1
|
Cursaro I, Milioni L, Eslami K, Sirous H, Carullo G, Gemma S, Butini S, Campiani G. Targeting N-Methyl-lysine Histone Demethylase KDM4 in Cancer: Natural Products Inhibitors as a Driving Force for Epigenetic Drug Discovery. ChemMedChem 2024:e202400682. [PMID: 39498961 DOI: 10.1002/cmdc.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors. KDM4A is the isozyme most frequently associated with aggressive phenotypes of these tumors. To this aim, industrial and academic medicinal chemistry efforts have identified different KDM4 inhibitors. Industrial and academic efforts in medicinal chemistry have identified numerous KDM4 inhibitors, primarily pan-KDM4 inhibitors, though they often lack selectivity against other Jumonji family members. The pharmacophoric features of the inhibitors frequently include a chelating group capable of coordinating the catalytic iron within the active site of the KDM4 enzyme. Nonetheless, non-chelating compounds have also demonstrated promising inhibitory activity, suggesting potential flexibility in the drug design. Several natural products, containing monovalent or bivalent chelators, have been identified as KDM4 inhibitors, albeit with a micromolar inhibition potency. This highlights the potential for leveraging them as templates for the design and synthesis of new derivatives, exploiting nature's chemical diversity to pursue more potent and selective KDM4 inhibitors.
Collapse
Affiliation(s)
- Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Leonardo Milioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Kourosh Eslami
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-7346, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-7346, Iran
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
2
|
Oh S, Janknecht R. Versatile JMJD proteins: juggling histones and much more. Trends Biochem Sci 2024; 49:804-818. [PMID: 38926050 PMCID: PMC11380596 DOI: 10.1016/j.tibs.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Jumonji C domain-containing (JMJD) proteins are found in bacteria, fungi, animals, and plants. They belong to the 2-oxoglutarate-dependent oxygenase superfamily and are endowed with various enzymatic activities, including demethylation of histones and hydroxylation of non-histone proteins. Many JMJD proteins are involved in the epigenetic control of gene expression, yet they also modulate a myriad other cellular processes. In this review we focus on the 33 human JMJD proteins and their established and controversial catalytic properties, survey their epigenetic and non-epigenetic functions, emphasize their contribution to sex-specific disease differences, and highlight how they sense metabolic changes. All this underlines not only their key roles in development and homeostasis, but also that JMJD proteins are destined to become drug targets in multiple diseases.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Wang XY, Li HM, Xia R, Li X, Zhang X, Jin TZ, Zhang HS. KDM4B down-regulation facilitated breast cancer cell stemness via PHGDH upregulation in H3K36me3-dependent manner. Mol Cell Biochem 2024; 479:915-928. [PMID: 37249813 DOI: 10.1007/s11010-023-04777-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Despite recent advances have been made in clinical treatments of breast cancer, the general prognosis of patients remains poor. Therefore, it is imperative to develop a more effective therapeutic strategy. Lysine demethylase 4B (KDM4B) has been reported to participate in breast cancer development recently, but its exact biological role in breast cancer remains unclear. Here, we observed that KDM4B was down-regulated in human primary BRCA tissues and the low levels of KDM4B expression were correlated with poor survival. Gain- and loss-of-function experiments showed that KDM4B inhibited the proliferation and metastasis of breast cancer cells. Besides, knockdown of KDM4B promoted the epithelial-mesenchymal transition (EMT) and cell stemness in breast cancer cells. Mechanistically, KDM4B down-regulates PHGDH by decreasing the enrichment of H3K36me3 on the promoter region of PHGDH. Knockdown of PHGDH could significantly reversed proliferation, migration, EMT, and cell stemness induced by KDM4B silencing in breast cancer cells. Collectively, we propose a model for a KDM4B/PHGDH axis that provides novel insight into breast cancer development, which may serve as a potential factor for predicting prognosis and a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Hong-Ming Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Ran Xia
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Xing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Tong-Zhao Jin
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China.
