1
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
2
|
Safizadeh B, Sadeh M, Robati AK, Riahi T, Tavakoli-Yaraki M. Assessment of the circulating levels of immune system checkpoint selected biomarkers in patients with lung cancer. Mol Biol Rep 2024; 51:1036. [PMID: 39361074 DOI: 10.1007/s11033-024-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Lung cancer is recognized as one of the leading causes of cancer-related deaths globally, with a significant increase in incidence and intricate pathogenic mechanisms. This study examines the expression profiles of Programmed Cell Death Protein 1 (PD-1), PD-1 ligand (PDL-1), β-catenin, CD44, interleukin 6 (IL-6), and interleukin 10 (IL-10), as well as their correlations with the clinic-pathological features and diagnostic significance in lung cancer patients. METHODS AND RESULTS The research involved lung cancer patients exhibiting various pathological characteristics, alongside demographically matched healthy controls. The expression levels of PD-1, PDL-1, β-catenin, and CD44 were analyzed using Real-Time PCR, while circulating levels of IL-6 and IL-10 were assessed through ELISA assays. This investigation focused on peripheral blood mononuclear cells (PBMC) to evaluate these factors non-invasively. Findings indicated that levels of PD-1, PDL-1, and CD44 were significantly elevated in patients compared to controls, which coincided with a decrease in β-catenin levels. Additionally, a concurrent rise in IL-6 and IL-10, both pro-inflammatory cytokines, was observed in patients, suggesting a potential regulatory role for these cytokines on the PD-1/PDL-1 axis, which may help tumors evade immune system checkpoints. The predictive value of these factors concerning lung tumors and metastasis was significant (Regression analysis). Furthermore, these markers demonstrated diagnostic potential in differentiating between patients and healthy controls, as well as between individuals with metastatic and non-metastatic tumors (ROC curve analysis). CONCLUSIONS This study provides insights into the expression profiles of PD-1/PDL-1 immune system checkpoints and their regulatory factors in lung cancer, potentially paving the way for new therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Maryam Sadeh
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Taghi Riahi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
3
|
Long Y, Xu Z, Yu J, Hu X, Xie Y, Duan X, Li N, Yan Y, Wang Y, Qin J. Targeting xCT with sulfasalazine suppresses triple-negative breast cancer growth via inducing autophagy and coordinating cell cycle and proliferation. Anticancer Drugs 2024; 35:830-843. [PMID: 39016262 DOI: 10.1097/cad.0000000000001630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
There is a substantial unmet need for effective treatment strategies in triple-negative breast cancer (TNBC). Recently, renewed attention has been directed towards targeting glutamine (Gln) metabolism to enhance the efficacy of cancer treatment. Nonetheless, a comprehensive exploration into the mechanistic implications of targeting Gln metabolism in TNBC is lacking. In this study, our objective was to probe the sensitivity of TNBC to alterations in Gln metabolism, using representative TNBC cell lines: MDA-MB-231, MDA-MB-468, and 4T1. Through an integration of bioinformatics, in-vitro, and in-vivo investigations, we demonstrated that sulfasalazine (SAS), like erastin (a known xCT inhibitor), effectively suppressed the expression and transport function of xCT, resulting in a depletion of glutathione levels in MDA-MB-231 and MDA-MB-468 cells. Furthermore, both xCT knockdown and SAS treatment demonstrated the promotion of cellular autophagy. We unveiled a positive correlation between xCT and the autophagy-related molecule p62, their co-expression indicating poor survival outcomes in breast cancer patients. In addition, our research revealed the influence of SAS and xCT on the expression of proteins regulating cell cycle and proliferation. Treatment with SAS or xCT knockdown led to the inhibition of MYC, CDK1, and CD44 expression. Significantly, the combined administration of SAS and rapamycin exhibited a synergistic inhibitory effect on the growth of transplanted breast tumor in mouse models constructed from murine-derived 4T1 cells. Taken together, our findings suggested the potential and clinical relevance of the SAS and rapamycin combination in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaping Long
- Department of Immunology, School of Medicine, Nankai University
| | - Zizheng Xu
- Department of Immunology, School of Medicine, Nankai University
| | - Jing Yu
- Department of Immunology, School of Medicine, Nankai University
| | - Xiao Hu
- Department of Immunology, School of Medicine, Nankai University
| | - Yu Xie
- Department of Immunology, School of Medicine, Nankai University
| | - Xianxian Duan
- Department of Immunology, School of Medicine, Nankai University
| | - Ning Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University
| | - Yan Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Junfang Qin
- Department of Immunology, School of Medicine, Nankai University
| |
Collapse
|
4
|
Castaneda CA, Castillo M, Sanchez J, Bernabe L, Tello K, Suarez N, Alatrista R, Quiroz-Gil X, Granda-Oblitas A, Enciso J, Enciso N, Gomez HL. Clinicopathological features associated with CD44 and CD63 expression in breast cancer. Ecancermedicalscience 2024; 18:1779. [PMID: 39430073 PMCID: PMC11489100 DOI: 10.3332/ecancer.2024.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 10/22/2024] Open
Abstract
Background CD44 is a cell-surface transmembrane glycoprotein that participates in the regulation of many cellular processes, including cell division, adhesion, migration and stem-like characteristics. CD63 is involved in the exocytosis process. Objective To evaluate the relationship between CD44 and CD63 expression and clinicopathological features, including tumor-infiltrating lymphocytes (TILs), phosphoinositide 3-kinase (PIK3CA) mutation and survival. Methodology CD44 and CD63 were stained in samples from 101 breast cancer cases from Peruvian women. Results Median age was 52 years, most were most were grade-3 (68%), estrogen receptor (ER)+ (64%) and stage II-III (92%). Median ki67 was 30%, median stromal TIL was 30% and PIK3CA mutation was found in 49%. Longer survival was associated with earlier stages (p = 0.016), lower ki67 (p = 0.023), ER+ (p = 0.034), luminal phenotype (p = 0.029) and recurrence (p < 0.001). CD44 was classified as high cell density staining in 57% and high intensity in 55%. High CD44 density was associated with younger age (p = 0.043), triple-negative phenotype (p = 0.035) and shorter survival (p = 0.005). High CD44 expression was associated with short survival (p = 0.005). High CD63 cell density was found in 56% of cases and was associated with ER-positive (p = 0.045), low TIL levels (p = 0.007), Luminal-A (p = 0.015) and low CD44 intensity (p = 0.032). Conclusion CD44 expression was associated with aggressive features and low CD63 density staining.
Collapse
Affiliation(s)
- Carlos A. Castaneda
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima 15067, Peru
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Miluska Castillo
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Joselyn Sanchez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Luis Bernabe
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Katherin Tello
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Nancy Suarez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Raul Alatrista
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Ximena Quiroz-Gil
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima 15067, Peru
| | | | - Javier Enciso
- Laboratorio de Células Madre, Universidad Cientifica del Sur, Lima 15067, Peru
| | - Nathaly Enciso
- Direccion General de Investigacion, Desarrollo e Innovacion, Universidad Científica del Sur, Lima 15067, Peru
| | - Henry L Gomez
- Unidad de Ensayos Clinicos, Oncosalud-AUNA, Lima 15038, Peru
| |
Collapse
|
5
|
De Ieso ML, Aldoghachi AF, Tilley WD, Dwyer AR. Are androgen receptor agonists a treatment option in bladder cancer? J Steroid Biochem Mol Biol 2024; 245:106623. [PMID: 39306143 DOI: 10.1016/j.jsbmb.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/27/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Sex-related differences in bladder cancer incidence and progression infer a role for sex hormones and their cognate receptors in this disease. In part due to the oncogenic role of androgen receptor signaling in prostate cancer, the focus of most preclinical and clinical research to-date has been on the potential pro-tumorigenic action of androgens in urothelial cancers. However, clinical studies of androgen receptor antagonism have yielded minimal success. In this review, we explore the tumor suppressor role of androgen receptor in bladder cancer and discuss how it might be harnessed therapeutically.
Collapse
Affiliation(s)
- Michael L De Ieso
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Ahmed Faris Aldoghachi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
6
|
Malla R, Jyosthsna K, Rani G, Purnachandra Nagaraju G. CD44/PD-L1-mediated networks in drug resistance and immune evasion of breast cancer stem cells: Promising targets of natural compounds. Int Immunopharmacol 2024; 138:112613. [PMID: 38959542 DOI: 10.1016/j.intimp.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Kattula Jyosthsna
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - G Rani
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
7
|
Xia J, Shi Y, Chen X. New insights into the mechanisms of the extracellular matrix and its therapeutic potential in anaplastic thyroid carcinoma. Sci Rep 2024; 14:20977. [PMID: 39251678 PMCID: PMC11384763 DOI: 10.1038/s41598-024-72020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer, and it has a poor prognosis and high probability of metastatic recurrence. The long-term survival of cancer cells depends on their ability to settle in a favorable environment. Cancer cells interact with other cells in the tumor microenvironment to shape the "soil" and make it suitable for cell growth by forming an extremely complex tumor ecosystem. The extracellular matrix (ECM) is an essential component of the tumor ecosystem, and its biological and mechanical changes strongly affect tumor invasion, metastasis, immune escape and drug resistance. Compared to normal tissues, biological processes, such as collagen synthesis and ECM signaling, are significantly activated in ATC tissues. However, how ATC triggers changes in the properties of the ECM and its interaction with the ECM remain poorly characterized. Therefore, an in-depth study of the regulatory mechanism of the abnormal activation of ECM signaling in ATC is highly important for achieving the therapeutic goal of exerting antitumor effects by destroying the "soil" in which cancer cells depend for survival. In this research, we revealed the aberrant activation state of ECM signaling in ATC progression and attempted to uncover the potential mechanism of action of ECM components in ATC, with the aim of providing new drug targets for ATC therapy.
