1
|
Zhang X, Liu Y, Yang R, Guo Y, Yan M, Xiao Y, Dong Y, Zhang R, Qin Y, Bu Y, Zhang Y, Gao H. Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma. Mol Cell Biochem 2024; 479:2307-2321. [PMID: 37646951 DOI: 10.1007/s11010-023-04839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Ras guanine nucleotide-releasing protein 1 (RasGRP1), a Ras activator, is upregulated in hepatocellular carcinoma (HCC) and other kinds of cancer and is associated with the poor prognosis of patients. However, little is known about the underlying regulatory mechanisms of RasGRP1 in the context of cancer. Here, we report that RasGRP1 physically interacted with the adaptor protein Src homolog and collagen homolog 3 (Shc3). Moreover, RasGRP1 C-terminus domain (aa 607-797) bound to the central collagen-homology 1 (CH1) domain of Shc3. Subsequently, Shc3 enhanced the RasGRP1 tyrosine phosphorylation rate and stability by inhibiting its ubiquitination. Notably, the phosphorylation-mimicking mutants of RasGRP1, RasGRP1 Y704A, and Y748A, rescued the phosphorylation and ubiquitination levels of RasGRP1 in HCC cells. Further investigation showed that the RasGRP1 and Shc3 interaction induced activation of Ras and c-Jun, resulting in cell proliferation in vitro. Moreover, the regulation of Shc3/RasGRP1/Ras/c-Jun signal transduction was confirmed in vivo using the subcutaneous xenograft mouse model. Thus, we propose that continuous Shc3 overexpression may be a possible mechanism for maintaining RasGRP1 stability and that persistent activation of Ras/c-Jun signaling through the interaction of RasGRP1 and Shc3 is a key event increasing cell proliferation. Our findings suggest that the interaction of RasGRP1 and Shc3 plays an important role in HCC tumorigenesis and suggests the potential clinical usage of novel biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yun Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Rui Yang
- Department of Critical Care Medicine, Tianjin First Central Hospital, Tianjin Institute of Emergency Medicine, Tianjin, 300192, China
| | - Yuanyuan Guo
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Meiling Yan
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ying Xiao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yunzhuo Dong
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ruixia Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yinpeng Qin
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yi Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huier Gao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
2
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
3
|
De A, Lattier JM, Morales JE, Kelly JR, Zheng X, Chen Z, Sebastian S, Nassiri Toosi Z, Huse JT, Lang FF, McCarty JH. Glial Cell Adhesion Molecule (GlialCAM) Determines Proliferative versus Invasive Cell States in Glioblastoma. J Neurosci 2023; 43:8043-8057. [PMID: 37722850 PMCID: PMC10669794 DOI: 10.1523/jneurosci.1401-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
The malignant brain cancer glioblastoma (GBM) contains groups of highly invasive cells that drive tumor progression as well as recurrence after surgery and chemotherapy. The molecular mechanisms that enable these GBM cells to exit the primary mass and disperse throughout the brain remain largely unknown. Here we report using human tumor specimens and primary spheroids from male and female patients that glial cell adhesion molecule (GlialCAM), which has normal roles in brain astrocytes and is mutated in the developmental brain disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC), is differentially expressed in subpopulations of GBM cells. High levels of GlialCAM promote cell-cell adhesion and a proliferative GBM cell state in the tumor core. In contrast, GBM cells with low levels of GlialCAM display diminished proliferation and enhanced invasion into the surrounding brain parenchyma. RNAi-mediated inhibition of GlialCAM expression leads to activation of proinvasive extracellular matrix adhesion and signaling pathways. Profiling GlialCAM-regulated genes combined with cross-referencing to single-cell transcriptomic datasets validates functional links among GlialCAM, Mlc1, and aquaporin-4 in the invasive cell state. Collectively, these results reveal an important adhesion and signaling axis comprised of GlialCAM and associated proteins including Mlc1 and aquaporin-4 that is critical for control of GBM cell proliferation and invasion status in the brain cancer microenvironment.SIGNIFICANCE STATEMENT Glioblastoma (GBM) contains heterogeneous populations of cells that coordinately drive proliferation and invasion. We have discovered that glial cell adhesion molecule (GlialCAM)/hepatocyte cell adhesion molecule (HepaCAM) is highly expressed in proliferative GBM cells within the tumor core. In contrast, GBM cells with low levels of GlialCAM robustly invade into surrounding brain tissue along blood vessels and white matter. Quantitative RNA sequencing identifies various GlialCAM-regulated genes with functions in cell-cell adhesion and signaling. These data reveal that GlialCAM and associated signaling partners, including Mlc1 and aquaporin-4, are key factors that determine proliferative and invasive cell states in GBM.
