1
|
Muhammad RY, Nurfajri DH, Dahril D, Ismy J. Survival rate comparisons of angioembolization and neoadjuvant targeted therapy on unresectable renal cell carcinoma patients: A systematic review. Urol Ann 2024; 16:251-260. [PMID: 39600579 PMCID: PMC11587945 DOI: 10.4103/ua.ua_114_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/21/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Renal cell cancer (RCC) is the most typical form of kidney cancer in adults, which accounts for 80% to 85% of all primary renal neoplasms. RCC develops inside the renal cortex. This study aimed to systematically review the survival rate of patients treated with targeted therapy and/or RC. Surgery is the standard therapy for RCC, even though after surgery, 20%-40% of patients with localized RCC would experience distant metastases. Metastases or large RCC are not amenable to surgery. Unresectable RCC can be treated palliatively with angioembolization or neoadjuvant therapy. This study aims to review the survival rate comparisons of angioembolization and neoadjuvant targeted therapy on unresectable renal cell carcinoma. Methods A thorough search across databases such as PubMed, Cochrane Library, and ProQuest was conducted for articles published from 2018 to 2023. To uphold research integrity, duplicates, reviews, and incomplete articles were excluded, ensuring only pertinent and original research findings for subsequent analysis. Results Database search yielded 247 articles, which were systematically eliminated, leaving 6 relevant articles. Analyzed articles showed the overall survival of patients treated with angioembolization and neoadjuvant agents. Conclusion Unresectable RCC can be treated palliatively with angioembolization. Angioembolization may improve clinical effectiveness and lessen side effects by boosting local concentrations of drugs. Drug-eluting bead transarterial chemoembolization is a novel embolization option that can embolize the arteries that feed the tumor and cutoff the blood supply to the tumor. Sunitinib, the most studied medicinal agent, was found to have higher effectiveness when combined with angioembolization.
Collapse
Affiliation(s)
- Rifqi Yanda Muhammad
- Department of Urology, Hasan Sadikin Academic Medical Center, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Derri Hafa Nurfajri
- Department of Urology, Hasan Sadikin Academic Medical Center, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Dahril Dahril
- Department of Surgery, Urology Division, Faculty of Medicine, Zainoel Abidin General Hospital, Syiah Kuala University, Banda Aceh, Indonesia
| | - Jufriady Ismy
- Department of Surgery, Urology Division, Faculty of Medicine, Zainoel Abidin General Hospital, Syiah Kuala University, Banda Aceh, Indonesia
| |
Collapse
|
2
|
Alves Â, Medeiros R, Teixeira AL, Dias F. Decoding PTEN regulation in clear cell renal cell carcinoma: Pathway for biomarker discovery and therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189165. [PMID: 39117092 DOI: 10.1016/j.bbcan.2024.189165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Renal cell carcinoma is the most common adult renal solid tumor and the deadliest urological cancer, with clear cell renal cell carcinoma (ccRCC) being the predominant subtype. The PI3K/AKT signaling pathway assumes a central role in ccRCC tumorigenesis, wherein its abnormal activation confers a highly aggressive phenotype, leading to swift resistance against current therapies and distant metastasis. Thus, treatment resistance and disease progression remain a persistent clinical challenge in managing ccRCC effectively. PTEN, an antagonist of the PI3K/AKT signaling axis, emerges as a crucial factor in tumor progression, often experiencing loss or inactivation in ccRCC, thereby contributing to elevated mortality rates in patients. Therefore, understanding the molecular mechanisms underlying PTEN suppression in ccRCC tumors holds promise for the discovery of biomarkers and therapeutic targets, ultimately enhancing patient monitoring and treatment outcomes. The present review aims to summarize these mechanisms, emphasizing their potential prognostic, predictive, and therapeutic value in managing ccRCC.
Collapse
Affiliation(s)
- Ângela Alves
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal; Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal; Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; Biomedicine Research Center (CEBIMED), Research Innovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal; Research Department, Portuguese League Against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.
| |
Collapse
|
3
|
Meng Z, Wang Y, Kong X, Cen M, Duan Z. Chicken speckle-type POZ protein (SPOP) negatively regulates MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote the replication of Newcastle disease virus. Poult Sci 2024; 103:103461. [PMID: 38290339 PMCID: PMC10844869 DOI: 10.1016/j.psj.2024.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The speckle-type POZ protein (SPOP) is demonstrated to be a specific adaptor of the cullin-RING-based E3 ubiquitin ligase complex that participates in multiple cellular processes. Up to now, SPOP involved in inflammatory response has attracted more attention, but the association of SPOP with animal virus infection is scarcely reported. In this study, chicken MyD88 (chMyD88), an innate immunity-associated protein, was screened to be an interacting partner of chSPOP using co-immunoprecipitation (Co-IP) combined with liquid chromatography-tandem mass spectrometry methods. This interaction was further confirmed by fluorescence co-localization, Co-IP, and pull-down assays. It was interesting that exogenous recombinant protein HA-chSPOP or endogenous chSPOP alone was mainly located in the nucleus but was translocated to the cytoplasm upon co-expression with chMyD88 or lipopolysaccharide stimulation. In addition, chSPOP reduced chMyD88 expression by ubiquitination in a dose-dependent manner, and the regulation of NF-κB activity by chSPOP was dependent solely on chMyD88. Importantly, chSPOP played a negative regulatory role in the MyD88/NF-κB signaling pathway and the production of proinflammatory cytokines. Moreover, we found that velogenic Newcastle disease virus (NDV) infection changed the subcellular localization of chSPOP and the expression patterns of chSPOP and chMyD88, and overexpression of chSPOP decreased the production of proinflammatory cytokines to enhance velogenic and lentogenic NDV replication, while siRNA-mediated chSPOP knockdown obtained the opposite results, thereby indicating that chSPOP negatively regulated MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote NDV replication. These findings highlight the important role of the SPOP/MyD88/NF-κB signaling pathway in NDV replication and may provide insightful information about NDV pathogenesis.
Collapse
Affiliation(s)
- Zhongming Meng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yanbi Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xianya Kong
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mona Cen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Shi Q, Xu G, Jiang Y, Yang J, Han X, Wang Q, Li Y, Zhang Z, Wang K, Peng H, Chen F, Ma Y, Zhao L, Chen Y, Liu Z, Yang L, Jia X, Wen T, Tong Z, Cui X, Li F. Phospholipase PLCE1 Promotes Transcription and Phosphorylation of MCM7 to Drive Tumor Progression in Esophageal Cancer. Cancer Res 2024; 84:560-576. [PMID: 38117512 DOI: 10.1158/0008-5472.can-23-1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.