Collapse
Affiliation(s)
- Jinkun Xia
- Department of Vascular and Thyroid Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Yuyu Shi
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, 550003, Guizhou, China
| | - Xinxu Chen
- Emergency Department, Fenggang County People's Hospital, Fenggang, 564299, Guizhou, China
| |
Collapse
|
8
|
Galassi C, Esteller M, Vitale I, Galluzzi L. Epigenetic control of immunoevasion in cancer stem cells. Trends Cancer 2024:S2405-8033(24)00171-7. [PMID: 39244477 DOI: 10.1016/j.trecan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Shen Y, Yan J, Li L, Sun H, Zhang L, Li G, Wang X, Liu R, Wu X, Han B, Sun X, Liu J, Fan X. LOXL2-induced PEAR1 Ser891 phosphorylation suppresses CD44 degradation and promotes triple-negative breast cancer metastasis. J Clin Invest 2024; 134:e177357. [PMID: 39145451 PMCID: PMC11324313 DOI: 10.1172/jci177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
CD44 is associated with a high risk of metastasis, recurrence, and drug resistance in various cancers. Here we report that platelet endothelial aggregation receptor 1 (PEAR1) is a CD44 chaperone protein that protected CD44 from endocytosis-mediated degradation and enhances cleavage of the CD44 intracellular domain (CD44-ICD). Furthermore, we found that lysyl oxidase-like protein 2 (LOXL2), an endogenous ligand of PEAR1, bound to the PEAR1-EMI domain and facilitated the interaction between PEAR1 and CD44 by inducing PEAR1 Ser891 phosphorylation in a manner that was independent of its enzyme activity. Levels of PEAR1 protein and PEAR1 phosphorylation at Ser891 were increased in patients with triple-negative breast cancer (TNBC), were positively correlated with expression of LOXL2 and CD44, and were negatively correlated with overall survival. The level of PEAR1 Ser891 phosphorylation was identified as the best independent prognostic factor in TNBC patients. The prognostic efficacy of the combination of PEAR1 phosphorylation at Ser891 and CD44 expression was superior to that of PEAR1 phosphorylation at Ser891 alone. Blocking the interaction between LOXL2 and PEAR1 with monoclonal antibodies significantly inhibited TNBC metastasis, representing a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology
| | - Jie Yan
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Li
- Department of Biochemistry and Molecular Cell Biology
| | - Huiyan Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology
| | - Guoming Li
- Department of Biochemistry and Molecular Cell Biology
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology
| | - Ruoyan Liu
- Department of Biochemistry and Molecular Cell Biology
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology
- Shanghai Synvida Biotechnology Co., Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology
| |
Collapse
|
10
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Hodgins JJ, Abou-Hamad J, O’Dwyer CE, Hagerman A, Yakubovich E, Tanese de Souza C, Marotel M, Buchler A, Fadel S, Park MM, Fong-McMaster C, Crupi MF, Makinson OJ, Kurdieh R, Rezaei R, Dhillon HS, Ilkow CS, Bell JC, Harper ME, Rotstein BH, Auer RC, Vanderhyden BC, Sabourin LA, Bourgeois-Daigneault MC, Cook DP, Ardolino M. PD-L1 promotes oncolytic virus infection via a metabolic shift that inhibits the type I IFN pathway. J Exp Med 2024; 221:e20221721. [PMID: 38869480 PMCID: PMC11176258 DOI: 10.1084/jem.20221721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/04/2024] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.
Collapse
Affiliation(s)
- Jonathan J. Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - John Abou-Hamad
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Colin Edward O’Dwyer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Ash Hagerman
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Marie Marotel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Ariel Buchler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Saleh Fadel
- The Ottawa Hospital, Ottawa, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Maria M. Park
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute for Systems Biology, Ottawa, Canada
| | - Mathieu F. Crupi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Olivia Joan Makinson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Reem Kurdieh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Reza Rezaei
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Harkirat Singh Dhillon
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Carolina S. Ilkow
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - John C. Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Ottawa Institute for Systems Biology, Ottawa, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Rebecca C. Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Luc A. Sabourin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, Montreal, Canada
- Centre Hospitalier de l’Université de Montréal Research Centre, Cancer and Immunopathology axes, Montreal, Canada
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
13
|
Rostami F, Tavakol Hamedani Z, Sadoughi A, Mehrabadi M, Kouhkan F. PDL1 targeting by miR-138-5p amplifies anti-tumor immunity and Jurkat cells survival in non-small cell lung cancer. Sci Rep 2024; 14:13542. [PMID: 38866824 PMCID: PMC11169246 DOI: 10.1038/s41598-024-62064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) has constituted over 80% of the lung cancer population with a poor prognosis. Over the past decade, immunotherapy has been constructed in the enlargement of immune checkpoint inhibitors as a promising approach for NSCLC treatment. Evading the immune system using the PD-1/PD-L1 axis is an intelligent way for cancers, and T cells cannot respond fully and confront cancer. Recently, the miR-138 was reported as a PD-L1 regulator in NSCLC. However, its inhibitory impact on T-cell exhaustion has not been characterized. The present study aims to impair PD-L1 (B7-H1) expression in Adenocarcinoma cell lines using miR-138-5p and determines how it prevents Jurak cell exhaustion. To gain the purpose, first, 18 highly significant dysregulated miRNAs containing hsa-miR-138 and CD274-mRNA network were detected in NSCLC based on bioinformatics analysis. Moreover, our study revealed a high level of miR-138-5p could make significant changes like PDL1 downregulation, proliferation, and mortality rate in A549/Calu6 cells. We also simulate cancer environmental conditions by culturing Jurak cells and NSCLC cell lines under the influence of stimulator cytokines to show how miR-138-5p survives Jurak cells by targeting PD-L1/PD-1pathway.
Collapse
Affiliation(s)
- Fatemeh Rostami
- Stem Cell Technology Research Center (STRC), Iran University of Medical Science (IUMS), P.O. Box: 15856-36473, Tehran, 15856-36473, Iran
| | | | - Azadeh Sadoughi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Mehrabadi
- Stem Cell Technology Research Center (STRC), Iran University of Medical Science (IUMS), P.O. Box: 15856-36473, Tehran, 15856-36473, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Iran University of Medical Science (IUMS), P.O. Box: 15856-36473, Tehran, 15856-36473, Iran.
| |
Collapse
|
14
|
Choi Y, Seok SH, Yoon HY, Ryu JH, Kwon IC. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade. Adv Drug Deliv Rev 2024; 209:115306. [PMID: 38626859 DOI: 10.1016/j.addr.2024.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies. However, the clinical response to these antibody-based ICB therapies remains limited, with less than 15% responsiveness and notable adverse effects in some patients. This review introduces the emerging strategies to overcome current limitations of antibody-based ICB therapies, mainly focusing on the development of small interfering ribonucleic acid (siRNA)-based ICB therapies and innovative delivery systems. We firstly highlight the diverse target immune checkpoint genes for siRNA-based ICB therapies, incorporating silencing of multiple genes to boost anti-tumor immune responses. Subsequently, we discuss improvements in siRNA delivery systems, enhanced by various nanocarriers, aimed at overcoming siRNA's clinical challenges such as vulnerability to enzymatic degradation, inadequate pharmacokinetics, and possible unintended target interactions. Additionally, the review presents various combination therapies that integrate chemotherapy, phototherapy, stimulatory checkpoints, ICB antibodies, and cancer vaccines. The important point is that when used in combination with siRNA-based ICB therapy, the synergistic effect of traditional therapies is strengthened, improving host immune surveillance and therapeutic outcomes. Conclusively, we discuss the insights into innovative and effective cancer immunotherapeutic strategies based on RNA interference (RNAi) technology utilizing siRNA and nanocarriers as a novel approach in ICB cancer immunotherapy.
Collapse
Affiliation(s)
- Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Su Hyun Seok
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
15
|
Wu S, Tan Y, Li F, Han Y, Zhang S, Lin X. CD44: a cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol 2024; 15:1354992. [PMID: 38736891 PMCID: PMC11082360 DOI: 10.3389/fimmu.2024.1354992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell interaction, cell adhesion, migration, homing and differentiation. CD44 can mediate the interaction between leukemic stem cells and the surrounding extracellular matrix, thereby inducing a cascade of signaling pathways to regulate their various behaviors. In this review, we focus on the impact of CD44s/CD44v as biomarkers in leukemia development and discuss the current research and prospects for CD44-related interventions in clinical application.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Kanemura H, Yokoyama T, Nakajima R, Nakamura A, Kuroda H, Kitamura Y, Shoda H, Mamesaya N, Miyata Y, Okamoto T, Okishio K, Oki M, Sakairi Y, Chen-Yoshikawa TF, Aoki T, Ohira T, Matsumoto I, Ueno K, Miyazaki T, Matsuguma H, Yokouchi H, Otani T, Ito A, Sakai K, Chiba Y, Nishio K, Yamamoto N, Okamoto I, Nakagawa K, Takeda M. The Tumor Immune Microenvironment Is Associated With Recurrence in Early-Stage Lung Adenocarcinoma. JTO Clin Res Rep 2024; 5:100658. [PMID: 38651033 PMCID: PMC11033192 DOI: 10.1016/j.jtocrr.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Immune checkpoint inhibitors have recently been approved for the treatment of early-stage NSCLC in the perioperative setting on the basis of phase 3 trials. However, the characteristics of such patients who are susceptible to recurrence after adjuvant chemotherapy or who are likely to benefit from postoperative immunotherapy have remained unclear. Methods This biomarker study (WJOG12219LTR) was designed to evaluate cancer stem cell markers (CD44 and CD133), programmed death-ligand 1 (PD-L1) expression on tumor cells, CD8 expression on tumor-infiltrating lymphocytes, and tumor mutation burden in completely resected stage II to IIIA NSCLC with the use of archived DNA and tissue samples from the prospective WJOG4107 trial. Tumors were classified as inflamed or noninflamed on the basis of the PD-L1 tumor proportion score and CD8+ tumor-infiltrating lymphocyte density. The association between each potential biomarker and relapse-free survival (RFS) during adjuvant chemotherapy was assessed by Kaplan-Meier analysis. Results A total of 117 patients were included in this study. The median RFS was not reached (95% confidence intervals [CI]: 22.4 mo-not reached; n = 39) and 23.7 months (95% CI: 14.5-43.6; n = 41) in patients with inflamed or noninflamed adenocarcinoma, respectively (log-rank p = 0.02, hazard ratio of 0.52 [95% CI: 0.29-0.93]). Analysis of the combination of tumor inflammation category and TP53 mutation status revealed that inflamed tumors without TP53 mutations were associated with the longest RFS. Conclusions PD-L1 expression on tumor cells, CD8+ T cell infiltration, and TP53 mutation status may help identify patients with early-stage NSCLC susceptible to recurrence after adjuvant chemotherapy.