| |
Collapse
|
4
|
Ni F, Tang H, Cheng S, Yu Y, Yuan Z, Chen Y, Zhang E, Wang X. KDM4B: A promising oncology therapeutic target. Cancer Sci 2024; 115:8-16. [PMID: 37923555 PMCID: PMC10823266 DOI: 10.1111/cas.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Epigenetic modifications are significant in tumor pathogenesis, wherein the process of histone demethylation is indispensable for regulating gene transcription, apoptosis, DNA replication, and repair of damaged DNA. The lysine demethylases (KDMs) serve an essential role in the aforementioned processes, with particular emphasis on the KDM4 family, also referred to as JMJD2. Multiple studies have underscored the significance of the KDM4 family in the regulation of various biological processes including, but not limited to, the cell cycle, DNA repair mechanisms, signaling pathways, and the progression of tumor formation. Nevertheless, it is imperative to elucidate the underlying mechanism of KDM4B, which belongs to the KDM4 gene family. This review presents a comprehensive examination of the structure, mechanism, and function of KDM4B, as well as a critical analysis of the current body of research pertaining to its involvement in tumorigenesis and development. Furthermore, this review explores the potential therapeutic strategies that specifically target KDM4B.
Collapse
Affiliation(s)
- Fangjing Ni
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Heting Tang
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Siteng Cheng
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yaoyu Yu
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Zhihao Yuan
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yingfei Chen
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Encheng Zhang
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Xiang Wang
- Department of Urology, School of Medicine, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
5
|
Tang H, Guan Y, Yuan Z, Guo T, Tan X, Fan Y, Zhang E, Wang X. Histone demethylase KDM4B contributes to advanced clear cell renal carcinoma and association with copy number variations and cell cycle progression. Epigenetics 2023; 18:2192319. [PMID: 36952476 PMCID: PMC10038057 DOI: 10.1080/15592294.2023.2192319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Advanced renal cell carcinoma (RCC) poses a threat to patient survival. Epigenetic remodelling is the pathogenesis of renal cancer. Histone demethylase 4B (KDM4B) is overexpressed in many cancers through various pathways. However, the role of KDM4B in clear cell renal carcinoma has not yet been elucidated. The differential expression of KDM4B was first verified by analysing public databases. The expression of KDM4B in fresh tissues and pathology slides was further analysed by western blotting and immunohistochemical staining. KDM4B overexpression and knockdown cell lines were also established. Cell Counting Kit-8 (CCK-8) assay was used to detect cell growth. Transwell assays were performed to assess cell migration. Xenografts were used to evaluate tumour growth and metastasis in vivo. Finally, KDM4B expression levels associated with copy number variation (CNV) and cell cycle stage were evaluated based on single-cell RNA sequencing data. KDM4B was expressed at higher levels in tumour tissues than in the adjacent normal tissues. High levels of KDM4B are associated with worse pathological features and poorer prognosis. KDM4B also promotes cell proliferation and migration in vitro, as well as tumour growth and metastasis in vivo. Tumour cells with high KDM4B expression exhibited higher CNV levels and a greater proportion of cells in the G1/S transition phase. Our results confirm that KDM4B promotes the progression of clear cell renal carcinoma, is correlated with poor prognosis, and may be related to high levels of CNV and cell cycle progression.
