1
|
Hushmandi K, Klionsky DJ, Aref AR, Bonyadi M, Reiter RJ, Nabavi N, Salimimoghadam S, Saadat SH. Ferroptosis contributes to the progression of female-specific neoplasms, from breast cancer to gynecological malignancies in a manner regulated by non-coding RNAs: Mechanistic implications. Noncoding RNA Res 2024; 9:1159-1177. [PMID: 39022677 PMCID: PMC11250880 DOI: 10.1016/j.ncrna.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non-coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as therapeutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further investigation. The current review comprehensively highlights ferroptosis and its association with non-coding RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and even block the expansion and development of these tumors.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhao L, Yang H, Wang Y, Yang S, Jiang Q, Tan J, Zhao X, Zi D. STUB1 suppresses paclitaxel resistance in ovarian cancer through mediating HOXB3 ubiquitination to inhibit PARK7 expression. Commun Biol 2024; 7:1439. [PMID: 39501077 PMCID: PMC11538469 DOI: 10.1038/s42003-024-07127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Paclitaxel (PTX) is a first-line drug for ovarian cancer (OC) treatment. However, the regulatory mechanism of STUB1 on ferroptosis and PTX resistance in OC remains unclear. Genes and proteins levels were evaluated by RT-qPCR, western blot and IHC. Cell viability and proliferation were measured by CCK-8 and clone formation. The changes of mitochondrial morphology were observed under a transmission electron microscope (TEM). Reactive oxygen species (ROS), iron, malondialdehyde (MDA) and glutathione (GSH) were measured using suitable kits. The interactions among STUB1, HOXB3 and PARK7 were validated using Co-IP, and dual luciferase reporter assay. Our study found that STUB1 was decreased and PARK7 was increased in tumor tissue, especially from chemotherapy resistant ovarian cancer tissue and resistant OC cells. STUB1 overexpression or PARK7 silencing suppressed cell growth and promoted ferroptosis in PTX-resistant OC cells, which was reversed by HOXB3 overexpression. Mechanistically, STUB1 mediated ubiquitination of HOXB3 to inhibit HOXB3 expression, and HOXB3 promoted the transcription of PARK7 by binding to the promoter region of PARK7. Furthermore, STUB1 overexpression or PARK7 silencing suppressed tumor formation in nude mice. In short, STUB1 promoted ferroptosis through regulating HOXB3/PARK7 axis, thereby suppressing chemotherapy resistance in OC.
Collapse
Affiliation(s)
- Laigang Zhao
- Department of gynecology and obstetrics, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550004, Guizhou Province, P.R. China
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - HanLin Yang
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
- Department of Gynecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yuanmei Wang
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
- Department of Gynecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Shuang Yang
- Department of oncology, Cangxi People's Hospital, Sichuan, 628400, China
| | - Qisi Jiang
- School Hospital of Yangtze Normal University, Chongqing, 408100, China
| | - Jun Tan
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Xing Zhao
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, 550004, China
| | - Dan Zi
- Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China.
- Department of Gynecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
3
|
Liu Z, Liu C, Fan C, Li R, Zhang S, Liu J, Li B, Zhang S, Guo L, Wang X, Qi Z, Shen Y. E3 ubiquitin ligase DTX2 fosters ferroptosis resistance via suppressing NCOA4-mediated ferritinophagy in non-small cell lung cancer. Drug Resist Updat 2024; 77:101154. [PMID: 39366066 DOI: 10.1016/j.drup.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Non-small cell lung cancer (NSCLC) remains the foremost contributor to cancer-related fatalities globally, with limited effective therapeutic modalities. Recent research has shed light on the role of ferroptosis in various types of cancers, offering a potential avenue for improving cancer therapy. Herein, we identified E3 ubiquitin ligase deltex 2 (DTX2) as a potential therapeutic target candidate implicated in promoting NSCLC cell growth by inhibiting ferroptosis. Our investigation revealed a significant upregulation of DTX2 in NSCLC cells and tissues, which was correlated with poor prognosis. Downregulation of DTX2 suppressed NSCLC cell growth both in vitro and in vivo, while its overexpression accelerated cell proliferation. Moreover, knockdown of DTX2 promoted ferroptosis in NSCLC cells, which was mitigated by DTX2 overexpression. Mechanistically, we uncovered that DTX2 binds to nuclear receptor coactivator 4 (NCOA4), facilitating its ubiquitination and degradation via the K48 chain, which subsequently dampens NCOA4-driven ferritinophagy and ferroptosis in NSCLC cells. Notably, DTX2 knockdown promotes cisplatin-induced ferroptosis and overcomes drug resistance of NSCLC cells. These findings underscore the critical role of DTX2 in regulating ferroptosis and NCOA4-mediated ferritinophagy, suggesting its potential as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhuang Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin Medical University, Tianjin 300203, China
| | - Chang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Caihong Fan
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Runze Li
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Shiqi Zhang
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Jia Liu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Bo Li
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lihong Guo
- Department of Gastroenterology, Shengli Oilfield Central Hospital 257000, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin Medical University, Tianjin 300203, China.