Collapse
Affiliation(s)
- Hiroaki Kanemura
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Ryu Nakajima
- Department of General Thoracic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | - Hiroyasu Shoda
- Department of Respiratory Medicine, Hiroshima City Hiroshima Citizen Hospital, Hiroshima, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Kyoichi Okishio
- Department of Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Masahide Oki
- Department of Respiratory Medicine, NHO Nagoya Medical Center, Nagoya, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Tadashi Aoki
- Department of Chest Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Tatsuo Ohira
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Isao Matsumoto
- Department of Thoracic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kiyonobu Ueno
- Department of Respiratory Medicine, Osaka General Medical Center, Osaka, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruhisa Matsuguma
- Department of Thoracic Surgery, Tochigi Cancer Center, Utsunomiya, Japan
| | | | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Cancer Genomics and Medical Oncology, Nara Medical University, Nara, Japan
| |
Collapse
|
17
|
Chen J, Zhang Q, Guo J, Gu D, Liu J, Luo P, Bai Y, Chen J, Zhang X, Nie S, Chen C, Feng Y, Wang J. Single-cell transcriptomics reveals the ameliorative effect of rosmarinic acid on diabetic nephropathy-induced kidney injury by modulating oxidative stress and inflammation. Acta Pharm Sin B 2024; 14:1661-1676. [PMID: 38572101 PMCID: PMC10985035 DOI: 10.1016/j.apsb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 04/05/2024] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by changes in kidney structure and function. The natural product rosmarinic acid (RA) has demonstrated therapeutic effects, including anti-inflammation and anti-oxidative-stress, in renal damage or dysfunction. In this study, we characterized the heterogeneity of the cellular response in kidneys to DN-induced injury and RA treatment at single cell levels. Our results demonstrated that RA significantly alleviated renal tubular epithelial injury, particularly in the proximal tubular S1 segment and on glomerular epithelial cells known as podocytes, while attenuating the inflammatory response of macrophages, oxidative stress, and cytotoxicity of natural killer cells. These findings provide a comprehensive understanding of the mechanisms by which RA alleviates kidney damage, oxidative stress, and inflammation, offering valuable guidance for the clinical application of RA in the treatment of DN.
Collapse
Affiliation(s)
- Junhui Chen
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Qian Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinan Guo
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Di Gu
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Jing Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Piao Luo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunmeng Bai
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Jiayun Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Sheng Nie
- Department of Nephrology, Nanfang Hospital, the First Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jigang Wang
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory for Quality Esurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
18
|
Kina Kilicaslan U, Aru B, Aydin Aksu S, Vardar Aker F, Yanikkaya Demirel G, Gurleyik MG. Relationship between immune checkpoint proteins and neoadjuvant chemotherapy response in breast cancer. Surg Oncol 2024; 52:102037. [PMID: 38290327 DOI: 10.1016/j.suronc.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Following major developments in cancer immunotherapy, treatments targeting immune checkpoint proteins (ICP) gained interest in breast cancer, though studies mostly focus on patients with metastatic disease as well as patients nonresponsive to the conventional treatments. Herein, we aimed to investigate the levels of ICP in tumor stroma and tumor infiltrating lymphocytes, and tumor tissue prior to neoadjuvant chemotherapy administration to evaluate the relationship between ICP levels, clinicopathological parameters, and NAC response. MATERIALS AND METHODS This study was conducted with 51 patients where PD-1, PD-L1, CTLA-4, TIM-3, CD24 and CD44 levels were investigated in CD45+ cells while CD326, CD24, CD44 and PD-L1 protein expression levels were investigated in CD45- population. In addition, CD44 and CD24 levels were evaluated in the tumor stroma. TIL levels were investigated according to the TILS Working Group. Treatment responses after NAC were evaluated according to the MD Anderson RCB score. RESULTS Our results revealed positive correlation between CTLA-4 and CD44 expression in cases with high TIL levels as well as TIL levels and CTLA-4 expression in cases with partial response. Similarly, positive correlation was detected between TIM3 and PD-L1 levels in cases with good response. In addition, a negative correlation between TILs after NAC and PD-1/PD-L1 expression in lymphocytes in cases with partial complete response. CONCLUSIONS Our study provides preliminary data about the correlation between ICP and clinicopathological status and NAC response in breast cancer, in addition to underlining the requirement for further research to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Umut Kina Kilicaslan
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sibel Aydin Aksu
- Department of Radiology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Fugen Vardar Aker
- Department of Pathology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | | | - Meryem Gunay Gurleyik
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey.
| |
Collapse
|
19
|
Casagrande N, Borghese C, Corona G, Aldinucci D, Altaf M, Sulaiman AAA, Isab AA, Ahmad S, Peedikakkal AMP. Dinuclear gold(I) complexes based on carbene and diphosphane ligands: bis[2-(dicyclohexylphosphano)ethyl]amine complex inhibits the proteasome activity, decreases stem cell markers and spheroid viability in lung cancer cells. J Biol Inorg Chem 2023; 28:751-766. [PMID: 37955736 DOI: 10.1007/s00775-023-02025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023]
Abstract
Three new dinuclear gold(I) complexes (1-3) containing a carbene (1,3-Bis(2,6-di-isopropylphenyl)imidazol-2-ylidene (IPr)) and diphosphane ligands [bis(1,2-diphenylphosphano)ethane (Dppe), bis(1,3-diphenylphosphano)propane (Dppp) and bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA)], were synthesized and characterized by elemental analysis and, ESI-MS, mid FT-IR and NMR spectroscopic methods. The structures of complexes 2 and 3 were determined by X-ray crystallography, which revealed that the complexes are dinuclear having gold(I) ions linearly coordinated. The anticancer activities of the complexes (1-3) were evaluated in lung (A549), breast (MC-F7), prostate (PC-3), osteosarcoma (MG-63) and ovarian (A2780 and A2780cis) cancer models. Growth inhibition by the new complexes was higher than cisplatin in all cell lines tested. The mechanism of action of complex 3 was investigated in A549 cells using 2-dimensional (2D) models and 3D-multicellular tumor spheroids. Treatment of A549 cells with complex 3 caused: the induction of apoptosis and the generation of reactive oxygen species; the cell cycle arrest in the G0/G1 phase; the inhibition of both the proteasome and the NF-kB activity; the down-regulation of lung cancer stem cell markers (NOTCH1, CD133, ALDH1 and CD44). Complex 3 was more active than cisplatin also in 3D models of A549 lung cancer cells.
Collapse
Affiliation(s)
- Naike Casagrande
- Molecular Oncology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Cinzia Borghese
- Molecular Oncology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Donatella Aldinucci
- Molecular Oncology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, 33081, Aviano, Italy.
| | - Muhammad Altaf
- Department of Chemistry, Government College University Lahore, Lahore, 54000, Pakistan
| | - Adam A A Sulaiman
- Core Research Facilities (CRF), King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Abdul Malik P Peedikakkal
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
20
|
Wang X, Li Y, Hasrat K, Yang L, Qi Z. Sequence-Responsive Multifunctional Supramolecular Nanomicelles Act on the Regression of TNBC and Its Lung Metastasis via Synergic Pyroptosis-Mediated Immune Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305101. [PMID: 37635105 DOI: 10.1002/smll.202305101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Design of effective nanodrugs to modulate the immunosuppression of tumor microenvironment is a desirable approach to boost the clinical tumor-therapeutic effect. Supramolecular nanomicelles PolyMN-TO-8, which are constructed by self-assembling supramolecular host MTX-MPEG2000, guest NPX-2S, and TO-8 through hydrophobic forces, have excellent stability and responsiveness to carboxylesterase and glutathione in turn. In vivo studies validate that PolyMN-TO-8 enable to trigger pyroptosis-mediated immunogenic cell death under laser, avoiding the occurrence of immune dysregulation simultaneously. This therapeutic mode strengthens dendritic cells' maturation and accelerates the infiltration of CD8+ T cells into tumors through moderate activation of pro-inflammatory factors with elimination of immune-escape, ultimately making the tumor inhibition rate as high as 87.44% via synergistic functions of photodynamic therapy, photothermal therapy, chemotherapy, etc. The loss of immune-escape quickens the infiltration of CD8+ T cells into lungs, and further eschews the generation of tumor nodules in it. Chemotherapy, the release of interferon-γ, and immune memory effect also strengthen the defense against metastasis. The generation of O2 catalyzed by PolyMN-TO-8 under laser is indispensable for tumor metastasis inhibition undoubtedly.
Collapse
Affiliation(s)
- Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuanhang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Kamran Hasrat
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
21
|
Sun Z, Mai H, Xue C, Fan Z, Li J, Chen H, Huo N, Kang X, Tang C, Fang L, Zhao H, Han Y, Sun C, Peng H, Du Y, Yang J, Du N, Xu X. Hsa-LINC02418/mmu-4930573I07Rik regulated by METTL3 dictates anti-PD-L1 immunotherapeutic efficacy via enhancement of Trim21-mediated PD-L1 ubiquitination. J Immunother Cancer 2023; 11:e007415. [PMID: 38040417 PMCID: PMC10693898 DOI: 10.1136/jitc-2023-007415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.
Collapse
Affiliation(s)
- Zhijia Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
- Department of Radiation Oncology, Air Force Medical Center PLA, Air Force Medical University, Beijing, China
| | - Haixing Mai
- Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhongyi Fan
- Department of Biotherapy Center, Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiangbo Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing, China
| | - Hairui Chen
- Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Nan Huo
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chuanhao Tang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhao
- Department of Oncology, Chinese PLA General Hospital Fifth Medical Center, Beijing, China
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Yang
- Department of Oncology, Chinese PLA General Hospital Second Medical Center, Beijing, China
| | - Nan Du
- Department of Oncology, Chinese PLA General Hospital Fifth Medical Center, Beijing, China
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
22
|
Ren X, Cheng Z, He J, Yao X, Liu Y, Cai K, Li M, Hu Y, Luo Z. Inhibition of glycolysis-driven immunosuppression with a nano-assembly enhances response to immune checkpoint blockade therapy in triple negative breast cancer. Nat Commun 2023; 14:7021. [PMID: 37919262 PMCID: PMC10622423 DOI: 10.1038/s41467-023-42883-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Immune-checkpoint inhibitors (ICI) are promising modalities for treating triple negative breast cancer (TNBC). However, hyperglycolysis, a hallmark of TNBC cells, may drive tumor-intrinsic PD-L1 glycosylation and boost regulatory T cell function to impair ICI efficacy. Herein, we report a tumor microenvironment-activatable nanoassembly based on self-assembled aptamer-polymer conjugates for the targeted delivery of glucose transporter 1 inhibitor BAY-876 (DNA-PAE@BAY-876), which remodels the immunosuppressive TME to enhance ICI response. Poly β-amino ester (PAE)-modified PD-L1 and CTLA-4-antagonizing aptamers (aptPD-L1 and aptCTLA-4) are synthesized and co-assembled into supramolecular nanoassemblies for carrying BAY-876. The acidic tumor microenvironment causes PAE protonation and triggers nanoassembly dissociation to initiate BAY-876 and aptamer release. BAY-876 selectively inhibits TNBC glycolysis to deprive uridine diphosphate N-acetylglucosamine and downregulate PD-L1 N-linked glycosylation, thus facilitating PD-L1 recognition of aptPD-L1 to boost anti-PD-L1 therapy. Meanwhile, BAY-876 treatment also elevates glucose supply to tumor-residing regulatory T cells (Tregs) for metabolically rewiring them into an immunostimulatory state, thus cooperating with aptCTLA-4-mediated immune-checkpoint inhibition to abolish Treg-mediated immunosuppression. DNA-PAE@BAY-876 effectively reprograms the immunosuppressive microenvironment in preclinical models of TNBC in female mice and provides a distinct approach for TNBC immunotherapy in the clinics.
