nude mice xenograft model, MUC3A deficiency enhances EGFR-mutated NSCLC sensitivity to TKIs. Our study shows that transmembrane mucin MUC3A induces PD-L1, thereby promoting immune escape in NSCLC, while downregulation of MUC3A enhances TKIs effects in EGFR-mutant NSCLC. These findings offer insights into the design of novel combination treatment for NSCLC.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jieyu Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, Huang W. Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther 2021; 6:117. [PMID: 33692331 PMCID: PMC7946937 DOI: 10.1038/s41392-021-00500-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Myc proto-oncogene family consists of three members, C-MYC, MYCN, and MYCL, which encodes the transcription factor c-Myc (hereafter Myc), N-Myc, and L-Myc, respectively. Myc protein orchestrates diverse physiological processes, including cell proliferation, differentiation, survival, and apoptosis. Myc modulates about 15% of the global transcriptome, and its deregulation rewires the cellular signaling modules inside tumor cells, thereby acquiring selective advantages. The deregulation of Myc occurs in >70% of human cancers, and is related to poor prognosis; hence, hyperactivated Myc oncoprotein has been proposed as an ideal drug target for decades. Nevertheless, no specific drug is currently available to directly target Myc, mainly because of its "undruggable" properties: lack of enzymatic pocket for conventional small molecules to bind; inaccessibility for antibody due to the predominant nucleus localization of Myc. Although the topic of targeting Myc has actively been reviewed in the past decades, exciting new progresses in this field keep emerging. In this review, after a comprehensive summarization of valuable sources for potential druggable targets of Myc-driven cancer, we also peer into the promising future of utilizing macropinocytosis to deliver peptides like Omomyc or antibody agents to intracellular compartment for cancer treatment.
Collapse
Affiliation(s)
- Chen Wang
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Jiawei Zhang
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yin
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Yichao Gan
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ying Gu
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
21
|
Kim B, Park YS, Sung JS, Lee JW, Lee SB, Kim YH. Clathrin-mediated EGFR endocytosis as a potential therapeutic strategy for overcoming primary resistance of EGFR TKI in wild-type EGFR non-small cell lung cancer. Cancer Med 2021; 10:372-385. [PMID: 33314735 PMCID: PMC7826488 DOI: 10.1002/cam4.3635] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Oncogenic alterations of epidermal growth factor receptor (EGFR) signaling are frequently noted in non-small cell lung cancer (NSCLC). In recent decades, EGFR tyrosine kinase inhibitors (TKIs) have been developed, although the therapeutic efficacy of these inhibitor is restricted to EGFR-mutant patients. In this study, we investigated that clathrin-mediated EGFR endocytosis hampers the effects of gefitinib and sustains NSCLC cells with wild-type EGFR. MATERIALS AND METHODS NSCLC cell lines (H358, Calu-3, SNU-1327, and H1703) were stimulated with the EGF and treated with gefitinib and endocytosis inhibitors (phenylarsine oxide (PAO) and Filipin III). Growth inhibition and apoptosis were evaluated. Immunofluorescence, immunoprecipitation, and western blot assay were performed to investigate EGFR endocytosis and determine the signaling pathway. Xenograft mouse models were used to verify the combination effect of gefitinib and PAO in vivo. RESULTS We confirmed the differences in EGFR endocytosis according to gefitinib response in wild-type EGFR NSCLC cell lines. EGFR in gefitinib-sensitive and -refractory cell lines tended to internalize through distinct routes, caveolin-mediated endocytosis (CVE), and clathrin-mediated endocytosis (CME). Interestingly, while suppressing CME and CVE did not affect cell survival in sensitive cell lines significantly, CME inhibition combined with gefitinib treatment decreased cell survival and induced apoptosis in gefitinib-refractory cell lines. In addition, blocking CME in the refractory cell lines led to downregulate of p-STAT3 and inhibit nuclear localization of STAT3 in vivo, combination treatment with gefitinib and a CME inhibitor resulted in tumor regression accompanying apoptosis in xenograft mouse models. CONCLUSION Clathrin-mediated EGFR endocytosis contribute primary resistance of gefitinib treatment and CME inhibition combined with gefitinib could be an option in treatment of wild-type EGFR NSCLC.