Collapse
Affiliation(s)
- Qi Shi
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Guixuan Xu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yuliang Jiang
- Department of Oncology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, P.R. China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Qian Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Ya Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Zhiyu Zhang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Kaige Wang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Fangfang Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yandi Ma
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Linyue Zhao
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yunzhao Chen
- Department of Pathology, The people's Hospital of Suzhou National Hi-Tech District, Suzhou, P.R. China
| | - Zheng Liu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Xingyuan Jia
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Tao Wen
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Feng Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| |
Collapse
|
6
|
Jiang W, Lu W, Liu J, Ren H, Zhao X, Yang W. miR-520f-3p blocks MNNG-induced gastric precancerous lesions via the KLF7/NFκB pathway. Toxicol Lett 2024; 392:64-74. [PMID: 38184286 DOI: 10.1016/j.toxlet.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Studying the regulatory mechanism of gastric disease progression to gastric cancer (GC) is essential. miR-520f expression is down-regulated in GC and inhibits the proliferation of gastric cancer cells, suggesting that it is associated with the development of GC, but whether it plays a role in the gastric precancerous lesion (GPL) is unclear. This study aimed to investigate the effect of miR-520f-3p in the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GPL model and to elucidate the role of its downstream target gene Kruppel-like factor 7 (KLF7) in it. The experimental results showed that miR-520f-3p expression was down-regulated in the MNNG-induced GES-1 cell model, and overexpression of miR-520f-3p reversed the effects of MNNG on cell migration, invasion and epithelial-mesenchymal transition (EMT) -related protein expression. Meanwhile, overexpression of KLF7 attenuated the effect of miR-520f-3p on GPL. In a mouse GPL model, it was observed that MNNG elicited inflammation and EMT processes in mouse gastric tissues through the KLF7/ Nuclear Factor Kappa B (NFκB) pathway, and silencing KLF7 alleviated MNNG-induced gastric epithelial cell injury and gastric atrophy symptoms. These results provide a new perspective for understanding the development of GPL, and the development of new therapies targeting miR-520f-3p and KLF7 may provide new ideas for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Infectious Diseases, Tianjin First Central Hospital, China
| | - Wei Lu
- Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, China
| | - Jun Liu
- Department of Infectious Diseases, Tianjin First Central Hospital, China
| | - Haixia Ren
- Department of Pharmacy, Tianjin First Central Hospital, China
| | - Xuequn Zhao
- Department of Infectious Diseases, Tianjin First Central Hospital, China
| | - Wenjie Yang
- Department of Infectious Diseases, Tianjin First Central Hospital, China.
| |
Collapse
|
7
|
Ma C, Liu M, Feng W, Rao H, Zhang W, Liu C, Xu Y, Wang Z, Teng Y, Yang X, Ni L, Xu J, Gao W, Lu B, Li L. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway. Clin Transl Med 2023; 13:e1475. [PMID: 37962020 PMCID: PMC10644329 DOI: 10.1002/ctm2.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGOUND Colorectal cancer (CRC) is a complex, multistep disease that arises from the interplay genetic mutations and epigenetic alterations. The histone H3K36 trimethyltransferase SET domain-containing 2 (SETD2), as an epigenetic signalling molecule, has a 5% mutation rate in CRC. SETD2 expression is decreased in the development of human CRC and mice treated with Azoxymethane /Dextran sodium sulfate (AOM/DSS). Loss of SETD2 promoted CRC development. SMAD Family member 4 (SMAD4) has a 14% mutation rate in CRC, and SMAD4 ablation leads to CRC. The co-mutation of SETD2 and SMAD4 predicted advanced CRC. However, little is known on the potential synergistic effect of SETD2 and SMAD4. METHODS CRC tissues from mice and SW620 cells were used as research subjects. Clinical databases of CRC patients were analyzed to investigate the association between SETD2 and SMAD4. SETD2 and SMAD4 double-knockout mice were established to further investigate the role of SETD2 in SMAD4-deficient CRC. The intestinal epithelial cells (IECs) were isolated for RNA sequencing and chromatin immunoprecipitation sequencing (ChIP-seq) to explore the mechanism and the key molecules resulting in CRC. Molecular and cellular experiments were conducted to analyze the role of SETD2 in SMAD4-deficient CRC. Finally, rescue experiments were performed to confirm the molecular mechanism of SETD2 in the development of SMAD4-dificient CRC. RESULTS The deletion of SETD2 promotes the malignant progression of SMAD4-deficient CRC. Smad4Vil-KO ; Setd2Vil-KO mice developed a more severe CRC phenotype after AOM/DSS induction, with a larger tumour size and a more vigorous epithelial proliferation rate. Further mechanistic findings revealed that the loss of SETD2 resulted in the down-regulation of DUSP7, which is involved in the inhibition of the RAS/ERK signalling pathway. Finally, the ERK1/2 inhibitor SCH772984 significantly attenuated the progression of CRC in Smad4Vil-KO ;Setd2Vil-KO mice, and overexpression of DUSP7 significantly inhibited the proliferation rates of SETD2KO ; SMAD4KO SW620 cells. CONCLUSIONS Our results demonstrated that SETD2 inhibits the RAS/ERK signaling pathway by facilitating the transcription of DUSP7 in SMAD4-deficient CRC, which could provide a potential therapeutic target for the treatment of advanced CRC.