Collapse
Affiliation(s)
- Arpan De
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - John M Lattier
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - John E Morales
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Jack R Kelly
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Zhihua Chen
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Sumod Sebastian
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Zahra Nassiri Toosi
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Jason T Huse
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| | - Joseph H McCarty
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030
| |
Collapse
|
4
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Lan L, Cao H, Zhao L, Cui W, Wang B. PTPN12 down-regulated by miR-146b-3p gene affects the malignant progression of laryngeal squamous cell carcinoma. Open Med (Wars) 2023; 18:20230727. [PMID: 37333450 PMCID: PMC10276617 DOI: 10.1515/med-2023-0727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/31/2023] [Accepted: 05/07/2023] [Indexed: 06/20/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignancy among men in the anatomical position of head and neck. Hoarseness, pharyngalgia, and dyspnea are common symptoms. LSCC is a complex polygenic carcinoma that is caused by many factors involving polygenic alteration, environmental pollution, tobacco, and human papillomavirus. Classical protein tyrosine phosphatase nonreceptor type 12 (PTPN12) has been extensively studied to decipher its mechanism as a tumor suppressor gene in various human carcinomas; however, there is no comprehensive elucidation of the PTPN12 expression and its regulatory mechanisms in LSCC. As such, we expect to provide new insights for finding new biomarkers and effective therapeutic targets in LSCC. Immunohistochemical staining, western blot (WB), and quantitative real-time RT-PCR (qRT-PCR) were used for the messenger RNA (mRNA) and protein expression analyses of PTPN12, respectively. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, clone formation, transwell migration, and transwell invasion assays were used to assess the proliferation, migration, and invasion ability of LSCC cells. Online prediction and design software tools (http://www.targetscan.org/ and http://www.microRNA.org) were used to predict associated miRNA. Studying the targeted regulatory relationship between miR-146b-3p and PTPN12 was based on dual luciferase reporter gene analysis. qRT-PCR was used to assess miR-146b-3p expression in LSCC. miR-146b-3p inhibitor and mimic were transfected, followed by qRT-PCR and WB assays to detect the expression of PTPN12. The gain and loss functional experiments were used to investigate the effects of miR-146b-3p transfection on the proliferation, migration, and invasion of tumor cells. Online bioinformatics prediction software (https://cn.string-db.org/ and https://www.genecards.org/) was used to determine potential downstream target genes of PTPN12. qRT-PCR and WB analyses were used to assess the mRNA and protein expression levels of target genes. Our study showed significantly decreased mRNA and protein expression levels of PTPN12 in LSCC compared with the adjacent normal tissues. The lower PTPN12 mRNA expression was correlated with pathological differentiation, and lower PTPN12 protein expression was correlated with the TNM stage in LSCC tissues. The subsequent in vitro functional analyses showed the inhibitory effect of PTPN12 over-expression on the proliferation, migration, and invasiveness abilities of LSCC cell line. Using online prediction and design software, miR-146b-3p was searched to target PTPN12. The miR-146b-3p was expressed at a high level in LSCC tissues and cell lines. Luciferase reporter assay exhibited that miR-146b-3p inhibited the luciferase activity of PTPN12 markedly. The functional analyses showed the tumor-promoting role of miR-146b-3p on the proliferation, migration, and invasiveness abilities of LSCC cell. Furthermore, co-transfection of cells with miR-146b-3p and PTPN12 significantly restored the inhibitory effect of PTPN12 on LSCC cell growth, migration, and invasiveness. This phenomenon unveiled that miR-146b-3p regulated the proliferation, migration, and invasion of LSCC cells by targeting PTPN12. EGFR and ERBB2 were selected as the downstream-regulation target genes. Up-regulation of PTPN12 significantly suppressed EGFR expression. Accordingly, the miR-146b-3p mimic significantly up-regulated the EGFR expression. However, up-regulation of PTPN12 and miR-146b-3p mimic suppressed ERBB2 protein expression but induced its gene expression. Down-regulation of PTPN12 is associated with up-regulation of miR-146b-3p in LSCC. Moreover, PTPN12 serves as a tumor suppressor gene through regulating the proliferation, migration, and invasion of LSCC cells. miR-146b-3p/PTPN12 axis is expected to be a novel therapeutic target in LSCC.