Collapse
Affiliation(s)
- Xijiao Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Zhuo Cheng
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Jinming He
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
23
|
Zhang L, Zhao X, Niu Y, Ma X, Yuan W, Ma J. Engineering high-affinity dual targeting cellular nanovesicles for optimised cancer immunotherapy. J Extracell Vesicles 2023; 12:e12379. [PMID: 37974395 PMCID: PMC10654473 DOI: 10.1002/jev2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Dual targeting to immune checkpoints has achieved a better therapeutic efficacy than single targeting due to synergistic extrication of tumour immunity. However, most dual targeting strategies are usually antibody dependent which facing drawbacks of antibodies, such as poor solid tumour penetration and unsatisfied affinity. To meet the challenges, we engineered a cell membrane displaying a fusion protein composed of SIRPα and PD-1 variants, the high-affinity consensus (HAC) of wild-type molecules, and with which prepared nanovesicles (NVs). Through disabling both SIRPα/CD47 and PD-1/PD-L1 signalling, HAC NVs significantly preserved the phagocytosis and antitumour effect of macrophages and T cells, respectively. In vivo study revealed that HAC NVs had better tumour penetration than monoclonal antibodies and higher binding affinity to CD47 and PD-L1 on tumour cells compared with the NVs expressing wild-type fusion protein. Exhilaratingly, dual-blockade of CD47 and PD-L1 with HAC NVs exhibited excellent therapeutic efficacy and biosafety. This study provided a novel biomaterial against tumoural immune escape and more importantly an attractive biomimetic technology of protein delivery for multi-targeting therapies.
Collapse
Affiliation(s)
- Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| | - Xu Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanan Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoya Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
24
|
Zhou W, Zeng W, Zheng D, Yang X, Qing Y, Zhou C, Liu X. Construction of a prognostic model for lung adenocarcinoma based on heat shock protein-related genes and immune analysis. Cell Stress Chaperones 2023; 28:821-834. [PMID: 37691069 PMCID: PMC10746678 DOI: 10.1007/s12192-023-01374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Lung adenocarcinoma (LUAD) represents a prevalent form of cancer, with low early diagnosis rates and high mortality rates, posing a global health challenge. Heat shock proteins (HSPs) assume a crucial role within the tumor immune microenvironment (TME) of LUAD. Here, a collection of 97 HSP-related genes (HSPGs) was assembled based on prior literature reports, of which 36 HSPGs were differentially expressed in LUAD. In The Cancer Genome Atlas (TCGA) cohort, we constructed a prognostic model for risk stratification and prognosis prediction by integrating 13 HSPGs. In addition, the prognostic significance and predictive efficacy of the HSP-related riskscore were examined and validated in the Gene Expression Omnibus (GEO) cohort. To facilitate the clinical use of this riskscore, we also established a nomogram scale by verifying its effectiveness through different methods. In light of these outcomes, we concluded a significant correlation between HSPs and TME in LUAD, and the riskscore can be a reliable prognostic indicator. Furthermore, this study evaluated the differences in immunophenoscore, tumor immune dysfunction and exclusion score, and sensitivity to several common chemotherapy drugs among LUAD individuals in different risk groups, which may aid in clinical decision-making for immune therapy and chemotherapy in LUAD individuals.
Collapse
Affiliation(s)
- Wangyan Zhou
- Department of Medical Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Wei Zeng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Dayang Zheng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Xu Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Yongcheng Qing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Chunxiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Xiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
25
|
Gray S, Ottensmeier CH. Advancing Understanding of Non-Small Cell Lung Cancer with Multiplexed Antibody-Based Spatial Imaging Technologies. Cancers (Basel) 2023; 15:4797. [PMID: 37835491 PMCID: PMC10571797 DOI: 10.3390/cancers15194797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a cause of significant morbidity and mortality, despite significant advances made in its treatment using immune checkpoint inhibitors (ICIs) over the last decade; while a minority experience prolonged responses with ICIs, benefit is limited for most patients. The development of multiplexed antibody-based (MAB) spatial tissue imaging technologies has revolutionised analysis of the tumour microenvironment (TME), enabling identification of a wide range of cell types and subtypes, and analysis of the spatial relationships and interactions between them. Such study has the potential to translate into a greater understanding of treatment susceptibility and resistance, factors influencing prognosis and recurrence risk, and identification of novel therapeutic approaches and rational treatment combinations to improve patient outcomes in the clinic. Herein we review studies that have leveraged MAB technologies to deliver novel insights into the TME of NSCLC.
Collapse
Affiliation(s)
- Simon Gray
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Ashton St., Liverpool L69 3GB, UK
- Department of Medical Oncology, The Clatterbridge Cancer Centre NHS Foundation Trust, Pembroke Pl., Liverpool L7 8YA, UK
| | - Christian H. Ottensmeier
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Ashton St., Liverpool L69 3GB, UK
- Department of Medical Oncology, The Clatterbridge Cancer Centre NHS Foundation Trust, Pembroke Pl., Liverpool L7 8YA, UK
| |
Collapse
|
26
|
Chen Y, Li L, Liu Z, Liu M, Wang Q. A series of ligustrazine platinum(IV) complexes with potent anti-proliferative and anti-metastatic properties that exert chemotherapeutic and immunotherapeutic effects. Dalton Trans 2023; 52:13097-13109. [PMID: 37664893 DOI: 10.1039/d3dt02358c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The development of novel anticancer drugs with antiproliferative and antimetastatic activities is of great importance in the pharmaceutical field. Herein, a series of ligustrazine (LSZ) platinum(IV) complexes with chemotherapeutic and immunotherapeutic effects were designed, prepared and evaluated as antitumor agents for the first time. Complex 4 with potent antitumor activities both in vitro and in vivo was screened out as a candidate. Notably, it displays significantly more effective anti-metastatic activities than the platinum(II) drugs cisplatin and oxaliplatin. Mechanism detection discloses that it causes serious DNA damage and increases the expression of γ-H2AX and P53. Then, the apoptosis of tumor cells is promoted by activating the mitochondrial apoptotic pathway Bcl-2/Bax/caspase-3 and causing autophagy via modulating LC3-I/II and P62 expression. Furthermore, the immune therapeutic responses are significantly elevated by blocking HIF-1α, ERK 1/2 and COX-2 pathways to reduce PD-L1 expression, and further increasing CD3+ and CD8+ T cells to elevate T cell immunity in tumors. Tumor metastasis is blocked by the synergistic functions of DNA damage, hypoxia modulation and immune activation.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| |
Collapse
|
27
|
Ji H, Kong L, Wang Y, Hou Z, Kong W, Qi J, Jin Y. CD44 expression is correlated with osteosarcoma cell progression and immune infiltration and affects the Wnt/β-catenin signaling pathway. J Bone Oncol 2023; 41:100487. [PMID: 37287706 PMCID: PMC10242553 DOI: 10.1016/j.jbo.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
CD44 is associated with a variety of human diseases and plays a potential role in tumorigenesis, however, the mechanism of its role in osteosarcoma remains unclear. We analyzed the expression of CD44 in the Cancer Genome Atlas (TCGA) and genotype-tissue expression pan-cancer data and found that it was highly expressed in most tumors, including sarcoma. The expression of CD44 in osteosarcoma cell lines was higher than that in human osteoblast cell line in the results of the Western blot and Immunohistochemical staining assay. The results of colony formation assay and CCK 8 showed that CD44 improved the proliferation capacity of osteosarcoma cells, transwell assay and wound healing assay showed that CD44 improved the migration capacity of osteosarcoma cells. Further studies revealed that CD44 exerts its influence on the biological behavior of osteosarcoma cells through the Wnt/β-catenin signaling pathway. Since CD44 may be involved in the immune response, we analyzed the correlation between CD44 expression and immune cell infiltration in TCGA database using the previous cluster analyzer R software package, TIMER2.0 database and, GEPIA2 database, and found its involvement in the immune infiltration of osteosarcoma. Therefore, we believe that CD44 could be a potential target for the treatment of osteosarcoma patients and may be a candidate biomarker for immune infiltration-related prognosis.
Collapse
Affiliation(s)
- Hairu Ji
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Yu Wang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Zhiping Hou
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Wei Kong
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Jiemin Qi
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| |
Collapse
|
28
|
Dong X, Dai H, Lin Y, Sheng X, Li Y, Wang Y, Zhang X, Jiang S, Yin W, Lu J. TIMELESS upregulates PD-L1 expression and exerts an immunosuppressive role in breast cancer. J Transl Med 2023; 21:400. [PMID: 37340461 DOI: 10.1186/s12967-023-04257-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Upregulation of the PD-L1 (CD274) immune checkpoint ligand on the tumor surface facilitates tumor immune escape and limits the application of immunotherapy in various cancers, including breast cancer. However, the mechanisms underlying high PD-L1 levels in cancers are still poorly understood. METHODS Bioinformatics analyses and in vivo and in vitro experiments were carried out to assess the association between CD8+ T lymphocytes and TIMELESS (TIM) expression, and to discover the mechanisms of TIM, the transcription factor c-Myc, and PD-L1 in breast cancer cell lines. RESULTS The circadian gene TIM enhanced PD-L1 transcription and facilitated the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Bioinformatic analyses of our RNA sequencing data in TIM-knockdown breast cancer cells and public transcriptomic datasets showed that TIM might play an immunosuppressive role in breast cancer. We found that TIM expression was inversely associated with CD8+ T lymphocyte infiltration in human breast cancer samples and subcutaneous tumor tissues. In vivo and in vitro experiments demonstrated that TIM knockdown increased CD8+ T lymphocyte antitumor activity. Furthermore, our results showed that TIM interacts with c-Myc to enhance the transcriptional capability of PD-L1 and facilitates the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Moreover, public database analysis suggested that high TIM levels were positively related to PD-L1 inhibitor therapeutic response. CONCLUSIONS Mechanistically, we first found that TIM could upregulate PD-L1 by interacting with c-Myc to enhance the transcriptional capability of c-Myc to PD-L1. Altogether, our findings not only provide a novel therapeutic strategy to treat breast cancer by targeting the oncogenic effect of TIM but also indicate that TIM is a promising biomarker for predicting the benefit of anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Xinrui Dong
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China.