Collapse
Affiliation(s)
- Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Min Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Li Ni
- Department of NursingShanghai East Hospital, Tongji UniversityShanghaiChina
| | - Jin Xu
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Bing Lu
- Department of General Surgery, Department of Colorectal Surgery, Shanghai East HospitalSchool of Medicine, Tongji UniversityShanghaiChina
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Huang J, Cao Y, Li X, Yu F, Han X. E2F1 regulates miR-215-5p to aggravate paraquat-induced pulmonary fibrosis via repressing BMPR2 expression. Toxicol Res (Camb) 2022; 11:940-950. [PMID: 36569483 PMCID: PMC9773066 DOI: 10.1093/toxres/tfac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023] Open
Abstract
Background Pulmonary fibrosis is considered to be an irreversible lung injury, which can be caused by paraquat (PQ) poisoning. MiRNAs have been demonstrated crucial roles in pulmonary fibrosis caused by numerous approaches including PQ induction. The purpose of this study was to investigate the role and the underlying mechanism of miR-215 in PQ-induced pulmonary fibrosis. Methods The cell and animal models of pulmonary fibrosis were established through PQ intervention. Cell viability was performed to test by MTT assay. Immunofluorescence assay was used to detect COL1A1 expression and its location. The relationships among E2F1, miR-215-5p, and BMPR2 were validated by dual luciferase reporter gene assay, chromatin immunoprecipitation and RNA-binding protein immunoprecipitation. Lung morphology was evaluated by hematoxylin and eosin staining. Results MiR-215-5p was upregulated in PQ-induced pulmonary fibrosis in vitro and in vivo. MiR-215-5p silencing relieved PQ-induced pulmonary fibrosis progression by enhancing cell viability and reducing the expression of fibrosis-related markers (COL1A1, COL3A1, and α-SMA). Mechanistically, miR-215-5p directly targeted BMRP2. BMPR2 knockdown abolished the suppressive effects of miR-215-5p knockdown on PQ-induced pulmonary fibrosis. In addition, E2F1 interacted with miR-215-5p promoter and positively regulated miR-215-5p expression. E2F1 downregulation reduced miR-215-5p level and promoted BMPR2 level via regulating TGF-β/Smad3 pathway, and then suppressed PQ-induced pulmonary fibrosis, whereas these effects were compromised by miR-215-5p sufficiency. Conclusion MiR-215-5p was activated by E2F1 to repress BMPR2 expression and activate TGF-β/Smad3 pathway, which aggravated PQ-induced pulmonary fibrosis progression. Targeting the E2F1/miR-215-5p/BMPR2 axis might be a new approach to alleviate PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jie Huang
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Yan Cao
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Xiang Li
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Fang Yu
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Xiaotong Han
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| |
Collapse
|
9
|
Yang X, Zhu Q. SPOP in Cancer: Phenomena, Mechanisms and Its Role in Therapeutic Implications. Genes (Basel) 2022; 13:2051. [PMID: 36360288 PMCID: PMC9690554 DOI: 10.3390/genes13112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2023] Open
Abstract
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3 ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation. Recently, SPOP has attracted major research attention as it is frequently mutated in a range of cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance. Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH) domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is associated with the development and progression of different cancers since abnormalities in SPOP function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA damage response and DNA replication. More recently, studies have shown that the expression of SPOP can be modulated in various ways. In this review, we summarize the current understanding of SPOP's functions in cancer and discuss how to design a rational therapeutic target.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Cancer-associated fibroblasts promote the stemness and progression of renal cell carcinoma via exosomal miR-181d-5p. Cell Death Dis 2022; 8:439. [PMID: 36319622 PMCID: PMC9626570 DOI: 10.1038/s41420-022-01219-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms underlying the effects of cancer-associated fibroblasts (CAFs) on cancer stemness and tumor progression in renal cell carcinoma (RCC) have not been elucidated yet. In the present study, we found that the enrichment of CAFs was positively associated with tumor progression and cancer stemness in RCC. Further investigation revealed that CAFs could enhance cancer stemness through delivering exosomes to RCC cells, and miR-181d-5p was identified as the critical exosomal miRNA in CAF-secreted exosomes by small RNA sequencing and subsequent screening assays. Mechanistically, exosomal miR-181d-5p transferred from CAFs to RCC cells directly suppressed the expression of ring finger protein 43 (RNF43) and activated Wnt/β-catenin signaling pathway, thus promoted cancer stemness and tumor progression. Overexpression of RNF43 strongly suppressed stemness properties and the effects could be reverted by miR-181d-5p. Overall, our findings revealed a crucial mechanism by which CAF-secreted exosomal miRNAs to enhance cancer stemness and thus promote RCC progression, suggesting a new avenue based on CAF-secreted miRNAs for more effective targeted therapies.
Collapse
|
11
|
Fan Y, Hou T, Dan W, Zhu Y, Liu B, Wei Y, Wang Z, Gao Y, Zeng J, Li L. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression. Cell Death Differ 2022; 29:1611-1624. [PMID: 35194188 PMCID: PMC9345960 DOI: 10.1038/s41418-022-00951-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in prostate cancer (PCa), but how SPOP functions as a tumor suppressor and contributes to PCa pathogenesis remains poorly understood. Prostate Leucine Zipper (PrLZ) serves as a prostate-specific and androgen-responsive gene, which plays a pivotal role in the malignant progression of PCa. However, the upstream regulatory mechanism of PrLZ protein stability and its physiological contribution to PCa carcinogenesis remain largely elusive. Here we report that PrLZ can be degraded by SPOP. PrLZ abundance is elevated in SPOP-mutant expressing PCa cell lines and patient specimens. Meanwhile, ERK1/2 might regulate SPOP-mediated PrLZ degradation through phosphorylating PrLZ at Ser40, which blocks the interaction between SPOP and PrLZ. In addition, we identify IL-6 might act as an upstream PrLZ degradation regulator via promoting its phosphorylation by ERK1/2, leading to its impaired recognition by SPOP. Thus, our study reveals a novel SPOP substrate PrLZ which might be controlled by ERK1/2-mediated phosphorylation, thereby facilitating to explore novel drug targets and improve therapeutic strategy for PCa.
Collapse
|
12
|
Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother 2022; 149:112882. [PMID: 35364375 DOI: 10.1016/j.biopha.2022.112882] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.
Collapse
|
13
|
Gao S, Bu X, Gao Y, Bao Z, Shi W, Luan L, Chen H, Zhang B, Tian Q, Guan W, Yang L. The miR-532-E2F1 feedback loop contributes to gastric cancer progression. Cell Death Dis 2022; 13:376. [PMID: 35440106 PMCID: PMC9018701 DOI: 10.1038/s41419-022-04832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022]
Abstract
Gastric cancer (GC) ranks fourth in incidence and mortality worldwide, ascertaining the pathogenesis of GC is crucial for its treatment. E2F1, which regulates the transcription of genes encoding proteins involved in DNA repair, DNA replication, mitosis and survival of cancer patients, functions as a key regulator in GC progression. However, the underneath mechanism of these processes is not fully elucidated. Here, TCGA database analysis, microarray immunohistochemical technique and western blot showed that E2F1 was highly upregulated in clinical GC tissues and correlated with tumor malignancy. In vitro and in vivo assays confirmed the oncogenic function of E2F1. MiR-532 was decreased and negatively correlated with E2F1 in GC tissues. MiR-532 directly targeted and inhibited E2F1 expression, leading to the decrease of ASK1 and elevation of TXNIP, and affected proliferation, cell cycle, apoptosis and DNA damage in vitro and tumor growth in vivo. Moreover, E2F1 serves as a transcriptional repressor to suppress miR-532 expression and a double-negative feedback loop was formed between them. This study demonstrates the significant roles of the E2F1-miR-532 double-negative feedback loop in GC progression and may represent a potential target for GC therapy.
