1
|
Li JP, He WB, Xu SW, Liu JZ, Huang ZQ, Li CP, Huang CL, Mai PB, Geng DF, Qiu XF, Liu ZY, Zhang K, Zhou SX. FSTL1 protects against acute aortic dissection by suppressing vascular smooth muscle cell phenotypic switching and degradation of the extracellular matrix. J Mol Cell Cardiol 2025; 198:60-73. [PMID: 39631359 DOI: 10.1016/j.yjmcc.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Acute aortic dissection (AAD) is a life-threatening cardiovascular emergency, which is closely related to the vascular smooth muscle cells (VSMCs) phenotypic switching and extracellular matrix (ECM) degradation. Previous studies have found that the secreted extracellular glycoprotein Follistatin-like 1 (FSTL1) is demonstrated as a protective factor for cardiovascular diseases. However, the role of FSTL1 in AAD remains elusive. We aimed to investigate whether FSTL1 could regulate VSMCs phenotypic switching and ECM degradation in AAD. Firstly, we found that FSTL1 expression in aorta was significantly decreased in human AAD examined by western blot and immunohistochemical staining. Then we established a mouse AAD model by administering β-aminopropionitrile (BAPN) dissolved in drinking water for 28 days. We found that FSTL1 expression in aorta was also decreased in mouse AAD. Exogenous supplement with recombinant human FSTL1 protein could rescue VSMCs phenotypic switching and ECM degradation to reduce the occurrence and progression of mouse AAD. In vitro, FSTL1 protein and adenovirus overexpressing FSTL1 (ad-FSTL1) reversed the primary VSMCs phenotypic switching and decreased the expression of MMP2 induced by PDGF-BB. Knocking down FSTL1 initiates VSMCs phenotypic switching and increases the expression of MMP2. In terms of mechanisms, AMPK phosphorylation was decreased and could be improved by FSTL1 protein in mouse AAD. FSTL1 protein and ad-FSTL1 reversed the decreased AMPK phosphorylation induced by PDGF-BB in primary VSMCs. These findings indicate that FSTL1 protects against VSMCs phenotypic switching and ECM degradation in AAD, and targeting FSTL1 may be a potential new strategy for prevention and treatment of AAD.
Collapse
Affiliation(s)
- Jun-Ping Li
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong 510317, PR China; Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| | - Wan-Bing He
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| | - Shu-Wan Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Juan-Zhang Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Zhao-Qi Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Chang-Ping Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Chun-Ling Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Pei-Biao Mai
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, Guangdong 518000, China.
| | - Deng-Feng Geng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Xiao-Fu Qiu
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong 510317, PR China
| | - Zhao-Yu Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Kun Zhang
- Department of Cardiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Shu-Xian Zhou
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
2
|
Zhang Z, Liu B, Lin Z, Mei L, Chen R, Li Z. SPP1 could be an immunological and prognostic biomarker: From pan-cancer comprehensive analysis to osteosarcoma validation. FASEB J 2024; 38:e23783. [PMID: 39037571 DOI: 10.1096/fj.202400622rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Secreted phosphoprotein 1 (SPP1), also known as osteopontin, is a phosphorylated protein. High SPP1 expression levels have been detected in multiple cancers and are associated with poor prognosis and reduced survival rates. However, only a few pan-cancer analyses have targeted SPP1. We conducted a comprehensive analysis using multiple public databases, including TIMER and TCGA, to investigate the expression levels of SPP1 in 33 different tumor types. In addition, we verified the effect of SPP1 on osteosarcoma. To assess the impact of SPP1 on patient outcomes, we employed univariate Cox regression and Kaplan-Meier survival analyses to analyze overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in these tumor patients. We also explored SPP1 gene alterations in various tumor tissues using cBioPortal. We then examined the relationship between SPP1 and clinical characteristics, TME, immune regulatory genes, immune checkpoints, TMB, and MSI using R language. In addition, we used GSEA to investigate the molecular mechanisms underlying the role of SPP1. Bioinformatics analysis indicated that SPP1 was upregulated in 17 tumors. Overexpression of SPP1 results in poor OS, DSS, and PFI in CESC, ESCA, GBM, LGG, LIHC, PAAD, PRAD, and skin cutaneous melanoma. SPP1 expression was positively associated with immunocyte infiltration, immune regulatory genes, immune checkpoints, TMB, MSI, and drug sensitivity in certain cancers. We found that high expression of SPP1 in osteosarcoma was related to drug resistance and metastasis and further demonstrated that SPP1 can stimulate osteosarcoma cell proliferation via CCND1 by activating the PI3K/Akt pathway. These findings strongly suggest that SPP1 is a potential prognostic marker and novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Binfeng Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Choi SH, Mani M, Kim J, Cho WJ, Martin TFJ, Kim JH, Chu HS, Jeong WJ, Won YW, Lee BJ, Ahn B, Kim J, Jeon DY, Park JW. DRG2 is required for surface localization of PD-L1 and the efficacy of anti-PD-1 therapy. Cell Death Discov 2024; 10:260. [PMID: 38802348 PMCID: PMC11130180 DOI: 10.1038/s41420-024-02027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
More than half of tumor patients with high PD-L1 expression do not respond to anti-PD-1/PD-L1 therapy, and the underlying mechanisms are yet to be clarified. Here we show that developmentally regulated GTP-binding protein 2 (DRG2) is required for response of PD-L1-expressing tumors to anti-PD-1 therapy. DRG2 depletion enhanced IFN-γ signaling and increased the PD-L1 level in melanoma cells. However, it inhibited recycling of endosomal PD-L1 and reduced surface PD-L1 levels, which led to defects in interaction with PD-1. Anti-PD-1 did not expand effector-like T cells within DRG2-depleted tumors and failed to improve the survival of DRG2-depleted tumor-bearing mice. Cohort analysis revealed that patients bearing melanoma with low DRG2 protein levels were resistant to anti-PD-1 therapy. These findings identify DRG2 as a key regulator of recycling of endosomal PD-L1 and response to anti-PD-1 therapy and provide insights into how to increase the correlation between PD-L1 expression and response to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Seong Hee Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - Muralidharan Mani
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeonghwan Kim
- School of System Biomedical Science, Soongsil University, Seoul, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jee Hyun Kim
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - Hun Su Chu
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | | | - Young-Wook Won
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Byungyong Ahn
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Korea
| | - Junil Kim
- School of System Biomedical Science, Soongsil University, Seoul, Korea.
| | - Do Yong Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea.
| |
Collapse
|
4
|
Du R, Li K, Guo K, Chen Z, Han L, Bian H. FSTL1: A double-edged sword in cancer development. Gene 2024; 906:148263. [PMID: 38346455 DOI: 10.1016/j.gene.2024.148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Flolistatin-related protein 1 (FSTL1), a secreted glycoprotein that is involved in many physiological functions, has attracted much interest and has been implicated in a wide range of diseases, including heart diseases and inflammatory diseases. In recent years, the involvement of FSTL1 in cancer progression has been implicated and researched. FSTL1 plays a contradictory role in cancer, depending on the cancer type as well as the contents of the tumor microenvironment. As reviewed here, the structure and distribution of FSTL1 are first introduced. Subsequently, the expression and clinical significance of FSTL1 in various types of cancer as a tumor enhancer or inhibitor are addressed. Furthermore, we discuss the functional role of FSTL1 in various processes that involve tumor cell proliferation, metastasis, immune responses, stemness, cell apoptosis, and resistance to chemotherapy. FSTL1 expression is tightly controlled in cancer, and a multitude of cancer-related signaling cascades like TGF-β/BMP/Smad signaling, AKT, NF-κB, and Wnt-β-catenin signaling pathways are modulated by FSTL1. Finally, FSTL1 as a therapeutic target using monoclonal antibodies is stated. Herein, we review recent findings showing the double-edged characteristics and mechanisms of FSTL1 in cancer and elaborate on the current understanding of therapeutic approaches targeting FSTL1.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| |
Collapse
|
5
|
Li J, Wei T, Ma K, Zhang J, Lu J, Zhao J, Huang J, Zeng T, Xie Y, Liang Y, Li X, Zhang Q, Liang T. Single-cell RNA sequencing highlights epithelial and microenvironmental heterogeneity in malignant progression of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 584:216607. [PMID: 38246225 DOI: 10.1016/j.canlet.2024.216607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). Single-cell transcriptomics provides a unique perspective for dissecting the epithelial and microenvironmental heterogeneity that accompanies progression from benign IPMNs to invasive PDAC. Single-cell RNA sequencing was performed through droplet-based sequencing on 35 693 cells from three high-grade IPMNs and two IPMN-derived PDACs (all surgically resected). Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. For epithelial cells, we identified acinar-ductal cells and isthmus-pit cells enriched in IPMN lesions and profiled three types of PDAC-unique ductal cells. Notably, a proinflammatory immune component was distinctly observed in IPMNs, comprising CD4+ T cells, CD8+ T cells, and B cells, whereas M2 macrophages were significantly accumulated in PDAC. Through the analysis of cellular communication, the osteopontin gene (SPP1)-CD44 pathway between macrophages and epithelial cells were particularly strengthened in the PDAC group. Further prognostic analysis revealed that SPP1 is a biomarker of IPMN carcinogenesis for surveillance. This study demonstrates the ability to perform high-resolution profiling of single cellular transcriptomes during the progression of high-grade IPMNs to cancer. Notably, single-cell analysis provides an unparalleled insight into both epithelial and microenvironmental heterogeneity associated with early cancer pathogenesis and provides practical markers for surveillance and targets for cancer interception.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianfeng Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yali Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yingjiqiong Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Xuejie Li
- Department of Pathology, The First Affiliated Hospital of Medical School of Zhejiang University, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
6
|