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Ye Li
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
29
|
Liu S, Liu Z, Shang A, Xun J, Lv Z, Zhou S, Liu C, Zhang Q, Yang Y. CD44 is a potential immunotherapeutic target and affects macrophage infiltration leading to poor prognosis. Sci Rep 2023; 13:9657. [PMID: 37316699 DOI: 10.1038/s41598-023-33915-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
CD44 plays a key role in the communication of CSCs with the microenvironment and the regulation of stem cell properties. UALCAN was used to analyze the expression of CD44 in bladder cancer (BLCA) and normal tissue. The UALCAN was utilized to analyze the prognostic value of CD44 in BLCA. The TIMER database was used to explore the relationship between CD44 and PD-L1; CD44 and tumor-infiltrating immune cells. The regulatory effect of CD44 on PD-L1 was verified by cell experiments in vitro. IHC confirmed the results of the bioinformatics analysis. GeneMania and Metascape were used to analyze protein-protein interaction (PPI) investigations and functional enrichment analysis. We found that BLCA patients with high CD44 expression had worse survival than those with low CD44 expression (P < 0.05). IHC and the TIMER database results showed that CD44 expression was positively correlated with PD-L1 expression (P < 0.05). At the cellular level, the expression of PD-L1 was significantly inhibited after CD44 expression was inhibited by siRNA. Immune infiltration analysis showed that CD44 expression levels in BLCA were significantly correlated with immune infiltration levels of different immune cells. IHC staining results further confirmed that the expression of CD44 in tumor cells was positively associated with the number of CD68+ macrophages and CD163+ macrophages (P < 0.05). Our results suggest that CD44 is a positive regulator of PD-L1 in BLCA and may be a key regulator of tumor macrophages infiltration and may be involved in M2 macrophage polarization. Our study provided new insights into the prognosis and immunotherapy of BLCA patients through macrophage infiltration and immune checkpoints.
Collapse
Affiliation(s)
- Shuangqing Liu
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Zehan Liu
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
- Section for HepatoPancreatoBiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, China
| | - Aichen Shang
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
- Department of Pathology, Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, 300456, China
| | - Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Zongjing Lv
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Siying Zhou
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Cui Liu
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Qi Zhang
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.
| | - Yuming Yang
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China.
- Department of Pathology, Tianjin Nankai Hospital, Tianjin, China.
| |
Collapse
|
30
|
Wang M, Wisniewski CA, Xiong C, Chhoy P, Goel HL, Kumar A, Zhu LJ, Li R, St Louis PA, Ferreira LM, Pakula H, Xu Z, Loda M, Jiang Z, Brehm MA, Mercurio AM. Therapeutic blocking of VEGF binding to neuropilin-2 diminishes PD-L1 expression to activate antitumor immunity in prostate cancer. Sci Transl Med 2023; 15:eade5855. [PMID: 37134151 DOI: 10.1126/scitranslmed.ade5855] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Prostate cancers are largely unresponsive to immune checkpoint inhibitors (ICIs), and there is strong evidence that programmed death-ligand 1 (PD-L1) expression itself must be inhibited to activate antitumor immunity. Here, we report that neuropilin-2 (NRP2), which functions as a vascular endothelial growth factor (VEGF) receptor on tumor cells, is an attractive target to activate antitumor immunity in prostate cancer because VEGF-NRP2 signaling sustains PD-L1 expression. NRP2 depletion increased T cell activation in vitro. In a syngeneic model of prostate cancer that is resistant to ICI, inhibition of the binding of VEGF to NRP2 using a mouse-specific anti-NRP2 monoclonal antibody (mAb) resulted in necrosis and tumor regression compared with both an anti-PD-L1 mAb and control immunoglobulin G. This therapy also decreased tumor PD-L1 expression and increased immune cell infiltration. We observed that the NRP2, VEGFA, and VEGFC genes are amplified in metastatic castration-resistant and neuroendocrine prostate cancer. We also found that individuals with NRP2High PD-L1High metastatic tumors had lower androgen receptor expression and higher neuroendocrine prostate cancer scores than other individuals with prostate cancer. In organoids derived from patients with neuroendocrine prostate cancer, therapeutic inhibition of VEGF binding to NRP2 using a high-affinity humanized mAb suitable for clinical use also diminished PD-L1 expression and caused a substantial increase in immune-mediated tumor cell killing, consistent with the animal studies. These findings provide justification for the initiation of clinical trials using this function-blocking NRP2 mAb in prostate cancer, especially for patients with aggressive disease.
Collapse
Affiliation(s)
- Mengdie Wang
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Christi A Wisniewski
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Choua Xiong
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Peter Chhoy
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Ayush Kumar
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Rui Li
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Pamela A St Louis
- Department of Neurology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Lindsay M Ferreira
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Hubert Pakula
- Department of Pathology, Cornell Weill School of Medicine, New York, NY 10065, USA
| | - Zhiwen Xu
- aTyr Pharma Inc., San Diego CA, 92121, USA
| | - Massimo Loda
- Department of Pathology, Cornell Weill School of Medicine, New York, NY 10065, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute (DFCI) and Harvard Medical School, Boston, MA 02215, USA
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| |
Collapse
|
31
|
Matas-Nadal C, Bech-Serra JJ, Gatius S, Gomez X, Ribes-Santolaria M, Guasch-Vallés M, Pedraza N, Casanova JM, Gómez CDLT, Garí E, Aguayo-Ortiz RS. Biomarkers found in the tumor interstitial fluid may help explain the differential behavior among keratinocyte carcinomas. Mol Cell Proteomics 2023; 22:100547. [PMID: 37059366 DOI: 10.1016/j.mcpro.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Basal Cell Carcinomas (BCC) and cutaneous Squamous Cell Carcinomas (SCC) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KC). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the Tumor Interstitial Fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing 7 BCCs, 16 SCCs, and 4 Normal Skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF-proteins that could explain the different metastatic behavior in both KC. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin1. Previous studies found their up-regulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KC provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.
Collapse
Affiliation(s)
- Clara Matas-Nadal
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dermatology department. Hospital Santa Caterina, Salt, Girona.
| | - Joan J Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Sònia Gatius
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Servei d'anatomia patològica, Hospital Universitari Arnau de Vilanova, Lleida
| | - Xavier Gomez
- Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marina Ribes-Santolaria
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marta Guasch-Vallés
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Neus Pedraza
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Josep M Casanova
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida
| | | | - Eloi Garí
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Rafael S Aguayo-Ortiz
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida; Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida)
| |
Collapse
|
32
|
Li Z, Jiang D, Liu F, Li Y. Involvement of ZDHHC9 in lung adenocarcinoma: regulation of PD-L1 stability via palmitoylation. In Vitro Cell Dev Biol Anim 2023; 59:193-203. [PMID: 37002491 DOI: 10.1007/s11626-023-00755-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 04/03/2023]
Abstract
Palmitoylation is a post-translational modification occurring on cysteine residues, which process is catalyzed by a family of zinc finger Asp-His-His-Cys (DHHC) domain-containing (ZDHHC) protein acyltransferases. As a family member, ZDHHC9 plays a crucial role in varied malignancies by regulating protein stability via protein substrate palmitoylation. Based on the bioinformatic analysis of GEO gene microarray GSE75037 (|log2 fold change|> 1, P < 0.05), ZDHHC9 was defined as a significantly upregulated gene in lung adenocarcinoma (LUAD), which was also confirmed in our collected clinical specimens. It is necessary to explore the biological function of ZDHHC9 in LUAD cells. The follow-up functional experiments revealed that ZDHHC9 deficiency inhibited proliferation, migration, and invasion, while stimulated apoptosis in HCC827 cells. Besides, these malignant phenotypes could be accelerated by ZDHHC9 overexpression in A549. Moreover, we revealed that ZDHHC9 knockdown could promote PD-L1 protein degradation by reducing its palmitoylation level. The reduction of PD-L1 protein level could enhance anti-tumor immunity and inhibit the growth of LUAD cells. Therefore, our study uncovers the tumor-promoting role of ZDHHC9 in LUAD via regulating PD-L1 stability through palmitoylation, highlighting ZDHHC9 as a novel therapeutic target for LUAD.
Collapse
|
33
|
Jian FX, Bao PX, Li WF, Cui YH, Hong HG. Negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cells and patient prognosis after breast cancer surgery. BMC Cancer 2023; 23:269. [PMID: 36964570 PMCID: PMC10037889 DOI: 10.1186/s12885-023-10738-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE To investigate how the negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cell lines and prognosis in postoperative breast cancer patients. METHODS RT-PCR, qRT-PCR, and western blot assays were used to detect the expression of CD44s, CD44v6, and CD44st at both mRNA and protein levels. The expression of miR-138-5p in breast cancer cell lines was also evaluated. The binding ability of miR-138-5p to CD44st was determined via a dual-luciferase assay. The CD44 protein expression in breast cancer tissues was detected using immunohistochemistry. A Transwell assay was used to detect the invasive ability of tumor cells. The correlation between CD44st and miR-138-5p mRNA expression in breast cancer tissues was evaluated using qRT-PCR, and the relationship between clinicopathological features was statistically analyzed. RESULTS CD44s and CD44v6 were highly expressed in MDAMB-231 cell line, while CD44st was highly expressed in MCF-7/Adr and Skbr-3 cells. None of the CD44 isoforms were expressed in MCF-7 cells. The miR-138-5p was highly expressed in MCF-7 cells, but not in MCF-7/Adr, Skbr-3, and MDAMB-231 cells. The dual-luciferase assay suggested that miR-138-5p could bind to wild-type CD44st 3'-UTR, miR-138-5p overexpression significantly inhibited the expression level of CD44 protein in MCF-7/Adr cells, and miR-138-5p + CD44st (3'-UTR)-treated MCF-7/Adr and Skbr-3 cells were significantly less invasive than those in the control group (P < 0.05). RT-PCR results for 80 postoperative breast cancer patients showed that the mRNA expression rate for CD44st was higher in cancer tissues than in paracancerous tissues, and the expression rate of miR-138-5p was higher in paracancerous tissues than in cancerous tissues (P < 0.01). In cancer tissues, CD44st was negatively correlated with miR-138-5p expression, with correlation coefficient r = -0.76 (Pearson's correlation), coefficient of determination R2 = 0.573, F = 106.89, and P < 0.001. The median overall survival value for patients in the low miR-138-5p expression group was 40.39 months [95% confidence interval (CI): 35.59-45.18 months] and 56.30 months (95% CI: 54.38-58.21 months) for patients in the high-expression group, with a log rank (Mantel-Cox) of 13.120, one degree of freedom, and P < 0.001. CONCLUSION In breast cancer cell lines, miR-138-5p negatively regulated expression of CD44st and affected the invasive ability of tumor cells and patient prognosis after breast cancer surgery.