Collapse
Affiliation(s)
- Heting Tang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihao Yuan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyin Tan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Fan
- Department of Renal Transplantation, Xiangan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Du J, Liao W, Wang H, Hou G, Liao M, Xu L, Huang J, Yuan K, Chen X, Zeng Y. MDIG-mediated H3K9me3 demethylation upregulates Myc by activating OTX2 and facilitates liver regeneration. Signal Transduct Target Ther 2023; 8:351. [PMID: 37709738 PMCID: PMC10502063 DOI: 10.1038/s41392-023-01575-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023] Open
Abstract
The mineral dust-induced gene (MDIG) comprises a conserved JmjC domain and has the ability to demethylate histone H3 lysine 9 trimethylation (H3K9me3). Previous studies have indicated the significance of MDIG in promoting cell proliferation by modulating cell-cycle transition. However, its involvement in liver regeneration has not been extensively investigated. In this study, we generated mice with liver-specific knockout of MDIG and applied partial hepatectomy or carbon tetrachloride mouse models to investigate the biological contribution of MDIG in liver regeneration. The MDIG levels showed initial upregulation followed by downregulation as the recovery progressed. Genetic MDIG deficiency resulted in dramatically impaired liver regeneration and delayed cell cycle progression. However, the MDIG-deleted liver was eventually restored over a long latency. RNA-seq analysis revealed Myc as a crucial effector downstream of MDIG. However, ATAC-seq identified the reduced chromatin accessibility of OTX2 locus in MDIG-ablated regenerating liver, with unaltered chromatin accessibility of Myc locus. Mechanistically, MDIG altered chromatin accessibility to allow transcription by demethylating H3K9me3 at the OTX2 promoter region. As a consequence, the transcription factor OTX2 binding at the Myc promoter region was decreased in MDIG-deficient hepatocytes, which in turn repressed Myc expression. Reciprocally, Myc enhanced MDIG expression by regulating MDIG promoter activity, forming a positive feedback loop to sustain hepatocyte proliferation. Altogether, our results prove the essential role of MDIG in facilitating liver regeneration via regulating histone methylation to alter chromatin accessibility and provide valuable insights into the epi-transcriptomic regulation during liver regeneration.
Collapse
Affiliation(s)
- Jinpeng Du
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenwei Liao
- Department of Thoracic Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Haichuan Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guimin Hou
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, The Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Min Liao
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Xu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Fu J, Qin T, Li C, Zhu J, Ding Y, Zhou M, Yang Q, Liu X, Zhou J, Chen F. Research progress of LINE-1 in the diagnosis, prognosis, and treatment of gynecologic tumors. Front Oncol 2023; 13:1201568. [PMID: 37546391 PMCID: PMC10399582 DOI: 10.3389/fonc.2023.1201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The retrotransposon known as long interspersed nuclear element-1 (LINE-1), which is currently the sole autonomously mobile transposon in the human genome, can result in insertional mutations, chromosomal rearrangements, and genomic instability. In recent years, numerous studies have shown that LINE-1 is involved in the development of various diseases and also plays an important role in the immune regulation of the organism. The expression of LINE-1 in gynecologic tumors suggests that it is expected to be an independent indicator for early diagnosis and prognosis, and also, as a therapeutic target, LINE-1 is closely associated with gynecologic tumor prognosis. This article discusses the function of LINE-1 in the diagnosis, treatment, and prognosis of ovarian, cervical, and endometrial malignancies, as well as other gynecologic malignancies. It offers fresh perspectives on the early detection of tumors and the creation of novel anti-tumor medications.
Collapse
Affiliation(s)
- Jiaojiao Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Tiansheng Qin
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chaoming Li
- The First People’s Hospital of Longnan, Longnan City Hospital, Longnan, Gansu, China
| | - Jiaojiao Zhu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yaoyao Ding
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Meiying Zhou
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qing Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaofeng Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Juanhong Zhou