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300000, China; Department of Gastroenterology, Shengli Oilfield Central Hospital 257000, China; The First Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University 832000, China.
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
4
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Zhou X, Lin L. Mechanisms and therapeutic target of anti-tumour treatment-related Ferroptosis: How to improve cancer therapy? Biomed Pharmacother 2024; 179:117323. [PMID: 39208665 DOI: 10.1016/j.biopha.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, increased attention has been focused on the regulatory mechanism and potential clinical application of ferroptosis in cancer cells, especially therapy-related ferroptosis. However, the mechanism of treatment-related ferroptosis and the application prospects and strategies for future treatment still require further clarification. This review highlights the molecular relationships between different clinical antitumour drugs, including commonly used chemotherapy drugs, radiation therapy and vitamins, and ferroptosis. This review also proposes strategies for future treatments that involve ferroptosis, with an aim to develop a new strategy for the transformative potential of the emerging field of ferroptosis to improve cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Chen S, Yang G, Shi Q, Wan N, Lin R, Wang L, Hu X, Zhuang X, Yu L, Sui M. Frizzled 6 endows high-grade serous ovarian cancer with stem-like properties and chemoresistance. Mol Carcinog 2024; 63:2001-2012. [PMID: 39129468 DOI: 10.1002/mc.23789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
Stem-like properties contribute to tumor growth, metastasis, and chemoresistance. High-grade serous ovarian cancer (HGSOC) exhibits a very aggressive phenotype characterized by extensive metastasis, rapid progression, and therapy resistance. Frizzled 6 (FZD6) is overexpressed in HGSOC, and higher levels of FZD6 have been associated with shorter survival times in patients with HGSOC. Functionally, FZD6 promotes HGSOC growth and peritoneal metastasis. It endues HGSOC cells with stem-like properties by modulating POU5F1, ALDH1, and EPCAM. It can also desensitize HGSOC cells to certain chemical drugs. As a putative ligand for FZD6, WNT7B is also implicated in cell proliferation, stem-like properties, invasion and migration, and chemoresistance. SMAD7 is a downstream component of FZD6 signaling that is thought to mediate FZD6-associated phenotypes, at least in part. Therefore, FZD6/WNT7B-SMAD7 can be considered a tumor-promoting signaling pathway in HGSOC that may be responsible for tumor growth, peritoneal metastasis, and chemoresistance.
Collapse
Affiliation(s)
- Shaorong Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qirong Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ningning Wan
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ruyin Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lianhua Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xinxin Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xuanxuan Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ming Sui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Croft W, Pounds R, Jeevan D, Singh K, Balega J, Sundar S, Williams A, Ganesan R, Kehoe S, Ott S, Zuo J, Yap J, Moss P. The chromatin landscape of high-grade serous ovarian cancer metastasis identifies regulatory drivers in post-chemotherapy residual tumour cells. Commun Biol 2024; 7:1211. [PMID: 39341888 PMCID: PMC11438996 DOI: 10.1038/s42003-024-06909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Disease recurrence following chemotherapy is a major clinical challenge in ovarian cancer (OC), but little is known regarding how the tumour epigenome regulates transcriptional programs underpinning chemoresistance. We determine the single cell chromatin accessibility landscape of omental OC metastasis from treatment-naïve and neoadjuvant chemotherapy-treated patients and define the chromatin accessibility profiles of epithelial, fibroblast, myeloid and lymphoid cells. Epithelial tumour cells display open chromatin regions enriched with motifs for the oncogenic transcription factors MEIS and PBX. Post chemotherapy microenvironments show profound tumour heterogeneity and selection for cells with accessible chromatin enriched for TP53, TP63, TWIST1 and resistance-pathway-activating transcription factor binding motifs. An OC chemoresistant tumour subpopulation known to be present prior to treatment, and characterised by stress-associated gene expression, is enriched post chemotherapy. Nuclear receptors RORa, NR2F6 and HNF4G are uncovered as candidate transcriptional drivers of these cells whilst closure of binding sites for E2F2 and E2F4 indicate post-treated tumour having low proliferative capacity. Delineation of the gene regulatory landscape of ovarian cancer cells surviving chemotherapy treatment therefore reveals potential core transcriptional regulators of chemoresistance, suggesting novel therapeutic targets for improving clinical outcome.
