1
|
Li Z, Chen F, Chen L, Liu J, Tseng D, Hadi F, Omarjee S, Kishore K, Kent J, Kirkpatrick J, D'Santos C, Lawson M, Gertz J, Sikora MJ, McDonnell DP, Carroll JS, Polyak K, Oesterreich S, Lee AV. The EstroGene2.0 database for endocrine therapy response and resistance in breast cancer. NPJ Breast Cancer 2024; 10:106. [PMID: 39702552 DOI: 10.1038/s41523-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-positive breast cancers patients, but resistance often limits their effectiveness. Notable progress has been made although the fragmented way data is reported has reduced their potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a user-friendly browser offers comprehensive data visualization and metadata mining capabilities ( https://estrogeneii.web.app/ ). Taking advantage of the harmonized data collection, our follow-up meta-analysis revealed transcriptomic landscape and substantial diversity in response to different classes of ER modulators. Endocrine-resistant models exhibit a spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon signalings, which is recapitulated clinically. Dissecting multiple ESR1-mutant cell models revealed the different clinical relevance of cell model engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies and explore resistance mechanisms.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fangyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Li Chen
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jiebin Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Danielle Tseng
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Fazal Hadi
- AstraZeneca, The Discovery Centre, Biomedical Campus, Cambridge, UK
| | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua Kent
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joanna Kirkpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive D'Santos
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mandy Lawson
- AstraZeneca, The Discovery Centre, Biomedical Campus, Cambridge, UK
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason S Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Sudman M, Stöger R, Bentley GR, Melamed P. Association of childhood dehydroepiandrosterone sulfate concentration, pubertal development, and DNA methylation at puberty-related genes. Eur J Endocrinol 2024; 191:623-635. [PMID: 39670713 DOI: 10.1093/ejendo/lvae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE High concentrations of dehydroepiandrosterone sulfate (DHEAS) often precede premature puberty and sometimes polycystic ovary syndrome (PCOS). We hypothesized that the underlying mechanisms might involve DNA methylation. As an indicator of the downstream effects of DHEAS, we looked for associations between prepubertal DHEAS concentration, pubertal progression, and DNA methylation at puberty-related genes in blood cells. DESIGN Blood methylome and DHEAS concentration at 7.5 and 8.5 years, respectively, were analyzed in 91 boys and 82 girls. Pubertal development data were collected between 8.1 and 17 years (all from UK birth cohort, Avon Longitudinal Study of Parents and Children [ALSPAC]). METHODS Correlation between DHEAS and pubertal measurements was assessed by Spearman's correlation. DHEAS association with methylation at individual CpGs or regions was evaluated by linear regression, and nearby genes examined by enrichment analysis and intersection with known puberty-related genes. RESULTS Boys and girls with higher childhood DHEAS concentrations had more advanced pubic hair growth throughout puberty; girls also had advanced breast development, earlier menarche, and longer menstrual cycles. DHEAS concentration was associated with methylation at individual CpGs near several puberty-related genes. In boys, 14 genes near CpG islands with DHEAS-associated methylation were detected, and in girls, there were 9 which included LHCGR and SRD5A2; FGFR1 and FTO were detected in both sexes. CONCLUSIONS The association between DHEAS and pubertal development, as reported previously, suggests a physiological connection. Our novel findings showing that DHEAS concentration correlates negatively and linearly with DNA methylation levels at regulatory regions of key puberty-related genes, provide a mechanism for such a functional relationship.
Collapse
Affiliation(s)
- Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Gillian R Bentley
- Department of Anthropology, Durham University, Durham DH1 3LE, United Kingdom
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
3
|
Eugene-Osoikhia TT, Odozi NW, Yeye EO, Isiaka M, Oladosu IA. In-silico study of novel dimeric flavonoid (OC251FR2) isolated from the seeds of Garcinia kola Heckel ( Clusiaceae) against alpha estrogen receptor (ER-α) of breast cancer. In Silico Pharmacol 2024; 12:108. [PMID: 39569035 PMCID: PMC11573959 DOI: 10.1007/s40203-024-00282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Estrogen hormone dependence accounts for a major cause in the incidence of women breast cancer. ER-α is the major ER subtype in the mammary epithelium and plays a critical role in breast cancer progression. Tamoxifen (1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2- diphenylbut-1(Z)-ene) is a nonsteroidal antiestrogen prodrug which formed pharmacologically active metabolite, 4-hydroxytamoxifen, largely used for endocrine therapy in pre and postmenopausal women with ER-positive breast cancer. However, long term treatment with tamoxifen results in acquires resistance and high probability of disease recurring, hence the need for an alternative breast cancer drug. In silico approach was used to investigate the inhibitory activities of a novel dimeric flavanonol OC251FR2 (3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)-3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) isolated from the chloroform fraction of Garcinia kola, against alpha Estrogen receptor (ER-α); a major contributor to the growth of breast cancer. The docking was conducted using Maestro module 13.5 to obtained the ER-α PDB (5W9C) from NCBI. The OC251FR2 was docked using ligprep module with 4-hydroxytamoxifen being the reference drug. The qikpro was used to investigate the drug-likeliness while ligand docking and induced fit docking were used to investigate the interaction and binding affinity of the ligands with the active sites of the PDB. The result shows that the isolated OC251FR2 with docking score value of -6.214 interact more with amino acids in the active sites via H-bond, pi-pi interaction than the reference drug 4-Hydroxytamoxifen with a docking score value of -5.289. The drug-likeliness determined by qikpro shows that OC251FR2 violated three of the Lipinski rules of 5, and also have percent oral absorption. The quantum mechanics values show that OC251FR2 have similar properties comparable to the reference drug 4-hydroxytamoxifen. Hence, can serve as potential lead against alpha Estrogen receptor (ER-α). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00282-5.
Collapse
Affiliation(s)
| | - Nnenna W Odozi
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Emmanuel O Yeye
- Department of Basic Sciences, Adeleke University, Ede, Osun State Nigeria
| | - Mohammed Isiaka
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Ibrahim A Oladosu
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
4
|
Psaltis JB, Wang Q, Yan G, Gahtani R, Huang N, Haddad BR, Martin MB. Cadmium activation of wild-type and constitutively active estrogen receptor alpha. Front Endocrinol (Lausanne) 2024; 15:1380047. [PMID: 39184142 PMCID: PMC11341946 DOI: 10.3389/fendo.2024.1380047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/05/2024] [Indexed: 08/27/2024] Open
Abstract
The estrogen receptor alpha (ERα) plays a central role in the etiology, progression, and treatment of breast cancers. Constitutively activating somatic mutations Y537S and D538G, in the ligand binding domain (LBD) of ESR1, are associated with acquired resistance to endocrine therapies. We have previously shown that the metalloestrogen calcium activates ERα through an interaction with the LBD of the receptor. This study shows that cadmium activates ERα through a mechanism similar to calcium and contributes to, and further increases, the constitutive activity of the ERα mutants Y537S and D538G. Mutational analysis identified C381, N532A, H516A/N519A/E523A, and E542/D545A on the solvent accessible surface of the LBD as possible calcium/metal interaction sites. In contrast to estradiol, which did not increase the activity of the Y537S and D538G mutants, cadmium increased the activity of the constitutive mutants. Mutation of the calcium/metal interaction sites in Y537S and D538G mutants resulted in a significant decrease in constitutive activity and cadmium induced activity. Mutation of calcium/metal interaction sites in wtERα diminished binding of the receptor to the enhancer of estrogen responsive genes and the binding of nuclear receptor coactivator 1 and RNA polymerase II. In contrast to wtERα, mutation of the calcium/metal interaction sites in the Y537S and D538G mutants did not diminish binding to DNA but prevented a stable interaction with the coactivator and polymerase. Growth assays further revealed that calcium channel blockers and chelators significantly decreased the growth of MCF7 cells expressing these constitutively active mutants. Taken together, the results suggest that exposure to cadmium plays a role in the etiology, progression, and response to treatment of breast cancer due, in part, to its ability to activate ERα.