Collapse
Affiliation(s)
- Fang Xin Jian
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China
| | - Peng Xiao Bao
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
| | | | - Yan Hai Cui
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| | - Hang Guan Hong
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
34
|
Zhou T, Zhang LY, He JZ, Miao ZM, Li YY, Zhang YM, Liu ZW, Zhang SZ, Chen Y, Zhou GC, Liu YQ. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol 2023; 14:1133899. [PMID: 36865554 PMCID: PMC9971010 DOI: 10.3389/fimmu.2023.1133899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy is the major treatment of non-small cell lung cancer (NSCLC). The radioresistance and toxicity are the main obstacles that leading to therapeutic failure and poor prognosis. Oncogenic mutation, cancer stem cells (CSCs), tumor hypoxia, DNA damage repair, epithelial-mesenchymal transition (EMT), and tumor microenvironment (TME) may dominate the occurrence of radioresistance at different stages of radiotherapy. Chemotherapy drugs, targeted drugs, and immune checkpoint inhibitors are combined with radiotherapy to treat NSCLC to improve the efficacy. This article reviews the potential mechanism of radioresistance in NSCLC, and discusses the current drug research to overcome radioresistance and the advantages of Traditional Chinese medicine (TCM) in improving the efficacy and reducing the toxicity of radiotherapy.
Collapse
Affiliation(s)
- Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jian-Zheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shang-Zu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Yong-Qi Liu,
| |
Collapse
|
35
|
Zhu J, Li Y, Lv X. IL4I1 enhances PD-L1 expression through JAK/STAT signaling pathway in lung adenocarcinoma. Immunogenetics 2023; 75:17-25. [PMID: 36056935 DOI: 10.1007/s00251-022-01275-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Lung adenocarcinoma (LUAD) is the major type of lung cancer and is one of the deadliest cancers worldwide. IL4I1, as a gene associated with unsatisfactory prognosis, is involved in tumor immune escape, but its immune regulatory mechanism in LUAD is limited. Bioinformatics analysis was applied to analyze the differentially expressed mRNAs and enriched signaling pathways in LUAD tissue. Quantitative real-time polymerase chain reaction (qRT-PCR) was manipulated to test IL4I1 expression. We carried out several methods to examine cell functions: CCK-8 to measure LUAD cell proliferation; flow cytometry to determine cell apoptosis; Western blot to assess the expression of JAK/STAT pathway-related proteins and PD-L1; T cell cytotoxicity assay to evaluate the effect of IL4I1 on the immune escape of LUAD cells. Through bioinformatics analysis, IL4I1 was verified to be highly expressed in LUAD tissue, participate in the modulation of JAK/STAT signaling pathway, and be positively associated with CD274 (PD-L1) expression. Cell function experiments indicated that silencing IL4I1 notably repressed LUAD cell proliferation and induced apoptosis. IL4I1 silence would block JAK/STAT signaling pathway, but this effect could be reversed by RO8191 activator treatment. Moreover, IL4I1 silence suppressed PD-L1 expression and facilitated T cell cytotoxicity, while its inhibitory impact on PD-L1 expression and immune escape of LUAD cells could be reversed by atezolizumab treatment. Overall, we confirmed that IL4I1 promoted the malignant cell behaviors and immune escape of LUAD through JAK/STAT signaling pathway. IL4I1 has the potential to be a diagnostic biomarker for LUAD.
Collapse
Affiliation(s)
- Jiefei Zhu
- Department of Pathology, Xuzhou Central Hospital, No.29 Taihang Road, Xuzhou, 221004, China
| | - Yan Li
- Prevention and Control Department, Xuzhou Oriental People's Hospital, Xuzhou, 221004, China
| | - Xu Lv
- Department of Pathology, Xuzhou Central Hospital, No.29 Taihang Road, Xuzhou, 221004, China.
| |
Collapse
|
36
|
Du X, Wen S, Shi R, Xia J, Wang R, Zhang Y, Pan B, Wu X, Zhu W, Feng J, Wang X, Shen B. Peripheral blood lymphocytes differentiation patterns in responses / outcomes to immune checkpoint blockade therapies in non-small cell lung cancer: a retrospective study. BMC Cancer 2023; 23:83. [PMID: 36698098 PMCID: PMC9875514 DOI: 10.1186/s12885-023-10502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Programmed Cell Death-1/ Programmed Death-ligand 1 (PD-1 / PD-L1) inhibitor therapies targeting immunocytes induce persistent tumor remission in various cancers. However, the appropriate biomarkers for the therapeutic efficacy of PD-L1 and PD-1 blockade remain elusive. MATERIALS AND METHODS For a comprehensive analysis of peri-treatment lymphocyte differentiation, in the current study, we enrolled 146 non-small cell lung cancer patients who received α-PD-1 therapies for exploring the peripheral blood lymphocyte differentiation pattern at baseline and post-treatment (dynamic changes) by flow cytometry. RESULTS At baseline, CD4+ / CD8+ T cell ratio predicts good responses and outcomes, but activated T cell and cytotoxic T cell counts predict poor responses and outcomes. And for dynamic changes, after 6 weeks of immune checkpoint blockade (ICB) treatment, compared with baseline level, the elevation of total T and B cell counts indicate poor responses, and total T and TH cell counts indicate poor prognosis while activated T cell predicts good prognosis. And after 12 weeks, elevated total lymphocyte, cytotoxic T cell counts, and decreased total T cell counts and CD4+ / CD8+ T cell ratio predict good responses / outcomes. Our clinical predicting model shows good performance in predicting ICB treatment responses / outcomes. CONCLUSION Patients with favorable clinical responses / outcomes have distinctive peripheral blood immunocyte differentiation characteristics, indicating the potential of utilizing the peripheral immunocyte differentiation patterns for predicting ICB responses / outcomes.
Collapse
Affiliation(s)
- Xiaoyue Du
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaodi Wen
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Run Shi
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingwei Xia
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ruotong Wang
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yihan Zhang
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Banzhou Pan
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaoliu Wu
- grid.452509.f0000 0004 1764 4566Flow Cytometry Core Facility, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wei Zhu
- grid.440785.a0000 0001 0743 511XSchool of Medicine, Jiangsu University, Zhenjiang, China
| | - Jifeng Feng
- grid.452509.f0000 0004 1764 4566Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xin Wang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
37
|
Comprehensive Analysis Identified Glycosyltransferase Signature to Predict Glioma Prognosis and TAM Phenotype. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6082635. [PMID: 36685667 PMCID: PMC9859707 DOI: 10.1155/2023/6082635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 01/15/2023]
Abstract
Glycosylation is the most common posttranslational modification of proteins. Glycosyltransferase gene differential expression dictates the glycosylation model and is epigenetically regulating glioma progression and immunity. This study is aimed at identifying the glycosyltransferase gene signature to predict the prognosis and immune characteristics of glioma. The glycosyltransferase gene signature of glioma was identified in the TCGA database and validated in the CGGA database. Glioma patients were then divided into high- and low-risk groups based on risk scores to compare survival differences and predictive capacity. Subsequently, validation of glycosyltransferase gene signature merits by comparing with other signatures and utility in clinical judgment. The immune cell infiltration, immune pathways, and immune checkpoint expression level were also analyzed and compared in the high- and low-risk groups. Finally, the signature and its gene function were tested in our cohort and in vitro experiments. Eight glycosyltransferase genes were identified to establish the glycosyltransferase signature to predict the prognosis of glioma patients. The survival time was shorter in the high-risk group compared to the low-risk group based on glycosyltransferase signature and was confirmed in an independent external cohort. The glycosyltransferase signature displayed outstanding predictive capacity than other signatures in the TCGA and CGGA database cohorts. Furthermore, patients in the high-risk group were positively correlated with TAM infiltration, immune checkpoint expression level, and protumor immune pathways in TCGA cohorts. Validation of clinical tissue specimens revealed that the high-risk group was closely associated with infiltration of M2 TAMs. High-risk genes in the signature promote glioma proliferation, invasion, and macrophage recruitment in an in vitro validation of U87 and U251 cell lines. This carefully constructed that glycosyltransferase signature can predict the prognosis and immune profile of gliomas and help us evaluate subsequent macrophage-targeted therapies as well as other immune microenvironment modulation therapeutic strategies.
Collapse
|
38
|
Sotnikova TN, Polushkina TV, Danilova NV. [Relationship between PD-L1 expression and tumor stem cell marker CD44 as a promising basis for the development of new approaches to cancer targeted therapy]. Arkh Patol 2023; 85:70-75. [PMID: 38010641 DOI: 10.17116/patol20238506170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Immunotherapy of malignant tumors is a rapidly developing area of oncology. PD-1 is a receptor expressed by activated T-lymphocytes. As a result of its interaction with the ligand (PD-L1 or PD-L2), the activity of T-lymphocytes is inhibited and their apoptosis occurs. Drugs that inhibit the interaction of PD-1 with ligands have an immunostimulatory effect and are effective in the treatment of many types of neoplasms: melanoma, lung cancer, bladder cancer, stomach cancer, various lymphomas, etc. However, response to this treatment is observed only in a narrow cohort of patients. To increase the effectiveness of immunotherapy, combined preparations and nanoparticles are being developed and created to enhance the effect of PD-L1 inhibitors, and containing hyaluronic acid as a ligand for the CD44 protein, which is expressed in many human tumors. However, the issue of co-expression of CD44 and PD-L1 remains poorly understood. This review is devoted to describing the features of co-expression and the mechanisms of interaction between CD44 and PD-L1. Promising directions for the development of new approaches to the immunotherapy of malignant tumors are presented.
Collapse
Affiliation(s)
- T N Sotnikova
- I.V. Davydovsky City Clinical Hospital, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - T V Polushkina
- I.V. Davydovsky City Clinical Hospital, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
39
|
Yang H, Miao Y, Yu Z, Wei M, Jiao X. Cell adhesion molecules and immunotherapy in advanced non-small cell lung cancer: Current process and potential application. Front Oncol 2023; 13:1107631. [PMID: 36895477 PMCID: PMC9989313 DOI: 10.3389/fonc.2023.1107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has high mortality rate after conventional treatment (e.g., surgical resection, chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer cells can induce immunosuppression, growth and metastasis by modulating cell adhesion molecules of both cancer cells and immune cells. Therefore, immunotherapy is increasingly concerned due to its promising anti-tumor effect and broader indication, which targets cell adhesion molecules to reverse the process. Among these therapies, immune checkpoint inhibitors (mainly anti-PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or second line therapy in advanced NSCLC. However, drug resistance and immune-related adverse reactions restrict its further application. Further understanding of mechanism, adequate biomarkers and novel therapies are necessary to improve therapeutic effect and alleviate adverse effect.