Collapse
Affiliation(s)
- Shanting Gao
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Xiaomin Bu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yongyue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - Zengtao Bao
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Wenchao Shi
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Lipeng Luan
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Huiyu Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Baoming Zhang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.
| | - Qingshui Tian
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Liuqing Yang
- Department of Infectious Diseases, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.
| |
Collapse
|
14
|
Jiang W, Yang W, Liu J, Zhao X, Lu W. Cancer-suppressing miR-520-3p gene inhibits proliferation, migration, and invasion of gastric cancer cells through targeted regulation of KLF7. Bull Cancer 2022; 109:631-641. [DOI: 10.1016/j.bulcan.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
|
15
|
Chen R, Zhang Z, Hu B, Jiang M, Zheng P, Deng W, Fu B, Sun T. Identification of the Expression and Clinical Significance of E2F Family in Clear Cell Renal Cell Carcinoma. Int J Gen Med 2022; 15:1193-1212. [PMID: 35153510 PMCID: PMC8827415 DOI: 10.2147/ijgm.s349723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Multiple studies have identified that E2F transcriptions act as important regulators for the tumorigenesis and progression of several human cancers. However, little is known about the function of E2Fs in clear cell renal cell carcinoma (ccRCC). Methods We firstly investigated the expression levels, genetic alteration, and biological function of E2Fs in patients with ccRCC and the connections between the immune cell infiltration and the overall survivals of ccRCC patients with the E2Fs expression levels based on UALCAN, The Cancer Genome Atlas database, Gene Expression Profiling Interactive Analysis, TIMER, STRING, GSCALite and cBioPortal databases. Results Results revealed that the expression levels of E2F1/2/3/4/6/7/8 were markedly upregulated in patients with ccRCC, while the expression of E2F5 displayed an opposite trend. We also experimentally validated the overexpression of E2F3/4/7 in human ccRCC tissues and ccRCC cell lines. Furthermore, the high E2F1/2/3/4/7/8 expression levels were clearly associated with worse pathological characteristics of ccRCC, including high pathological stage, poor molecular subtypes and high tumor grade. Meanwhile, high expression levels of E2F1/2/4/7/8 were evidently associated with worse overall survivals (OSs) and progression-free survivals (PFSs) of patients harboring ccRCC. Univariate and multivariate analyses illustrated that the expressions of E2F4/5/7 were independent factors associated with the OSs and PFSs of patients with ccRCC. Meanwhile, the mutations in E2Fs were also significantly related to poor OSs and PFSs of patients with ccRCC. Mechanically, the E2Fs genes synergistically promoted the progression of ccRCC by accelerating the cell cycle and inhibiting DNA damage response and apoptosis after performing the protein structure, functional enrichment, and PPI network analyses. In addition, E2Fs genes were also significantly associated with tumor immune cells infiltration and the drug sensitivity in ccRCC. Conclusion As a result, E2F4/7 were highly expressed in ccRCC and significantly associated with worse pathological characteristics of ccRCC, including high pathological stage, poor molecular subtypes and high tumor grade, tumor immune cell infiltration, and drug sensitivity, consequently translating into poor OSs and PFSs of patients with ccRCC. Our results indicated that E2F4/7 could be potential biomarkers and therapeutic targets of ccRCC patients.
Collapse
Affiliation(s)
- Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
- Department of Urology, The First Hospital of Putian City, Putian, 350001, Fujian, People’s Republic of China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
| | - Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
| | - Ming Jiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
| | - Ping Zheng
- Department of Urology, Shangrao municipal Hospital, Shangrao, 334000, Jiangxi Province, People’s Republic of China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
- Jiangxi Institute of Urology, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
- Correspondence: Bin Fu; Ting Sun, Email ;
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
- Jiangxi Institute of Urology, Nanchang City, 330000, Jiangxi Province, People’s Republic of China
| |
Collapse
|
16
|
Long Non-coding RNA GAS5/miR-520-3p/SOCS3 Axis Regulates Inflammatory Response in Lipopolysaccharide-Induced Macrophages. Biochem Genet 2022; 60:1793-1808. [DOI: 10.1007/s10528-021-10179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
|
17
|
Li P, Lv H, Wu Y, Xu K, Xu M, Ma Y. E2F transcription factor 1 is involved in the phenotypic modulation of esophageal squamous cell carcinoma cells via microRNA-375. Bioengineered 2021; 12:10047-10062. [PMID: 34699320 PMCID: PMC8809976 DOI: 10.1080/21655979.2021.1996510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022] Open
Abstract
E2F family of transcription factors modulates multiple cellular functions associated with cell cycle and apoptosis. Here, we focused on the relevance of E2F1 to esophageal squamous cell carcinoma (ESCC) and identification of E2F1-mediated network in this study. Query of Gene Expression Omnibus database revealed that E2F1 was the core gene that was upregulated in ESCC. E2F1 downregulation inhibited ESCC cell activity. microRNA (miR)-375 was confirmed to be a downstream target of E2F1. E2F1 bound to miR-375 promoter and inhibited miR-375 transcription. Moreover, miR-375 inhibitor mitigated the repressive impacts of si-E2F1 on ESCC cells in part. Further study showed that sestrin 3 (SESN3) could interact with miR-375, and its knockdown annulled the stimulative effect of miR-375 inhibitor on ESCC development. Finally, E2F1 and SESN3 downregulation inhibited the phosphatidylinositol 3 kinase (PI3K)/AKT pathway activity in cells, while miR-375 inhibitor promoted PI3K/AKT pathway activation. These findings suggest that E2F1 inhibited miR-375 expression and promoted SESN3 expression to activate the PI3K/AKT pathway in ESCC.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongkai Wu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Min Xu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yegang Ma
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Lin X, Han T, Xia Q, Cui J, Zhuo M, Liang Y, Su W, Wang L, Wang L, Liu Z, Xiao X. CHPF promotes gastric cancer tumorigenesis through the activation of E2F1. Cell Death Dis 2021; 12:876. [PMID: 34564711 PMCID: PMC8464597 DOI: 10.1038/s41419-021-04148-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
Chondroitin polymerizing factor (CHPF) is an important glycosyltransferase involved in the biosynthesis of chondroitin sulfate. However, the relationship between CHPF and gastric cancer has not been fully investigated. CHPF expression in gastric cancer tissues was detected by immunohistochemistry and correlated with gastric cancer patient prognosis. Cultured gastric cancer cells and human gastric epithelial cell line GES1 were used to investigate the effects of shCHPF and shE2F1 on the development and progression of gastric cancer by MTT, western blotting, flow cytometry analysis of cell apoptosis, colony formation, transwell and gastric cancer xenograft mouse models, in vitro and in vivo. In gastric cancer tissues, CHPF was found to be significantly upregulated, and its expression correlated with tumor infiltration and advanced tumor stage and shorter patient survival in gastric cancer. CHPF may promote gastric cancer development by regulating cell proliferation, colony formation, cell apoptosis and cell migration, while knockdown induced the opposite effects. Moreover, the results from in vivo experiments demonstrated that tumor growth was suppressed by CHPF knockdown. Additionally, E2F1 was identified as a potential downstream target of CHPF in the regulation of gastric cancer, and its knockdown decreased the CHPF-induced promotion of gastric cancer. Mechanistic study revealed that CHPF may regulate E2F1 through affecting UBE2T-mediated E2F1 ubiquitination. This study showed, for the first time, that CHPF is a potential prognostic indicator and tumor promoter in gastric cancer whose function is likely carried out through the regulation of E2F1.