Collapse
Affiliation(s)
- John B. Psaltis
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Qiaochu Wang
- Depatment of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Gai Yan
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Reem Gahtani
- Depatment of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Nanxi Huang
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Bassem R. Haddad
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Mary Beth Martin
- Department of Oncology, Georgetown University, Washington, DC, United States
- Depatment of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
5
|
Li Z, Chen F, Chen L, Liu J, Tseng D, Hadi F, Omarjee S, Kishore K, Kent J, Kirkpatrick J, D’Santos C, Lawson M, Gertz J, Sikora MJ, McDonnell DP, Carroll JS, Polyak K, Oesterreich S, Lee AV. EstroGene2.0: A multi-omic database of response to estrogens, ER-modulators, and resistance to endocrine therapies in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601163. [PMID: 39005294 PMCID: PMC11244912 DOI: 10.1101/2024.06.28.601163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-positive breast cancers patients, but resistance often limits their effectiveness. Understanding the molecular mechanisms is thus key to optimize the existing drugs and to develop new ER-modulators. Notable progress has been made although the fragmented way data is reported has reduced their potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a user-friendly browser offers comprehensive data visualization and metadata mining capabilities (https://estrogeneii.web.app/). Taking advantage of the harmonized data collection, our follow-up meta-analysis revealed substantial diversity in response to different classes of ER-modulators including SERMs, SERDs, SERCA and LDD/PROTAC. Notably, endocrine resistant models exhibit a spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon signaling, which is recapitulated clinically. Furthermore, dissecting multiple ESR1-mutant cell models revealed the different clinical relevance of genome-edited versus ectopic overexpression model engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies and explore resistance mechanisms.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fangyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Li Chen
- Computational Biology Department, Carnegie Mellon University, Pittsburgh PA, USA
| | - Jiebin Liu
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Danielle Tseng
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | | | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua Kent
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joanna Kirkpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive D’Santos
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Wu Y, Li Z, Lee AV, Oesterreich S, Luo B. Liver tropism of ER mutant breast cancer is characterized by unique molecular changes and immune infiltration. Breast Cancer Res Treat 2024; 205:371-386. [PMID: 38427312 DOI: 10.1007/s10549-024-07255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Hotspot estrogen receptor alpha (ER/ESR1) mutations are recognized as the driver for both endocrine resistance and metastasis in advanced ER-positive (ER+) breast cancer, but their contributions to metastatic organ tropism remain insufficiently understood. In this study, we aim to comprehensively profile the organotropic metastatic pattern for ESR1 mutant breast cancer. METHODS The organ-specific metastatic pattern of ESR1 mutant breast cancer was delineated using multi-omics data from multiple publicly available cohorts of ER+ metastatic breast cancer patients. Gene mutation/copy number variation (CNV) and differential gene expression analyses were performed to identify the genomic and transcriptomic alterations uniquely associated with ESR1 mutant liver metastasis. Upstream regulator, downstream pathway, and immune infiltration analysis were conducted for subsequent mechanistic investigations. RESULTS ESR1 mutation-driven liver tropism was revealed by significant differences, encompassing a higher prevalence of liver metastasis in patients with ESR1 mutant breast cancer and an enrichment of mutations in liver metastatic samples. The significant enrichment of AGO2 copy number amplifications (CNAs) and multiple gene expression changes were revealed uniquely in ESR1 mutant liver metastasis. We also unveiled alterations in downstream signaling pathways and immune infiltration, particularly an enrichment of neutrophils, suggesting potential therapeutic vulnerabilities. CONCLUSION Our data provide a comprehensive characterization of the behaviors and mechanisms of ESR1 mutant liver metastasis, paving the way for the development of personalized therapy to target liver metastasis for patients with ESR1 mutant breast cancer.
Collapse
Affiliation(s)
- Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Zheqi Li
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Luo
- Department of General Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
7
|
Aktaş G, Bertizlioglu M, Yılmaz SA, Kebapcılar AG, Çelik Ç, Seçilmiş Ö. Follicle-Stimulating Hormone Receptor and Estrogen Receptor Gene Polymorphisms in Women With Discordant Follicle-Stimulating Hormone and Anti-Mullerian Hormone Levels. Cureus 2024; 16:e60446. [PMID: 38883018 PMCID: PMC11179686 DOI: 10.7759/cureus.60446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Objective This study aimed to investigate follicle-stimulating hormone receptor (FSHR) polymorphisms (Thr307Ala and Asn680Ser), estrogen receptor 1 (ESR1) polymorphisms (PvuII and XbaI), and ESR2 polymorphisms (RsaI and AluI) in Turkish women with follicle-stimulating hormone (FSH) and anti-Mullerian hormone (AMH) discordance. Method Genotyping was performed in 60 patients aged 21-35 with FSH-AMH discordance and/or low ovarian reserve and 20 age-matched controls with normal FSH and AMH levels. The patients were investigated in four groups of 20 women according to their FSH and AMH levels. Groups 1, 2, 3, and 4 were as follows: normal FSH and low AMH levels, normal AMH and high FSH levels, high FSH and low AMH levels, and normal FSH and AMH levels. Genomic DNA was obtained from 3 cc peripheral blood, and polymorphisms were analyzed using TaqMan genotyping assays. Relations between groups of categorical variables were analyzed with a chi-square test. Differences between the groups were assessed using a student's t-test or Mann-Whitney U test. Results Women with discordant FSH and AMH levels (group 1 and group 2) were not statistically different from women with concordant FSH and AMH levels (group 3 and group 4) in terms of FSHR, ESR1, and ER2 single nucleotide polymorphisms (SNPs). Body mass index (BMI) was statistically significant between groups 1 and 2 as well as groups 2 and 3 (p = 0.004). Conclusions This study showed that FSHR, ESR1, and ESR2 SNPs have not had any effect on AMH-FSH discordance in reproductive age Turkish women.
Collapse
Affiliation(s)
- Görkem Aktaş
- Obstetrics and Gynecology, Dr. Ali Kemal Belviranlı Gynaecology and Children's Hospital, Konya, TUR
| | | | | | | | - Çetin Çelik
- Obstetrics and Gynecology, Selcuk University Medicine, Konya, TUR
| | - Özlem Seçilmiş
- Obstetrics and Gynecology, Selcuk University Medicine, Konya, TUR
| |
Collapse
|
8
|
Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen Receptor Alpha Mutations, Truncations, Heterodimers, and Therapies. Endocrinology 2024; 165:bqae051. [PMID: 38643482 PMCID: PMC11075793 DOI: 10.1210/endocr/bqae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.
Collapse
Affiliation(s)
- Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| |
Collapse
|
9
|
Gaikwad PV, Rahman N, Ghosh P, Ng D, Williams RM. Rapid differentiation of estrogen receptor status in patient biopsy breast cancer aspirates with an optical nanosensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587397. [PMID: 38617252 PMCID: PMC11014485 DOI: 10.1101/2024.03.29.587397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Breast cancer is a substantial source of morbidity and mortality worldwide. It is particularly more difficult to treat at later stages, and treatment regimens depend heavily on both staging and the molecular subtype of the tumor. However, both detection and molecular analyses rely on standard imaging and histological method, which are costly, time-consuming, and lack necessary sensitivity/specificity. The estrogen receptor (ER) is, along with the progesterone receptor (PR) and human epidermal growth factor (HER-2), among the primary molecular markers which inform treatment. Patients who are negative for all three markers (triple negative breast cancer, TNBC), have fewer treatment options and a poorer prognosis. Therapeutics for ER+ patients are effective at preventing disease progression, though it is necessary to improve the speed of subtyping and distribution of rapid detection methods. In this work, we designed a near-infrared optical nanosensor using single-walled carbon nanotubes (SWCNT) as the transducer and an anti-ERα antibody as the recognition element. The nanosensor was evaluated for its response to recombinant ERα in buffer and serum prior to evaluation with ER- and ER+ immortal cell lines. We then used a minimal volume of just 10 μL from 26 breast cancer biopsy samples which were aspirated to mimic fine needle aspirates. 20 samples were ER+, while 6 were ER-, representing 13 unique patients. We evaluated the potential of the nanosensor by investigating several SWCNT chiralities through direct incubation or fractionation deployment methods. We found that the nanosensor can differentiate ER- from ER+ patient biopsies through a shift in its center wavelength upon sample addition. This was true regardless of which of the three SWCNT chiralities we observed. Receiver operating characteristic area under the curve analyses determined that the strongest classifier with an AUC of 0.94 was the (7,5) chirality after direct incubation and measurement, and without further processing. We anticipate that further testing and development of this nanosensor may push its utility toward field-deployable, rapid ER subtyping with potential for additional molecular marker profiling.