Xing J, Cai H, Lin Z, Zhao L, Xu H, Song Y, Wang Z, Liu C, Hu G, Zheng J, Ren L, Wei Z. Examining the function of macrophage oxidative stress response and immune system in glioblastoma multiforme through analysis of single-cell transcriptomics. Front Immunol 2024; 14:1288137. [PMID: 38274828 PMCID: PMC10808540 DOI: 10.3389/fimmu.2023.1288137] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Glioblastoma (GBM), a prevalent malignant neoplasm within the neuro-oncological domain, has been a subject of considerable scrutiny. Macrophages, serving as the principal immunological constituents, profoundly infiltrate the microenvironment of GBM. However, investigations elucidating the intricate immunological mechanisms governing macrophage involvement in GBM at the single-cell level remain notably limited. Methods We conducted a comprehensive investigation employing single-cell analysis, aiming to redefine the intricate cellular landscape within both the core and peripheral regions of GBM tumors. Our analytical focus extended to the profound study of macrophages, elucidating their roles within the context of oxidative stress, intercellular information exchange, and cellular trajectories concerning GBM and its assorted subpopulations. We pursued the identification of GBM prognostic genes intricately associated with macrophages. Utilizing experimental research to investigate the relevance of MANBA in the context of GBM. Results Our investigations have illuminated the central role of macrophages in the intricate interplay among various subpopulations within the GBM microenvironment. Notably, we observed a pronounced intensity of oxidative stress responses within macrophages when compared to their GBM counterparts in other subpopulations. Moreover, macrophages orchestrated intricate cellular communication networks, facilitated by the SPP1-CD44 axis, both internally and with neighboring subpopulations. These findings collectively suggest the potential for macrophage polarization from an M1 to an M2 phenotype, contributing to immune suppression within the tumor microenvironment. Furthermore, our exploration unearthed GBM prognostic genes closely associated with macrophages, most notably MANBA and TCF12. Remarkably, MANBA appears to participate in the modulation of neuroimmune functionality by exerting inhibitory effects on M1-polarized macrophages, thereby fostering tumor progression. To bolster these assertions, experimental validations unequivocally affirmed the promotional impact of MANBA on GBM, elucidated through its capacity to curb cell proliferation, invasiveness, and metastatic potential. Conclusion These revelations represent a pivotal step towards unraveling the intricate immunological mechanisms governing the interactions between macrophages and diverse subpopulations within the GBM milieu. Furthermore, they lay the foundation for the development of an innovative GBM prognostic model, with MANBA at its epicenter, and underscore the potential for novel immunotherapeutic targets in the ongoing pursuit of enhanced treatment modalities for this formidable malignancy.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huabao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yanbing Song
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Guangdong Hu
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiajie Zheng
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
7
|
Yang L, Zhu Z, Zheng Y, Yang J, Liu Y, Shen T, Li M, He H, Huang H, Dai W. RAB6A functions as a critical modulator of the stem-like subsets in cholangiocarcinoma. Mol Carcinog 2023; 62:1460-1473. [PMID: 37278569 DOI: 10.1002/mc.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
RAB6A is a member of RAB GTPase family and plays an important role in the targeted transport of neurotrophic receptors and inflammatory cytokines. RAB6A-mediated secretory pathway is involved in many physiological and pathological processes. Defects in RAB6A-mediated secretory pathway may lead to the development of many diseases, including cancer. However, its role in cholangiocarcinoma (CCA) has not yet been revealed. We explored the regulatory role of RAB6A in the stem-like subsets of CCA. We showed that RAB6A knockdown (KD) impedes cancer stem cells (CSCs) properties and epithelial-mesenchymal transition in vitro and that suppression of RAB6A inhibits tumor growth in vivo. We screened target cargos of RAB6A in CCA cells and identified a extracellular matrix component as the target cargo. RAB6A binds directly to OPN, and RAB6A KD suppressed OPN secretion and inhibited the interaction between OPN and αV integrin receptor. Moreover, RAB6A KD inhibited the AKT signaling pathway, which is a downstream effector of the integrin receptor signaling. In addition, shRNA targeting OPN blocked endogenous expression of OPN and consequently weakened CSCs properties in RAB6A-formed spheres. Similarly, inhibitor of AKT signaling, MK2206 also impedes oncogenic function of RAB6A in the stem-like subsets of CCA cells. In conclusion, our findings showed that RAB6A sustains CSCs phenotype maintenance by modulating the secretion of OPN and consequentially activating the downstream AKT signaling pathway. Targeting the RAB6A/OPN axis may be an effective strategy for CCA therapy.
Collapse
Affiliation(s)
- Liangfang Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiwen Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Yang
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingyun Shen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Chen YC, Chen CY, Chiang TW, Chan MH, Hsiao M, Ke HM, Tsai I, Chuang TJ. Detecting intragenic trans-splicing events from non-co-linearly spliced junctions by hybrid sequencing. Nucleic Acids Res 2023; 51:7777-7797. [PMID: 37497782 PMCID: PMC10450196 DOI: 10.1093/nar/gkad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | | | | |
Collapse
|
9
|
Cole AJ, Panesso-Gómez S, Shah JS, Ebai T, Jiang Q, Gumusoglu-Acar E, Bello MG, Vlad A, Modugno F, Edwards RP, Buckanovich RJ. Quiescent Ovarian Cancer Cells Secrete Follistatin to Induce Chemotherapy Resistance in Surrounding Cells in Response to Chemotherapy. Clin Cancer Res 2023; 29:1969-1983. [PMID: 36795892 PMCID: PMC10192102 DOI: 10.1158/1078-0432.ccr-22-2254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE We recently reported that the transcription factor NFATC4, in response to chemotherapy, drives cellular quiescence to increase ovarian cancer chemoresistance. The goal of this work was to better understand the mechanisms of NFATC4-driven ovarian cancer chemoresistance. EXPERIMENTAL DESIGN We used RNA sequencing to identify NFATC4-mediated differential gene expression. CRISPR-Cas9 and FST (follistatin)-neutralizing antibodies were used to assess impact of loss of FST function on cell proliferation and chemoresistance. ELISA was used to quantify FST induction in patient samples and in vitro in response to chemotherapy. RESULTS We found that NFATC4 upregulates FST mRNA and protein expression predominantly in quiescent cells and FST is further upregulated following chemotherapy treatment. FST acts in at least a paracrine manner to induce a p-ATF2-dependent quiescent phenotype and chemoresistance in non-quiescent cells. Consistent with this, CRISPR knockout (KO) of FST in ovarian cancer cells or antibody-mediated neutralization of FST sensitizes ovarian cancer cells to chemotherapy treatment. Similarly, CRISPR KO of FST in tumors increased chemotherapy-mediated tumor eradication in an otherwise chemotherapy-resistant tumor model. Suggesting a role for FST in chemoresistance in patients, FST protein in the abdominal fluid of patients with ovarian cancer significantly increases within 24 hours of chemotherapy exposure. FST levels decline to baseline levels in patients no longer receiving chemotherapy with no evidence of disease. Furthermore, elevated FST expression in patient tumors is correlated with poor progression-free, post-progression-free, and overall survival. CONCLUSIONS FST is a novel therapeutic target to improve ovarian cancer response to chemotherapy and potentially reduce recurrence rates.
Collapse
Affiliation(s)
- Alexander J. Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaynish S. Shah
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Melbourne, VIC, Australia
| | - Tonge Ebai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qi Jiang
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Ece Gumusoglu-Acar
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maya G. Bello
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anda Vlad
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesmary Modugno
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert P. Edwards
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Yang Y, Lu T, Jia X, Gao Y. FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs. Diagnostics (Basel) 2023; 13:1724. [PMID: 37238210 PMCID: PMC10217361 DOI: 10.3390/diagnostics13101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in Fstl1+/- mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|
11
|
Liu Z, Xiao Z, Wang X, Zhang L, Zhang Z. Ion channel gene GJB2 influences the intercellular communication by Up-regulating the SPP1 signaling pathway identified by the single-cell RNA sequencing in lung adenocarcinoma. Front Oncol 2023; 13:1146976. [PMID: 37188183 PMCID: PMC10175797 DOI: 10.3389/fonc.2023.1146976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Objective Firstly, observe the prognostic significance and the biological functional effects of gap junction protein beta 2 (GJB2 or Cx26) in lung adenocarcinoma (LUAD). Subsequently, explore the role played by GJB2 in intercellular communication by single-cell RNA sequencing. Method We made a differential analysis of GJB2 expression through public databases and investigated the clinical characteristics and prognostic significance. ESTIMATE analysis and Tumor Immune Estimation Resource (TIMER) database were utilized to illustrate the association of GJB2 with immune infiltration and components of the tumor microenvironment. Gene Ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and Gene set enrichment analysis (GSEA) were performed to study the biological function of GJB2. Cell-cell communication was analyzed using the CellChat R package through sc-RNA data. Results GJB2 has an outstanding prognosis value in LUAD and a close relationship was found between GJB2 and immune infiltration in LUAD. GJB2 could participate in several tumor biological processes, including extracellular matrix remodeling and upregulation of multiple cancer-related active pathways. GJB2 related hub-genes influence intercellular communication through the SPP1 signaling pathway. Conclusion Our study illustrates one mechanism by which GJB2 exerts its cancer-specific relevant effects, that is, causing changes in intercellular communication through the SPP1 signaling pathway. Blockade of this pathway may limit the functional role of GJB2 and provide us with promising new perceptions for LUAD treatment.
Collapse
Affiliation(s)
| | | | | | - Lianmin Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
12
|
Yang L, Yu Q, Zhu Y, Ali Mallah M, Wang W, Feng F, Zhang Q. Core genes in lung adenocarcinoma identified by integrated bioinformatic analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:243-257. [PMID: 34961365 DOI: 10.1080/09603123.2021.2016660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This study aims to identify potential core genes of lung adenocarcinoma (LUAD). Three datasets (GSE32863, GSE43458, and GSE116959) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between LUAD and normal tissues were filtrated by GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed via Metascape database. The protein-protein interaction (PPI) network was constructed and core genes were identified using STRING and Cytoscape. Core genes expressions and their relevant clinical characteristics were performed via Oncomine and UALCAN databases respectively. The correlation between core genes and immune infiltrates was investigated by TIMER database. Kaplan-Meier plotter was performed for survival analysis. The signal pathway network of core genes was mapped by KEGG Mapper analysis tool. In this study, ten core genes were significantly related to overall survival (OS) of LUAD patients, which can provide clues for prognosis of LUAD.