Collapse
Affiliation(s)
- Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Han
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Xia
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiujie Cui
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Meng Zhuo
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiyi Liang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenyu Su
- Department of Gastroenterology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, Shanghai, 200127, China
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Liwei Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Zebing Liu
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
19
|
Shah JA, Khattak S, Rauf MA, Cai Y, Jin J. Potential Biomarkers of miR-371-373 Gene Cluster in Tumorigenesis. Life (Basel) 2021; 11:life11090984. [PMID: 34575133 PMCID: PMC8465240 DOI: 10.3390/life11090984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA transcripts (20–24 nucleotides) that bind to their complementary sequences in the 3′-untranslated regions (3′-UTR) of targeted genes to negatively or positively regulate their expression. miRNAs affect the expression of genes in cells, thereby contributing to several important biological processes, including tumorigenesis. Identifying the miRNA cluster as a human embryonic stem cell (hESC)-specific miRNAs initially led to the identification of miR-371, miR-372, miR-373, and miR-373*, which can ultimately be translated into mature miRNAs. Recent evidence suggests that miR-371–373 genes are abnormally expressed in various cancers and act either as oncogenes or tumor suppressors, indicating they may be suitable as molecular biomarkers for cancer diagnosis and prevention. In this article, we summarize recent studies linking miR-371–373 functions to tumorigenesis and speculate on the potential applications of miR-371–373 as biomarkers for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; or
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence:
| |
Collapse
|
20
|
Zhou J, Zhou H, Liu Y, Liu C. Inhibition of CTCF-regulated miRNA-185-5p mitigates renal interstitial fibrosis of chronic kidney disease. Epigenomics 2021; 13:859-873. [PMID: 33977784 DOI: 10.2217/epi-2020-0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: The present study aimed to elucidate the effect of CTCF on renal interstitial fibrosis in chronic kidney disease (CKD) and underlying mechanisms. Materials & methods: We measured NPHS2 expression and investigated its function in a unilateral ureteral obstruction-induced mouse model of CKD. Results: NPHS2 was poorly expressed in CKD mice. miR-185-5p targeted NPHS2 and reduced its expression, leading to increased α-SMA and COL I/III expression, increased renal interstitial fibrosis area and elevated phosphorylated vasodilator-stimulated phosphoprotein/vasodilator-stimulated phosphoprotein ratio. Co-treatment with CTCF downregulated miR-185-5p expression and abolished its effects in the CKD model. Conclusion: CTCF suppressed miR-185-5p and upregulated its target NPHS2, with a net effect of alleviating renal interstitial fibrosis in CKD.
Collapse
Affiliation(s)
- Jiajun Zhou
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Han Zhou
- Queen Mary College of Nanchang University, Nanchang 330031, PR China
| | - Yong Liu
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Caixin Liu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| |
Collapse
|
21
|
Yang L, Zou X, Zou J, Zhang G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med Sci Monit 2021; 27:e930639. [PMID: 33963171 PMCID: PMC8114846 DOI: 10.12659/msm.930639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common type of urologic neoplasms; it accounts for 3% of malignant tumors, with high rates of relapse and mortality. The most common types of renal cancer are clear cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal carcinoma (chRCC), which account for 90%, 6–15%, and 2–5%, respectively, of all renal malignancies. Although surgical resection, chemotherapy, and radiotherapy are the most common treatment method for those diseases, their effects remain dissatisfactory. Furthermore, recent research shows that the treatment efficacy of checkpoint inhibitors in advanced RCC patients is widely variable. Hence, patients urgently need a new molecular biomarker for early diagnosis and evaluating the prognosis of RCC. MicroRNAs (miRNAs) belong to a family of short, non-coding RNAs that are highly conserved, have long half-life evolution, and post-transcriptionally regulate gene expression; they have been predicted to play crucial roles in tumor metastasis, invasion, angiogenesis, proliferation, apoptosis, epithelial-mesenchymal transition, differentiation, metabolism, cancer occurrence, and treatment resistance. Although some previous papers demonstrated that miRNAs play vital roles in renal cancer, such as pathogenesis, diagnosis, and prognosis, the roles of miRNAs in kidney cancer are still unclear. Therefore, we reviewed studies indexed in PubMed from 2017 to 2020, and found several studies suggesting that there are more than 82 miRNAs involved in renal cancers. The present review describes the current status of miRNAs in RCC and their roles in progression, diagnosis, therapy targeting, and prognosis of RCC.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
22
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
23
|
Man RJ, Jeelani N, Zhou C, Yang YS. Recent Progress in the Development of Quinoline Derivatives for the Exploitation of Anti-Cancer Agents. Anticancer Agents Med Chem 2021; 21:825-838. [PMID: 32416703 DOI: 10.2174/1871520620666200516150345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Along with the progress in medicine and therapies, the exploitation of anti-cancer agents focused more on the vital signaling pathways and key biological macromolecules. With rational design and advanced synthesis, quinoline derivatives have been utilized frequently in medicinal chemistry, especially in developing anti-cancer drugs or candidates. METHODS Using DOI searching, articles published before 2020 all over the world have been reviewed as comprehensively as possible. RESULTS In this review, we selected the representative quinoline derivate drugs in market or clinical trials, classified them into five major categories with detailed targets according to their main mechanisms, discussed the relationship within the same mechanism, and generated a summative discussion with prospective expectations. For each mechanism, the introduction of the target was presented, with the typical examples of quinoline derivate drugs. CONCLUSION This review has highlighted the quinoline drugs or candidates, suited them into corresponding targets in their pathways, summarized and discussed. We hope that this review may help the researchers who are interested in discovering quinoline derivate anti-cancer agents obtain considerable understanding of this specific topic. Through the flourishing period and the vigorous strategies in clinical trials, quinoline drugs would be potential but facing new challenges in the future.