Collapse
Affiliation(s)
- Hongjian Yang
- Innovative Institute, China Medical University, Shenyang, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Shenyang, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China
| |
Collapse
|
40
|
Ahn CH, Oh KY, Jin B, Lee WW, Kim J, Kim HJ, Park DG, Swarup N, Chawla K, Ryu MH, Kim UK, Choi SJ, Yoon HJ, Hong SD, Shin JA, Cho SD. Targeting tumor-intrinsic PD-L1 suppresses the progression and aggressiveness of head and neck cancer by inhibiting GSK3β-dependent Snail degradation. Cell Oncol (Dordr) 2022; 46:267-282. [PMID: 36441378 DOI: 10.1007/s13402-022-00748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE PD-L1 is an immune checkpoint protein that allows cells to evade T-cell-mediated immune responses. Herein, we uncover a tumor-intrinsic mechanism of PD-L1 that is responsible for the progression and aggressiveness of HNC and reveal that the extracts of a brown alga can target the tumor-intrinsic signaling pathway of PD-L1. METHODS The biological functions of PD-L1 in the proliferation and aggressiveness of HNC cells in vitro were examined by metabolic activity, clonogenic, tumorigenicity, wound healing, migration, and invasion assays. The clinical importance of PD-L1 in the prognosis of patients with HNC was analyzed by immunohistochemistry. The relationship between PD-L1 and EMT was confirmed via western blotting, qPCR, and immunocytochemistry. RESULTS Through our in silico approach, we found that PD-L1 was upregulated in HNC and was correlated with an unfavorable clinical outcome in patients with HNC. PD-L1 was crucial for promoting tumor growth, both in vitro and in vivo. High expression of PD-L1 was closely correlated with LN metastasis in OSCC. PD-L1 facilitated the cytoskeletal reorganization and aggressiveness of HNC cells. Moreover, PD-L1 enhanced the EMT of HNC cells by regulating the Snail/vimentin axis. Consistently, MEIO suppressed the PD-L1/Snail/vimentin axis, thereby inhibiting the aggressiveness of HNC cells. Inhibition of PD-L1 induced by PD-L1 silencing or MEIO treatment caused Snail degradation through a GSK3β-dependent mechanism. The tumor-intrinsic function of PD-L1 could be attributed to the regulation of the GSK3β/Snail/vimentin axis. CONCLUSION The discovery of MEIO targeting the tumor-intrinsic function of PD-L1 may prove particularly valuable for the development of novel and effective anticancer drug candidates for HNCs overexpressing PD-L1.
Collapse
|
41
|
Unver N, Tavukcuoglu E, Esendagli G. Tailored modulation of stemness and drug resistance marker characteristics in K-Ras mutant lung cancer cells via PD-L1 gene suppression. Life Sci 2022; 311:121171. [DOI: 10.1016/j.lfs.2022.121171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
|
42
|
Shen M, Chen C, Guo Q, Wang Q, Liao J, Wang L, Yu J, Xue M, Duan Y, Zhang J. Systemic Delivery of mPEG-Masked Trispecific T-Cell Nanoengagers in Synergy with STING Agonists Overcomes Immunotherapy Resistance in TNBC and Generates a Vaccination Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203523. [PMID: 36089659 PMCID: PMC9661824 DOI: 10.1002/advs.202203523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/13/2022] [Indexed: 06/15/2023]
Abstract
T-cell engagers (TCEs) represent a breakthrough in hematological malignancy treatment but are vulnerable to antigen escape and lack a vaccination effect. The "immunologically cold" solid tumor presents substantial challenges due to intratumor heterogeneity and an immunosuppressive tumor microenvironment (TME). Here, a methoxy poly(ethylene glycol) (mPEG)-masked CD44×PD-L1/CD3 trispecific T-cell nanoengager loaded with the STING agonist c-di-AMP (CDA) (PmTriTNE@CDA) for the treatment of triple-negative breast cancer (TNBC) is rationally designed. PmTriTNE@CDA shows tumor-specific accumulation and is preferentially unmasked in response to a weakly acidic TME to prevent on-target off-tumor toxicity. The unmasked CD44×PD-L1/CD3 trispecific T-cell nanoengager (TriTNE) targets dual tumor-associated antigens (TAAs) to redirect CD8+ T cells for heterogeneous TNBC lysis while achieving PD-L1 blockade. PmTriTNE synergized with CDA to transform the cold tumor into a hot tumor, eradicate the large established TNBC tumor, and induce protective immune memory in a 4T1 orthotopic tumor model without causing obvious toxicity. PmTriTNE@CDA shows potent efficacy in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. This study serves as a proof-of-concept demonstration of a nanobased TCEs strategy to expand therapeutic combinations that previously could not be achieved due to systemic toxicity with the aim of overcoming TNBC heterogeneity and immunotherapy resistance.
Collapse
Affiliation(s)
- Ming Shen
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Shanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200032China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Department of OncologyYijishan Hospital of Wannan Medical CollegeWuhu240001China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
| | - Quan Wang
- State Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
| | - Jinghan Liao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Liting Wang
- State Key Laboratory of Oncogenes and Related GenesRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Man Xue
- Shanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200032China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| |
Collapse
|
43
|
Hou W, Kong L, Hou Z, Ji H. CD44 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer. BMC Med Genomics 2022; 15:225. [PMCID: PMC9620622 DOI: 10.1186/s12920-022-01383-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Gastric carcinoma is the most common malignant tumour of the human digestive system worldwide. CD44 serves as a marker for several tumour stem cells, including gastric cancer. However, the prognostic value of CD44 and its correlation with immune infiltration in gastric cancer remain unclear. Methods The relative expression level of CD44 RNA in gastric cancer was analysed in the TCGA and GEPIA2 databases and validated in the GEO database. Differences in CD44 between gastric cancer cell lines and normal cells were detected by real-time PCR, and the HPA database was used to analyse the differential expression of CD44 protein in gastric cancer and normal tissues. The effect of CD44 on the proliferation and migration of gastric cancer cells was detected by CCK8 and transwell assays. UALCAN was used to analyse the relationship between CD44 expression and clinical parameters, and the Kaplan‒Meier Plotter was used to evaluate the prognostic value, including overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS). The CD44 gene and protein interaction network was constructed by using the Linked Omics, GeneMANIA, STRING and DisGeNET databases. GO and KEGG analyses and GSEA of CD44 were performed by using R language. The correlation between CD44 and immune infiltration was explored by using the TIMER, CIBERSORT and GEPIA databases. Results CD44 is highly expressed in gastric cancer compared with normal tissues. Inhibition of proliferation and migration of gastric cancer cells after CD44 knockdown was observed. The UALCAN database showed that CD44 was independent of sex in gastric cancer but correlated with cancer stage and lymph node metastasis. Kaplan‒Meier Plotter online analysis showed that OS, PFS and PPS were prolonged in the CD44 low-expression group. GO and KEGG analyses and GSEA results showed that CD44 was mainly located in the endoplasmic reticulum and the extracellular matrix containing collagen, which was mainly involved in protein digestion and absorption. TIMER, CIBERSORT and GEPIA showed that CD44 was associated with infiltrating immune cells and thereby affected survival prognosis. Conclusion CD44 is highly expressed in gastric cancer and is an independent prognostic factor associated with immune invasion, which can be used as a candidate prognostic biomarker to determine the prognosis associated with gastric immune invasion.