Collapse
Affiliation(s)
- Liu Yang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Qi Yu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Yonghang Zhu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
Li C, Fang C, Chan M, Chen C, Chang Y, Hsiao M. The cytoplasmic expression of FSTL3 correlates with colorectal cancer progression, metastasis status and prognosis. J Cell Mol Med 2023; 27:672-686. [PMID: 36807490 PMCID: PMC9983317 DOI: 10.1111/jcmm.17690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/21/2023] Open
Abstract
Follistatin-like (FSTL) family members are associated with cancer progression. However, differences between FSTL members with identical cancer types have not been systematically investigated. Among the most malignant tumours worldwide, colorectal cancer (CRC) has high metastatic potential and chemoresistance, which makes it challenging to treat. A systematic examination of the relationship between the expression of FSTL family members in CRC will provide valuable information for prognosis and therapeutic development. Based on large cohort survival analyses, we determined that FSTL3 was associated with a significantly worse prognosis in CRC at the RNA and protein levels. Immunohistochemistry staining of CRC specimens revealed that FSTL3 expression levels in the cytosol were significantly associated with a poor prognosis in terms of overall and disease-free survival. Molecular simulation analysis showed that FSTL3 participated in multiple cell motility signalling pathways via the TGF-β1/TWIST1 axis to control CRC metastasis. The findings provide evidence of the significance of FSTL3 in the oncogenesis and metastasis of CRC. FSTL3 may be useful as a diagnostic or prognostic biomarker, and as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Chih‐Yeu Fang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | | | - Chi‐Long Chen
- Department of Pathology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Department of PathologyTaipei Medical University HospitalTaipeiTaiwan
| | - Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Michael Hsiao
- Genomics Research CenterAcademia SinicaTaipeiTaiwan,Department of BiochemistryKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
14
|
Woldmar N, Schwendenwein A, Kuras M, Szeitz B, Boettiger K, Tisza A, László V, Reiniger L, Bagó AG, Szállási Z, Moldvay J, Szász AM, Malm J, Horvatovich P, Pizzatti L, Domont GB, Rényi-Vámos F, Hoetzenecker K, Hoda MA, Marko-Varga G, Schelch K, Megyesfalvi Z, Rezeli M, Döme B. Proteomic analysis of brain metastatic lung adenocarcinoma reveals intertumoral heterogeneity and specific alterations associated with the timing of brain metastases. ESMO Open 2023; 8:100741. [PMID: 36527824 PMCID: PMC10024110 DOI: 10.1016/j.esmoop.2022.100741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Brain metastases are associated with considerable negative effects on patients' outcome in lung adenocarcinoma (LADC). Here, we investigated the proteomic landscape of primary LADCs and their corresponding brain metastases. MATERIALS AND METHODS Proteomic profiling was conducted on 20 surgically resected primary and brain metastatic LADC samples via label-free shotgun proteomics. After sample processing, peptides were analyzed using an Ultimate 3000 pump coupled to a QExactive HF-X mass spectrometer. Raw data were searched using PD 2.4. Further data analyses were carried out using Perseus, RStudio and GraphPad Prism. Proteomic data were correlated with clinical and histopathological parameters and the timing of brain metastases. Mass spectrometry-based proteomic data are available via ProteomeXchange with identifier PXD027259. RESULTS Out of the 6821 proteins identified and quantified, 1496 proteins were differentially expressed between primary LADCs and corresponding brain metastases. Pathways associated with the immune system, cell-cell/matrix interactions and migration were predominantly activated in the primary tumors, whereas pathways related to metabolism, translation or vesicle formation were overrepresented in the metastatic tumors. When comparing fast- versus slow-progressing patients, we found 454 and 298 differentially expressed proteins in the primary tumors and brain metastases, respectively. Metabolic reprogramming and ribosomal activity were prominently up-regulated in the fast-progressing patients (versus slow-progressing individuals), whereas expression of cell-cell interaction- and immune system-related pathways was reduced in these patients and in those with multiple brain metastases. CONCLUSIONS This is the first comprehensive proteomic analysis of paired primary tumors and brain metastases of LADC patients. Our data suggest a malfunction of cellular attachment and an increase in ribosomal activity in LADC tissue, promoting brain metastasis. The current study provides insights into the biology of LADC brain metastases and, moreover, might contribute to the development of personalized follow-up strategies in LADC.
Collapse
Affiliation(s)
- N Woldmar
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Laboratory of Molecular Biology and Proteomics of Blood/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Schwendenwein
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - M Kuras
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - B Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - K Boettiger
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - A Tisza
- National Korányi Institute of Pulmonology, Budapest, Hungary; Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - V László
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria; National Korányi Institute of Pulmonology, Budapest, Hungary
| | - L Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pathology, Forensic and Insurance Medicine, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - A G Bagó
- Department of Neurooncology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Z Szállási
- Department of Pathology, Forensic and Insurance Medicine, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Budapest, Hungary; Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, USA; Danish Cancer Society Research Center, Copenhagen, Denmark
| | - J Moldvay
- National Korányi Institute of Pulmonology, Budapest, Hungary; Department of Pathology, Forensic and Insurance Medicine, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - A M Szász
- National Korányi Institute of Pulmonology, Budapest, Hungary; Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - J Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - P Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - L Pizzatti
- Laboratory of Molecular Biology and Proteomics of Blood/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G B Domont
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F Rényi-Vámos
- National Korányi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - K Hoetzenecker
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - M A Hoda
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - G Marko-Varga
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - K Schelch
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Z Megyesfalvi
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria; National Korányi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - M Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - B Döme
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden; National Korányi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary.
| |
Collapse
|
15
|
Wang L, Tan H, Huang Y, Guo M, Dong Y, Liu C, Zhao H, Liu Z. TAGLN2 promotes papillary thyroid carcinoma invasion via the Rap1/PI3K/AKT axis. Endocr Relat Cancer 2023; 30:ERC-21-0352. [PMID: 36222755 DOI: 10.1530/erc-21-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
TAGLN2, an actin-binding protein, functions as a binding protein to actin to facilitate the formation of intracellular cytoskeleton structures. TAGLN2 overexpression in papillary thyroid carcinoma (PTC) is reported in our previous study. This study aimed to examine the functions and molecular mechanisms of TAGLN2 in PTC. The clinical data analysis showed that TAGLN2 expression was associated with cervical lymph node metastasis in PTC. Gain- and loss-of-function approaches, as well as various cellular function, gene expression profiles, quantitative proteomics, and molecular biology experiments, were further exploited to explore the roles of TAGLN2 in PTC. The results showed that TAGLN2 overexpression significantly promoted the invasion of PTC cell lines (K1, TPC-1, and BCPAP). Besides, the results also indicated that TAGLN2 was associated with regulating proliferation, migration, angiogenesis, and adhesion of PTC cells. Gene expression profile, quantitative proteomics, and Western blotting were performed to identify the relevant pathways and key downstream molecules, and Rap1/PI3K/AKT signalling pathway, ITGB5, LAMC2, CRKL, vimentin, N-cadherin, and E-cadherin were finally focused on. Moreover, rescue experiments validated the involvement of the Rap1/PI3K/AKT signalling pathway in the TAGLN2-mediated invasion of PTC cells. Therefore, TAGLN2 may promote the invasion of PTC cells via the Rap1/PI3K/AKT signalling pathway and may be served as a potential therapeutic target for PTC. Developing antagonists targeting TAGLN2 may be a potentially effective therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hao Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yonglian Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mingyue Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yanxu Dong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chenxi Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huai Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
17
|
Qi C, Cao J, Liu X, Chen Q, Liang M, Chen Z, Feng J, Chen B, Ning W, Li L. Follistatin-like 1 mitigates intermittent hypoxia-induced melanoma lung metastasis in mice. Sleep Breath 2022; 27:1165-1173. [PMID: 36115873 DOI: 10.1007/s11325-022-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 10/14/2022]
|
18
|
Liu B, Wang C, Fang Z, Bai J, Qian Y, Ma Y, Ruan X, Yan S, Li S, Wang Y, Dong B, Yang X, Li M, Xia X, Qu H, Fang X, Wu N. Single-cell RNA sequencing reveals the cellular and molecular changes that contribute to the progression of lung adenocarcinoma. Front Cell Dev Biol 2022; 10:927300. [PMID: 36046337 PMCID: PMC9420948 DOI: 10.3389/fcell.2022.927300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Pure ground glass nodules (GGNs) and solid nodules (SNs) represent early and relatively late stages of lung adenocarcinoma (LUAD) in radiology, respectively. The cellular and molecular characteristics of pure GGNs and SNs have not been comprehensively elucidated. Additionally, the mechanism driving the progression of lung adenocarcinoma from pure GGN to SN in radiology is also elusive. In this study, by analyzing the single-cell transcriptomic profiles of 76,762 cells from four pure GGNs, four SNs, and four normal tissues, we found that anti-tumor immunity mediated by NK and CD8+T cells gradually weakened with the progression of LUAD and humoral immunity mediated by plasma B cells was more active in SNs. Additionally, the proliferation ability of some special epithelial cell increased during the progression process from pure GGN to SN. Furthermore, stromal cells and M2 macrophages could assist the progression of LUAD. Through comprehensive analyses, we revealed dynamic changes in cellular components and intercellular interactions during the progression of LUAD. These findings could facilitate our understanding of LUAD and discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institution, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Ying Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shaolei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yaqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Meng Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Institution, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongzhu Qu, ; Xiangdong Fang, ; Nan Wu,
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongzhu Qu, ; Xiangdong Fang, ; Nan Wu,
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Hongzhu Qu, ; Xiangdong Fang, ; Nan Wu,
| |
Collapse
|
19
|
Yu Z, Ouyang L. Odd-skipped related 1 plays a tumor suppressor role in ovarian cancer via promoting follistatin-like protein 1 transcription. Hum Cell 2022; 35:1824-1837. [DOI: 10.1007/s13577-022-00767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
|
20
|