Collapse
Affiliation(s)
- Pooja V. Gaikwad
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, City University of New York, New York, NY 10016
| | - Nazifa Rahman
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Pratyusha Ghosh
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Dianna Ng
- Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ryan M. Williams
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
10
|
De Marchi T, Lai CF, Simmons GM, Goldsbrough I, Harrod A, Lam T, Buluwela L, Kjellström S, Brueffer C, Saal LH, Malmström J, Ali S, Niméus E. Proteomic profiling reveals that ESR1 mutations enhance cyclin-dependent kinase signaling. Sci Rep 2024; 14:6873. [PMID: 38519482 PMCID: PMC10959978 DOI: 10.1038/s41598-024-56412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
| | - Chun-Fui Lai
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Georgia M Simmons
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Isabella Goldsbrough
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alison Harrod
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Thai Lam
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden
| | - Lakjaya Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sven Kjellström
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Solvegatan 19, 22362, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry - BioMS, Lund, Sweden
| | - Christian Brueffer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, 22184, Lund, Sweden
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
- Department of Surgery, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
11
|
Huggins RJ, Greene GL. ERα/PR crosstalk is altered in the context of the ERα Y537S mutation and contributes to endocrine therapy-resistant tumor proliferation. NPJ Breast Cancer 2023; 9:96. [PMID: 38036546 PMCID: PMC10689488 DOI: 10.1038/s41523-023-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
The constitutively active ESR1 Y537S mutation is associated with endocrine therapy (ET) resistance and progression of metastatic breast cancer through its effects on estrogen receptor (ERα) gene regulatory functions. However, the complex relationship between ERα and the progesterone receptor (PR), known as ERα/PR crosstalk, has yet to be characterized in the context of the ERα Y537S mutation. Using proximity ligation assays, we identify an increased physical interaction of ERα and PR in the context of the ERα Y537S mutation, including in the nucleus where this interaction may translate to altered gene expression. As such, more than 30 genes were differentially expressed in both patient tumor and cell line data (MCF7 and/or T47D cells) in the context of the ERα Y537S mutation compared to ERα WT. Of these, IRS1 stood out as a gene of interest, and ERα and PR occupancy at chromatin binding sites along IRS1 were uniquely altered in the context of ERα Y537S. Furthermore, siRNA knockdown of IRS1 or treatment with the IRS1 inhibitor NT-157 had a significant anti-proliferative effect in ERα Y537S cell lines, implicating IRS1 as a potential therapeutic target for restoring treatment sensitivity to patients with breast cancers harboring ERα Y537S mutations.
Collapse
Affiliation(s)
- Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Blanchard Z, Rush CM, Arnesen S, Vahrenkamp JM, Rodriguez AC, Jarboe EA, Brown C, Chang MEK, Flory MR, Mohammed H, Modzelewska K, Lum DH, Gertz J. Allele-Specific Gene Regulation, Phenotypes, and Therapeutic Vulnerabilities in Estrogen Receptor Alpha-Mutant Endometrial Cancer. Mol Cancer Res 2023; 21:1023-1036. [PMID: 37363949 DOI: 10.1158/1541-7786.mcr-22-0848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Activating estrogen receptor alpha (ER; also known as ESR1) mutations are present in primary endometrial and metastatic breast cancers, promoting estrogen-independent activation of the receptor. Functional characterizations in breast cancer have established unique molecular and phenotypic consequences of the receptor, yet the impact of ER mutations in endometrial cancer has not been fully explored. In this study, we used CRISPR-Cas9 to model the clinically prevalent ER-Y537S mutation and compared results with ER-D538G to discover allele-specific differences between ER mutations in endometrial cancer. We found that constitutive activity of mutant ER resulted in changes in the expression of thousands of genes, stemming from combined alterations to ER binding and chromatin accessibility. The unique gene expression programs resulted in ER-mutant cells developing increased cancer-associated phenotypes, including migration, invasion, anchorage-independent growth, and growth in vivo. To uncover potential treatment strategies, we identified ER-associated proteins via Rapid Immunoprecipitation and Mass Spectrometry of Endogenous Proteins and interrogated two candidates, CDK9 and NCOA3. Inhibition of these regulatory proteins resulted in decreased growth and migration, representing potential novel treatment strategies for ER-mutant endometrial cancer. IMPLICATIONS This study provides insight into mutant ER activity in endometrial cancer and identifies potential therapies for women with ER-mutant endometrial cancer.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Craig M Rush
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Adriana C Rodriguez
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elke A Jarboe
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Callie Brown
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Matthew E K Chang
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Mark R Flory
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Hisham Mohammed
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Katarzyna Modzelewska
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
13
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
14
|
Fang T, Zhang Z, Zhou H, Wu W, Ji F, Zou L. Effect of genetic liability to migraine and its subtypes on breast cancer: a mendelian randomization study. BMC Cancer 2023; 23:887. [PMID: 37730543 PMCID: PMC10510189 DOI: 10.1186/s12885-023-11337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND The relationship between migraine and breast cancer risk has generated conflicting findings. We attempted to assess the association between migraine and breast cancer risk using Mendelian randomization (MR) analysis. METHODS We selected genetic instruments associated with migraine from a recently published genome-wide association studies (GWAS). Inverse variant weighted (IVW) analysis was adopted as the main method, and we also performed the weighted-median method and the MR‒Egger, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR Robust Adjusted Profile Score (MR-RAPS) methods as supplements. RESULTS Our MR suggested that any migraine (AM) was a risk factor for overall breast cancer (IVW: odds ratio (OR) = 1.072, 95% confidence intervals (CI) = 1.035-1.110, P = 8.78 × 10- 5, false discovery rate (FDR) = 7.36 × 10- 4) and estrogen receptor-positive (ER+) breast cancer (IVW: OR = 1.066, 95% CI = 1.023-1.111, P = 0.0024; FDR = 0.0108) but not estrogen receptor-negative (ER-) breast cancer. In its subtype analysis, women with a history of migraine without aura (MO) had an increased risk of ER- breast cancer (IVW: OR = 1.089, 95% CI = 1.019-1.163, P = 0.0118, FDR = 0.0354), and MO was suggestively associated with the risk of overall breast cancer (FDR > 0.05 and IVW P < 0.05). No significant heterogeneity or horizontal pleiotropy was found in the sensitivity analysis. CONCLUSION This study suggested that women with AM have an increased risk of overall breast cancer and ER + breast cancer. MO was suggestively associated with the risk of overall breast cancer and ER- breast cancer.
Collapse
Affiliation(s)
- Tian Fang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan, 610041, China
| | - Zhihao Zhang
- Department of Breast Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan, 610041, China
| | - Huijie Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan, 610041, China
| | - Wanchun Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan, 610041, China
| | - Fuqing Ji
- Department of Thyroid Breast Surgery, Xi'an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P.R. China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
15
|
Wu Y, Li Z, Wedn AM, Casey AN, Brown D, Rao SV, Omarjee S, Hooda J, Carroll JS, Gertz J, Atkinson JM, Lee AV, Oesterreich S. FOXA1 Reprogramming Dictates Retinoid X Receptor Response in ESR1-Mutant Breast Cancer. Mol Cancer Res 2023; 21:591-604. [PMID: 36930833 PMCID: PMC10239325 DOI: 10.1158/1541-7786.mcr-22-0516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/27/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Estrogen receptor alpha (ER/ESR1) mutations occur in 30% to 40% of endocrine resistant ER-positive (ER+) breast cancer. Forkhead box A1 (FOXA1) is a key pioneer factor mediating ER-chromatin interactions and endocrine response in ER+ breast cancer, but its role in ESR1-mutant breast cancer remains unclear. Our previous FOXA1 chromatin immunoprecipitation sequencing (ChIP-seq) identified a large portion of redistributed binding sites in T47D genome-edited Y537S and D538G ESR1-mutant cells. Here, we further integrated FOXA1 genomic binding profile with the isogenic ER cistrome, accessible genome, and transcriptome data of T47D cell model. FOXA1 redistribution was significantly associated with transcriptomic alterations caused by ESR1 mutations. Furthermore, in ESR1-mutant cells, FOXA1-binding sites less frequently overlapped with ER, and differential gene expression was less associated with the canonical FOXA1-ER axis. Motif analysis revealed a unique enrichment of retinoid X receptor (RXR) motifs in FOXA1-binding sites of ESR1-mutant cells. Consistently, ESR1-mutant cells were more sensitive to growth stimulation with the RXR agonist LG268. The mutant-specific response was dependent on two RXR isoforms, RXR-α and RXR-β, with a stronger dependency on the latter. In addition, T3, the agonist of thyroid receptor (TR) also showed a similar growth-promoting effect in ESR1-mutant cells. Importantly, RXR antagonist HX531 blocked growth of ESR1-mutant cells and a patient-derived xenograft (PDX)-derived organoid with an ESR1 D538G mutation. Collectively, our data support the evidence for a stronger RXR response associated with FOXA1 reprograming in ESR1-mutant cells, suggesting development of therapeutic strategies targeting RXR pathways in breast tumors with ESR1 mutation. IMPLICATIONS It provides comprehensive characterization of the role of FOXA1 in ESR1-mutant breast cancer and potential therapeutic strategy through blocking RXR activation.
Collapse
Affiliation(s)
- Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
| | - Zheqi Li
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Abdalla M. Wedn
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Allison N. Casey
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Daniel Brown
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Shalini V. Rao
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jagmohan Hooda
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer M. Atkinson
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
16
|
Arnesen S, Polaski J, Blanchard Z, Osborne K, Welm A, O’Connell R, Gertz J. Estrogen receptor alpha mutations regulate gene expression and cell growth in breast cancer through microRNAs. NAR Cancer 2023; 5:zcad027. [PMID: 37275275 PMCID: PMC10233889 DOI: 10.1093/narcan/zcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.