Collapse
Affiliation(s)
- Ruo-Jun Man
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Nasreen Jeelani
- Institute of Chemistry and BioMedical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yu-Shun Yang
- Institute of Chemistry and BioMedical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Jing C, Duan Y, Zhou M, Yue K, Zhuo S, Li X, Liu D, Ye B, Lai Q, Li L, Yao X, Wei H, Zhang W, Wu Y, Wang X. Blockade of deubiquitinating enzyme PSMD14 overcomes chemoresistance in head and neck squamous cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness. Theranostics 2021; 11:2655-2669. [PMID: 33456565 PMCID: PMC7806466 DOI: 10.7150/thno.48375] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence reveals a close relationship between deubiquitinating enzymes (DUBs) and cancer progression. In this study, we attempted to identify the roles and mechanisms of critical DUBs in head and neck squamous cell carcinoma (HNSCC). Methods: Bioinformatics analysis was performed to screen differentially expressed novel DUBs in HNSCC. Immunohistochemistry assay was used to measure the expression of DUB PSMD14 in HNSCC specimens and adjacent normal tissues. The level of PSMD14 in HNSCC tumorigenesis was investigated using a 4-NQO-induced murine HNSCC model. The function of PSMD14 was determined through loss-of-function assays. Chromatin immunoprecipitation, immunoprecipitation and in vivo ubiquitination assay were conducted to explore the potential mechanism of PSMD14. The anti-tumor activity of PSMD14 inhibitor Thiolutin was assessed by in vitro and in vivo experiments. Results: We identified PSMD14 as one of significantly upregulated DUBs in HNSCC tissues. Aberrant expression of PSMD14 was associated with tumorigenesis and malignant progression of HNSCC and further indicated poor prognosis. The results of in vitro and in vivo experiments demonstrated PSMD14 depletion significantly undermined HNSCC growth, chemoresistance and stemness. Mechanically, PSMD14 inhibited the ubiquitination and degradation of E2F1 to improve the activation of Akt pathway and the transcription of SOX2. Furthermore, PSMD14 inhibitor Thiolutin exhibited a potent anti-tumor effect on HNSCC in vivo and in vitro by impairing DUB activity of PSMD14. Conclusion: Our findings demonstrate the role and mechanism of PSMD14 in HNSCC, and provide a novel and promising target for diagnosis and clinical therapy of HNSCC.
Collapse
|
25
|
Wang W, Yang Y, Chen X, Shao S, Hu S, Zhang T. MAGI1 mediates tumor metastasis through c-Myb/miR-520h/MAGI1 signaling pathway in renal cell carcinoma. Apoptosis 2020; 24:837-848. [PMID: 31352641 DOI: 10.1007/s10495-019-01562-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Renal cell carcinoma (RCC) is the third most common urological cancer with highly metastatic potential. MAGI1 plays an important role in stabilization of the adherens junctions and has been confirmed to suppress invasiveness and metastasis in multiple cancers in clinic. However, its expression and anti-metastatic ability in RCC are still unclear. In this study, we demonstrated that MAGI1 was markedly decreased in the RCC and indicated poor survival. Furthermore, we found that MAGI1 suppressed the invasion and migration of human RCC cells. Mechanistic investigations revealed that MAGI1 stabilized the PTEN/MAGI1/β-catenin complex to inhibit β-catenin signaling pathway. Moreover, MAGI1 was targeted by miR-520h which was transcriptionally activated by c-Myb. Collectively, our findings suggested that MAGI1mediated tumor metastasis through c-Myb/miR-520h/MAGI1 signaling pathway in RCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanhua Yang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xinyi Chen
- Department of Pathology, Qingdao Central Hospital, Qingdao, Shandong, China.,Department of Pathology, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China
| | - Shihong Shao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shasha Hu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tingguo Zhang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China. .,Department of Pathology, School of Basic Medical Sciences, Shandong University, NO. 44, Wenhuaxi Road, Jinan, Shandong, China.
| |
Collapse
|
26
|
Sell SL, Widen SG, Prough DS, Hellmich HL. Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One 2020; 15:e0234185. [PMID: 32502186 PMCID: PMC7274418 DOI: 10.1371/journal.pone.0234185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Multiple studies have confirmed that speckle-type pox virus and zinc finger (POZ) protein (SPOP) functions as a substrate adaptor of cullin 3-based E3 ligase and has a crucial role in various cellular processes via specific targeting of proteins for ubiquitination and subsequent proteasomal degradation. Dysregulation of SPOP-mediated proteolysis might be involved in the development and progression of human prostate and kidney cancers. In prostate cancer, SPOP seems to function as a tumour suppressor by targeting several proteins, including androgen receptor (AR), steroid receptor coactivator 3 (SRC3) and BRD4, for degradation, whereas it might function as an oncoprotein in kidney cancer, for example, by targeting phosphatase and tensin homologue (PTEN) for proteasomal degradation. In addition, nuclear SPOP targets AR for degradation and has a role as a tumour suppressor in prostate cancer; however, in kidney cancer, SPOP largely accumulates in the cytoplasm and fails to promote degradation of AR located in the nucleus, resulting in activation of AR-driven pathways and cancer progression. Owing to the context-dependent function of SPOP in human malignancies, further assessment of the molecular mechanisms involving SPOP in prostate and kidney cancers is needed to improve our understanding of its role in the development of these cancer types. Treatments that target SPOP might become therapeutic strategies in these malignancies in the future.