Collapse
Affiliation(s)
- Boyeon Kim
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Young Soo Park
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
| | - Jae Sook Sung
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
| | - Jong Won Lee
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Saet Byeol Lee
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Yeul Hong Kim
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
- Department of Oncology/HematologyKorea University Anam HospitalSeoulRepublic of Korea
| |
Collapse
|
22
|
Sarker FA, Prior VG, Bax S, O'Neill GM. Forcing a growth factor response - tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci 2020; 133:133/23/jcs242461. [PMID: 33310867 DOI: 10.1242/jcs.242461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research throughout the 90s established that integrin crosstalk with growth factor receptors stimulates robust growth factor signaling. These insights were derived chiefly from comparing adherent versus suspension cell cultures. Considering the new understanding that mechanosensory inputs tune adhesion signaling, it is now timely to revisit this crosstalk in different mechanical environments. Here, we present a brief historical perspective on integrin signaling against the backdrop of the mechanically diverse extracellular microenvironment, then review the evidence supporting the mechanical regulation of integrin crosstalk with growth factor signaling. We discuss early studies revealing distinct signaling consequences for integrin occupancy (binding to matrix) and aggregation (binding to immobile ligand). We consider how the mechanical environments encountered in vivo intersect with this diverse signaling, focusing on receptor endocytosis. We discuss the implications of mechanically tuned integrin signaling for growth factor signaling, using the epidermal growth factor receptor (EGFR) as an illustrative example. We discuss how the use of rigid tissue culture plastic for cancer drug screening may select agents that lack efficacy in the soft in vivo tissue environment. Tuning of integrin signaling via external mechanical forces in vivo and subsequent effects on growth factor signaling thus has implications for normal cellular physiology and anti-cancer therapies.
Collapse
Affiliation(s)
- Farhana A Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Victoria G Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Samuel Bax
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia .,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
23
|
Cooperation and Interplay between EGFR Signalling and Extracellular Vesicle Biogenesis in Cancer. Cells 2020; 9:cells9122639. [PMID: 33302515 PMCID: PMC7764760 DOI: 10.3390/cells9122639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.
Collapse
|
24
|
Yao N, Wang CR, Liu MQ, Li YJ, Chen WM, Li ZQ, Qi Q, Lu JJ, Fan CL, Chen MF, Qi M, Li XB, Hong J, Zhang DM, Ye WC. Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth. Signal Transduct Target Ther 2020; 5:214. [PMID: 33033232 PMCID: PMC7544691 DOI: 10.1038/s41392-020-00251-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.
Collapse
Affiliation(s)
- Nan Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Chen-Ran Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Ming-Qun Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying-Jie Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zheng-Qiu Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun-Lin Fan
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Min-Feng Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiao-Bo Li
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China.
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China.
| |
Collapse
|
25
|
Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol 2020; 8:757. [PMID: 32850860 PMCID: PMC7419583 DOI: 10.3389/fcell.2020.00757] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity - the existence of specific lipid and protein domains in localized regions of membranes - that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Verena M Betzler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Pascal Rossatti
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
26
|
Zhao L, Qiu T, Jiang D, Xu H, Zou L, Yang Q, Chen C, Jiao B. SGCE Promotes Breast Cancer Stem Cells by Stabilizing EGFR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903700. [PMID: 32714745 PMCID: PMC7375232 DOI: 10.1002/advs.201903700] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Indexed: 05/15/2023]
Abstract