Wang Z, Zhong Z, Jiang Z, Chen Z, Chen Y, Xu Y. A novel prognostic 7-methylguanosine signature reflects immune microenvironment and alternative splicing in glioma based on multi-omics analysis. Front Cell Dev Biol 2022; 10:902394. [PMID: 36036011 PMCID: PMC9399734 DOI: 10.3389/fcell.2022.902394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Glioma is the most common type of central nervous system tumor with increasing incidence. 7-methylguanosine (m7G) is one of the diverse RNA modifications that is known to regulate RNA metabolism and its dysregulation was associated with various cancers. However, the expression pattern of m7G regulators and their roles in regulating tumor immune microenvironments (TIMEs) as well as alternative splicing events (ASEs) in glioma has not been reported. In this study, we showed that m7G regulators displayed a close correlation with each other and most of them were differentially expressed between normal and glioma tissues. Two m7G signatures were then constructed to predict the overall survival of both GBM and LGG patients with moderate predictive performance. The risk score calculated from the regression coefficient and expression level of signature genes was proved to be an independent prognostic factor for patients with LGG, thus, a nomogram was established on the risk score and other independent clinical parameters to predict the survival probability of LGG patients. We also investigated the correlation of m7G signatures with TIMEs in terms of immune scores, expression levels of HLA and immune checkpoint genes, immune cell composition, and immune-related functions. While exploring the correlation between signature genes and the ASEs in glioma, we found that EIF4E1B was a key regulator and might play dual roles depending on glioma grade. By incorporating spatial transcriptomic data, we found a cluster of cells featured by high expression of PTN exhibited the highest m7G score and may communicate with adjacent cancer cells via SPP1 and PTN signaling pathways. In conclusion, our work brought novel insights into the roles of m7G modification in TIMEs and ASEs in glioma, suggesting that evaluation of m7G in glioma could predict prognosis. Moreover, our data suggested that blocking SPP1 and PTN pathways might be a strategy for combating glioma.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Zhiwei Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Zehua Jiang
- Shantou University Medical College, Shantou, China
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Zepeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Yuequn Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
21
|
Feng D, Gao P, Henley N, Dubuissez M, Chen N, Laurin LP, Royal V, Pichette V, Gerarduzzi C. SMOC2 promotes an epithelial-mesenchymal transition and a pro-metastatic phenotype in epithelial cells of renal cell carcinoma origin. Cell Death Dis 2022; 13:639. [PMID: 35869056 PMCID: PMC9307531 DOI: 10.1038/s41419-022-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Renal Cell Carcinoma (RCC) is the most common form of all renal cancer cases, and well-known for its highly aggressive metastatic behavior. SMOC2 is a recently described non-structural component of the extracellular matrix (ECM) that is highly expressed during tissue remodeling processes with emerging roles in cancers, yet its role in RCC remains elusive. Using gene expression profiles from patient samples, we identified SMOC2 as being significantly expressed in RCC tissue compared to normal renal tissue, which correlated with shorter RCC patient survival. Specifically, de novo protein synthesis of SMOC2 was shown to be much higher in the tubular epithelial cells of patients with biopsy-proven RCC. More importantly, we provide evidence of SMOC2 triggering kidney epithelial cells into an epithelial-to-mesenchymal transition (EMT), a phenotype known to promote metastasis. We found that SMOC2 induced mesenchymal-like morphology and activities in both RCC and non-RCC kidney epithelial cell lines. Mechanistically, treatment of RCC cell lines ACHN and 786-O with SMOC2 (recombinant and enforced expression) caused a significant increase in EMT-markers, -matrix production, -proliferation, and -migration, which were inhibited by targeting SMOC2 by siRNA. We further characterized SMOC2 activation of EMT to occur through the integrin β3, FAK and paxillin pathway. The proliferation and metastatic potential of SMOC2 overexpressing ACHN and 786-O cell lines were validated in vivo by their significantly higher tumor growth in kidneys and systemic dissemination into other organs when compared to their respective controls. In principle, understanding the impact that SMOC2 has on EMT may lead to more evidence-based treatments and biomarkers for RCC metastasis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Peng Gao
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louis-Philippe Laurin
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Virginie Royal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Vincent Pichette
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Qiu C, Li C, Zheng Q, Fang S, Xu J, Wang H, Guo H. Metformin suppresses lung adenocarcinoma by downregulating long non-coding RNA (lncRNA) AFAP1-AS1 and secreted phosphoprotein 1 (SPP1) while upregulating miR-3163. Bioengineered 2022; 13:11987-12002. [PMID: 35603556 PMCID: PMC9275981 DOI: 10.1080/21655979.2021.2005981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AFAP1-AS1 plays a pro-tumor role in lung cancer. However, no investigation has focused on whether it is involved in the anticancer activity of metformin (Met) in the treatment of lung adenocarcinoma (LUAD). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of long non-coding (lnc)RNA AFAP1-AS1, the microRNA (miR)-3163, and secreted phosphoprotein 1 (SPP1) in LUAD tissues, or of A549 and H3122 cells. Cell Counting Kit-8, wound scratch, and cell invasion assays were performed to evaluate the effect of the overexpression of lncRNA AFAP1-AS1, miR-3163, and SPP1 on the malignant behaviors of A549 and H3122 cells. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway-related proteins were detected by Western blot analysis. Dual luciferase reporter or RIP assays were used to determine the interplay between AFAP1-AS1 and miR-3163, or of miR-3163 and SPP1. Met inhibits the malignant characteristics of A549 and H3122 cells in vitro. GEPIA database analysis showed that AFAP1-AS1 is a highly expressed lncRNA in LUAD tissues, which was validated by RT-qPCR. Overexpression of AFAP1-AS1 suppressed the met-mediated anti-tumor activity in A549 and H3122 cells, while AFAP1-AS1 silencing promoted it. Met inhibited AFAP1-AS1 expression, which resulted in reduced proliferation, migration, and invasion in A549 and H3122 cells. This led to AFAP1-AS1-mediated suppression of miR-3163 and, subsequently, the upregulation of SPP1. Met exerts its antitumor activities by regulating the AFAP1-AS1/miR-3163/SPP1/PI3K/Akt/mTOR axis. Our findings deepen our understanding of mechanisms underlying anti-tumor effect of Met in LUAD.
Collapse
Affiliation(s)
- Caiyu Qiu
- Department of Physical Examination Center, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Chuanxiang Li
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Quan Zheng
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Si Fang
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Jianqun Xu
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Hongjuan Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Hongrong Guo
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
23
|
Osteopontin aggravates acute lung injury in influenza virus infection by promoting macrophages necroptosis. Cell Death Dis 2022; 8:97. [PMID: 35246529 PMCID: PMC8897470 DOI: 10.1038/s41420-022-00904-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Infection with influenza A virus (IAV) can trigger pulmonary inflammation and lung damage. Osteopontin (OPN) is an essential regulator of cell death and immunity. However, the role and underlying mechanism of OPN in cell death in IAV-induced pulmonary injury remain poorly understood. Here, we demonstrated that OPN-deficient (OPN-/-) mice were insensitive to IAV, exhibiting decreased viral loads and attenuated lung injury after IAV infection compared to those in wild-type (WT) mice. Moreover, macrophage necroptosis was significantly reduced in OPN-/- mice infected with IAV compared to that in infected WT mice. OPN increased the expression of necroptosis-related genes and exacerbated macrophage necroptosis in IAV-infected THP1 cells. Notably, adoptive transfer of WT bone marrow-derived macrophages (BMDMs) or OPN-/- BMDMs into mice restored resistance to influenza infection, and the rescue effect of OPN-/- BMDMs was better than that of WT BMDMs. Collectively, these results suggest that OPN deficiency in macrophages reduces necroptosis, which leads to a decrease in viral titers and protects against IAV infection. Therefore, OPN is a potential target for the treatment of IAV infection.
Collapse
|
24
|
Zeng P, Zhang X, Xiang T, Ling Z, Lin C, Diao H. Secreted phosphoprotein 1 as a potential prognostic and immunotherapy biomarker in multiple human cancers. Bioengineered 2022; 13:3221-3239. [PMID: 35067176 PMCID: PMC8973783 DOI: 10.1080/21655979.2021.2020391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Chang YC, Chang PMH, Li CH, Chan MH, Lee YJ, Chen MH, Hsiao M. Aldolase A and Phospholipase D1 Synergistically Resist Alkylating Agents and Radiation in Lung Cancer. Front Oncol 2022; 11:811635. [PMID: 35127525 PMCID: PMC8813753 DOI: 10.3389/fonc.2021.811635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to alkylating agents and radiation may cause damage and apoptosis in cancer cells. Meanwhile, this exposure involves resistance and leads to metabolic reprogramming to benefit cancer cells. At present, the detailed mechanism is still unclear. Based on the profiles of several transcriptomes, we found that the activity of phospholipase D (PLD) and the production of specific metabolites are related to these events. Comparing several particular inhibitors, we determined that phospholipase D1 (PLD1) plays a dominant role over other PLD members. Using the existing metabolomics platform, we demonstrated that lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) are the most critical metabolites, and are highly dependent on aldolase A (ALDOA). We further demonstrated that ALDOA could modulate total PLD enzyme activity and phosphatidic acid products. Particularly after exposure to alkylating agents and radiation, the proliferation of lung cancer cells, autophagy, and DNA repair capabilities are enhanced. The above phenotypes are closely related to the performance of the ALDOA/PLD1 axis. Moreover, we found that ALDOA inhibited PLD2 activity and enzyme function through direct protein–protein interaction (PPI) with PLD2 to enhance PLD1 and additional carcinogenic features. Most importantly, the combination of ALDOA and PLD1 can be used as an independent prognostic factor and is correlated with several clinical parameters in lung cancer. These findings indicate that, based on the PPI status between ALDOA and PLD2, a combination of radiation and/or alkylating agents with regulating ALDOA-PLD1 may be considered as a new lung cancer treatment option.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Michael Hsiao,
| |
Collapse
|
26
|
Nallasamy P, Nimmakayala RK, Karmakar S, Leon F, Seshacharyulu P, Lakshmanan I, Rachagani S, Mallya K, Zhang C, Ly QP, Myers MS, Josh L, Grabow CE, Gautam SK, Kumar S, Lele SM, Jain M, Batra SK, Ponnusamy MP. Pancreatic Tumor Microenvironment Factor Promotes Cancer Stemness via SPP1-CD44 Axis. Gastroenterology 2021; 161:1998-2013.e7. [PMID: 34418441 PMCID: PMC10069715 DOI: 10.1053/j.gastro.2021.08.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/14/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Tumor-microenvironment factors and cancer stem cells (CSCs) play a critical role in the aggressiveness of pancreatic cancer (PC). However, the degree to which tumor-microenvironment factors promote stemness remains unexplored. Here, we examined whether cancer-associated fibroblasts (CAFs) promote CSC features in PC. METHODS PC cells were treated long-term (30, 60, and 90 days) with conditioned media (CM)-derived from normal human fibroblasts (NFs) and CAFs. The stemness features of tumorsphere formation and stemness populations, along with CSCs markers, were analyzed using 2-dimensional and 3-dimensional sodium alginate bead-based co-culture models. Immunohistochemistry and immunofluorescence staining were performed for CSCs and fibroblast markers in autochthonous KrasG12D/+; Trp53R172H/+; Pdx1-Cre mice and human pancreatic tumors. Polymerase chain reaction array and gene knockdown were performed to identify the mechanism of stemness enrichment. RESULTS Long-term treatment of PC cells with CAF-CM enriched stemness, as indicated by significantly higher CD44+, ALDH+, and AF+ populations in PC cells. Increased tumorsphere formation and elevated CSC, self-renewal, and drug-resistance markers in CAF-CM-treated PC cells were observed. In addition, CAFs co-cultured with PC cells in the 3-dimensional model showed a substantial increase in stemness features. CD44 and α-smooth muscle actin were positively correlated and their expressions progressively increased from the early to late stages of KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse and human pancreatic tumors. Osteopontin/secreted phosphoprotein 1 was identified as the top differentially overexpressed gene in CAF-CM-treated PC cells and knockdown of osteopontin/secreted phosphoprotein 1 significantly reduced stemness characteristics in CAF-CM-treated PC cells. CONCLUSIONS Our data uncovered novel insight into the interplay between CAF and enrichment of stemness population through the osteopontin/secreted phosphoprotein 1-CD44 axis in PC.