Collapse
Affiliation(s)
- Lili Lan
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang050005, Hebei, China
- Otolaryngology Head and Neck Surgery Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang050011, Hebei, China
| | - Huan Cao
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang050005, Hebei, China
| | - Lei Zhao
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang050005, Hebei, China
| | - Weina Cui
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang050005, Hebei, China
| | - Baoshan Wang
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang050005, Hebei, China
| |
Collapse
|
6
|
Parlani M, Jorgez C, Friedl P. Plasticity of cancer invasion and energy metabolism. Trends Cell Biol 2023; 33:388-402. [PMID: 36328835 PMCID: PMC10368441 DOI: 10.1016/j.tcb.2022.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Energy deprivation is a frequent adverse event in tumors that is caused by mutations, malperfusion, hypoxia, and nutrition deficit. The resulting bioenergetic stress leads to signaling and metabolic adaptation responses in tumor cells, secures survival, and adjusts migration activity. The kinetic responses of cancer cells to energy deficit were recently identified, including a switch of invasive cancer cells to energy-conservative amoeboid migration and an enhanced capability for distant metastasis. We review the energy programs employed by different cancer invasion modes including collective, mesenchymal, and amoeboid migration, as well as their interconversion in response to energy deprivation, and we discuss the consequences for metastatic escape. Understanding the energy requirements of amoeboid and other dissemination strategies offers rationales for improving therapeutic targeting of metastatic cancer progression.
Collapse
Affiliation(s)
- Maria Parlani
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands
| | - Carolina Jorgez
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
7
|
Honda R, Tempaku Y, Sulidan K, Palmer HEF, Mashima K. Phosphorylation/dephosphorylation of PTP-PEST at Serine 39 is crucial for cell migration. J Biochem 2023; 173:73-84. [PMID: 36250939 DOI: 10.1093/jb/mvac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023] Open
Abstract
We investigated the molecular details of the role of protein tyrosine phosphatase (PTP)-PEST in cell migration. PTP-PEST knockout mouse embryonic fibroblasts (KO MEFs) and MEF cells expressing a dominant-negative mutant of PTP-PEST showed significant suppression of cell migration compared to MEF cells expressing wild-type PTP-PEST (WT MEFs). Moreover, MEF cells harbouring a constitutively active mutant of PTP-PEST (S39A MEFs) showed a marked decrease in cell migration. In addition, MEF cells with no PTP-PEST or little PTP activity rapidly adhered to fibronectin and made many focal adhesions compared to WT MEF cells. In contrast, S39A MEF cells showed weak adhesion to fibronectin and formed a few focal adhesions. Furthermore, investigating the subcellular localization showed that Ser39-phosphorylated PTP-PEST was favourably situated in the adherent area of the pseudopodia. Therefore, we propose that suppression of PTP-PEST enzyme activity due to Ser39-phosphorylation in pseudopodia and at the leading edge of migrating cells induces rapid and good adherence to the extracellular matrix. Thus, suppression of PTP activity by Ser39-phosphorylation is critical for cell migration. Three amino acid substitutions in human PTP-PEST have been previously reported to alter PTP activity. These amino acid substitutions in mouse PTP-PEST altered the migration of MEF cells in a positive correlation.
Collapse
Affiliation(s)
- Reika Honda
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Yasuko Tempaku
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Kaidiliayi Sulidan
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Helen E F Palmer
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Keisuke Mashima
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan.,Life Science Research Center, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| |
Collapse
|
8
|
Wang T, Ba X, Zhang X, Zhang N, Wang G, Bai B, Li T, Zhao J, Zhao Y, Yu Y, Wang B. Pan-cancer analyses of classical protein tyrosine phosphatases and phosphatase-targeted therapy in cancer. Front Immunol 2022; 13:976996. [PMID: 36341348 PMCID: PMC9630847 DOI: 10.3389/fimmu.2022.976996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
Protein tyrosine phosphatases function in dephosphorylating target proteins to regulate signaling pathways that control a broad spectrum of fundamental physiological and pathological processes. Detailed knowledge concerning the roles of classical PTPs in human cancer merits in-depth investigation. We comprehensively analyzed the regulatory mechanisms and clinical relevance of classical PTPs in more than 9000 tumor patients across 33 types of cancer. The independent datasets and functional experiments were employed to validate our findings. We exhibited the extensive dysregulation of classical PTPs and constructed the gene regulatory network in human cancer. Moreover, we characterized the correlation of classical PTPs with both drug-resistant and drug-sensitive responses to anti-cancer drugs. To evaluate the PTP activity in cancer prognosis, we generated a PTPscore based on the expression and hazard ratio of classical PTPs. Our study highlights the notable role of classical PTPs in cancer biology and provides novel intelligence to improve potential therapeutic strategies based on pTyr regulation.