Collapse
Affiliation(s)
- W Croft
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| | - R Pounds
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - D Jeevan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - K Singh
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - J Balega
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - S Sundar
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - A Williams
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - R Ganesan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - S Kehoe
- Department of Gynaecological Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S Ott
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - J Zuo
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - J Yap
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - P Moss
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK.
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK.
| |
Collapse
|
8
|
Wei Y, Xu Y, Sun Q, Hong Y, Liang S, Jiang H, Zhang X, Zhang S, Chen Q. Targeting ferroptosis opens new avenues in gliomas. Int J Biol Sci 2024; 20:4674-4690. [PMID: 39309434 PMCID: PMC11414377 DOI: 10.7150/ijbs.96476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Gliomas are one of the most challenging tumors to treat due to their malignant phenotype, brain parenchymal infiltration, intratumoral heterogeneity, and immunosuppressive microenvironment, resulting in a high recurrence rate and dismal five-year survival rate. The current standard therapies, including maximum tumor resection, chemotherapy with temozolomide, and radiotherapy, have exhibited limited efficacy, which is caused partially by the resistance of tumor cell death. Recent studies have revealed that ferroptosis, a newly defined programmed cell death (PCD), plays a crucial role in the occurrence and progression of gliomas and significantly affects the efficacy of various treatments, representing a promising therapeutic strategy. In this review, we provide a comprehensive overview of the latest progress in ferroptosis, its involvement and regulation in the pathophysiological process of gliomas, various treatment hotspots, the existing obstacles, and future directions worth investigating. Our review sheds light on providing novel insights into manipulating ferroptosis to provide potential targets and strategies of glioma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
9
|
Miras I, Estévez-García P, Muñoz-Galván S. Clinical and molecular features of platinum resistance in ovarian cancer. Crit Rev Oncol Hematol 2024; 201:104434. [PMID: 38960218 DOI: 10.1016/j.critrevonc.2024.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Ovarian cancer is the most lethal of all the gynecological tumors despite remarkable advances in our understanding of its molecular biology. The cornerstone treatment remains cytoreductive surgery followed by platinum-based chemotherapy. Recently, the addition of targeted therapies, such as PARP inhibitors, as first-line maintenance has led to outstanding improvements, mainly in BRCA mutated and homologous recombination deficient tumors. However, a significant proportion of patients will experience recurrence, primarily due to platinum resistance, which ultimately result in fatality. Among these patients, primary platinum-resistant have a particularly dismal prognosis due to their low response to current available therapies, historical exclusion from clinical trials, and the absence of validated biomarkers. In this review, we discuss the concept of platinum resistance in ovarian cancer, the clinical and molecular characteristics of this resistance, and the current and new treatment options for these patients.