Collapse
Affiliation(s)
- Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chunmeng Zhang
- Division of Surgical Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Quan P Ly
- Division of Surgical Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Molly S Myers
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lindenberger Josh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Corinn E Grabow
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Subodh M Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
27
|
Liu S, Medina-Perez P, Ha-Thi MC, Wieland A, Stecklum M, Hoffmann J, Tchernitsa O, Sers C, Schäfer R. Rapid testing of candidate oncogenes and tumour suppressor genes in signal transduction and neoplastic transformation. Adv Biol Regul 2021; 83:100841. [PMID: 34866037 DOI: 10.1016/j.jbior.2021.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
The COSMIC database (version 94) lists 576 genes in the Cancer Gene Census which have a defined function as drivers of malignancy (oncogenes) or as tumour suppressors (Tier 1). In addition, there are 147 genes with similar functions, but which are less well characterised (Tier 2). Furthermore, next-generation sequencing projects in the context of precision oncology activities are constantly discovering new ones. Since cancer genes differ from their wild-type precursors in numerous molecular and biochemical properties and exert significant differential effects on downstream processes, simple assays that can uncover oncogenic or anti-oncogenic functionality are desirable and may precede more sophisticated analyses. We describe simple functional assays for PTPN11 (protein-tyrosine phosphatase, non-receptor-type 11)/SHP2 mutants, which are typically found in RASopathies and exhibit potential oncogenic activity. We have also designed a functional test for lysyl oxidase (LOX), a prototypical class II tumour suppressor gene whose loss of function may contribute to neoplastic transformation by RAS oncogenes. Moreover, we applied this test to analyse three co-regulated, RAS-responsive genes for transformation-suppressive activity. The integration of these tests into systems biology studies will contribute to a better understanding of cellular networks in cancer.
Collapse
Affiliation(s)
- Sha Liu
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Paula Medina-Perez
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Minh-Cam Ha-Thi
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Anja Wieland
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, D-13125, Berlin-Buch, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, D-13125, Berlin-Buch, Germany
| | - Oleg Tchernitsa
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Reinhold Schäfer
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany; Charité Comprehensive Cancer Center Berlin, Germany.
| |
Collapse
|
28
|
Ji A, Qian L, Tian Z, Cui J. WDR5 promotes the proliferation of lung adenocarcinoma by inducing SOX9 expression. Biomark Med 2021; 15:1599-1609. [PMID: 34743548 DOI: 10.2217/bmm-2021-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: WDR5 is a coactivator of transcription factor which promotes the progression of several cancer types, but its function in lung adenocarcinoma (AC) is unknown. Materials & methods: We detected WDR5 expression in lung AC with quantitative real-time polymerase chain reaction and immunohistochemistry. Results: WDR5 was significantly overexpressed in ACs compared with normal lung tissues. Moreover, WDR5 was an independent prognostic biomarker of lung AC. With clinical analyzation and in vitro experiments, we proved that SOX9 was a downstream effector of WDR5 in promoting A549 proliferation, and that SOX9 was also an unfavorable prognostic biomarker of lung AC. Conclusion: WDR5 and SOX9 are both prognostic biomarkers predicting poor outcome of lung AC. WDR5 could promote proliferation of lung AC by elevating SOX9 expression.
Collapse
Affiliation(s)
- Aihua Ji
- Department of Gastrointestinal Surgery, Yidu Central Hospital, Weifang, Shandong, 262500, China
| | - Lei Qian
- Department of Cardiothoracic Surgery, Yidu Central Hospital, Weifang, Shandong, 262500, China
| | - Zhenmin Tian
- Department of Clinical Laboratory, Yidu Central Hospital, Weifang, Shandong, 262500, China
| | - Jie Cui
- Department of Oncology, Central Hospital of Ankang City, Ankang, Shaanxi, 725000, China
| |
Collapse
|
29
|
Liu M, Fu X, Jiang L, Ma J, Zheng X, Wang S, Guo H, Tian T, Nan K, Wang W. Colon cancer cells secreted CXCL11 via RBP-Jκ to facilitated tumour-associated macrophage-induced cancer metastasis. J Cell Mol Med 2021; 25:10575-10590. [PMID: 34655278 PMCID: PMC8581314 DOI: 10.1111/jcmm.16989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the main cause of colon cancer‐related deaths. RBP‐Jκ is involved in colon cancer development, but its function in colon cancer metastasis is still unclear. Tumour‐associated macrophages are the main cell components in tumour microenvironments. Here, we aimed to determine the function of RBP‐Jκ in colon cancer metastasis and its underlying mechanisms for modulating interactions between colon cancer cell and tumour‐associated macrophages. Through bioinformation analysis, we found that RBP‐Jκ was overexpressed in colon cancer tissues and associated with advanced colon cancer phenotypes, macrophage infiltration and shorter survival overall as confirmed by our patients’ data. And our patients’ data show that RBP‐Jκ expression and tumour‐associated macrophages infiltration are associated with colon cancer metastasis and are independent prognostic factors for colon cancer patients. Tumour‐associated macrophages induced colon cancer cell migration, invasion and epithelial‐mesenchymal transition through secreting TGF‐β1. Colon cancer cells with high RBP‐Jκ expression induced the expression of TGF‐β1 in tumour‐associated macrophages by secreting CXCL11. Our research revealed that colon cancer cells secreted CXCL11 via overexpression of RBP‐Jκ to enhance the expression of TGF‐β1 in tumour‐associated macrophages to further promote metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Mengjie Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiequn Ma
- 1st Department of Medical Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuhong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Dong B, Wu C, Huang L, Qi Y. Macrophage-Related SPP1 as a Potential Biomarker for Early Lymph Node Metastasis in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:739358. [PMID: 34646827 PMCID: PMC8502925 DOI: 10.3389/fcell.2021.739358] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lymph node metastasis is a major factor that affects prognosis in patients with lung adenocarcinoma (LUAD). In some cases, lymph node metastasis has already occurred when the primary tumors are still small (i.e., early T stages), however, relevant studies on early lymph node metastasis are limited, and effective biomarkers remain lacking. This study aimed to explore new molecular biomarker for early lymph node metastasis in LUAD using transcriptome sequencing and experimental validation. Here, we performed transcriptome sequencing on tissues from 16 matched patients with Stage-T1 LUAD (eight cases of lymph node metastasis and eight cases of non-metastasis), and verified the transcriptome profiles in TCGA, GSE68465, and GSE43580 cohorts. With the bioinformatics analysis, we identified a higher abundance of M0 macrophages in the metastatic group using the CIBERSORT algorithm and immunohistochemistry (IHC) analysis and the enrichment of the epithelial–mesenchymal transition (EMT) pathway was identified in patients with higher M0 infiltration levels. Subsequently, the EMT hallmark gene SPP1, encoding secreted phosphoprotein 1 (SPP1), was identified to be significantly correlated with macrophage infiltration and M2 polarization, and was determined to be a key risk indicator for early lymph node metastasis. Notably, SPP1 in the blood, as detected by enzyme-linked immunosorbent assay (ELISA) showed a superior predictive capability for early lymph node metastasis [area under the curve (AUC) = 0.74]. Furthermore, a long non-coding RNA (lncRNA, AC037441), negatively correlated with SPP1 and macrophage infiltration, had also been identified and validated to be involved in the regulation of early lymph node metastasis. In conclusion, we revealed the potential role of macrophages in lymph node metastasis and identified the macrophage-related gene SPP1 as a potential biomarker for early lymph node metastasis in LUAD.