Collapse
Affiliation(s)
- Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xinlei Ba
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaonan Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
| | - Na Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Guowen Wang
- Department of Thoracic surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Bai
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tong Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjiao Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Fu G, Yin F, Zhao J. Depletion of circ_0128846 ameliorates interleukin-1β-induced human chondrocyte apoptosis and inflammation through the miR-940/PTPN12 pathway. Int Immunopharmacol 2022; 110:108996. [DOI: 10.1016/j.intimp.2022.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
|
10
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
11
|
Li R, Jiang Q, Tang C, Chen L, Kong D, Zou C, Lin Y, Luo J, Zou D. Identification of Candidate Genes Associated With Prognosis in Glioblastoma. Front Mol Neurosci 2022; 15:913328. [PMID: 35875673 PMCID: PMC9302577 DOI: 10.3389/fnmol.2022.913328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant primary brain tumor, which associated with extremely poor prognosis. Methods Data from datasets GSE16011, GSE7696, GSE50161, GSE90598 and The Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes (DEGs) between patients and controls. DEGs common to all five datasets were analyzed for functional enrichment and for association with overall survival using Cox regression. Candidate genes were further screened using least absolute shrinkage and selection operator (LASSO) and random forest algorithms, and the effects of candidate genes on prognosis were explored using a Gaussian mixed model, a risk model, and concordance cluster analysis. We also characterized the GBM landscape of immune cell infiltration, methylation, and somatic mutations. Results We identified 3,139 common DEGs, which were associated mainly with PI3K-Akt signaling, focal adhesion, and Hippo signaling. Cox regression identified 106 common DEGs that were significantly associated with overall survival. LASSO and random forest algorithms identified six candidate genes (AEBP1, ANXA2R, MAP1LC3A, TMEM60, PRRG3 and RPS4X) that predicted overall survival and GBM recurrence. AEBP1 showed the best prognostic performance. We found that GBM tissues were heavily infiltrated by T helper cells and macrophages, which correlated with higher AEBP1 expression. Stratifying patients based on the six candidate genes led to two groups with significantly different overall survival. Somatic mutations in AEBP1 and modified methylation of MAP1LC3A were associated with GBM. Conclusion We have identified candidate genes, particularly AEBP1, strongly associated with GBM prognosis, which may help in efforts to understand and treat the disease.
Collapse
Affiliation(s)
- Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiulan Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunhai Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Jiefeng Luo,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Donghua Zou,
| |
Collapse
|
12
|
Wang H, Liu Z, Li A, Wang J, Liu J, Liu B, Lian X, Zhang B, Pang B, Liu L, Gao Y. COL4A1 as a novel oncogene associated with the clinical characteristics of malignancy predicts poor prognosis in glioma. Exp Ther Med 2021; 22:1224. [PMID: 34539820 PMCID: PMC8438660 DOI: 10.3892/etm.2021.10658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Studies have indicated that collagen α-1 (IV) chain (COL4A1) has an indispensable regulatory role in the complex pathological mechanisms of numerous types of malignant tumor. However, its role in the development of glioma has remained elusive. Therefore, the present study sought to determine the association between the expression levels of COL4A1 and the clinical characteristics of gliomas by analyzing large samples. First, analysis of thousands of glioma tissue samples collected from the Gene expression profiling interactive analysis, Gene Expression Omnibus database, the Ivy glioblastoma atlas, The Human Protein Atlas, Chinese Glioma Genome Atlas and The Cancer Genome Atlas. In addition, glioma tissues and normal brain tissues from patients with glioma and epilepsy undergoing surgical resection were collected. These samples, which were subjected to a variety of different detection techniques (including sequencing data, chip data, reverse transcription-quantitative PCR, cell lines and tissue samples, in situ hybridization and immunology) revealed that COL4A1 expression was not only increased at the mRNA level but also at the protein level as compared with that in normal brain tissue. Furthermore, Kaplan-Meier analysis revealed that COL4A1 expression was associated with reduced overall survival of patients, particularly those with World Health Organization grade III glioma. Receiver operating characteristic analysis suggested that COL4A1 had a moderate diagnostic value for glioma. In addition, the Mann-Whitney U-test or Kruskal-Wallis test indicated that the expression levels of COL4A1 were positively associated with the histological type and historical grade of the tumor, patient age, ‘Primary, Recurrent, Secondary’ type and the chemotherapy status, and negatively associated with isocitrate dehydrogenase mutation and 1p19q co-deletion (P<0.001). Gene-set enrichment analysis indicated that overexpression of COL4A1 promoted cancer-associated pathways, such as the JAK/STAT signaling pathway and cell cycle regulation. Finally, an MTT assay, immunohistochemical analysis of the cell cycle regulator KI67 and a wound-healing assay further confirmed that knockdown of COL4A1 inhibited the proliferation and migration ability of glioma cells. In conclusion, COL4A1, as a novel oncogene, is a marker for poor prognosis in patients with glioma. The present study expanded the understanding of the pathogenesis of glioma and identified COL4A1 as a potential target for the diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Zhendong Liu