Collapse
Affiliation(s)
- Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob T Polaski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle S Osborne
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Sun G, Wei Y, Zhou B, Wang M, Luan R, Bai Y, Li H, Wang S, Zheng D, Wang C, Wang S, Zeng K, Liu S, Lin L, He M, Zhang Q, Zhao Y. BAP18 facilitates CTCF-mediated chromatin accessible to regulate enhancer activity in breast cancer. Cell Death Differ 2023; 30:1260-1278. [PMID: 36828916 PMCID: PMC10154423 DOI: 10.1038/s41418-023-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
The estrogen receptor alpha (ERα) signaling pathway is a crucial target for ERα-positive breast cancer therapeutic strategies. Co-regulators and other transcription factors cooperate for effective ERα-related enhancer activation. Recent studies demonstrate that the transcription factor CTCF is essential to participate in ERα/E2-induced enhancer transactivation. However, the mechanism of how CTCF is achieved remains unknown. Here, we provided evidence that BAP18 is required for CTCF recruitment on ERα-enriched enhancers, facilitating CTCF-mediated chromatin accessibility to promote enhancer RNAs transcription. Consistently, GRO-seq demonstrates that the enhancer activity is positively correlated with BAP18 enrichment. Furthermore, BAP18 interacts with SMARCA1/BPTF to accelerate the recruitment of CTCF to ERα-related enhancers. Interestingly, BAP18 is involved in chromatin accessibility within enhancer regions, thereby increasing enhancer transactivation and enhancer-promoter looping. BAP18 depletion increases the sensitivity of anti-estrogen and anti-enhancer treatment in MCF7 cells. Collectively, our study indicates that BAP18 coordinates with CTCF to enlarge the transactivation of ERα-related enhancers, providing a better understanding of BAP18/CTCF coupling chromatin remodeling and E-P looping in the regulation of enhancer transcription.
Collapse
Affiliation(s)
- Ge Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yuntao Wei
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Baosheng Zhou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Manlin Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Ruina Luan
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yu Bai
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Hao Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shan Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Dantong Zheng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shuchang Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Mingcong He
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China.
| |
Collapse
|
18
|
The Clinical Utility of ESR1 Mutations in Hormone Receptor-Positive, HER2-Negative Advanced Breast Cancer. Hematol Oncol Clin North Am 2023; 37:169-181. [PMID: 36435608 DOI: 10.1016/j.hoc.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The estrogen receptor is a key driver of estrogen receptor-positive breast cancers. Accumulating evidence indicates that the ESR1 ligand-binding domain mutations have an important role in acquired endocrine resistance, mainly to treatment with aromatase inhibitors. The identification, monitoring, and targeting of ESR1 mutations is an evolving field of major interest given the potential of improved outcomes in metastatic hormone receptor-positive breast cancers. Herein, the authors review the current evidence and rationale for exploiting the ESR1 mutations as a potential biomarker and therapeutic target. The authors discuss the role of ESR1 testing and current therapeutic efforts to target these mutations.
Collapse
|
19
|
Grinshpun A, Chen V, Sandusky ZM, Fanning SW, Jeselsohn R. ESR1 activating mutations: From structure to clinical application. Biochim Biophys Acta Rev Cancer 2023; 1878:188830. [PMID: 36336145 DOI: 10.1016/j.bbcan.2022.188830] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Estrogen receptor-positive breast cancer is the most common type of both early and advanced breast cancer. Estrogen receptor alpha (ER) is a nuclear hormone receptor and a key driver of tumorigenesis and tumor progression in these breast cancers. As such, it is a key treatment target and a biomarker predictive of response to endocrine therapy. Activating ESR1 ligand binding domain mutations engender constitutive/ligand independent transcriptional activities and emerge following prolonged first-line hormone therapy regimens, mainly from aromatase inhibitors. The full scale of the biological and clinical significance of these mutations continue to evolve and additional studies are required to further discern the multimodal effects of these mutations on ER transcription, metastatic propensity, and the tumor microenvironment. Furthermore, recent and ongoing studies highlight the potential clinical utility of these mutations as therapeutic targets and dynamic biomarkers. Herein, we review the structure, functional consequences, and clinical implications of the activating ESR1 mutations in advanced estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Albert Grinshpun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Breast Oncology Center, Dana-Farber Cancer Center, Boston, MA, United States of America
| | - Vincent Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Breast Oncology Center, Dana-Farber Cancer Center, Boston, MA, United States of America
| | - Zachary M Sandusky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Center for Functional Cancer Epigenetics, Dana Farber-Cancer Institute, Boston, MA, United States of America
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University, Chicago, IL, United States of America
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Breast Oncology Center, Dana-Farber Cancer Center, Boston, MA, United States of America; Center for Functional Cancer Epigenetics, Dana Farber-Cancer Institute, Boston, MA, United States of America.
| |
Collapse
|
20
|
Harrod A, Lai CF, Goldsbrough I, Simmons GM, Oppermans N, Santos DB, Győrffy B, Allsopp RC, Toghill BJ, Balachandran K, Lawson M, Morrow CJ, Surakala M, Carnevalli LS, Zhang P, Guttery DS, Shaw JA, Coombes RC, Buluwela L, Ali S. Genome engineering for estrogen receptor mutations reveals differential responses to anti-estrogens and new prognostic gene signatures for breast cancer. Oncogene 2022; 41:4905-4915. [PMID: 36198774 PMCID: PMC7613769 DOI: 10.1038/s41388-022-02483-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the estrogen receptor (ESR1) gene are common in ER-positive breast cancer patients who progress on endocrine therapies. Most mutations localise to just three residues at, or near, the C-terminal helix 12 of the hormone binding domain, at leucine-536, tyrosine-537 and aspartate-538. To investigate these mutations, we have used CRISPR-Cas9 mediated genome engineering to generate a comprehensive set of isogenic mutant breast cancer cell lines. Our results confirm that L536R, Y537C, Y537N, Y537S and D538G mutations confer estrogen-independent growth in breast cancer cells. Growth assays show mutation-specific reductions in sensitivities to drugs representing three classes of clinical anti-estrogens. These differential mutation- and drug-selectivity profiles have implications for treatment choices following clinical emergence of ER mutations. Our results further suggest that mutant expression levels may be determinants of the degree of resistance to some anti-estrogens. Differential gene expression analysis demonstrates up-regulation of estrogen-responsive genes, as expected, but also reveals that enrichment for interferon-regulated gene expression is a common feature of all mutations. Finally, a new gene signature developed from the gene expression profiles in ER mutant cells predicts clinical response in breast cancer patients with ER mutations.
Collapse
Affiliation(s)
- Alison Harrod
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
- Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK
| | - Chun-Fui Lai
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | | | - Georgia M Simmons
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Natasha Oppermans
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Daniela B Santos
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Balazs Győrffy
- Semmelweis University Department of Bioinformatics, H-1094 Budapest, Hungary and TTK Cancer Biomarker Research Group, H-1117, Budapest, Hungary
| | - Rebecca C Allsopp
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Bradley J Toghill
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Kirsty Balachandran
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Mandy Lawson
- Early Oncology R&D, AstraZeneca, Biomedical Campus, 1 Francis Crick Ave, Cambridge, CB2 0AA, UK
| | - Christopher J Morrow
- Early Oncology R&D, AstraZeneca, Biomedical Campus, 1 Francis Crick Ave, Cambridge, CB2 0AA, UK
| | - Manasa Surakala
- Early Oncology R&D, AstraZeneca, Biomedical Campus, 1 Francis Crick Ave, Cambridge, CB2 0AA, UK
| | - Larissa S Carnevalli
- Early Oncology R&D, AstraZeneca, Biomedical Campus, 1 Francis Crick Ave, Cambridge, CB2 0AA, UK
| | - Pei Zhang
- Early Oncology R&D, AstraZeneca, Biomedical Campus, 1 Francis Crick Ave, Cambridge, CB2 0AA, UK
| | - David S Guttery
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Jacqueline A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - R Charles Coombes
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Lakjaya Buluwela
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK.