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Fan Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Zadran B, Sudhindar PD, Wainwright D, Bury Y, Luli S, Howarth R, McCain MV, Watson R, Huet H, Palinkas F, Berlinguer-Palmini R, Casement J, Mann DA, Oakley F, Lunec J, Reeves H, Faulkner GJ, Shukla R. Impact of retrotransposon protein L1 ORF1p expression on oncogenic pathways in hepatocellular carcinoma: the role of cytoplasmic PIN1 upregulation. Br J Cancer 2023; 128:1236-1248. [PMID: 36707636 PMCID: PMC10050422 DOI: 10.1038/s41416-023-02154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Molecular characterisation of hepatocellular carcinoma (HCC) is central to the development of novel therapeutic strategies for the disease. We have previously demonstrated mutagenic consequences of Long-Interspersed Nuclear Element-1 (LINE1s/L1) retrotransposition. However, the role of L1 in HCC, besides somatic mutagenesis, is not well understood. METHODS We analysed L1 expression in the TCGA-HCC RNAseq dataset (n = 372) and explored potential relationships between L1 expression and clinical features. The findings were confirmed by immunohistochemical (IHC) analysis of an independent human HCC cohort (n = 48) and functional mechanisms explored using in vitro and in vivo model systems. RESULTS We observed positive associations between L1 and activated TGFβ-signalling, TP53 mutation, alpha-fetoprotein and tumour invasion. IHC confirmed a positive association between pSMAD3, a surrogate for TGFβ-signalling status, and L1 ORF1p (P < 0.0001, n = 32). Experimental modulation of L1 ORF1p levels revealed an influence of L1 ORF1p on key hepatocarcinogenesis-related pathways. Reduction in cell migration and invasive capacity was observed upon L1 ORF1 knockdown, both in vitro and in vivo. In particular, L1 ORF1p increased PIN1 cytoplasmic localisation. Blocking PIN1 activity abrogated L1 ORF1p-induced NF-κB-mediated inflammatory response genes while further activated TGFβ-signalling confirming differential alteration of PIN1 activity in cellular compartments by L1 ORF1p. DISCUSSION Our data demonstrate a causal link between L1 ORF1p and key oncogenic pathways mediated by PIN1, presenting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Bassier Zadran
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Praveen Dhondurao Sudhindar
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Daniel Wainwright
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Yvonne Bury
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Saimir Luli
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Misti Vanette McCain
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Robyn Watson
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Hannah Huet
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Fanni Palinkas
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | - John Casement
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Derek A Mann
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Fiona Oakley
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - John Lunec
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Helen Reeves
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS foundation, Newcastle-upon-Tyne, UK
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruchi Shukla
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, NE1 8ST, UK.
| |
Collapse
|
9
|
Fan G, Wang F, Chen Y, Zheng Q, Xiong J, Lv Q, Wu K, Xiong J, Wei L, Li D, Zhang J, Zhang W, Li F. The deubiquitinase OTUD1 noncanonically suppresses Akt activation through its N-terminal intrinsically disordered region. Cell Rep 2023; 42:111916. [PMID: 36640312 DOI: 10.1016/j.celrep.2022.111916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Akt is commonly activated and serves as a valuable target in human cancer. In this study, OTUD1 is identified as an Akt-associated protein and is downregulated upon Akt activation. Ectopic OTUD1 inhibits Akt phosphorylation; however, its deubiquitinase activity contributes only slightly to this effect. A short peptide (OUN-36) located in the OTUD1 N-terminal intrinsically disordered region strongly binds to the Akt PH domain. The residues in the PH domain, which are required for PtdIns(3,4,5)P3 recognition, are also essential for OUN-36 binding. OUN-36 preferentially inhibits Akt-hyperactive tumor cells' proliferation and interferes with Akt cell membrane localization, presumably by disrupting PH domain-PIP3 interaction. Importantly, OUN-36-based therapy efficiently abrogates Akt feedback reactivation in response to MK-2206 treatment and sensitizes cancer cells to chemotherapy and immunotherapy. We therefore show a mechanism by which OTUD1 modulates Akt activity and suggest a potential peptide-based cancer therapeutic strategy implemented by targeting the Akt PH domain.
Collapse
Affiliation(s)
- Guanlan Fan
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fan Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yurou Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qian Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiongying Lv
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kejia Wu
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiaqiang Xiong
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Dongqing Li
- Department of Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiachen Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| |
Collapse
|
10
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
11
|