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ang Li
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jialin Wang
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiantao Liu
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binfeng Liu
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xiaoyu Lian
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bo Zhang
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bo Pang
- Department of Neurosurgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Liyun Liu
- Department of Orthopaedics, Orthopedic Hospital of Henan Province, Zhengzhou, Henan 450018, P.R. China
| | - Yanzheng Gao
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
13
|
Liu X, Chen JY, Chien Y, Yang YP, Chen MT, Lin LT. Overview of the molecular mechanisms of migration and invasion in glioblastoma multiforme. J Chin Med Assoc 2021; 84:669-677. [PMID: 34029218 DOI: 10.1097/jcma.0000000000000552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is one of the most devastating cancers, with an approximate median survival of only 16 months. Although some new insights into the fantastic heterogeneity of this kind of brain tumor have been revealed in recent studies, all subclasses of GBM still demonstrate highly aggressive invasion properties to the surrounding parenchyma. This behavior has become the main obstruction to current curative therapies as invasive GBM cells migrate away from these foci after surgical therapies. Therefore, this review aimed to provide a relatively comprehensive study of GBM invasion mechanisms, which contains an intricate network of interactions and signaling pathways with the extracellular matrix (ECM). Among these related molecules, TGF-β, the ECM, Akt, and microRNAs are most significant in terms of cellular procedures related to GBM motility and invasion. Moreover, we also review data indicating that Musashi-1 (MSI1), a neural RNA-binding protein (RBP), regulates GBM motility and invasion, maintains stem cell populations in GBM, and promotes drug-resistant GBM phenotypes by stimulating necessary oncogenic signaling pathways through binding and regulating mRNA stability. Importantly, these necessary oncogenic signaling pathways have a close connection with TGF-β, ECM, and Akt. Thus, it appears promising to find MSI-specific inhibitors or RNA interference-based treatments to prevent the actions of these molecules despite using RBPs, which are known as hard therapeutic targets. In summary, this review aims to provide a better understanding of these signaling pathways to help in developing novel therapeutic approaches with better outcomes in preclinical studies.
Collapse
Affiliation(s)
- Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ju-Yu Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ming-Teh Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Education & Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Health Technology and Informatics, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Rashmi, More SK, Wang Q, Vomhof-DeKrey EE, Porter JE, Basson MD. ZINC40099027 activates human focal adhesion kinase by accelerating the enzymatic activity of the FAK kinase domain. Pharmacol Res Perspect 2021; 9:e00737. [PMID: 33715263 PMCID: PMC7955952 DOI: 10.1002/prp2.737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) regulates gastrointestinal epithelial restitution and healing. ZINC40099027 (Zn27) activates cellular FAK and promotes intestinal epithelial wound closure in vitro and in mice. However, whether Zn27 activates FAK directly or indirectly remains unknown. We evaluated Zn27 potential modulation of the key phosphatases, PTP-PEST, PTP1B, and SHP2, that inactivate FAK, and performed in vitro kinase assays with purified FAK to assess direct Zn27-FAK interaction. In human Caco-2 cells, Zn27-stimulated FAK-Tyr-397 phosphorylation despite PTP-PEST inhibition and did not affect PTP1B-FAK interaction or SHP2 activity. Conversely, in vitro kinase assays demonstrated that Zn27 directly activates both full-length 125 kDa FAK and its 35 kDa kinase domain. The ATP-competitive FAK inhibitor PF573228 reduced basal and ZN27-stimulated FAK phosphorylation in Caco-2 cells, but Zn27 increased FAK phosphorylation even in cells treated with PF573228. Increasing PF573228 concentrations completely prevented activation of 35 kDa FAK in vitro by a normally effective Zn27 concentration. Conversely, increasing Zn27 concentrations dose-dependently activated kinase activity and overcame PF573228 inhibition of FAK, suggesting the direct interactions of Zn27 with FAK may be competitive. Zn27 increased the maximal activity (Vmax ) of FAK. The apparent Km of the substrate also increased under laboratory conditions less relevant to intracellular ATP concentrations. These results suggest that Zn27 is highly potent and enhances FAK activity via allosteric interaction with the FAK kinase domain to increase the Vmax of FAK for ATP. Understanding Zn27 enhancement of FAK activity will be important to redesign and develop a clinical drug that can promote mucosal wound healing.