Collapse
Affiliation(s)
- Isabel Miras
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; Medical Oncology Department. Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Purificación Estévez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; Medical Oncology Department. Hospital Universitario Virgen del Rocío, Seville, Spain; CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Xu S, Liu Y, Yang S, Fei W, Qin J, Lu W, Xu J. FXN targeting induces cell death in ovarian cancer stem-like cells through PRDX3-Mediated oxidative stress. iScience 2024; 27:110506. [PMID: 39184439 PMCID: PMC11342215 DOI: 10.1016/j.isci.2024.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer stem cells (OCSCs) significantly impact the prognosis, chemoresistance, and treatment outcomes in OC. While ferroptosis has been proven effective against OCSCs, the intricate relationship between ferroptosis and OCSCs remains incompletely understood. Here, we enriched ovarian cancer stem-like cells (OCSLCs) through mammosphere culture, as an OCSC model. OCSLCs displayed heightened ferroptosis susceptibility, correlating with elevated FXN levels compared to non-stem OC cells. FXN has recently emerged as a potential regulator in ferroptosis. FXN knockdown diminished stemness marker nanog, sphere-forming ability, increased reactive oxygen species (ROS) generation, and attenuated OCSLCs viability. FXN overexpression exacerbated ferroptosis resistance and reduced RSL3-induced cell death. FXN knockdown impeded OCSLC xenograft tumor growth and exacerbated the degeneration of peroxiredoxin 3 (PRDX3), a mitochondrial antioxidant protein participates in oxidative stress. Thus, elevated FXN in OCSLCs suppresses ROS accumulation, fostering ferroptosis resistance, and regulates the antioxidant protein PRDX3. FXN emerges as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Yuwan Liu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shizhou Yang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Jiale Qin
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
11
|
Guo K, Lu M, Bi J, Yao T, Gao J, Ren F, Zhu L. Ferroptosis: mechanism, immunotherapy and role in ovarian cancer. Front Immunol 2024; 15:1410018. [PMID: 39192972 PMCID: PMC11347334 DOI: 10.3389/fimmu.2024.1410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Ovarian cancer is currently the second most common malignant tumor among gynecological cancers worldwide, primarily due to challenges in early diagnosis, high recurrence rates, and resistance to existing treatments. Current therapeutic options are inadequate for addressing the needs of ovarian cancer patients. Ferroptosis, a novel form of regulated cell death with demonstrated tumor-suppressive properties, has gained increasing attention in ovarian malignancy research. A growing body of evidence suggests that ferroptosis plays a significant role in the onset, progression, and incidence of ovarian cancer. Additionally, it has been found that immunotherapy, an emerging frontier in tumor treatment, synergizes with ferroptosis in the context of ovarian cancer. Consequently, ferroptosis is likely to become a critical target in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ke Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianlei Bi
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tianyu Yao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Kang H, Meng F, Liu F, Xie M, Lai H, Li P, Zhang X. Nanomedicines Targeting Ferroptosis to Treat Stress-Related Diseases. Int J Nanomedicine 2024; 19:8189-8210. [PMID: 39157732 PMCID: PMC11328858 DOI: 10.2147/ijn.s476948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron-dependent lethal lipid peroxidation, is implicated in various stress-related diseases like neurodegeneration, vasculopathy, and metabolic disturbance. Stress-related diseases encompass widespread medical disorders that are influenced or exacerbated by stress. These stressors can manifest in various organ or tissue systems and have significant implications for human overall health. Understanding ferroptosis in these diseases offers insights for therapeutic strategies targeting relevant pathways. This review explores ferroptosis mechanisms, its role in pathophysiology, its connection to stress-related diseases, and the potential of ferroptosis-targeted nanomedicines in treating conditions. This monograph also delves into the engineering of ferroptosis-targeted nanomedicines for tackling stress-related diseases, including cancer, cardia-cerebrovascular, neurodegenerative, metabolic and inflammatory diseases. Anyhow, nanotherapy targeting ferroptosis holds promise by both promoting and suppressing ferroptosis for managing stress-related diseases.