Sun Z, Zhu Y, Feng X, Liu X, Zhou K, Wang Q, Zhang H, Shi H. H3F3A K27M Mutation Promotes the Infiltrative Growth of High-Grade Glioma in Adults by Activating β-Catenin/USP1 Signaling. Cancers (Basel) 2022; 14:cancers14194836. [PMID: 36230759 PMCID: PMC9563249 DOI: 10.3390/cancers14194836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Gliomas is a primary type of tumor in the central nervous system. High-grade glioma is a malignant cancerous disease and grows rapidly. This study reports the expression of H3.3K27M in high-grade glioma tissues and the association with malignant glioma cell behavior. Moreover, the results suggested that a high expression of H3.3K27M promotes the migration and invasion of glioma cells, leading to a poor prognosis by promoting the infiltration of glioma through aggravating aberrant activation of β-catenin signaling-driven pathway. Abstract H3F3A K27M (H3.3K27M) is a newly identified molecular pathological marker in glioma and is strongly correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating evidence has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade glioma in adults. We found that H3.3K27M was highly expressed at high levels in some high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not affect the growth of glioma cells in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we confirmed that H3.3K27M overexpression increased the levels of the β-catenin and p-β-catenin (Ser675) proteins, the ubiquitin-specific protease 1 (USP1) mRNA and protein levels, and the enhancer of zeste homolog 2 (EZH2) protein level. In addition, the β-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins and inhibited the increased migration and invasion caused by the H3.3K27M mutation. Overall, the H3.3K27M mutation in high-grade glioma is a potential biomarker for poor prognosis mainly due to the infiltration of glioma cells that is at least partially mediated by the β-catenin/USP1/EZH2 pathway.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Yufu Zhu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Xia Feng
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiaoyun Liu
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kunlin Zhou
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Hengzhu Zhang
- Department of Neurosurgery, The Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-516-85587335
| |
Collapse
|
12
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
13
|
Liu JS, Fang WK, Yang SM, Wu MC, Chen TJ, Chen CM, Lin TY, Liu KL, Wu CM, Chen YC, Chuu CP, Wang LY, Hsieh HP, Kung HJ, Wang WC. Natural product myricetin is a pan-KDM4 inhibitor which with poly lactic-co-glycolic acid formulation effectively targets castration-resistant prostate cancer. J Biomed Sci 2022; 29:29. [PMID: 35534851 PMCID: PMC9082844 DOI: 10.1186/s12929-022-00812-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. Methods In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. Results Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. Conclusions These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00812-3.
Collapse
|
14
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
15
|
Ueda T, Kanai A, Komuro A, Amano H, Ota K, Honda M, Kawazu M, Okada H. KDM4B promotes acute myeloid leukemia associated with AML1-ETO by regulating chromatin accessibility. FASEB Bioadv 2021; 3:1020-1033. [PMID: 34938963 PMCID: PMC8664044 DOI: 10.1096/fba.2021-00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022] Open
Abstract
Epigenetic alterations of chromatin structure affect chromatin accessibility and collaborate with genetic alterations in the development of cancer. Lysine demethylase 4B (KDM4B) has been identified as a JmjC domain-containing epigenetic modifier that possesses histone demethylase activity. Although recent studies have demonstrated that KDM4B positively regulates the pathogenesis of multiple types of solid tumors, the tissue specificity and context dependency have not been fully elucidated. In this study, we investigated gene expression profiles established from clinical samples and found that KDM4B is elevated specifically in acute myeloid leukemia (AML) associated with chromosomal translocation 8;21 [t(8;21)], which results in a fusion of the AML1 and the eight-twenty-one (ETO) genes to generate a leukemia oncogene, AML1-ETO fusion transcription factor. Short hairpin RNA-mediated KDM4B silencing significantly reduced cell proliferation in t(8;21)-positive AML cell lines. Meanwhile, KDM4B silencing suppressed the expression of AML1-ETO-inducible genes, and consistently perturbed chromatin accessibility of AML1-ETO-binding sites involving altered active enhancer marks and functional cis-regulatory elements. Notably, transduction of murine KDM4B orthologue mutants followed by KDM4B silencing demonstrated a requirement of methylated-histone binding modules for a proliferative surge. To address the role of KDM4B in leukemia development, we further generated and analyzed Kdm4b conditional knockout mice. As a result, Kdm4b deficiency attenuated clonogenic potential mediated by AML1-ETO and delayed leukemia progression in vivo. Thus, our results highlight a tumor-promoting role of KDM4B in AML associated with t(8;21).