Collapse
|
28
|
Wu Y, Gao Z, Zhang J. Transcription Factor E2F1 Aggravates Neurological Injury in Ischemic Stroke via microRNA-122-Targeted Sprouty2. Neuropsychiatr Dis Treat 2020; 16:2633-2647. [PMID: 33177827 PMCID: PMC7651997 DOI: 10.2147/ndt.s271320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND It has been documented that microRNAs (miRs) assume a pivotal role in the development of ischemic stroke (IS). However, it remains poorly identified about the role of miR-122 in IS. Herein, this study was intended to explore the mechanism of E2F1-orchestrated miR-122 in IS. PATIENTS AND METHODS E2F1, miR-122, and SPRY2 expression in serum from patients with IS and oxygen-glucose deprivation (OGD)-treated N2a cells was detected by RT-qPCR. After gain- and loss-of-function approaches in OGD-induced N2a cells, GAFP staining, flow cytometry, and Western blot analysis were adopted to assess neuronal viability, cell cycle and apoptosis, and expression of apoptosis- and autophagy-related proteins, respectively. Meanwhile, mice with IS were induced, in which E2F1, miR-122, and SPRY2 were overexpressed, followed by evaluation of neurological deficit and cerebral infarction area. The MAPK pathway activity in tissues of mice and cells was determined. RESULTS miR-122 was down-regulated, and E2F1 and SPRY2 were up-regulated in IS patients and OGD-induced N2a cells. E2F1 inhibited miR-122 transcription, while miR-122 targeted SPRY2. Overexpression (OE) of miR-122 or down-regulation of E2F1 or SPRY2 increased viability, but decreased apoptosis, cell cycle arrest, and autophagy in OGD-induced N2a cells. In IS mice, the neurological deficit score and cerebral infarction area were elevated, which was aggravated by up-regulating E2F1 or SPRY2 but attenuated by overexpressing miR-122. E2F1/miR-122/SPRY2 axis mediated the MAPK pathway in vivo and in vitro. CONCLUSION Collectively, E2F1 reduced miR-122 transcription to up-regulate SPRY2, which inactivated MAPK pathway and promoted neurological deficit in IS.
Collapse
Affiliation(s)
- Yunxia Wu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Zhiqiang Gao
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Jiang Zhang
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| |
Collapse
|
29
|
Cheng F, Zeng C, Zeng L, Wu C, Chen Y. The association of speckle-type POZ protein with lymph node metastasis and prognosis in cancer patients: A meta-analysis. Medicine (Baltimore) 2019; 98:e17439. [PMID: 31577764 PMCID: PMC6783248 DOI: 10.1097/md.0000000000017439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Speckle-type POZ protein (SPOP) has recently been reported as a prognostic tumor biomarker. However, the predictive value of SPOP remains controversial in human cancers. The current meta-analysis was performed to obtain a comprehensive evaluation of the relationship between SPOP expression and prognosis of cancer patients. METHODS Embase, Pubmed, Web of Science, and Chinese Biomedical Literature database were systematically searched up to January 2, 2019. The pooled hazard ratios (HRs) and/or pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantitatively assess the relationship of SPOP expression with prognosis and lymph node metastasis (LNM). RESULTS A total of 9 studies with 928 patients were included in this meta-analysis. The results showed that low SPOP expression was significantly related to poor overall survival (high/low: HR = 0.55; 95% CI: 0.38-0.79, P = .001), especially for digestive system cancers (high/low: HR = 0.46; 95% CI: 0.27-0.78, P = .003). However, SPOP expression did not affect progression-free survival in cancer patients (high/low: HR = 2.07; 95% CI: 0.16-26.70, P = .578). Additionally, the association between SPOP overexpression and LNM was positive in patients with clear cell renal cell carcinoma (ccRCC) (OR = 5.26; 95% CI: 1.66-16.68, P = .005) but negative in cancer patients without ccRCC (OR = 0.36; 95% CI: 0.21-0.62, P < .001). CONCLUSION Decreased SPOP expression could predict poor prognosis of cancer patients, suggesting that SPOP protein may be a useful prognostic biomarker in cancer patients.
Collapse
|
30
|
Chen L, Chen L, Qin Z, Lei J, Ye S, Zeng K, Wang H, Ying M, Gao J, Zeng S, Yu L. Upregulation of miR-489-3p and miR-630 inhibits oxaliplatin uptake in renal cell carcinoma by targeting OCT2. Acta Pharm Sin B 2019; 9:1008-1020. [PMID: 31649850 PMCID: PMC6804444 DOI: 10.1016/j.apsb.2019.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/04/2018] [Accepted: 11/28/2018] [Indexed: 01/20/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors affecting the urogenital system, accounting for 90% of renal malignancies. Traditional chemotherapy options are often the front-line choice of regimen in the treatment of patients with RCC, but responses may be modest or limited due to resistance of the tumor to anticarcinogen. Downregulated expression of organic cation transporter OCT2 is a possible mechanism underlying oxaliplatin resistance in RCC treatment. In this study, we observed that miR-489-3p and miR-630 suppress OCT2 expression by directly binding to the OCT2 3'-UTR. Meanwhile, via 786-O-OCT2-miRNAs stable expression cell models, we found that miRNAs could repress the classic substrate 1-methyl-4-phenylpyridinium (MPP+), fluorogenic substrate N,N-dimethyl-4-(2-pyridin-4-ylethenyl) aniline (ASP+), and oxaliplatin uptake by OCT2 both in vitro and in xenografts. In 33 clinical samples, miR-489-3p and miR-630 were significantly upregulated in RCC, negatively correlating with the OCT2 expression level compared to that in adjacent normal tissues, using tissue microarray analysis and qPCR validation. The increased binding of c-Myc to the promoter of pri-miR-630, responsible for the upregulation of miR-630 in RCC, was further evidenced by chromatin immunoprecipitation and dual-luciferase reporter assay. Overall, this study indicated that miR-489-3p and miR-630 function as oncotherapy-obstructing microRNAs by directly targeting OCT2 in RCC.