Collapse
Affiliation(s)
- Weiyan Hou
- grid.413851.a0000 0000 8977 8425College of Basic Medicine, Chengde Medical University, Chengde, China
| | - Lingwei Kong
- grid.413851.a0000 0000 8977 8425Department of Orthopaedics, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zhiping Hou
- grid.413851.a0000 0000 8977 8425Department of Pathology, Chengde Medical University, Shangerdaohezi Avenue, Chengde, 067000 Hebei China
| | - Hairu Ji
- grid.413851.a0000 0000 8977 8425Department of Pathology, Chengde Medical University, Shangerdaohezi Avenue, Chengde, 067000 Hebei China
| |
Collapse
|
44
|
Zeng C, Zhou Y, Ye W, Fang Z, Wang K. Exploration and validation of hub genes in lung adenocarcinoma based on bioinformatics analysis. Transl Cancer Res 2022; 11:3814-3826. [PMID: 36388051 PMCID: PMC9641136 DOI: 10.21037/tcr-22-2225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genomic abnormality is a crucial factor for lung cancer development. This study used bioinformatics analysis to explore the hub genes involved in lung adenocarcinoma. METHODS The GeneCards, Comparative Toxicogenomics Database (CTD), and DISEASES databases were used to screen the genes associated with lung adenocarcinoma. The hub genes were then identified using WebGestalt. The Cancer Genome Atlas (TCGA), UALCAN, and the Human Protein Atlas (HPA) were used to validate the expression of hub genes. The predictive effects of hub genes on the risk of lung adenocarcinoma were evaluated using receiver operating characteristic (ROC) curve analysis. The Tumor-Immune System Interaction Database (TISIDB) was used to estimate the correlation between hub genes and immune infiltration. RESULTS A total of 21 genes were defined as common genes associated with lung adenocarcinoma, and from these, AKT1, CD44, and CDKN2A were identified as hub genes. Significant differences in the hub gene mRNA and protein expression were observed between lung adenocarcinoma samples and normal samples derived from the TCGA and UALCAN databases. The area under the ROC curve (AUC) for AKT1, CD44, and CDKN2A in predicting lung adenocarcinoma risk was 0.847, 0.880, and 0.805, respectively, with sensitivity of 89.8%, 93.2%, and 94.9%, respectively. TISIDB analysis indicated that AKT1, CD44, and CDKN2A expression had a strong relationship with immune infiltration in lung adenocarcinoma. CONCLUSIONS These hub genes, AKT1, CD44, and CDKN2A, may represent tumor biomarkers that may contribute to the understanding, diagnosis, and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Changyi Zeng
- Department of Preventive Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, China;,Research Centre for Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - You Zhou
- Department of Preventive Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Wanqing Ye
- Department of Preventive Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Zihan Fang
- Department of Preventive Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Ke Wang
- Department of Preventive Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, China;,Research Centre for Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
45
|
Cancer stem cell markers interplay with chemoresistance in triple negative breast cancer: A therapeutic perspective. Bull Cancer 2022; 109:960-971. [DOI: 10.1016/j.bulcan.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
|
46
|
Pu S, Zhou Y, Xie P, Gao X, Liu Y, Ren Y, He J, Hao N. Identification of necroptosis-related subtypes and prognosis model in triple negative breast cancer. Front Immunol 2022; 13:964118. [PMID: 36059470 PMCID: PMC9437322 DOI: 10.3389/fimmu.2022.964118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Necroptosis is considered to be a new form of programmed necrotic cell death, which is associated with metastasis, progression and prognosis of various types of tumors. However, the potential role of necroptosis-related genes (NRGs) in the triple negative breast cancer (TNBC) is unclear. Methods We extracted the gene expression and relevant clinicopathological data of TNBC from The Cancer Genome Atlas (TCGA) databases and the Gene Expression Omnibus (GEO) databases. We analyzed the expression, somatic mutation, and copy number variation (CNV) of 67 NRGs in TNBC, and then observed their interaction, biological functions, and prognosis value. By performing Lasso and COX regression analysis, a NRGs-related risk model for predicting overall survival (OS) was constructed and its predictive capabilities were verified. Finally, the relationship between risk_score and immune cell infiltration, tumor microenvironment (TME), immune checkpoint, and tumor mutation burden (TMB), cancer stem cell (CSC) index, and drug sensitivity were analyzed. Results A total 67 NRGs were identified in our analysis. A small number of genes (23.81%) detected somatic mutation, most genes appeared to have a high frequency of CNV, and there was a close interaction between them. These genes were remarkably enriched in immune-related process. A seven-gene risk_score was generated, containing TPSG1, KRT6A, GPR19, EIF4EBP1, TLE1, SLC4A7, ESPN. The low-risk group has a better OS, higher immune score, TMB and CSC index, and lower IC50 value of common therapeutic agents in TNBC. To improve clinical practicability, we added age, stage_T and stage_N to the risk_score and construct a more comprehensive nomogram for predicting OS. It was verified that nomogram had good predictive capability, the AUC values for 1-, 3-, and 5-year OS were 0.847, 0.908, and 0.942. Conclusion Our research identified the significant impact of NRGs on immunity and prognosis in TNBC. These findings were expected to provide a new strategy for personalize the treatment of TNBC and improve its clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Na Hao
- *Correspondence: Na Hao, ; Jianjun He,
| |
Collapse
|
47
|
Moutafi MK, Molero M, Martinez Morilla S, Baena J, Vathiotis IA, Gavrielatou N, Castro-Labrador L, de Garibay GR, Adradas V, Orive D, Valencia K, Calvo A, Montuenga LM, Ponce Aix S, Schalper KA, Herbst RS, Paz-Ares L, Rimm DL, Zugazagoitia J. Spatially resolved proteomic profiling identifies tumor cell CD44 as a biomarker associated with sensitivity to PD-1 axis blockade in advanced non-small-cell lung cancer. J Immunother Cancer 2022; 10:jitc-2022-004757. [PMID: 36002182 PMCID: PMC9413286 DOI: 10.1136/jitc-2022-004757] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Most patients with advanced non-small-cell lung cancer (NSCLC) fail to derive significant benefit from programmed cell death protein-1 (PD-1) axis blockade, and new biomarkers of response are needed. In this study, we aimed to discover and validate spatially resolved protein markers associated with sensitivity to PD-1 axis inhibition in NSCLC. METHODS We initially assessed a discovery cohort of 56 patients with NSCLC treated with PD-1 axis inhibitors at Yale Cancer Center. Using the GeoMx Digital Spatial Profiling (DSP) system, 71 proteins were measured in spatial context on each spot in a tissue microarray. We used the AQUA method of quantitative immunofluorescence (QIF) to orthogonally validate candidate biomarkers. For external independent validation, we assessed whole tissue sections derived from 128 patients with NSCLC treated with single-agent PD-1 axis inhibitors at the 12 de Octubre Hospital (Madrid) using DSP. We further analyzed two immunotherapy untreated cohorts to address prognostic significance (n=252 from Yale Cancer Center; n=124 from University Clinic of Navarra) using QIF and DSP, respectively. RESULTS Using continuous log-scaled data, we identified CD44 expression in the tumor compartment (pan-cytokeratin (CK)+) as a novel predictor of prolonged progression-free survival (PFS) (multivariate HR=0.68, p=0.043) in the discovery set. We validated by QIF that tumor CD44 levels assessed as continuous QIF scores were associated with longer PFS (multivariate HR=0.31, p=0.022) and overall survival (multivariate HR=0.29, p=0.038). Using DSP in an independent immunotherapy treated cohort, we validated that CD44 levels in the tumor compartment, but not in the immune compartment (panCK-/CD45+), were associated with clinical benefit (OR=1.22, p=0.018) and extended PFS under PD-1 axis inhibition using the highest tertile cutpoint (multivariate HR=0.62, p=0.03). The effect of tumor cell CD44 in predicting PFS remained significant after correcting for programmed death-ligand 1 (PD-L1) Tumor Proportion Score (TPS) in both cohorts. High tumor cell CD44 was not prognostic in the absence of immunotherapy. Using DSP data, intratumoral regions with elevated tumor cell CD44 expression showed prominent (fold change>1.5, adjusted p<0.05) upregulation of PD-L1, TIM-3, ICOS, and CD40 in two independent cohorts. CONCLUSIONS This work highlights CD44 as a novel indicative biomarker of sensitivity to PD-1 axis blockade that might help to improve immunotherapy strategies for NSCLC.
Collapse
Affiliation(s)
- Myrto K Moutafi
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Magdalena Molero
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Javier Baena
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
- Department of Medical Oncology, 12 de Octubre Hospital, Madrid, Spain
| | - Ioannis A Vathiotis
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Niki Gavrielatou
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Laura Castro-Labrador
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
| | - Gorka Ruiz de Garibay
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vera Adradas
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
| | - Daniel Orive
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
- Department of Pathology, University of Navarra, Pamplona, Spain
| | - Karmele Valencia
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
- Health Research Institute of Navarra, IdiSNA, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
- Department of Pathology, University of Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
- Health Research Institute of Navarra, IdiSNA, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
- Department of Pathology, University of Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
- Health Research Institute of Navarra, IdiSNA, Pamplona, Spain
| | - S Ponce Aix
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Medical Oncology, 12 de Octubre Hospital, Madrid, Spain
- Spanish Center for Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine (Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Roy S Herbst
- Department of Medicine (Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Luis Paz-Ares
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Medical Oncology, 12 de Octubre Hospital, Madrid, Spain
- Spanish Center for Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine (Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jon Zugazagoitia
- Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Medical Oncology, 12 de Octubre Hospital, Madrid, Spain
- Spanish Center for Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
48
|
Panagiotou E, Syrigos NK, Charpidou A, Kotteas E, Vathiotis IA. CD24: A Novel Target for Cancer Immunotherapy. J Pers Med 2022; 12:jpm12081235. [PMID: 36013184 PMCID: PMC9409925 DOI: 10.3390/jpm12081235] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022] Open
Abstract
Cluster of differentiation 24 (CD24) is a small, highly glycosylated cell adhesion protein that is normally expressed by immune as well as epithelial, neural, and muscle cells. Tumor CD24 expression has been linked with alterations in several oncogenic signaling pathways. In addition, the CD24/Siglec-10 interaction has been implicated in tumor immune evasion, inhibiting macrophage-mediated phagocytosis as well as natural killer (NK) cell cytotoxicity. CD24 blockade has shown promising results in preclinical studies. Although there are limited data on efficacy, monoclonal antibodies against CD24 have demonstrated clinical safety and tolerability in two clinical trials. Other treatment modalities evaluated in the preclinical setting include antibody–drug conjugates and chimeric antigen receptor (CAR) T cell therapy. In this review, we summarize current evidence and future perspectives on CD24 as a potential target for cancer immunotherapy.
Collapse
|
49
|
Establishment and Analysis of an Individualized EMT-Related Gene Signature for the Prognosis of Breast Cancer in Female Patients. DISEASE MARKERS 2022; 2022:1289445. [PMID: 35937944 PMCID: PMC9352481 DOI: 10.1155/2022/1289445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Background. The current high mortality rate of female breast cancer (BC) patients emphasizes the necessity of identifying powerful and reliable prognostic signatures in BC patients. Epithelial-mesenchymal transition (EMT) was reported to be associated with the development of BC. The purpose of this study was to identify prognostic biomarkers that predict overall survival (OS) in female BC patients by integrating data from TCGA database. Method. We first downloaded the dataset in TCGA and identified gene signatures by overlapping candidate genes. Differential analysis was performed to find differential EMT-related genes. Univariate regression analysis was then performed to identify candidate prognostic variables. We then developed a prognostic model by multivariate analysis to predict OS. Calibration curves, receiver operating characteristics (ROC) curves,
-index, and decision curve analysis (DCA) were used to test the veracity of the prognostic model. Result. In this study, we identified and validated a prognostic model integrating age and six genes (CD44, P3H1, SDC1, COL4A1, TGFβ1, and SERPINE1).
-index values for BC patients were 0.672 (95% CI 0.611–0.732) and 0.692 (95% CI 0.586–0.798) in the training cohort and test set, respectively. The calibration curve and the DCA curve show the good predictive performance of the model. Conclusion. This study offered a robust predictive model for OS prediction in female BC patients and may provide a more accurate treatment strategy and personalized therapy in the future.
Collapse
|
50
|
Responses to the Tepotinib in Gastric Cancers with MET Amplification or MET Exon 14 Skipping Mutations and High Expression of Both PD-L1 and CD44. Cancers (Basel) 2022; 14:cancers14143444. [PMID: 35884507 PMCID: PMC9318186 DOI: 10.3390/cancers14143444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Both MET exon 14 skipping mutation (METex14SM) and high copy-number variation (CNV) lead to enhanced carcinogenesis; additionally, programmed-death ligand 1 (PD-L1) is often upregulated in cancers. In this study, we characterized the expression of MET (including METex14SM), PD-L1, and CD44 in human gastric cancer (GC) cells as well as the differential susceptibility of these cells to tepotinib. Tepotinib treatments inhibited the growth of five GC cells in a dose-dependent manner with a concomitant induction of cell death. Tepotinib treatments also significantly reduced the expression of phospho-MET, total MET, c-Myc, VEGFR2, and Snail protein in SNU620, MKN45, and Hs746T cells. Notably, tepotinib significantly reduced the expression of CD44 and PD-L1 in METex14SM Hs746T cells. By contrast, tepotinib was only slightly active against SNU638 and KATO III cells. Migration was reduced to a greater extent in the tepotinib-treated group than in the control group. Tepotinib may have therapeutic effects on c-MET-amplified GC, a high expression of both PD-L1 and CD44, and METex14SM. Clinical studies are needed to confirm these therapeutic effects.
Collapse
|