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
21
|
De Laurentiis M, Caputo R, Mazza M, Mansutti M, Masetti R, Ballatore Z, Torrisi R, Michelotti A, Zambelli A, Ferro A, Generali D, Vici P, Coltelli L, Fabi A, Marchetti P, Ballestrero A, Spazzapan S, Frassoldati A, Sarobba MG, Grasso D, Zamagni C. Safety and Efficacy of Ribociclib in Combination with Letrozole in Patients with HR+, HER2- Advanced Breast Cancer: Results from the Italian Subpopulation of Phase 3b CompLEEment-1 Study. Target Oncol 2022; 17:615-625. [PMID: 36152144 DOI: 10.1007/s11523-022-00913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ribociclib plus letrozole demonstrated manageable safety and efficacy profiles in hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) advanced breast cancer (ABC) in the Phase 3b CompLEEment-1 trial. OBJECTIVE To evaluate the safety and efficacy of ribociclib plus letrozole in the Italian subpopulation with HR+, HER2- ABC from the CompLEEment-1 trial. PATIENTS AND METHODS Patients with HR+, HER2- ABC received ribociclib (600 mg/day, 3 weeks on/1 week off) plus letrozole (2.5 mg/day) while men and premenopausal women additionally received goserelin. Patients were allowed with ≤ 1 line of prior chemotherapy and an Eastern Cooperative Oncology Group performance status of ≤ 2. The primary outcome included safety and tolerability. RESULTS Of the 554 Italian patients, 246 (44.4 %) patients completed treatment. The reasons for treatment discontinuation included progressive disease (PD; 36.6 %), adverse events (AEs; 11.9 %), and death (1.6 %). All-grade AEs and grade ≥ 3 AEs occurred in 98.9 % and 77.8 % patients, respectively. The most common treatment-related AEs were neutropenia (73.6 %), followed by leukopenia (32.1 %), and nausea (25.3 %). The overall response rate was 28.2 % (95 % confidence interval [CI], 24.4-32.1); clinical benefit rate was 71.7 % (95 % CI, 67.7-75.4); and median time to progression was 26.7 months (95 % CI, 24.8-non-estimable). Health-related quality of life scores were maintained during treatment. CONCLUSION The safety and efficacy profiles of ribociclib plus letrozole in the Italian subpopulation was found to be consistent with the CompLEEment-1 global population result, MONALEESA-2, and MONALEESA-7 outcomes, which reaffirm ribociclib plus letrozole as the frontline treatment option in patients with HR+, HER2- ABC. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION NCT02941926 (30 November 2016).
Collapse
Affiliation(s)
| | - Roberta Caputo
- Istituto Nazionale Tumori "Fondazione Pascale", Napoli, Italy
| | - Manuelita Mazza
- Senologia Medica, Istituto Europeo di Oncologia, Milano, Italy
| | - Mauro Mansutti
- Department of Oncology, Santa Maria della Misericordia hospital, Udine, Italy
| | - Riccardo Masetti
- Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Gemelli IRCSS, Roma, Italy
| | - Zelmira Ballatore
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, AOU Ospedali Riuniti Ancona Università Politecnica delle Marche, Ancona, Italy
| | - Rosalba Torrisi
- Department of Medical Oncology, IRCCS-Humanitas Clinical and Research Hospital, Rozzano, Italy
| | - Andrea Michelotti
- U.O. Oncologia Medica I, Azienda Ospedaliera Universitaria Pisana, Ospedale S. Chiara, Pisa, Italy
| | | | | | - Daniele Generali
- U.O.C. Multidisciplinare di Patologia Mammaria, Istituti Ospitalieri di Cremona, ASST di Cremona, Cremona, Italy
| | - Patrizia Vici
- UOSD Sperimentazioni di fase IV, IRCCS Regina Elena National Cancer Institute, Roma, Italy
| | - Luigi Coltelli
- U.O.C. di Oncologia Medica, Presidio Ospedaliero Livorno, Livorno, Italy
| | - Alessandra Fabi
- Division of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Roma, Italy
| | - Paolo Marchetti
- UOC Oncologia Medica, Azienda Ospedaliera St. Andrea, Rome, Italy
| | - Alberto Ballestrero
- Dipartimento di Medicina Interna DIMI, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Simon Spazzapan
- S.O.C. Oncologia Medica e Prevenzione Oncologica, Centro di Riferimento Oncologico IRCCS, Aviano, Italy
| | - Antonio Frassoldati
- U.O.C. Oncologia Clinica, Azienda Ospedaliero, Universitaria di Ferrara - Arcispedale Sant'Anna, Ferrara, Italy
| | | | | | - Claudio Zamagni
- Addarii Medical Oncology Unit IRCCS Azienda Ospedaliero-universitaria di Bologna, Bologna, Italy
| |
Collapse
|
22
|
Liang J, Ingalla ER, Yao X, Wang BE, Tai L, Giltnane J, Liang Y, Daemen A, Moore HM, Aimi J, Chang CW, Gates MR, Eng-Wong J, Tam L, Bacarro N, Roose-Girma M, Bellet M, Hafner M, Metcalfe C. Giredestrant reverses progesterone hypersensitivity driven by estrogen receptor mutations in breast cancer. Sci Transl Med 2022; 14:eabo5959. [PMID: 36130016 DOI: 10.1126/scitranslmed.abo5959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ESR1 (estrogen receptor 1) hotspot mutations are major contributors to therapeutic resistance in estrogen receptor-positive (ER+) breast cancer. Such mutations confer estrogen independence to ERα, providing a selective advantage in the presence of estrogen-depleting aromatase inhibitors. In addition, ESR1 mutations reduce the potency of tamoxifen and fulvestrant, therapies that bind ERα directly. These limitations, together with additional liabilities, inspired the development of the next generation of ERα-targeted therapeutics, of which giredestrant is a high-potential candidate. Here, we generated Esr1 mutant-expressing mammary gland models and leveraged patient-derived xenografts (PDXs) to investigate the biological properties of the ESR1 mutations and their sensitivity to giredestrant in vivo. In the mouse mammary gland, Esr1 mutations promote hypersensitivity to progesterone, triggering pregnancy-like tissue remodeling and profoundly elevated proliferation. These effects were driven by an altered progesterone transcriptional response and underpinned by gained sites of ERα-PR (progesterone receptor) cobinding at the promoter regions of pro-proliferation genes. PDX experiments showed that the mutant ERα-PR proliferative program is also relevant in human cancer cells. Giredestrant suppressed the mutant ERα-PR proliferation in the mammary gland more so than the standard-of-care agents, tamoxifen and fulvestrant. Giredestrant was also efficacious against the progesterone-stimulated growth of ESR1 mutant PDX models. In addition, giredestrant demonstrated activity against a molecularly characterized ESR1 mutant tumor from a patient enrolled in a phase 1 clinical trial. Together, these data suggest that mutant ERα can collaborate with PR to drive protumorigenic proliferation but remain sensitive to inhibition by giredestrant.
Collapse
Affiliation(s)
- Jackson Liang
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Ellen Rei Ingalla
- Translational Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Xiaosai Yao
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Bu-Er Wang
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Lisa Tai
- Research Pathology, Genentech, South San Francisco, CA 94080, USA
| | | | - Yuxin Liang
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Anneleen Daemen
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Heather M Moore
- Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Junko Aimi
- Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Ching-Wei Chang
- Biostatistics, Genentech, South San Francisco, CA 94080, USA
| | - Mary R Gates
- Early Clinical Development, Genentech, South San Francisco, CA 94080, USA
| | - Jennifer Eng-Wong
- Early Clinical Development, Genentech, South San Francisco, CA 94080, USA
| | - Lucinda Tam
- Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Natasha Bacarro
- Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | | | - Meritxell Bellet
- Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Marc Hafner
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Ciara Metcalfe
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
23
|
Diagnostic and Prognostic Role of 18F-Fluoroestradiol PET in Metastatic Breast Cancer: The Second Youth of an Older Theranostic Concept. J Clin Med 2022; 11:jcm11133589. [PMID: 35806878 PMCID: PMC9267420 DOI: 10.3390/jcm11133589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Since the discovery of the role of female hormones in breast cancer (BC) pathophysiology, in vivo detection of oestrogen receptor (ER) distribution has been one of the major goals of nuclear medicine and molecular imaging [...]