Collapse
|
31
|
Duan S, Yu S, Yuan T, Yao S, Zhang L. Exogenous Let-7a-5p Induces A549 Lung Cancer Cell Death Through BCL2L1-Mediated PI3Kγ Signaling Pathway. Front Oncol 2019; 9:808. [PMID: 31508368 PMCID: PMC6716507 DOI: 10.3389/fonc.2019.00808] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Elevated expression of let-7a-5p contributes to suppression of lung cancer, in which let-7a-5p, as exosome cargo, can be transported from macrophages to lung cancer cells, yet the role of let-7a-5p remains unclear. Utilizing bioinformatics methods and cellular experiments, this study was designed and conducted to identify let-7a-5p regulatory network in lung cancer. Bioinformatics analysis and Kaplan-Meier survival analysis revealed that let-7a-5p could directly target BCL2L1, and aberrant expression of let-7a-5p affects the survival of lung cancer patients, which was confirmed in A549 lung cancer cells using luciferase reporter assay. Moreover, let-7a-5p inhibited BCL2L1 expression and suppressed lung cancer cell proliferation, migration, and invasion. Functionally, overexpression of let-7a-5p promoted both autophagy and cell death in A549 lung cancer cells through PI3Kγ signaling pathway, whereas the apoptosis and pyroptosis of A549 lung cancer cells were unaffected. Furthermore, aberrant expression of BCL2L1 significantly altered the expression of lung cancer biomarkers such as MYC, EGFR, and Vimentin. To sum up, these data demonstrate that exogenous let-7a-5p induces A549 lung cancer cell death through BCL2L1-mediated PI3Kγ signaling pathway, which may be a useful target for lung cancer treatment.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Maternal and Child Health Care Hospital, Jinan, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Songcheng Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Yuan
- College of Jitang, North China University of Science and Technology, Tangshan, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Maternal and Child Health Care Hospital, Jinan, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
32
|
Xia W, Wang L, Yu D, Mu X, Zhou X. Lidocaine inhibits the progression of retinoblastoma in vitro and in vivo by modulating the miR‑520a‑3p/EGFR axis. Mol Med Rep 2019; 20:1333-1342. [PMID: 31173241 PMCID: PMC6625385 DOI: 10.3892/mmr.2019.10363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Retinoblastoma (RB) is a common malignant tumor in children. Lidocaine is a local anesthetic and anti-arrhythmic drug, and has been reported to possess anti-tumor properties. MicroRNAs (miRs) are a group of endogenous small noncoding RNAs that have important roles in various biological processes via actions on target genes. The aim of the present study was to investigate the effect of lidocaine on retinoblastoma in vitro and in vivo. CCK-8 assay and flow cytometry assay were used to measure cell viability and apoptosis. The relationship between miR-520a-3p and EGFR was predicted and confirmed by TargetScan and dual-luciferase reporter assay. For in vivo study, tumor xenograft was performed. In addition, gene and protein expression was detected using reverse transcription-quantitative polymerase chain reaction and western blotting respectively. In the present study, it was observed that lidocaine inhibited the proliferation and induced the apoptosis of RB cells. miR-520a-3p was reported to be downregulated in RB tissues and cell lines; treatment with lidocaine increased the expression of miR-520a-3p in RB cells. The human epidermal growth factor receptor (EGFR) was identified as a direct target of miR-520a-3p, and its expression was negatively associated with that of miR-520a-3p. Additionally, EGFR was upregulated in RB tissues and cell lines; treatment with lidocaine decreased the expression of EGFR in RB cells. Furthermore, compared with treatment with lidocaine alone, the combination of transfection with miR-520a-3p inhibitor and lidocaine treatment significantly decreased the expression of miR-520a-3p, increased EGFR expression, promoted RB cell proliferation and reduced the apoptosis of cells in vitro, and increased tumor volume and weight in vivo. The results indicated that lidocaine reduced the proliferation and induced the apoptosis of RB cells by decreasing EGFR expression via the upregulation of miR-520a-3p, suggesting that the miR-520a-3p/EGFR axis may be a novel therapeutic target in the treatment of RB.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Libo Wang
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Dongyi Yu
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Xing Mu
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Xin Zhou
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| |
Collapse
|
33
|
APPBP2 enhances non-small cell lung cancer proliferation and invasiveness through regulating PPM1D and SPOP. EBioMedicine 2019; 44:138-149. [PMID: 31105033 PMCID: PMC6604516 DOI: 10.1016/j.ebiom.2019.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background The influence of amyloid protein-binding protein 2 (APPBP2) on lung cancer is unknown. Methods The function and mechanisms of APPBP2 were investigated in the NSCLC cell lines A549 and H1299. The ectopic expression of APPBP2, PPM1D and SPOP in NSCLS were examined in samples collected from ten pairs of human lung adenocarcinoma cancer tissues and adjacent normal lung tissues. shRNA vector was used for APPBP2 knockdown. Quantitative PCR and western blot assays quantified the mRNA and protein level of APPBP2, PPM1D, and SPOP. Cell proliferation was measured with BrdU, MTT, colony formation assays, and xenograft tumour growth experiments. Cell migration and invasion were analysed with transwell and wound healing assays. Co-Immunoprecipitation assay detected protein–protein interactions. Findings APPBP2 was upregulated in NSCLC tissues. Silencing APPBP2 in A549 and H1299 cells resulted in the inhibition of cell proliferation, migration, and invasion, enhancement of apoptosis, and a significant decrease in the expression of PPM1D and SPOP. Overexpression of PPM1D and SPOP attenuated the APPBP2-knockdown inhibition of NSCLC cells. Co-IP assay showed that PPM1D interacted with APPBP2. Interpretation The expression level of APPBP2 positively correlates with NSCLC cell proliferation, migration, and invasiveness. APPBP2 contributes to NSCLC progression through regulating the PPM1D and SPOP signalling pathway. This novel molecular mechanism, underlying NSCLC oncogenesis, suggests APPBP2 is a potential target for diagnosis and therapeutic intervention in NSCLC. Fund Key Program of Natural Science Research of Higher Education of Anhui Province (No. KJ2017A241), the National Natural Science Foundation of China (No. 81772493).
Collapse
|