Collapse
Affiliation(s)
- Rashmi
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Shyam K More
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Emilie E Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Marc D Basson
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
15
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
16
|
Chandel S, Manikandan A, Mehta N, Nathan AA, Tiwari RK, Mohapatra SB, Chandran M, Jaleel A, Manoj N, Dixit M. The protein tyrosine phosphatase PTP-PEST mediates hypoxia-induced endothelial autophagy and angiogenesis via AMPK activation. J Cell Sci 2021; 134:jcs250274. [PMID: 33323505 DOI: 10.1242/jcs.250274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Global and endothelial loss of PTP-PEST (also known as PTPN12) is associated with impaired cardiovascular development and embryonic lethality. Although hypoxia is implicated in vascular remodelling and angiogenesis, its effect on PTP-PEST remains unexplored. Here we report that hypoxia (1% oxygen) increases protein levels and catalytic activity of PTP-PEST in primary endothelial cells. Immunoprecipitation followed by mass spectrometry revealed that α subunits of AMPK (α1 and α2, encoded by PRKAA1 and PRKAA2, respectively) interact with PTP-PEST under normoxia but not in hypoxia. Co-immunoprecipitation experiments confirmed this observation and determined that AMPK α subunits interact with the catalytic domain of PTP-PEST. Knockdown of PTP-PEST abrogated hypoxia-mediated tyrosine dephosphorylation and activation of AMPK (Thr172 phosphorylation). Absence of PTP-PEST also blocked hypoxia-induced autophagy (LC3 degradation and puncta formation), which was rescued by the AMPK activator metformin (500 µM). Because endothelial autophagy is a prerequisite for angiogenesis, knockdown of PTP-PEST also attenuated endothelial cell migration and capillary tube formation, with autophagy inducer rapamycin (200 nM) rescuing angiogenesis. In conclusion, this work identifies for the first time that PTP-PEST is a regulator of hypoxia-induced AMPK activation and endothelial autophagy to promote angiogenesis.
Collapse
Affiliation(s)
- Shivam Chandel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Amrutha Manikandan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Nikunj Mehta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Abel Arul Nathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Rakesh Kumar Tiwari
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Samar Bhallabha Mohapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Mahesh Chandran
- Cardiovascular Disease and Diabetes Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thyacaud Post, Thiruvananthpuram, Kerala 695014, India
| | - Abdul Jaleel
- Cardiovascular Disease and Diabetes Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thyacaud Post, Thiruvananthpuram, Kerala 695014, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Madhulika Dixit
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| |
Collapse
|
17
|
Bello-Alvarez C, Moral-Morales AD, González-Arenas A, Camacho-Arroyo I. Intracellular Progesterone Receptor and cSrc Protein Working Together to Regulate the Activity of Proteins Involved in Migration and Invasion of Human Glioblastoma Cells. Front Endocrinol (Lausanne) 2021; 12:640298. [PMID: 33841333 PMCID: PMC8032993 DOI: 10.3389/fendo.2021.640298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas are the most common and aggressive primary brain tumors in adults, and patients with glioblastoma have a median survival of 15 months. Some alternative therapies, such as Src family kinase inhibitors, have failed presumably because other signaling pathways compensate for their effects. In the last ten years, it has been proven that sex hormones such as progesterone (P4) can induce growth, migration, and invasion of glioblastoma cells through its intracellular progesterone receptor (PR), which is mostly known for its role as a transcription factor, but it can also induce non-genomic actions. These non-classic actions are, in part, a consequence of its interaction with cSrc, which plays a significant role in the progression of glioblastomas. We studied the relation between PR and cSrc, and its effects in human glioblastoma cells. Our results showed that P4 and R5020 (specific PR agonist) activated cSrc protein since both progestins increased the p-cSrc (Y416)/cSrc ratio in U251 and U87 human glioblastoma derived cell lines. When siRNA against the PR gene was used, the activation of cSrc by P4 was abolished. The co-immunoprecipitation assay showed that cSrc and PR interact in U251 cells. P4 treatment also promoted the increase in the p-Fak (Y397) (Y576/577)/Fak and the decrease in p-Paxillin (Y118)/Paxillin ratio, which are significant components of the focal adhesion complex and essential for migration and invasion processes. A siRNA against cSrc gene blocked the increase in the p-Fak (Y576/Y577)/Fak ratio and the migration induced by P4, but not the decrease in p-Paxillin (Y118)/Paxillin ratio. We analyzed the potential role of cSrc over PR phosphorylation in three databases, and one putative tyrosine residue in the amino acid 87 of PR was found. Our results showed that P4 induces the activation of cSrc protein through its PR. The latter and cSrc could interact in a bidirectional mode for regulating the activity of proteins involved in migration and invasion of glioblastomas.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aylin Del Moral-Morales
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Ignacio Camacho-Arroyo,
| |
Collapse
|
18
|
Lattier JM, De A, Chen Z, Morales JE, Lang FF, Huse JT, McCarty JH. Megalencephalic leukoencephalopathy with subcortical cysts 1 (MLC1) promotes glioblastoma cell invasion in the brain microenvironment. Oncogene 2020; 39:7253-7264. [PMID: 33040087 PMCID: PMC7736299 DOI: 10.1038/s41388-020-01503-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM), or grade IV astrocytoma, is a malignant brain cancer that contains subpopulations of proliferative and invasive cells that coordinately drive primary tumor growth, progression, and recurrence after therapy. Here, we have analyzed functions for megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1), an eight-transmembrane protein normally expressed in perivascular brain astrocyte end feet that is essential for neurovascular development and physiology, in the pathogenesis of GBM. We show that Mlc1 is expressed in human stem-like GBM cells (GSCs) and is linked to the development of primary and recurrent GBM. Genetically inhibiting MLC1 in GSCs using RNAi-mediated gene silencing results in diminished growth and invasion in vitro as well as impaired tumor initiation and progression in vivo. Biochemical assays identify the receptor tyrosine kinase Axl and its intracellular signaling effectors as important for MLC1 control of GSC invasive growth. Collectively, these data reveal key functions for MLC1 in promoting GSC growth and invasion, and suggest that targeting the Mlc1 protein or its associated signaling effectors may be a useful therapy for blocking tumor progression in patients with primary or recurrent GBM.