Collapse
|
24
|
Li Z, Spoelstra NS, Sikora MJ, Sams SB, Elias A, Richer JK, Lee AV, Oesterreich S. Mutual exclusivity of ESR1 and TP53 mutations in endocrine resistant metastatic breast cancer. NPJ Breast Cancer 2022; 8:62. [PMID: 35538119 PMCID: PMC9090919 DOI: 10.1038/s41523-022-00426-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Both TP53 and ESR1 mutations occur frequently in estrogen receptor positive (ER+) metastatic breast cancers (MBC) and their distinct roles in breast cancer tumorigenesis and progression are well appreciated. Recent clinical studies discovered mutual exclusivity between TP53 and ESR1 mutations in metastatic breast cancers; however, mechanisms underlying this intriguing clinical observation remain largely understudied and unknown. Here, we explored the interplay between TP53 and ESR1 mutations using publicly available clinical and experimental data sets. We first confirmed the robust mutational exclusivity using six independent cohorts with 1,056 ER+ MBC samples and found that the exclusivity broadly applies to all ER+ breast tumors regardless of their clinical and distinct mutational features. ESR1 mutant tumors do not exhibit differential p53 pathway activity, whereas we identified attenuated ER activity and expression in TP53 mutant tumors, driven by a p53-associated E2 response gene signature. Further, 81% of these p53-associated E2 response genes are either direct targets of wild-type (WT) p53-regulated transactivation or are mutant p53-associated microRNAs, representing bimodal mechanisms of ER suppression. Lastly, we analyzed the very rare cases with co-occurrences of TP53 and ESR1 mutations and found that their simultaneous presence was also associated with reduced ER activity. In addition, tumors with dual mutations showed higher levels of total and PD-L1 positive macrophages. In summary, our study utilized multiple publicly available sources to explore the mechanism underlying the mutual exclusivity between ESR1 and TP53 mutations, providing further insights and testable hypotheses of the molecular interplay between these two pivotal genes in ER+ MBC.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Li Z, McGinn O, Wu Y, Bahreini A, Priedigkeit NM, Ding K, Onkar S, Lampenfeld C, Sartorius CA, Miller L, Rosenzweig M, Cohen O, Wagle N, Richer JK, Muller WJ, Buluwela L, Ali S, Bruno TC, Vignali DAA, Fang Y, Zhu L, Tseng GC, Gertz J, Atkinson JM, Lee AV, Oesterreich S. ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation. Nat Commun 2022; 13:2011. [PMID: 35440136 PMCID: PMC9019037 DOI: 10.1038/s41467-022-29498-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive (ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enriched genes. Induction of BCKs is independent of ER binding and instead associated with chromatin reprogramming centered around a progesterone receptor-orchestrated insulated neighborhood. BCK-high ER+ primary breast tumors exhibit a number of enriched immune pathways, shared with ESR1 mutant tumors. S100A8 and S100A9 are among the most induced immune mediators and involve in tumor-stroma paracrine crosstalk inferred by single-cell RNA-seq from metastatic tumors. Collectively, these observations demonstrate that ESR1 mutant tumors gain basal features associated with increased immune activation, encouraging additional studies of immune therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Olivia McGinn
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Yang Wu
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Amir Bahreini
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nolan M Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kai Ding
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sayali Onkar
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lori Miller
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | - Ofir Cohen
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikhil Wagle
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William J Muller
- Goodman Cancer Centre and Departments of Biochemistry and Medicine, McGill University, Montreal, QC, Canada
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yusi Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Zhu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer M Atkinson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Li Z, Wu Y, Yates ME, Tasdemir N, Bahreini A, Chen J, Levine KM, Priedigkeit NM, Nasrazadani A, Ali S, Buluwela L, Arnesen S, Gertz J, Richer JK, Troness B, El-Ashry D, Zhang Q, Gerratana L, Zhang Y, Cristofanilli M, Montanez MA, Sundd P, Wallace CT, Watkins SC, Fumagalli C, Guerini-Rocco E, Zhu L, Tseng GC, Wagle N, Carroll JS, Jank P, Denkert C, Karsten MM, Blohmer JU, Park BH, Lucas PC, Atkinson JM, Lee AV, Oesterreich S. Hotspot ESR1 Mutations Are Multimodal and Contextual Modulators of Breast Cancer Metastasis. Cancer Res 2022; 82:1321-1339. [PMID: 35078818 PMCID: PMC8983597 DOI: 10.1158/0008-5472.can-21-2576] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell-cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation-modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer. SIGNIFICANCE Context- and allele-dependent transcriptome and cistrome reprogramming in mutant ESR1 cell models elicit diverse metastatic phenotypes related to cell adhesion and migration, which can be pharmacologically targeted in metastatic breast cancer.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Yang Wu
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Megan E. Yates
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nilgun Tasdemir
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Amir Bahreini
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh PA, USA
| | - Jian Chen
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Kevin M. Levine
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh PA, USA
| | - Nolan M. Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Azadeh Nasrazadani
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Spencer Arnesen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Troness
- University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Dorraya El-Ashry
- University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Qiang Zhang
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| | - Lorenzo Gerratana
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
- Department of Medicine (DAME) University of Udine, Udine, Italy
| | - Youbin Zhang
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| | - Massimo Cristofanilli
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| | - Maritza A. Montanez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Callen T. Wallace
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh PA, USA
| | - Simon C. Watkins
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh PA, USA
| | - Caterina Fumagalli
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Li Zhu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh PA, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh PA, USA
| | - Nikhil Wagle
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul Jank
- Institut of Pathology, Philipps-University Marburg, UKGM - Universitätsklinikum Marburg, Marburg, Germany
| | - Carsten Denkert
- Institut of Pathology, Philipps-University Marburg, UKGM - Universitätsklinikum Marburg, Marburg, Germany
| | - Maria M Karsten
- Department of Gynecology with Breast Center, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humbold-Univeristät zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jens-Uwe Blohmer
- Department of Gynecology with Breast Center, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humbold-Univeristät zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ben H. Park
- Vanderbilt University Ingraham Cancer Center, Nashville, TN, USA
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh PA, USA
| | - Jennifer M. Atkinson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
27
|
Epigenetic Factors as Etiological Agents, Diagnostic Markers, and Therapeutic Targets for Luminal Breast Cancer. Biomedicines 2022; 10:biomedicines10040748. [PMID: 35453496 PMCID: PMC9031900 DOI: 10.3390/biomedicines10040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Luminal breast cancer, an etiologically heterogeneous disease, is characterized by high steroid hormone receptor activity and aberrant gene expression profiles. Endocrine therapy and chemotherapy are promising therapeutic approaches to mitigate breast cancer proliferation and recurrence. However, the treatment of therapy-resistant breast cancer is a major challenge. Recent studies on breast cancer etiology have revealed the critical roles of epigenetic factors in luminal breast cancer tumorigenesis and drug resistance. Tumorigenic epigenetic factor-induced aberrant chromatin dynamics dysregulate the onset of gene expression and consequently promote tumorigenesis and metastasis. Epigenetic dysregulation, a type of somatic mutation, is a high-risk factor for breast cancer progression and therapy resistance. Therefore, epigenetic modulators alone or in combination with other therapies are potential therapeutic agents for breast cancer. Several clinical trials have analyzed the therapeutic efficacy of potential epi-drugs for breast cancer and reported beneficial clinical outcomes, including inhibition of tumor cell adhesion and invasiveness and mitigation of endocrine therapy resistance. This review focuses on recent findings on the mechanisms of epigenetic factors in the progression of luminal breast cancer. Additionally, recent findings on the potential of epigenetic factors as diagnostic biomarkers and therapeutic targets for breast cancer are discussed.
Collapse
|
28
|
The association between migraine and breast cancer risk: A systematic review and meta-analysis. PLoS One 2022; 17:e0263628. [PMID: 35143585 PMCID: PMC8830615 DOI: 10.1371/journal.pone.0263628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Migraines is likely to play a protective role in the risk of breast cancer. Some studies have shown that there is an inverse relationship between migraine and breast cancer, and some studies have not found an association; therefore, results from previous studies have been inconclusive and we conducted a meta-analysis to evaluate association between migraine and breast cancer. Methods PubMed, EMBASE, Scopus and Web of Science were searched to identify studies on the association between migraine and breast cancer from January 1, 2000 through March 12, 2021. The pooled relative risk (RR) and the 95% confidence intervals (CI) was used to measure this relationship by assuming a random effects meta-analytic model. Results A total of 10 studies were included. Our study revealed that there was statistically significant inverse relationship between migraine and breast cancer in case-control studies 0.68 [95% CI: 0.56, 0.82], but no significant relationship was found in cohort studies 0.98 [95% CI: 0.91, 1.06]. Also, migraine reduced the risk of ductal carcinoma 0.84 [95% CI: 0.73, 0.96], and lobular carcinoma 0.83 [95% CI: 0.73, 0.96]. With respect to ER_PR status no association between migraine and breast cancer was found. We found no evidence of publication bias. Conclusion Our analysis demonstrated a statistically significantly inverse relationship between migraine and total risk of breast cancer only in case-control studies. In summary, cohort studies do not support an inverse association between migraine and incident breast cancer. While in case-control studies, migraine has an inverse association with ductal carcinoma and lobular carcinoma of breast.