Breast cancer stem cells (BCSCs) are responsible for resistance to chemotherapy, high degree of metastasis, and poor prognosis, especially in triple-negative breast cancer (TNBC). The CD24lowCD44high and high aldehyde dehydrogenase 1 (ALDH1) cell subpopulation (CD24lowCD44high ALDH1+) exhibit very high tumor initiating capacity. In the current study, the upregulated genes are analyzed in both CD24lowCD44high and ALDH1+ cell populations at single-cell resolution, and a highly expressed membrane protein, SGCE, is identified in both BCSC populations. Further results show that SGCE depletion reduces BCSC self-renewal, chemoresistance, and metastasis both in vitro and in vivo, partially through affecting the accumulation of extracellular matrix (ECM). For the underlying mechanism, SGCE functions as a sponge molecule for the interaction between epidermal growth factor receptor (EGFR) and its E3 ubiquitination ligase (c-Cbl), and thus inhibits EGFR lysosomal degradation to stabilize the EGFR protein. SGCE knockdown promotes sensitivity to EGFR tyrosine kinase inhibitors (TKIs), providing new clues for deciphering the current failure of targeting EGFR in clinical trials and highlighting a novel candidate for BCSC stemness regulation.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650223China
| | - Ting Qiu
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650223China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650223China
| | - Li Zou
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingYunnan650223China
| |
Collapse
|
27
|
Yin W, Zhao Y, Kang X, Zhao P, Fu X, Mo X, Wan Y, Huang Y. BBB-penetrating codelivery liposomes treat brain metastasis of non-small cell lung cancer with EGFR T790M mutation. Am J Cancer Res 2020; 10:6122-6135. [PMID: 32483443 PMCID: PMC7255027 DOI: 10.7150/thno.42234] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
EGFR TKI therapy has become a first-line regimen for non-small cell lung cancer (NSCLC) patients with EGRF mutations. However, there are two big challenges against effective therapy--the secondary EGFR mutation-associated TKI resistance and brain metastasis (BMs) of lung cancer. The BMs is a major cause of death for advanced NSCLC patients, and the treatment of BMs with TKI resistance remains difficult. Methods: Tumor-associated macrophages (TAM) is a promising drug target for inhibiting tumor growth, overcoming drug resistance, and anti-metastasis. TAM also plays an essential role in regulating tumor microenvironment. We developed a dual-targeting liposomal system with modification of anti-PD-L1 nanobody and transferrin receptor (TfR)-binding peptide T12 for codelivery of simvastatin/gefitinib to treat BMs of NSCLC. Results: The dual-targeting liposomes could efficiently penetrate the blood-brain barrier (BBB) and enter the BMs, acting on TAM repolarization and reversal of EGFRT790M-associated drug resistance. The treatment mechanisms were related to the elevating ROS and the suppression of the EGFR/Akt/Erk signaling pathway. Conclusion: The dual-targeting liposomal codelivery system offers a promising strategy for treating the advanced EGFRT790M NSCLC patients with BMs.
Collapse
|
28
|
Hu H, Miao XK, Li JY, Zhang XW, Xu JJ, Zhang JY, Zhou TX, Hu MN, Yang WL, Mou LY. YC-1 potentiates the antitumor activity of gefitinib by inhibiting HIF-1α and promoting the endocytic trafficking and degradation of EGFR in gefitinib-resistant non-small-cell lung cancer cells. Eur J Pharmacol 2020; 874:172961. [PMID: 32044322 DOI: 10.1016/j.ejphar.2020.172961] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/04/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
The tyrosine kinase inhibitor (TKI) gefitinib exerts good therapeutic effect on NSCLC patients with sensitive EGFR-activating mutations. However, most patients ultimately relapse due to the development of drug resistance after 6-12 months of treatment. Here, we showed that a HIF-1α inhibitor, YC-1, potentiated the antitumor efficacy of gefitinib by promoting EGFR degradation in a panel of human NSCLC cells with wild-type or mutant EGFRs. YC-1 alone had little effect on NSCLC cell survival but significantly enhanced the antigrowth and proapoptotic effects of gefitinib. In insensitive NSCLC cell lines, gefitinib efficiently inhibited the phosphorylation of EGFR but not the downstream signaling of ERK, AKT and STAT3; however, when combined with YC-1 treatment, these signaling pathways were strongly impaired. Gefitinib treatment induced EGFR arrest in the early endosome, and YC-1 treatment promoted delayed EGFR transport into the late endosome as well as receptor degradation. Moreover, the YC-1-induced reduction of HIF-1α protein was associated with the enhancement of EGFR degradation. HIF-1α knockdown promoted EGFR degradation, showing synergistic antigrowth and proapoptotic effects similar to those of the gefitinib and YC-1 combination treatment in NSCLC cells. Our findings provide a novel combination treatment strategy with gefitinib and YC-1 to extend the usage of gefitinib and overcome gefitinib resistance in NSCLC patients.
Collapse
Affiliation(s)
- Hui Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao-Kang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Jing-Yi Li
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao-Wei Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Jing-Jie Xu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Jing-Ying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Tian-Xiong Zhou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Ming-Ning Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Wen-Le Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Ling-Yun Mou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|