Collapse
Affiliation(s)
- John M Lattier
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Arpan De
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Zhihua Chen
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - John E Morales
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Joseph H McCarty
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
McCarty JH. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J Cell Sci 2020; 133:133/12/jcs239434. [PMID: 32540905 DOI: 10.1242/jcs.239434] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvβ8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvβ8 integrin is a receptor for ECM-bound forms of latent transforming growth factor β (TGFβ) proteins and promotes the activation of TGFβ signaling pathways. Studies of the brain, lung and immune system reveal that the αvβ8 integrin-TGFβ axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer. As discussed in this Review, understanding the functions for αvβ8 integrin, its ECM ligands and intracellular effector proteins is not only an important topic in cell biology, but may lead to new therapeutic strategies to treat human pathologies related to integrin dysfunction.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Neurosurgery, Brain Tumor Center, M.D. Anderson Cancer Center, 6767 Bertner Avenue, Unit 1004, Houston, TX 77030, USA
| |
Collapse
|
20
|
Huo YH, Wang YN, Meng LB, Zhang AL, Liu B. Progress in the correlation between PTPN12 gene expression and human tumors. Medicine (Baltimore) 2020; 99:e20445. [PMID: 32541467 PMCID: PMC7302617 DOI: 10.1097/md.0000000000020445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The global morbidity of cancer is rising rapidly. Despite advances in molecular biology, immunology, and cytotoxic and immune-anticancer therapies, cancer remains a major cause of death worldwide. Protein tyrosine phosphatase non-receptor type 12 (PTPN12) is a new member of the cytoplasmic protein tyrosine phosphatase family, isolated from a cDNA library of adult colon tissue. Thus far, no studies have reviewed the correlation between PTPN12 gene expression and human tumors. METHODS This article summarizes the latest domestic and international research developments on how the expression of PTPN12 relates to human tumors. The extensive search in Web of Science and PubMed with the keywords including PTPN12, tumor, renal cell carcinoma, proto-oncogenes, tumor suppressor genes was undertaken. RESULTS More and more studies have shown that a tumor is essentially a genetic disease, arising from a broken antagonistic function between proto-oncogenes and tumor suppressor genes. When their antagonistic effect is out of balance, it may cause uncontrolled growth of cells and lead to the occurrence of tumors. PTPN12 is a tumor suppressor gene, so inhibiting its activity will lead directly or indirectly to the occurrence of tumors. CONCLUSION The etiology, prevention, and treatment of tumors have become the focus of research around the world. PTPN12 is a tumor suppressor gene. In the future, PTPN12 might serve as a novel molecular marker to benefit patients, and even the development of tumor suppressor gene activation agents can form a practical research direction.
Collapse
Affiliation(s)
- Yu-hu Huo
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai
| | - Ya-ni Wang
- School of Basic Medical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei
| | - Ling-bing Meng
- School of Basic Medical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei
| | - Ai-li Zhang
- Department of Urinary Surgery, The fourth hospital of Hebei medical university, P. R. China
| | - Bin Liu
- Department of Urinary Surgery, The fourth hospital of Hebei medical university, P. R. China
| |
Collapse
|
21
|
Shen N, Wang P, Li Y, Zhu Y, Gong Y, Zhong R, Lu Y, Cheng L. Nonreceptor protein tyrosine phosphatases (NRPTPs) gene family associates with the risk of hepatocellular carcinoma in a Chinese hepatitis B virus-related subjects. Mol Carcinog 2020; 59:980-988. [PMID: 32484301 DOI: 10.1002/mc.23228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 11/07/2022]
Abstract
Nonreceptor protein tyrosine phosphatases (NRPTPs) are reported to be associated with several human cancers, but their roles in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. Here, we integrated bioinformatics tools, population association analyses, and biological assays to systematically screen for potentially functional single nucleotide polymorphisms (SNPs) within the 17 NRPTPs genes and evaluate the effects of candidate SNPs on the risk of HCC or persistent HBV infection. A total of 790 HBV-related HCC cases and 1454 cancer-free controls were enrolled. Controls included 711 HBV persistent carriers and 743 spontaneously recovered subjects. Results demonstrated that PTPN4 rs9308777 (odds ratio [OR] = 1.25, 95% confidence interval [CI] = 1.06-1.49, P = .009) and PTPN12 rs350050 (OR = 1.26, 95% CI = 1.10-1.45, P = .001), were significantly associated with HCC risk, but not with persistent HBV infection risk. The cumulative risk effect of these two SNPs was more significantly increased the susceptibility to HCC (OR = 1.27, 95% CI = 1.14-1.41, P = 2.40 × 10-5 ). Subsequent biological assays further revealed the potential pathogenesis that PTPN4 rs9308777 might decrease the gene expression, and PTPN12 rs3750050 might promote cell proliferation by attenuating PTPN12's inhibitory activity on EGFR/ERK pathway. In summary, our integrative study highlights that PTPN4 and PTPN12 are significantly associated with HBV-related HCC risk, but do not influence persistent HBV infection. These findings shed light on the importance of the synergistic effects of regulatory and missense variants on the risk for HCC, and provide data to support personalized cancer medicine in the future.