Collapse
|
29
|
Pharmacological Properties to Pharmacological Insight of Sesamin in Breast Cancer Treatment: A Literature-Based Review Study. Int J Breast Cancer 2022; 2022:2599689. [PMID: 35223101 PMCID: PMC8872699 DOI: 10.1155/2022/2599689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
The use of dietary phytochemical rather than conventional therapies to treat numerous cancers is now a well-known approach in medical science. Easily available and less toxic dietary phytochemicals present in plants should be introduced in the list of phytochemical-based treatment areas. Sesamin, a natural phytochemical, may be a promising chemopreventive agent aiming to manage breast cancer. In this study, we discussed the pharmacological properties of sesamin that determine its therapeutics opportunity to be used in breast cancer treatment and other diseases. Sesamin is available in medicinal plants, especially in Sesamum indicum, and is easily metabolized by the liver. To better understand the antibreast cancer consequence of sesamin, we postulate some putative pathways related to the antibreast cancer mechanism: (1) regulation of estrogen receptor (ER-α and ER-β) activities, (2) suppressing programmed death-ligand 1 (PD-L1) overexpression, (3) growth factor receptor inhibition, and (4) some tyrosine kinase pathways. Targeting these pathways, sesamin can modulate cell proliferation, cell cycle arrest, cell growth and viability, metastasis, angiogenesis, apoptosis, and oncogene inactivation in various in vitro and animal models. Although the actual tumor intrinsic signaling mechanism targeted by sesamin in cancer treatment is still unknown, this review summarized that this phytoestrogen suppressed NF-κB, STAT, MAPK, and PIK/AKT signaling pathways and activated some tumor suppressor protein in numerous breast cancer models. Cotreatment with γ-tocotrienol, conventional drugs, and several drug carriers systems increased the anticancer potentiality of sesamin. Furthermore, sesamin exhibited promising pharmacokinetics properties with less toxicity in the bodies. Overall, the shreds of evidence highlight that sesamin can be a potent candidate to design drugs against breast cancer. So, like other phytochemicals, sesamin can be consumed for better therapeutic advantages due to having the ability to target a plethora of molecular pathways until clinically trialed standard drugs are not available in pharma markets.
Collapse
|
30
|
Lloyd MR, Wander SA, Hamilton E, Razavi P, Bardia A. Next-generation selective estrogen receptor degraders and other novel endocrine therapies for management of metastatic hormone receptor-positive breast cancer: current and emerging role. Ther Adv Med Oncol 2022; 14:17588359221113694. [PMID: 35923930 PMCID: PMC9340905 DOI: 10.1177/17588359221113694] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Endocrine therapy (ET) is a pivotal strategy to manage early- and advanced-stage estrogen receptor-positive (ER+) breast cancer. In patients with metastatic breast cancer (MBC), progression of disease inevitably occurs due to the presence of acquired or intrinsic resistance mechanisms. ET resistance can be driven by ligand-independent, ER-mediated signaling that promotes tumor proliferation in the absence of hormone, or ER-independent oncogenic signaling that circumvents endocrine regulated transcription pathways. Estrogen receptor 1 (ESR1) mutations induce constitutive ER activity and upregulate ER-dependent gene transcription, provoking resistance to estrogen deprivation and aromatase inhibitor therapy. The role ESR1 mutations play in regulating response to other therapies, such as the selective estrogen receptor degrader (SERD) fulvestrant and the available CDK4/6 inhibitors, is less clear. Novel oral SERDs and other next-generation ETs are in clinical development for ER+ breast cancer as single agents and in combination with established targeted therapies. Recent results from the phase III EMERALD trial demonstrated improved outcomes with the oral SERD elacestrant compared to standard anti-estrogen therapies in ER+ MBC after prior progression on ET, and other agents have shown promise in both the laboratory and early-phase clinical trials. In this review, we will discuss the emerging data related to oral SERDs and other novel ET in managing ER+ breast cancer. As clinical data continue to mature on these next-generation ETs, important questions will emerge related to the optimal sequence of therapeutic options and the genomic and molecular landscape of resistance to these agents.
Collapse
Affiliation(s)
- Maxwell R. Lloyd
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Seth A. Wander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Pedram Razavi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, 10 North Grove Street, Harvard Medical School, Boston, MA 02114-2621, USA
| |
Collapse
|
31
|
Song D, He H, Indukuri R, Huang Z, Stepanauskaite L, Sinha I, Haldosén LA, Zhao C, Williams C. ERα and ERβ Homodimers in the Same Cellular Context Regulate Distinct Transcriptomes and Functions. Front Endocrinol (Lausanne) 2022; 13:930227. [PMID: 35872983 PMCID: PMC9299245 DOI: 10.3389/fendo.2022.930227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The two estrogen receptors ERα and ERβ are nuclear receptors that bind estrogen (E2) and function as ligand-inducible transcription factors. They are homologues and can form dimers with each other and bind to the same estrogen-response element motifs in the DNA. ERα drives breast cancer growth whereas ERβ has been reported to be anti-proliferative. However, they are rarely expressed in the same cells, and it is not fully investigated to which extent their functions are different because of inherent differences or because of different cellular context. To dissect their similarities and differences, we here generated a novel estrogen-dependent cell model where ERα homodimers can be directly compared to ERβ homodimers within the identical cellular context. By using CRISPR-cas9 to delete ERα in breast cancer MCF7 cells with Tet-Off-inducible ERβ expression, we generated MCF7 cells that express ERβ but not ERα. MCF7 (ERβ only) cells exhibited regulation of estrogen-responsive targets in a ligand-dependent manner. We demonstrated that either ER was required for MCF7 proliferation, but while E2 increased proliferation via ERα, it reduced proliferation through a G2/M arrest via ERβ. The two ERs also impacted migration differently. In absence of ligand, ERβ increased migration, but upon E2 treatment, ERβ reduced migration. E2 via ERα, on the other hand, had no significant impact on migration. RNA sequencing revealed that E2 regulated a transcriptome of around 800 genes via each receptor, but over half were specific for either ERα or ERβ (417 and 503 genes, respectively). Functional gene ontology enrichment analysis reinforced that E2 regulated cell proliferation in opposite directions depending on the ER, and that ERβ specifically impacted extracellular matrix organization. We corroborated that ERβ bound to cis-regulatory chromatin of its unique proposed migration-related direct targets ANXA9 and TFAP2C. In conclusion, we demonstrate that within the same cellular context, the two ERs regulate cell proliferation in the opposite manner, impact migration differently, and each receptor also regulates a distinct set of target genes in response to E2. The developed cell model provides a novel and valuable resource to further complement the mechanistic understanding of the two different ER isoforms.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Huan He
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Public Health, Jilin University, Changchun, China
| | - Rajitha Indukuri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaite
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Indranil Sinha
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Arne Haldosén
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
- *Correspondence: Cecilia Williams,
| |
Collapse
|
32
|
Wang P, Sun Z, Zhang Z, Yin Q. Immune response pathways enriched in breast cancer samples with brain metastasis. Gland Surg 2021; 10:3334-3341. [PMID: 35070893 PMCID: PMC8749083 DOI: 10.21037/gs-21-745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 04/06/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most common form of cancer in women. BC brain metastasis (BM) is associated with poor prognosis, especially for Triple negative breast cancer (TNBC). However, the driver genes of this clinical characteristic are poorly understood. METHODS This study conducted a transcriptome-wide analysis of gene expression levels in BCBM samples from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. Clinical data and gene expression matrix of TNBC samples were collected. Differential analysis and functional enrichment of metastasis vs. non metastasis data samples were conducted. Genes associated with overall survival and BM event was scanned. RESULTS Up-regulation in 120 genes and down-regulation in 56 genes were found in TNBC metastasis data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) clustering using expression alternated genes showed unique immune-gene enrichment in BM samples. Immune response category GO:000695 was found as the most significant term associated with metastasis event. KEGG pathways including cytokine pathways and Primary immunodeficiency were significantly changed in metastasis samples. ESR1 and FYB2 genes expression changes were found to be linked to survival or BM events. CONCLUSIONS Our results suggest that data-mining on the immune microenvironment of BM might be useful in future study.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zengfeng Sun
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhen Zhang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Yin
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
33
|
Saatci O, Huynh-Dam KT, Sahin O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J Mol Med (Berl) 2021; 99:1691-1710. [PMID: 34623477 PMCID: PMC8611518 DOI: 10.1007/s00109-021-02136-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
Estrogen receptor-positive (ER +) breast cancer accounts for approximately 75% of all breast cancers. Endocrine therapies, including selective ER modulators (SERMs), aromatase inhibitors (AIs), and selective ER down-regulators (SERDs) provide substantial clinical benefit by reducing the risk of disease recurrence and mortality. However, resistance to endocrine therapies represents a major challenge, limiting the success of ER + breast cancer treatment. Mechanisms of endocrine resistance involve alterations in ER signaling via modulation of ER (e.g., ER downregulation, ESR1 mutations or fusions); alterations in ER coactivators/corepressors, transcription factors (TFs), nuclear receptors and epigenetic modulators; regulation of signaling pathways; modulation of cell cycle regulators; stress signaling; and alterations in tumor microenvironment, nutrient stress, and metabolic regulation. Current therapeutic strategies to improve outcome of endocrine-resistant patients in clinics include inhibitors against mechanistic target of rapamycin (mTOR), cyclin-dependent kinase (CDK) 4/6, and the phosphoinositide 3-kinase (PI3K) subunit, p110α. Preclinical studies reveal novel therapeutic targets, some of which are currently tested in clinical trials as single agents or in combination with endocrine therapies, such as ER partial agonists, ER proteolysis targeting chimeras (PROTACs), next-generation SERDs, AKT inhibitors, epidermal growth factor receptor 1 and 2 (EGFR/HER2) dual inhibitors, HER2 targeting antibody-drug conjugates (ADCs) and histone deacetylase (HDAC) inhibitors. In this review, we summarize the established and emerging mechanisms of endocrine resistance, alterations during metastatic recurrence, and discuss the approved therapies and ongoing clinical trials testing the combination of novel targeted therapies with endocrine therapy in endocrine-resistant ER + breast cancer patients.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA.