Collapse
Affiliation(s)
- Takeshi Ueda
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
- Graduate School of Medical SciencesKindai University Faculty of MedicineOsakasayamaJapan
| | - Akinori Kanai
- Department of Molecular OncologyResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Akiyoshi Komuro
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Hisayuki Amano
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Kazushige Ota
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Masahiko Honda
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Masahito Kawazu
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Hitoshi Okada
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
- Graduate School of Medical SciencesKindai University Faculty of MedicineOsakasayamaJapan
- Anti‐Aging CenterKindai UniversityHigashi‐OsakaJapan
| |
Collapse
|
16
|
Varghese B, Del Gaudio N, Cobellis G, Altucci L, Nebbioso A. KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches. Front Oncol 2021; 11:750315. [PMID: 34778065 PMCID: PMC8581295 DOI: 10.3389/fonc.2021.750315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them "druggable" targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
17
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
18
|
Punnia-Moorthy G, Hersey P, Emran AA, Tiffen J. Lysine Demethylases: Promising Drug Targets in Melanoma and Other Cancers. Front Genet 2021; 12:680633. [PMID: 34220955 PMCID: PMC8242339 DOI: 10.3389/fgene.2021.680633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been implicated in a variety of pathological processes including carcinogenesis. A major group of enzymes that influence epigenetic modifications are lysine demethylases (KDMs) also known as "erasers" which remove methyl groups on lysine (K) amino acids of histones. Numerous studies have implicated aberrant lysine demethylase activity in a variety of cancers, including melanoma. This review will focus on the structure, classification and functions of KDMs in normal biology and the current knowledge of how KDMs are deregulated in cancer pathogenesis, emphasizing our interest in melanoma. We highlight the current knowledge gaps of KDMs in melanoma pathobiology and describe opportunities to increases our understanding of their importance in this disease. We summarize the progress of several pre-clinical compounds that inhibit KDMs and represent promising candidates for further investigation in oncology.
Collapse
Affiliation(s)
- Gaya Punnia-Moorthy
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Jessamy Tiffen
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Zhang C, Li L, Zhang Y, Zeng C. Hereditary Leiomyomatosis and Renal Cell Cancer: Recent Insights Into Mechanisms and Systemic Treatment. Front Oncol 2021; 11:686556. [PMID: 34113573 PMCID: PMC8185197 DOI: 10.3389/fonc.2021.686556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a rare autosomal dominant hereditary cancer syndrome characterized by a predisposition to cutaneous leiomyomas, uterine leiomyomas, and renal cell carcinoma (RCC). It is known to be caused by germline mutations of the fumarate hydratase (FH) gene, which encodes an enzyme component of the citric acid cycle and catalyzes the conversion of fumarate to L-malate. Currently, there is no standardized treatment for HLRCC, which may be due in part to a lack of understanding of the underlying mechanisms. Here, the underlying molecular mechanisms by which the inactivation of FH causes HLRCC are discussed. Additionally, potential therapeutic pharmacological strategies are also summarized to provide new perspectives for the prevention and treatment of HLRCC.
Collapse
Affiliation(s)
- Congwang Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Lijun Li
- Department of Quality Control, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yipeng Zhang
- Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
20
|
Guo M, Xiao ZD, Dai Z, Zhu L, Lei H, Diao LT, Xiong Y. The landscape of long noncoding RNA-involved and tumor-specific fusions across various cancers. Nucleic Acids Res 2021; 48:12618-12631. [PMID: 33275145 PMCID: PMC7736799 DOI: 10.1093/nar/gkaa1119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B-G039927 and EPS15L1-lncOR7C2-1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhen-Dong Xiao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Zhu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Lei
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li-Ting Diao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
22
|
Zhang X, Zhang R, Yu J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front Cell Dev Biol 2020; 8:657. [PMID: 32850797 PMCID: PMC7426637 DOI: 10.3389/fcell.2020.00657] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1) retrotransposition is a major hallmark of cancer accompanied by global chromosomal instability, genomic instability, and genetic heterogeneity and has become one indicator for the occurrence, development, and poor prognosis of many diseases. LINE-1 also modulates the immune system and affects the immune microenvironment in a variety of ways. Aberrant expression of LINE-1 retrotransposon can provide strong stimuli for an innate immune response, activate the immune system, and induce autoimmunity and inflammation. Therefore, inhibition the activity of LINE-1 has become a potential treatment strategy for various diseases. In this review, we discussed the components and regulatory mechanisms involved with LINE-1, its correlations with disease and immunity, and multiple inhibitors of LINE-1, providing a new understanding of LINE-1.