Collapse
Affiliation(s)
- Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Zhao H, Zhang X, Guo L, Shi S, Lu C. A Robust Seven-Gene Signature Associated With Tumor Microenvironment to Predict Survival Outcomes of Patients With Stage III-IV Lung Adenocarcinoma. Front Genet 2021; 12:684281. [PMID: 34552612 PMCID: PMC8450538 DOI: 10.3389/fgene.2021.684281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/31/2021] [Indexed: 12/25/2022] Open
Abstract
Background Due to the relatively insidious early symptoms of lung adenocarcinoma (LUAD), most LUAD patients are at an advanced stage at the time of diagnosis and lose the best chance of surgical resection. Mounting evidence suggested that the tumor microenvironment (TME) was highly correlated with tumor occurrence, progress, and prognosis. However, TME in advanced LUAD remained to be studied and reliable prognostic signatures based on TME in advanced LUAD also had not been well-established. This study aimed to understand the cell composition and function of TME and construct a gene signature associated with TME in advanced LUAD. Methods The immune, stromal, and ESTIMATE scores of each sample from The Cancer Genome Atlas (TCGA) database were, respectively, calculated using an ESTIMATE algorithm. The LASSO and Cox regression model were applied to select prognostic genes and to construct a gene signature associated with TME. Two independent datasets from the Gene Expression Omnibus (GEO) were used for external validation. Twenty-two subsets of tumor-infiltrating immune cells (Tiics) were analyzed using the CIBERSORT algorithm. Results Favorable overall survival (OS) and progression-free survival (PFS) were found in patients with high immune score (p = 0.048 and p = 0.028; respectively) and stromal score (p = 0.024 and p = 0.025; respectively). Based on the immune and stromal scores, 453 differentially expressed genes (DEGs) were identified. Using the LASSO and Cox regression model, a seven-gene signature containing AFAP1L2, CAMK1D, LOXL2, PIK3CG, PLEKHG1, RARRES2, and SPP1 was identified to construct a risk stratification model. The OS and PFS of the high-risk group were significantly worse than that of the low-risk group (p < 0.001 and p < 0.001; respectively). The receiver operating characteristic (ROC) curve analysis confirmed the good potency of the seven-gene signature. Similar findings were validated in two independent cohorts. In addition, the proportion of macrophages M2 and Tregs was higher in high-risk patients (p = 0.041 and p = 0.022, respectively). Conclusion Our study established and validated a seven-gene signature associated with TME, which might serve as a prognosis stratification tool to predict survival outcomes of advanced LUAD patients. In addition, macrophages M2 polarization may lead to worse prognosis in patients with advanced LUAD.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xuening Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Shandong University, Jinan, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Songhe Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Zhao QY, Liu LP, Lu L, Gui R, Luo YW. A Novel Intercellular Communication-Associated Gene Signature for Prognostic Prediction and Clinical Value in Patients With Lung Adenocarcinoma. Front Genet 2021; 12:702424. [PMID: 34497634 PMCID: PMC8419521 DOI: 10.3389/fgene.2021.702424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Background Lung cancer remains the leading cause of cancer death globally, with lung adenocarcinoma (LUAD) being its most prevalent subtype. This study aimed to identify the key intercellular communication-associated genes (ICAGs) in LUAD. Methods Eight publicly available datasets were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The prognosis-related ICAGs were identified and a risk score was developed by using survival analysis. Machine learning models were trained to predict LUAD recurrence based on the selected ICAGs and clinical information. Comprehensive analyses on ICAGs and tumor microenvironment were performed. A single-cell RNA-sequencing dataset was assessed to further elucidate aberrant changes in intercellular communication. Results Eight ICAGs with prognostic potential were identified in the present study, and a risk score was derived accordingly. The best machine-learning model to predict relapse was developed based on clinical information and the expression levels of these eight ICAGs. This model achieved a remarkable area under receiver operator characteristic curves of 0.841. Patients were divided into high- and low-risk groups according to their risk scores. DNA replication and cell cycle were significantly enriched by the differentially expressed genes between the high- and the low-risk groups. Infiltrating immune cells, immune functions were significantly related to ICAGs expressions and risk scores. Additionally, the changes of intercellular communication were modeled by analyzing the single-cell sequencing dataset. Conclusion The present study identified eight key ICAGs in LUAD, which could contribute to patient stratification and act as novel therapeutic targets.
Collapse
Affiliation(s)
- Qin-Yu Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China.,College of Engineering and Computer Science, Australian National University, Canberra, ACT, Australia
| | - Le-Ping Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan-Wei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
33
|
Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 2021; 9:biomedicines9080999. [PMID: 34440203 PMCID: PMC8391210 DOI: 10.3390/biomedicines9080999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Main forms of cellular signal transmission are known to be autocrine and paracrine signaling. Several cells secrete messengers called autocrine or paracrine agents that can bind the corresponding receptors on the surface of the cells themselves or their microenvironment. Follistatin and follistatin-like proteins can be called one of the most important bifunctional messengers capable of displaying both autocrine and paracrine activity. Whilst they are not as diverse as protein hormones or protein kinases, there are only five types of proteins. However, unlike protein kinases, there are no minor proteins among them; each follistatin-like protein performs an important physiological function. These proteins are involved in a variety of signaling pathways and biological processes, having the ability to bind to receptors such as DIP2A, TLR4, BMP and some others. The activation or experimentally induced knockout of the protein-coding genes often leads to fatal consequences for individual cells and the whole body as follistatin-like proteins indirectly regulate the cell cycle, tissue differentiation, metabolic pathways, and participate in the transmission chains of the pro-inflammatory intracellular signal. Abnormal course of these processes can cause the development of oncology or apoptosis, programmed cell death. There is still no comprehensive understanding of the spectrum of mechanisms of action of follistatin-like proteins, so the systematization and study of their cellular functions and regulation is an important direction of modern molecular and cell biology. Therefore, this review focuses on follistatin-related proteins that affect multiple targets and have direct or indirect effects on cellular signaling pathways, as well as to characterize the directions of their practical application in the field of biomedicine.
Collapse
|
34
|
Microarray analysis of genes with differential expression of m6A methylation in lung cancer. Biosci Rep 2021; 41:229351. [PMID: 34308964 PMCID: PMC8450313 DOI: 10.1042/bsr20210523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: N6-methyladenosine (m6A) is among the most abundant mRNA modifications in eukaryote. The aim of the present study was to investigate function of m6A mRNA methylation in lung cancer and the underlying mechanism. Methods: Microarray analysis was performed to detect the differences in RNA expression between cancerous and adjacent non-cancerous tissue samples. The target mRNAs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Hierarchical clustering of RNAs was conducted to identify distinct m6A methylation or expression patterns between the samples. Results: In the present study, some differentially expressed genes (DEGs) of mRNAs were identified, including up-regulated secret phosphoprotein 1 (SPP1) and down-regulated pRB. Functional enrichment analysis revealed that while differential hypermethylation was related to cell cycle, intracellular part and protein binding, the main pathway involved herpes simplex virus 1 infection related to down-regulated AKT, Araf1 and BCL2A1. In the meantime, sexual reproduction, cohesin complex and protein C-terminus binding was functionally linked to differential hypomethylation, while fluid shear stress and atherosclerosis were identified as the main pathways related to up-regulated GST and CNP. Conclusions: We showed that lung cancer development involved differential expression of SPP1 and pRB mRNA, as well as m6A mRNA methylation in AKT, APAF1, BCL2A1, GST and CNP genes.
Collapse
|
35
|
Distinctive Prognostic Value and Cellular Functions of Osteopontin Splice Variants in Human Gastric Cancer. Cells 2021; 10:cells10071820. [PMID: 34359989 PMCID: PMC8305399 DOI: 10.3390/cells10071820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Osteopontin (OPN) splice variants are identified as predictors of tumour progression and therapeutic resistance in certain types of solid tumours. However, their roles in gastric cancer (GC) remain poorly characterized. The current study sought to assess the prognostic value of the three OPN splice variants (namely OPN-a, OPN-b, and OPN-c) in gastric cancer and their potential functions within gastric cancer cells. Methods: RNA extraction and reverse transcription were performed using our clinical cohort of gastric carcinomas and matched normal tissues (n = 324 matched pairs). Transcript levels were determined using real-time quantitative PCR. Three OPN splice variants overexpressed cell lines were created from the gastric cancer cell line HGC-27. Subsequently, biological functions, including cell growth, adhesion, migration, and invasion, were studied. The potential effects of OPN isoforms on cisplatin and 5-Fu were evaluated by detecting cellular reactive oxygen species (ROS) levels in the HGC-27-derived cell lines. Results: Compared with normal tissues, the expression levels of three splice variants were all elevated in gastric cancer tissues in an order of OPN-a > OPN-b > OPN-c. The OPN-a level significantly increased with increasing TNM staging and worse clinical outcome. There appeared to be a downregulation for OPN-c in increasing lymph node status (p < 0.05), increasing TNM staging, and poor differentiation. High levels of OPN-a and OPN-b were correlated with short overall survival and disease-free survival of gastric cancer patients. However, the low expression of OPN-c was significantly associated with a poor prognosis. Functional analyses further showed that ectopic expression of OPN-c suppressed in vitro proliferation, adhesiveness, migration, and invasion properties of HGC-27 cells, while the opposite role was seen for OPN-a. Cellular ROS detection indicated that OPN-a and OPN-c significantly promoted ROS production after treatment with 5-Fu comparing to OPN-vector, while only OPN-a markedly induced ROS production after treatment with cisplatin. Conclusion: Our results suggest that OPN splice variants have distinguished potential to predict the prognosis of gastric cancer. Three OPN variants exert distinctive functions in gastric cancer cells. Focusing on specific OPN isoforms could be a novel direction for developing diagnostic and therapeutic approaches in gastric cancer.
Collapse
|
36
|
Wang R, Wang X, Zhang J, Liu Y. LINC00942 Promotes Tumor Proliferation and Metastasis in Lung Adenocarcinoma via FZD1 Upregulation. Technol Cancer Res Treat 2021; 20:1533033820977526. [PMID: 34253104 PMCID: PMC8280845 DOI: 10.1177/1533033820977526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been reported to play important roles in the progression of human cancers. Herein, bioinformatic analysis identified that LINC00942 was a highly overexpressed lncRNA in lung adenocarcinoma (LUAD). The present study aimed to explore the roles and possible molecular mechanisms of LINC00942 in LUAD. METHODS First, on the basis of TCGA database, the expression and prognosis of LINC00942 were analyzed in LUAD tissues. Then, si-LINC00942 was transfected into A549 and H1299 cells to knockdown the expression of LINC00942. Cell viability was detected by MTT assay. Flow cytometry was used to analyze cell apoptosis. The expressions of PCNA, Bax, Bcl-2, and wnt/β-catenin pathway proteins were detected by western blotting. Dual-luciferase reporter assay was used to evaluate the regulatory relationship between LINC00942 and miR-5006-5p, or miR-5006-5p and FZD1. RESULTS We discovered that LINC00942 was up-regulated in LUAD tissues compared with adjacent tissues. Besides, we found the increased LINC00942 expression was associated with poor survival. In addition, silencing of LINC00942 suppressed the proliferation, migration, invasion and facilitated the apoptosis of A549 and H1299 cells. Moreover, silencing of LINC00942 repressed the expression of PCNA, Bcl-2, and enhanced Bax expression in A549 and H1299 cells. Mechanically, LINC00942 exerted its effects via enhancing Wnt signaling. LINC00942 functioned as competing endogenous RNA (ceRNA) by binding to miR-5006-5p, upregulating the expression of FZD1, which was a direct target of miR-5006-5p. CONCLUSION Our findings indicated that LINC00942/miR-5006-5p/FZD1 axis played important roles in LUAD growth through enhancing Wnt signaling. LINC00942/miR-5006-5p/FZD1 axis might serve as a potential biomarker and therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Ronghua Wang
- Department of Outpatient, Dongying People's Hospital, Dongying, Shandong, People's Republic of China
| | - Xiuyun Wang
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong, People's Republic of China
| | - Jingtao Zhang
- Department of Respiratory Medicine, Dongying District People's Hospital of Dongying city, Dongying, Shandong, People's Republic of China
| | - Yanpei Liu
- Department of Outpatient, Dongying People's Hospital, Dongying, Shandong, People's Republic of China
| |
Collapse
|
37
|
Luo X, Feng L, Xu W, Bai X, Wu M. Weighted gene co-expression network analysis of hub genes in lung adenocarcinoma. Evol Bioinform Online 2021; 17:11769343211009898. [PMID: 33911849 PMCID: PMC8047936 DOI: 10.1177/11769343211009898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a tumor with high incidence. This study aimed to identify the central genes of LUAD. LUAD were analyzed by weighted gene co-expression network (WGCNA), and differentially expressed genes (DEGs) were identified. Samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases and included 515 LUAD samples and 347 normal samples. The WGCNA algorithm generated a total of 10 modules. The top 2 modules (MEturquoise and MEblue) with the highest correlation to LUAD were selected. Ten Hub genes (IL6, CDH1, PECAM1, SPP1, THBS1, HGF, SNCA, CDH5, CAV1, and DLC1) were screened in the intersecting genes of DEGs and WGCNA (MEturquoise and MEblue). Only SPP1 was correlated with LUAD poor survival, indicating that SPP1 may be a key Hub gene for LUAD. The competing endogenous RNA (ceRNA) network was constructed to analyze the regulatory relationship of Hub genes, and SPP1 may be directly regulated by 4 microRNAs (miRNAs) and indirectly regulated by 49 long noncoding RNAs (lncRNAs).