| |
Collapse
|
34
|
Scherer SD, Riggio AI, Haroun F, DeRose YS, Ekiz HA, Fujita M, Toner J, Zhao L, Li Z, Oesterreich S, Samatar AA, Welm AL. An immune-humanized patient-derived xenograft model of estrogen-independent, hormone receptor positive metastatic breast cancer. Breast Cancer Res 2021; 23:100. [PMID: 34717714 PMCID: PMC8556932 DOI: 10.1186/s13058-021-01476-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metastatic breast cancer (MBC) is incurable, with a 5-year survival rate of 28%. In the USA, more than 42,000 patients die from MBC every year. The most common type of breast cancer is estrogen receptor-positive (ER+), and more patients die from ER+ breast cancer than from any other subtype. ER+ tumors can be successfully treated with hormone therapy, but many tumors acquire endocrine resistance, at which point treatment options are limited. There is an urgent need for model systems that better represent human ER+ MBC in vivo, where tumors can metastasize. Patient-derived xenografts (PDX) made from MBC spontaneously metastasize, but the immunodeficient host is a caveat, given the known role of the immune system in tumor progression and response to therapy. Thus, we attempted to develop an immune-humanized PDX model of ER+ MBC. METHODS NSG-SGM3 mice were immune-humanized with CD34+ hematopoietic stem cells, followed by engraftment of human ER+ endocrine resistant MBC tumor fragments. Strategies for exogenous estrogen supplementation were compared, and immune-humanization in blood, bone marrow, spleen, and tumors was assessed by flow cytometry and tissue immunostaining. Characterization of the new model includes assessment of the human tumor microenvironment performed by immunostaining. RESULTS We describe the development of an immune-humanized PDX model of estrogen-independent endocrine resistant ER+ MBC. Importantly, our model harbors a naturally occurring ESR1 mutation, and immune-humanization recapitulates the lymphocyte-excluded and myeloid-rich tumor microenvironment of human ER+ breast tumors. CONCLUSION This model sets the stage for development of other clinically relevant models of human breast cancer and should allow future studies on mechanisms of endocrine resistance and tumor-immune interactions in an immune-humanized in vivo setting.
Collapse
Affiliation(s)
- Sandra D Scherer
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Alessandra I Riggio
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Fadi Haroun
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Yoko S DeRose
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - H Atakan Ekiz
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Maihi Fujita
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Jennifer Toner
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Ling Zhao
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Zheqi Li
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Ahmed A Samatar
- Zentalis Pharmaceuticals, Inc., 10835 Road to the Cure, Suite 205, San Diego, CA, 92121, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA.
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
35
|
Brett JO, Spring LM, Bardia A, Wander SA. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res 2021; 23:85. [PMID: 34392831 PMCID: PMC8365900 DOI: 10.1186/s13058-021-01462-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
In metastatic hormone receptor-positive breast cancer, ESR1 mutations are a common cause of acquired resistance to the backbone of therapy, estrogen deprivation by aromatase inhibition. How these mutations affect tumor sensitivity to established and novel therapies are active areas of research. These therapies include estrogen receptor-targeting agents, such as selective estrogen receptor modulators, covalent antagonists, and degraders (including tamoxifen, fulvestrant, and novel agents), and combination therapies, such as endocrine therapy plus CDK4/6, PI3K, or mTORC1 inhibition. In this review, we summarize existing knowledge surrounding the mechanisms of action of ESR1 mutations and roles in resistance to aromatase inhibition. We then analyze the recent literature on how ESR1 mutations affect outcomes in estrogen receptor-targeting and combination therapies. For estrogen receptor-targeting therapies such as tamoxifen and fulvestrant, ESR1 mutations cause relative resistance in vitro but do not clearly lead to resistance in patients, making novel agents in this category promising. Regarding combination therapies, ESR1 mutations nullify any aromatase inhibitor component of the combination. Thus, combinations using endocrine alternatives to aromatase inhibition, or combinations where the non-endocrine component is efficacious as monotherapy, are still effective against ESR1 mutations. These results emphasize the importance of investigating combinatorial resistance, challenging as these efforts are. We also discuss future directions and open questions, such as studying the differences among distinct ESR1 mutations, asking how to adjust clinical decisions based on molecular surveillance testing, and developing novel therapies that are effective against ESR1 mutations.
Collapse
Affiliation(s)
- Jamie O Brett
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura M Spring
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA
| | - Aditya Bardia
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA
| | - Seth A Wander
- Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
36
|
Hermida-Prado F, Jeselsohn R. The ESR1 Mutations: From Bedside to Bench to Bedside. Cancer Res 2021; 81:537-538. [PMID: 33526469 DOI: 10.1158/0008-5472.can-20-4037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
The ESR1 ligand-binding mutations were unveiled a number of years ago and are the most common genetic mechanism of acquired resistance to endocrine treatment, particularly, to aromatase inhibitors. The discovery of these mutations was enabled after advancements in sequencing technologies and when metastatic tissue samples were interrogated. The ESR1 ligand-binding domain mutations are activating mutations that lead to constitutive ligand-independent activity, which explains the emergence of these mutations under the selective pressure of aromatase inhibitors. Arnesen and colleagues have generated new models of the ESR1 mutations using CRISPR technology to generate single-cell-derived clones in which the ESR1 ligand-binding mutations were "knocked-in" and expressed under the endogenous promoter of estrogen receptor. The authors have extensively characterized these models and have shed new light on the functional consequences ESR1 mutations.See related article by Arnesen et al., p. 539.
Collapse
Affiliation(s)
- Francisco Hermida-Prado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Williams MM, Spoelstra NS, Arnesen S, O'Neill KI, Christenson JL, Reese J, Torkko KC, Goodspeed A, Rosas E, Hanamura T, Sams SB, Li Z, Oesterreich S, Riggins RB, Jacobsen BM, Elias A, Gertz J, Richer JK. Steroid Hormone Receptor and Infiltrating Immune Cell Status Reveals Therapeutic Vulnerabilities of ESR1-Mutant Breast Cancer. Cancer Res 2020; 81:732-746. [PMID: 33184106 DOI: 10.1158/0008-5472.can-20-1200] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Mutations in ESR1 that confer constitutive estrogen receptor alpha (ER) activity in the absence of ligand are acquired by ≥40% of metastatic breast cancers (MBC) resistant to adjuvant aromatase inhibitor (AI) therapy. To identify targetable vulnerabilities in MBC, we examined steroid hormone receptors and tumor-infiltrating immune cells in metastatic lesions with or without ER mutations. ER and progesterone receptor (PR) were significantly lower in metastases with wild-type (WT) ER compared with those with mutant ER, suggesting that metastases that evade AI therapy by mechanism(s) other than acquiring ER mutations lose dependency on ER and PR. Metastases with mutant ER had significantly higher T regulatory and Th cells, total macrophages, and programmed death ligand-1 (PD-L1)-positive immune-suppressive macrophages than those with WT ER. Breast cancer cells with CRISPR-Cas9-edited ER (D538G, Y537S, or WT) and patient-derived xenografts harboring mutant or WT ER revealed genes and proteins elevated in mutant ER cells, including androgen receptor (AR), chitinase-3-like protein 1 (CHI3L1), and IFN-stimulated genes (ISG). Targeting these proteins blunted the selective advantage of ER-mutant tumor cells to survive estrogen deprivation, anchorage independence, and invasion. Thus, patients with mutant ER MBC might respond to standard-of-care fulvestrant or other selective ER degraders when combined with AR or CHI3L1 inhibition, perhaps with the addition of immunotherapy. SIGNIFICANCE: Targetable alterations in MBC, including AR, CHI3L1, and ISG, arise following estrogen-deprivation, and ER-mutant metastases may respond to immunotherapies due to elevated PD-L1+ macrophages.See related article by Arnesen et al., p. 539.
Collapse
Affiliation(s)
- Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kathleen I O'Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jordan Reese
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen C Torkko
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Goodspeed
- Department of Pharmacology and University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emmanuel Rosas
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Toru Hanamura
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zheqi Li
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca B Riggins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|