Collapse
Affiliation(s)
- Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
23
|
Xiang Y, Guo J, Li F, Xiong J. Tudor domain of histone demethylase KDM4B is a reader of H4K20me3. Acta Biochim Biophys Sin (Shanghai) 2020; 52:901-906. [PMID: 32537648 DOI: 10.1093/abbs/gmaa064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
The lysine histone demethylase KDM4B is overexpressed in several types of cancers and plays dual roles in genome stability maintenance. Although KDM4B is able to recognize several histone methylations, the underlying molecular mechanism is still unknown. In this study, we purified the KDM4B chromatin-associated hybrid tudor domains (HTDs) and plant home domains (PHDs) and performed the pull-down assay to screen the tri-methyl modified histone peptides that could be efficiently recognized by KDM4B. Our results showed that both HTD alone and the combination of HTD and PHD were able to specifically bind to H3K4me3 and H4K20me3. Because H4K20me3 is essential for KDM4B's rapid recruitment to DNA damage site, we further aligned the multiple tudor peptide sequence and identified two conserved residues Y993 and W987 that are critical for KDM4B-H4K20me3 interaction. The surface plasmon resonance analysis revealed that HTD displayed a rapid H4K20me3 bind-dissociate pattern. These findings therefore provided mechanistic insights into the binding of tudor domain of KDM4B protein with H4K20me3.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Guo
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan 430071, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
24
|
Zhang AL, Tang SF, Yang Y, Li CZ, Ding XJ, Zhao H, Wang JH, Yang GH, Li J. Histone demethylase JHDM2A regulates H3K9 dimethylation in response to arsenic-induced DNA damage and repair in normal human liver cells. J Appl Toxicol 2020; 40:1661-1672. [PMID: 32608101 DOI: 10.1002/jat.4026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Long-term arsenic exposure is a worldwide public health problem that causes serious harm to human health. The liver is the main target organ of arsenic toxicity; arsenic induces disruption of the DNA damage repair pathway, but its mechanisms remain unclear. In recent years, studies have found that epigenetic mechanisms play an important role in arsenic-induced lesions. In this study, we conducted experiments in vitro using normal human liver cells (L-02) to explore the mechanism by which the histone demethylase JHDM2A regulates H3K9 dimethylation (me2) in response to arsenic-induced DNA damage. Our results indicated that arsenic exposure upregulated the expression of JHDM2A, downregulated global H3K9me2 modification levels, increased the H3K9me2 levels at the promoters of base excision repair (BER) genes (N-methylpurine-DNA glycosylase [MPG], XRCC1 and poly(ADP-ribose)polymerase 1) and inhibited their expression levels, causing DNA damage in cells. In addition, we studied the effects of overexpression and inhibition of JHDM2A and found that JHDM2A can participate in the molecular mechanism of arsenic-induced DNA damage via the BER pathway, which may not be involved in the BER process because H3K9me2 levels at the promoter region of the BER genes were unchanged following JHDM2A interference. These results suggest a potential mechanism by which JHDM2A can regulate the MPG and XRCC1 genes in the process of responding to DNA damage induced by arsenic exposure and can participate in the process of DNA damage repair, which provides a scientific basis for understanding the epigenetic mechanisms and treatments for endemic arsenic poisoning.