Collapse
Affiliation(s)
- Xuan Luo
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - Lei Feng
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - WenBo Xu
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - XueJing Bai
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - MengNa Wu
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| |
Collapse
|
38
|
Klement JD, Poschel DB, Lu C, Merting AD, Yang D, Redd PS, Liu K. Osteopontin Blockade Immunotherapy Increases Cytotoxic T Lymphocyte Lytic Activity and Suppresses Colon Tumor Progression. Cancers (Basel) 2021; 13:cancers13051006. [PMID: 33670921 PMCID: PMC7957528 DOI: 10.3390/cancers13051006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Despite the breakthrough in human cancer immunotherapy, colorectal cancer, except for the small subset of microsatellite instable colorectal cancer (MSI, ~4% total cases), is one of the few human cancers that does not respond to current immune checkpoint inhibitor (ICI) immunotherapy. CTLs are present in both MSI and microsatellite stable (MSS) human colon carcinoma, suggesting that PD-L1-independent mechanisms may exist and suppress CTL activation in the colon tumor microenvironment. We determined that osteopontin (OPN) inhibits tumor-specific cytotoxic T lymphocyte (CTL) lytic activity to promote colon tumor growth in vivo. Accordingly, OPN blockade immunotherapy using OPN neutralization monoclonal antibodies 100D3 and 103D6 suppressed colon tumor growth in vivo. Our findings indicate that 100D3 and 103D6 has the potential to be further developed for colorectal cancer immunotherapy. Abstract Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-1 blockade immunotherapy, necessitating the development of a new immunotherapy. Osteopontin (OPN) is elevated in human colorectal cancer and may function as an immune checkpoint. We aimed at elucidating the mechanism of action of OPN and determining the efficacy of OPN blockade immunotherapy in suppression of colon cancer. We report here that OPN is primarily expressed in tumor cells, myeloid cells, and innate lymphoid cells in human colorectal carcinoma. Spp1 knock out mice exhibit a high incidence and fast growth rate of carcinogen-induced tumors. Knocking out Spp1 in colon tumor cells increased tumor-specific CTL cytotoxicity in vitro and resulted in decreased tumor growth in vivo. The OPN protein level is elevated in the peripheral blood of tumor-bearing mice. We developed four OPN neutralization monoclonal antibodies based on their efficacy in blocking OPN inhibition of T cell activation. OPN clones 100D3 and 103D6 increased the efficacy of tumor-specific CTLs in killing colon tumor cells in vitro and suppressed colon tumor growth in tumor-bearing mice in vivo. Our data indicate that OPN blockade immunotherapy with 100D3 and 103D6 has great potential to be further developed for colorectal cancer immunotherapy and for rendering a colorectal cancer response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China;
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S. Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Chemedimmune Inc., Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: ; Tel.: +1-706-721-9483
| |
Collapse
|
39
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
40
|
Zhang G, Jin C, Zhu Y, Fu F, Wang G, Li S. Sulforaphene inhibits the progression of osteosarcoma via regulating FSTL1/NF-κB pathway. Life Sci 2020; 263:118485. [PMID: 33017573 DOI: 10.1016/j.lfs.2020.118485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/06/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022]
Abstract
AIMS Sulforaphene (SFE), a naturally occurring isothiocyanate found in cruciferous vegetables, has attracted increasing attention for its anti-cancer effect in many cancers. MAIN METHODS We explored the therapeutic effects of SFE in modulating the progression of osteosarcoma. CCK8 assay, colony formation assay, western blot, wounding healing assay and transwell assay were conducted to detect the proliferation, apoptosis, migration and invasion of osteosarcoma cells (U2OS and Saos2) treated with different concentrations of SFE. In addition, tumor xenograft in nude mice is performed to test the effects of SFE in tumorigenesis in vivo. Moreover, the levels of FSTL1 and NF-κB were determined by western blot, and loss of functions of FATL1 and NF-κB were further conducted to evaluate the underlying mechanisms of SFE on osteosarcoma development. KEY FINDINGS The results revealed that SFE inhibited the growth while promoted apoptosis of U2OS and Saos2 cells in a dose-dependent manner. Mechanistically, SFE significantly inhibited the expression of NF-κB and FSTL1. However, the genetic intervention of FSTL1 or pharmacologically inhibiting NF-κB weakened the anti-tumor role of SFE. SIGNIFICANCE This study suggested that SFE alleviates the progression of osteosarcoma through modulating the FSTL1/NF-κB pathway.
Collapse
Affiliation(s)
- Guofeng Zhang
- Department of Orthopedic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China.
| | - Chengzhen Jin
- Department of Orthopedic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| | - Yonglin Zhu
- Department of Orthopedic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| | - Fangang Fu
- Department of Orthopedic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| | - Guosheng Wang
- Department of Orthopedic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| | - Shanhui Li
- Department of Orthopedic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| |
Collapse
|
41
|
Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, Hu S, Chen X, Yin M. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Am J Cancer Res 2020; 10:11428-11443. [PMID: 33052224 PMCID: PMC7546000 DOI: 10.7150/thno.47432] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bromodomain and extra-terminal domain (BET) inhibitors have shown profound efficacy against hematologic malignancies and solid tumors in preclinical studies. However, the underlying molecular mechanism in melanoma is not well understood. Here we identified secreted phosphoprotein 1 (SPP1) as a melanoma driver and a crucial target of BET inhibitors in melanoma. Methods: Bioinformatics analysis and meta-analysis were used to evaluate the SPP1 expression in normal tissues, primary melanoma, and metastatic melanoma. Real-time PCR (RT-PCR) and Western blotting were employed to quantify SPP1 expression in melanoma cells and tissues. Cell proliferation, wound healing, and Transwell assays were carried out to evaluate the effects of SPP1 and BET inhibitors in melanoma cells in vitro. A xenograft mouse model was used to investigate the effect of SPP1 and BET inhibitors on melanoma in vivo. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the regulatory mechanism of BET inhibitors on SPP1. Results: SPP1 was identified as a melanoma driver by bioinformatics analysis, and meta-analysis determined it to be a diagnostic and prognostic biomarker for melanoma. SPP1 overexpression was associated with poor melanoma prognosis, and silencing SPP1 suppressed melanoma cell proliferation, migration, and invasion. Through a pilot drug screen, we identified BET inhibitors as ideal therapeutic agents that suppressed SPP1 expression. Also, SPP1 overexpression could partially reverse the suppressive effect of BET inhibitors on melanoma. We further demonstrated that bromodomain-containing 4 (BRD4) regulated SPP1 expression. Notably, BRD4 did not bind directly to the SPP1 promoter but regulated SPP1 expression through NFKB2. Silencing of NFKB2 resembled the phenotype of BET inhibitors treatment and SPP1 silencing in melanoma. Conclusion: Our findings highlight SPP1 as an essential target of BET inhibitors and provide a novel mechanism by which BET inhibitors suppress melanoma progression via the noncanonical NF-κB/SPP1 pathway.