Collapse
Affiliation(s)
- Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
23
|
Wu Z, Huang R, Yuan L. Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys 2019; 676:108138. [PMID: 31606391 DOI: 10.1016/j.abb.2019.108138] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Post-translational modifications (PTMs) have been reported to play pivotal roles in numerous cellular biochemical and physiological processes. Multiple PTMs can influence the actions of each other positively or negatively, termed as PTM crosstalk or PTM code. During recent years, development of identification strategies for PTMs co-occurrence has revealed abundant information of interplay between PTMs. Increasing evidence demonstrates that deregulation of PTMs crosstalk is involved in the genesis and development of various diseases. Insight into the complexity of PTMs crosstalk will help us better understand etiology and provide novel targets for drug therapy. In the present review, we will discuss the important functional roles of PTMs crosstalk in proteins associated with cancer diseases.
Collapse
Affiliation(s)
- Zheng Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Rongting Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liang Yuan
- Peking University International Hospital, Beijing, 102200, China
| |
Collapse
|
24
|
Lee C, Rhee I. Important roles of protein tyrosine phosphatase PTPN12 in tumor progression. Pharmacol Res 2019; 144:73-78. [DOI: 10.1016/j.phrs.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
|
25
|
Sharifzad F, Yasavoli‐Sharahi H, Mardpour S, Fakharian E, Nikuinejad H, Heydari Y, Mardpour S, Taghikhani A, khellat R, Vafaei S, Kiani S, Ghavami S, Łos M, Noureddini M, Ebrahimi M, Verdi J, Hamidieh AA. Neuropathological and genomic characterization of glioblastoma‐induced rat model: How similar is it to humans for targeted therapy? J Cell Physiol 2019; 234:22493-22504. [DOI: 10.1002/jcp.28813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Farzaneh Sharifzad
- Department of Applied Cell Sciences Kashan University of Medical Sciences Kashan Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Hamed Yasavoli‐Sharahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
- Department of Developmental Biology University of Science and Culture Tehran Iran
| | - Saeid Mardpour
- Department of Radiology Medical Imaging Center Imam Khomeini Hospital Tehran Iran
- Department of Radiology Iran University of Medical Sciences Tehran Iran
| | - Esmaeil Fakharian
- Department of Applied Cell Sciences Kashan University of Medical Sciences Kashan Iran
- Department of Neurosurgery Kashan University of Medical Sciences Kashan Iran
| | - Hassan Nikuinejad
- Department of Applied Cell Sciences Kashan University of Medical Sciences Kashan Iran
- Nephrology and Urology Research Center Baqiyataallah University of Medical Sciences Tehran Iran
| | - Yasaman Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
- Department of Medical Physics Tarbiat Modares University Tehran Iran
| | - Soura Mardpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Adeleh Taghikhani
- Department of Immunology, Medical School Tarbiat Modares University Tehran Iran
| | - Reza khellat
- Shafa Hospital Pathobiology Laboratory, Department of Pathology Shiraz University of Medical Sciences Shiraz Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sahar Kiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Research Institute of Oncology and Hematology, Department of Human Anatomy and Cell Science, Cancer Care Manitoba University of Manitoba Winnipeg Canada
| | - Marek Łos
- Biotechnology Centre Silesian Technical University of Technology Gliwice Poland
| | - Mehdi Noureddini
- Department of Applied Cell Sciences Kashan University of Medical Sciences Kashan Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Javad Verdi
- Department of Applied Cell Sciences Kashan University of Medical Sciences Kashan Iran
- Department of Medical Physics Tarbiat Modares University Tehran Iran
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children's Medical Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|