Collapse
Affiliation(s)
- An-Liu Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shun-Fang Tang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yue Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chang-Zhe Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xue-Jiao Ding
- First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Hua Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun-Hua Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Guang-Hong Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
25
|
Zhao X, Fu J, Tang W, Yu L, Xu W. Inhibition of Serine Metabolism Promotes Resistance to Cisplatin in Gastric Cancer. Onco Targets Ther 2020; 13:4833-4842. [PMID: 32581546 PMCID: PMC7269635 DOI: 10.2147/ott.s246430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Serine provides important precursors of protein, lipid, and nucleotide synthesis needed for tumor cell growth. Phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in the serine de novo synthesis pathway, is highly expressed in many tumor types (including gastric cancer) and negatively correlated with overall survival. Cisplatin is a chemotherapeutic drug commonly used in the treatment of gastric cancer. In this study, we mainly investigated the relationship between serine metabolism and resistance to cisplatin in gastric cancer cells, as well as the regulatory mechanism involved in this process. Materials and Methods We determined the effect of different concentrations of serine or a PHGDH inhibitor combined with cisplatin or oxaliplatin on the viability and apoptosis of SGC7901, BGC823, and MGC803 cells via the Cell Counting Kit-8 and Hoechst 33258 staining, respectively. Western blotting was utilized to detect the relative protein expression. Furthermore, we investigated DNA damage through the micrococcal nuclease sensitivity assay detected using agarose gels. Results We found that reduced concentrations of serine or inhibition of PHGDH hindered the toxicity and pro-apoptotic effects of cisplatin on gastric cancer cells. Moreover, the addition of serine could reverse the sensitivity of gastric cancer cells to cisplatin. Moreover, we found that DNA damage was reduced by treatment with PHGDH inhibitor NCT-503 or CBR-5884. Inhibition of serine metabolism induced a decrease in H3K4 tri-methylation, which was reversed by JIB-04 (inhibitor of H3K4 demethylase). The tolerance of gastric cancer cells to cisplatin was relieved by JIB-04. Through micrococcal nuclease experiments, we further found that inhibiting the activity of PHGDH strengthened chromatin tightness. Conclusion Inhibition of serine metabolism reduced H3K4 tri-methylation and increased the density of chromatin, which leads to decreased toxicity and pro-apoptotic effect of platinum chemotherapeutic drugs on gastric cancer cells.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310000, Zhejiang Province, People's Republic of China
| | - Jianfei Fu
- Department of Medical Oncology, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China
| | - Wanfen Tang
- Department of Medical Oncology, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China
| | - Liangliang Yu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310000, Zhejiang Province, People's Republic of China
| | - Wenxia Xu
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China
| |
Collapse
|
26
|
Ueberham U, Arendt T. Genomic Indexing by Somatic Gene Recombination of mRNA/ncRNA - Does It Play a Role in Genomic Mosaicism, Memory Formation, and Alzheimer's Disease? Front Genet 2020; 11:370. [PMID: 32411177 PMCID: PMC7200996 DOI: 10.3389/fgene.2020.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence indicates that genomic individuality of neurons, characterized by DNA-content variation, is a common if not universal phenomenon in the human brain that occurs naturally but can also show aberrancies that have been linked to the pathomechanism of Alzheimer’s disease and related neurodegenerative disorders. Etiologically, this genomic mosaic has been suggested to arise from defects of cell cycle regulation that may occur either during brain development or in the mature brain after terminal differentiation of neurons. Here, we aim to draw attention towards another mechanism that can give rise to genomic individuality of neurons, with far-reaching consequences. This mechanism has its origin in the transcriptome rather than in replication defects of the genome, i.e., somatic gene recombination of RNA. We continue to develop the concept that somatic gene recombination of RNA provides a physiological process that, through integration of intronless mRNA/ncRNA into the genome, allows a particular functional state at the level of the individual neuron to be indexed. By insertion of defined RNAs in a somatic recombination process, the presence of specific mRNA transcripts within a definite temporal context can be “frozen” and can serve as an index that can be recalled at any later point in time. This allows information related to a specific neuronal state of differentiation and/or activity relevant to a memory trace to be fixed. We suggest that this process is used throughout the lifetime of each neuron and might have both advantageous and deleterious consequences.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Wilson C, Krieg AJ. KDM4B: A Nail for Every Hammer? Genes (Basel) 2019; 10:E134. [PMID: 30759871 PMCID: PMC6410163 DOI: 10.3390/genes10020134] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
Epigenetic changes are well-established contributors to cancer progression and normal developmental processes. The reversible modification of histones plays a central role in regulating the nuclear processes of gene transcription, DNA replication, and DNA repair. The KDM4 family of Jumonj domain histone demethylases specifically target di- and tri-methylated lysine 9 on histone H3 (H3K9me3), removing a modification central to defining heterochromatin and gene repression. KDM4 enzymes are generally over-expressed in cancers, making them compelling targets for study and therapeutic inhibition. One of these family members, KDM4B, is especially interesting due to its regulation by multiple cellular stimuli, including DNA damage, steroid hormones, and hypoxia. In this review, we discuss what is known about the regulation of KDM4B in response to the cellular environment, and how this context-dependent expression may be translated into specific biological consequences in cancer and reproductive biology.
Collapse
Affiliation(s)
- Cailin Wilson
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|