Collapse
|
42
|
Xu XY, Du Y, Liu X, Ren Y, Dong Y, Xu HY, Shi JS, Jiang D, Xu X, Li L, Xu ZH, Geng Y. Targeting Follistatin like 1 ameliorates liver fibrosis induced by carbon tetrachloride through TGF-β1-miR29a in mice. Cell Commun Signal 2020; 18:151. [PMID: 32933544 PMCID: PMC7493388 DOI: 10.1186/s12964-020-00610-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatic fibrosis is a pathological response of the liver to a variety of chronic stimuli. Hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. Follistatin like 1 (Fstl1) is a secreted glycoprotein induced by transforming growth factor-β1 (TGF-β1). However, the precise functions and regulation mechanisms of Fstl1 in liver fibrogenesis remains unclear. Methods Hepatic stellate cell (HSC) line LX-2 stimulated by TGF-β1, primary culture of mouse HSCs and a model of liver fibrosis induced by CCl4 in mice was used to assess the effect of Fstl1 in vitro and in vivo. Results Here, we found that Fstl1 was significantly up regulated in human and mouse fibrotic livers, as well as activated HSCs. Haplodeficiency of Fstl1 or blockage of Fstl1 with a neutralizing antibody 22B6 attenuated CCl4-induced liver fibrosis in vivo. Fstl1 modulates TGF-β1 classic Samd2 and non-classic JNK signaling pathways. Knockdown of Fstl1 in HSCs significantly ameliorated cell activation, cell migration, chemokines C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 8 (CXCL8) secretion and extracellular matrix (ECM) production, and also modulated microRNA-29a (miR29a) expression. Furthermore, we identified that Fstl1 was a target gene of miR29a. And TGF-β1 induction of Fstl1 expression was partially through down regulation of miR29a in HSCs. Conclusions Our data suggests TGF-β1-miR29a-Fstl1 regulatory circuit plays a key role in regulation the HSC activation and ECM production, and targeting Fstl1 may be a strategy for the treatment of liver fibrosis. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Xin-Yi Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Du
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yilin Ren
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Yingying Dong
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Hong-Yu Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Xin Xu
- Wuxi No. 2 People's Hospital, Wuxi, 214002, China
| | - Lian Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Geng
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
43
|
Parker AL, Cox TR. The Role of the ECM in Lung Cancer Dormancy and Outgrowth. Front Oncol 2020; 10:1766. [PMID: 33014869 PMCID: PMC7516130 DOI: 10.3389/fonc.2020.01766] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The dissemination of tumor cells to local and distant sites presents a significant challenge in the clinical management of many solid tumors. These cells may remain dormant for months or years before overt metastases are re-awakened. The components of the extracellular matrix, their posttranslational modifications and their associated factors provide mechanical, physical and chemical cues to these disseminated tumor cells. These cues regulate the proliferative and survival capacity of these cells and lay the foundation for their engraftment and colonization. Crosstalk between tumor cells, stromal and immune cells within primary and secondary sites is fundamental to extracellular matrix remodeling that feeds back to regulate tumor cell dormancy and outgrowth. This review will examine the role of the extracellular matrix and its associated factors in establishing a fertile soil from which individual tumor cells and micrometastases establish primary and secondary tumors. We will focus on the role of the lung extracellular matrix in providing the architectural support for local metastases in lung cancer, and distant metastases in many solid tumors. This review will define how the matrix and matrix associated components are collectively regulated by lung epithelial cells, fibroblasts and resident immune cells to orchestrate tumor dormancy and outgrowth in the lung. Recent advances in targeting these lung-resident tumor cell subpopulations to prevent metastatic disease will be discussed. The development of novel matrix-targeted strategies have the potential to significantly reduce the burden of metastatic disease in lung and other solid tumors and significantly improve patient outcome in these diseases.
Collapse
Affiliation(s)
- Amelia L Parker
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
44
|
Su C, Liu WX, Wu LS, Dong TJ, Liu JF. Screening of Hub Gene Targets for Lung Cancer via Microarray Data. Comb Chem High Throughput Screen 2020; 24:269-285. [PMID: 32772911 DOI: 10.2174/1386207323666200808172631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/24/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the malignancies exhibiting the fastest increase in morbidity and mortality, but the cause is not clearly understood. The goal of this investigation was to screen and identify relevant biomarkers of lung cancer. METHODS Publicly available lung cancer data sets, including GSE40275 and GSE134381, were obtained from the GEO database. The repeatability test for data was done by principal component analysis (PCA), and a GEO2R was performed to screen differentially expressed genes (DEGs), which were all subjected to enrichment analysis. Protein-protein interactions (PPIs), and the significant module and hub genes were identified via Cytoscape. Expression and correlation analysis of hub genes was done, and an overall survival analysis of lung cancer was performed. A receiver operating characteristic (ROC) curve analysis was performed to test the sensitivity and specificity of the identified hub genes for diagnosing lung cancer. RESULTS The repeatability of the two datasets was good and 115 DEGs and 10 hub genes were identified. Functional analysis revealed that these DEGs were associated with cell adhesion, the extracellular matrix, and calcium ion binding. The DEGs were mainly involved with ECM-receptor interaction, ABC transporters, cell-adhesion molecules, and the p53 signaling pathway. Ten genes including COL1A2, POSTN, DSG2, CDKN2A, COL1A1, KRT19, SLC2A1, SERPINB5, DSC3, and SPP1 were identified as hub genes through module analysis in the PPI network. Lung cancer patients with high expression of COL1A2, POSTN, DSG2, CDKN2A, COL1A1, SLC2A1, SERPINB5, and SPP1 had poorer overall survival times than those with low expression (p <0.05). The CTD database showed that 10 hub genes were closely related to lung cancer. Expression of POSTN, DSG2, CDKN2A, COL1A1, SLC2A1, SERPINB5, and SPP1 was also associated with a diagnosis of lung cancer (p<0.05). ROC analysis showed that SPP1 (AUC = 0.940, p = 0.000*, 95%CI = 0.930-0.973, ODT = 7.004), SLC2A1 (AUC = 0.889, p = 0.000*, 95%CI = 0.791-0.865, ODT = 7.123), CDKN2A (AUC = 0.730, p = 0.000*, 95%CI = 0.465-1.000, ODT = 6.071) were suitable biomarkers. CONCLUSION Microarray technology represents an effective method for exploring genetic targets and molecular mechanisms of lung cancer. In addition, the identification of hub genes of lung cancer provides novel research insights for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Chang Su
- Department of Cardiothoracic Surgery, the 980 Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei 050082, China
| | - Wen-Xiu Liu
- Department of Cardiology, the 980 Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei 050082, China
| | - Li-Sha Wu
- Department of Emergency, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang 050000, China
| | - Tian-Jian Dong
- Department of Cardiothoracic Surgery, the 980 Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei 050082, China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
45
|
Sun H, Zhang M, Li L, Huang Z. ALDH3B1 Is an Independent Prognostic Biomarker of Lung Adenocarcinoma. Technol Cancer Res Treat 2020; 19:1533033820946018. [PMID: 32744175 PMCID: PMC7412899 DOI: 10.1177/1533033820946018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Lung cancer is the leading cause of cancer-related death, and adenocarcinoma is the most common type of lung cancer. Although emerging evidence implicates the role of several aldehyde dehydrogenases in cancer progression, the expression and clinical significance of aldehyde dehydrogenase 3B1 in lung adenocarcinoma has never been studied. Materials: In our study, the expression of aldehyde dehydrogenase 3B1 in 250 cases of lung adenocarcinoma was detected with immunohistochemistry, and the patients were further divided into subgroups with different aldehyde dehydrogenase 3B1 expression. Using real-time polymerase chain reaction, we investigated the aldehyde dehydrogenase 3B1 messenger RNA in 20 lung adenocarcinoma and paired normal lung tissues. With the χ2 test, we evaluated the clinical significance of aldehyde dehydrogenase 3B1 by analyzing its correlation with the clinicopathological factors. Propensity score matching was performed to balance the baseline of cohort. With univariate and multivariate analyses, we screened the prognostic factors of lung adenocarcinoma and identified the independent prognostic factors before and after the propensity score matching. Results: Aldehyde dehydrogenase 3B1 expression was significantly associated with the sex and age of patients, tumor size, and histological grade. High expression of aldehyde dehydrogenase 3B1 predicted the poor prognosis (P = .003). Moreover, male patients (P = .020), large tumor size (P = .009), advanced T stage (P = .001), positive lymphatic invasion (P < .001), and advanced tumor–node–metastasis stage (P < .001) were all the prognostic factors for unfavorable outcome. Aldehyde dehydrogenase 3B1 was an independent prognostic biomarker of lung adenocarcinoma, indicating the poor prognosis. In addition, after balancing the baseline characteristics by propensity score matching, we also demonstrated that aldehyde dehydrogenase 3B1 was an independent prognostic biomarker of lung adenocarcinoma (P = .007). Conclusions: Aldehyde dehydrogenase 3B1 was an independent prognostic biomarker of lung adenocarcinoma, indicating the unfavorable prognosis. Postoperative detection of aldehyde dehydrogenase 3B1 would help stratify the high-risk patients with lung adenocarcinoma and guide individual treatment.
Collapse
Affiliation(s)
- Hongmei Sun
- Department of Gastrointestinal Surgery, YIDU Central Hospital, Weifang, China.,Hongmei Sun and Mingying Zhang contributed equally to the paper
| | - Mingying Zhang
- Department of Child Healthcare, YIDU Central Hospital, Weifang, China.,Hongmei Sun and Mingying Zhang contributed equally to the paper
| | - Li Li
- Department of Respiratory Medicine, YIDU Central Hospital, Weifang, China
| | - Zongwen Huang
- Department of Respiratory Medicine, 970th Hospital of Chinese PLA, Weihai, China
| |
Collapse
|
46
|
Wei S, Lu J, Lou J, Shi C, Mo S, Shao Y, Ni J, Zhang W, Cheng X. Gastric Cancer Tumor Microenvironment Characterization Reveals Stromal-Related Gene Signatures Associated With Macrophage Infiltration. Front Genet 2020; 11:663. [PMID: 32695142 PMCID: PMC7339942 DOI: 10.3389/fgene.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
The tumor microenvironment (TME) has attracted attention owing to its essential role in tumor initiation, progression, and metastasis. With the emergence of immunotherapies for various cancers, and their high efficacy, an understanding of the TME in gastric cancer (GC) is critical. The aim of this study was to investigate the effect of various components within the GC TME, and to identify mechanisms that exhibit potential as therapeutic targets. The ESTIMATE algorithm was used to quantify immune and stromal components in GC samples, whose clinicopathological significance and relationship with predicted outcomes were explored. Low tumor mutational burden and high M2 macrophage infiltration, which are considered immune suppressive characteristics and may be responsible for unfavorable prognoses in GC, were observed in the high stromal group (HR = 1.585; 95% CI, 1.112–2.259; P = 0.009). Furthermore, weighted correlation network, differential expression, and univariate Cox analyses were used, along with machine learning methods (LASSO and SVM-RFE), to reveal genome-wide immune phenotypic correlations. Eight stromal-relevant genes cluster (FSTL1, RAB31, FBN1, ANTXR1, LRRC32, CTSK, COL5A2, and ENG) were identified as adverse prognostic factors in GC. Finally, using a combination of TIMER database and single-sample gene set enrichment analyses, we found that the identified genes potentially contribute to macrophage recruitment and polarization of tumor-associated macrophages. These findings provide a different perspective into the immune microenvironment and indicate potential prognostic and therapeutic targets for GC immunotherapies.
Collapse
Affiliation(s)
- Shenyu Wei
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jianying Lou
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengwei Shi
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaowei Mo
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaojian Shao
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junjie Ni
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wu Zhang
- Shulan Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Cheng
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|