Collapse
Affiliation(s)
- Hao Kang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Anhui College of Traditional Chinese Medicine, Wuhu, People’s Republic of China
- Wuhu Modern Technology Research and Development Center of Chinese Medicine and Functional Food, Wuhu, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Fengjie Liu
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Mengjie Xie
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Pengfei Li
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
Liu Z, Yu K, Chen K, Liu J, Dai K, Zhao P. HAS2 facilitates glioma cell malignancy and suppresses ferroptosis in an FZD7-dependent manner. Cancer Sci 2024; 115:2602-2616. [PMID: 38816349 PMCID: PMC11309948 DOI: 10.1111/cas.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system, and it is crucial to uncover the factors that influence prognosis. In this study, we utilized Mfuzz to identify a gene set that showed a negative correlation with overall survival in patients with glioma. Gene Ontology (GO) enrichment analyses were then undertaken to gain insights into the functional characteristics and pathways associated with these genes. The expression distribution of Hyaluronan Synthase 2 (HAS2) was explored across multiple datasets, revealing its expression patterns. In vitro and in vivo experiments were carried out through gene knockdown and overexpression to validate the functionality of HAS2. Potential upstream transcription factors of HAS2 were predicted using transcriptional regulatory databases, and these predictions were experimentally validated using ChIP-PCR and dual-luciferase reporter gene assays. The results showed that elevated expression of HAS2 in glioma indicates poor prognosis. HAS2 was found to play a role in activating an antiferroptosis pathway in glioma cells. Inhibiting HAS2 significantly increased cellular sensitivity to ferroptosis-inducing agents. Finally, we determined that the oncogenic effect of HAS2 is mediated by the key receptor of the WNT pathway, FZD7.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kuo Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kaile Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinlai Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Neurosurgery, Yang ZhongJiangsu Province People's HospitalYangzhouChina
| | - Kexiang Dai
- Department of NeurosugeryEmergency General HospitalBeijingChina
| | - Peng Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
14
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, Liao HP, Liu ZM, Pang XC, Li TC. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin 2024; 45:1556-1570. [PMID: 38632318 PMCID: PMC11272778 DOI: 10.1038/s41401-024-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Jiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Si-Yu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiang-Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Lun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chu-Xiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Yan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yu-Song Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua-Peng Liao
- Yizhang County People's Hospital, Chenzhou, 424200, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| | - Tian-Cheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100034, China.
| |
Collapse
|
15
|
Kapper C, Oppelt P, Arbeithuber B, Gyunesh AA, Vilusic I, Stelzl P, Rezk-Füreder M. Targeting ferroptosis in ovarian cancer: Novel strategies to overcome chemotherapy resistance. Life Sci 2024; 349:122720. [PMID: 38762066 DOI: 10.1016/j.lfs.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
AIMS This review investigates the role of ferroptosis in combating chemotherapy resistance in ovarian cancer, with a focus on its underlying mechanisms and therapeutic implications. MAIN METHODS A database search was conducted up to December 2023 using PubMed, Scopus, Google Scholar, Web of Science, and the Cochrane Library. The keywords "ovarian cancer," "ferroptosis," "cisplatin," and "cisplatin resistance" were employed. We included studies that offered original data on the application of ferroptosis in platinum-based chemotherapy, focusing on both in-vitro and in-vivo research models. KEY FINDINGS Our review reveals that ferroptosis significantly influences drug resistance in ovarian cancer. It investigates the existing studies to understand the role of ferroptosis in platinum resistance and explores its underlying mechanisms and assesses potential therapeutic strategies that uses ferroptosis to improve outcomes. The findings underscore the importance of ferroptosis in enhancing the effectiveness of platinum-based treatments and improving patient prognosis. SIGNIFICANCE The potential of ferroptosis induction to develop novel therapeutic strategies against ovarian cancer, especially in cisplatin-resistant cases, is promising. The preliminary nature of these findings highlights the necessity for further research to bring these insights into clinical practice. This would not only improve treatment outcomes and prognosis but also encourage ongoing studies into ferroptosis as a viable therapeutic approach.
Collapse
Affiliation(s)
- Celine Kapper
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Peter Oppelt
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, Austria
| | - Barbara Arbeithuber
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Ayberk Alp Gyunesh
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Ivona Vilusic
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Patrick Stelzl
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, Austria
| | - Marlene Rezk-Füreder
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
| |
Collapse
|
16
|
Xu J, Zheng B, Wang W, Zhou S. Ferroptosis: a novel strategy to overcome chemoresistance in gynecological malignancies. Front Cell Dev Biol 2024; 12:1417750. [PMID: 39045454 PMCID: PMC11263176 DOI: 10.3389/fcell.2024.1417750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, distinct from apoptosis, necrosis, and autophagy, and is characterized by altered iron homeostasis, reduced defense against oxidative stress, and increased lipid peroxidation. Extensive research has demonstrated that ferroptosis plays a crucial role in the treatment of gynecological malignancies, offering new strategies for cancer prevention and therapy. However, chemotherapy resistance poses an urgent challenge, significantly hindering therapeutic efficacy. Increasing evidence suggests that inducing ferroptosis can reverse tumor resistance to chemotherapy. This article reviews the mechanisms of ferroptosis and discusses its potential in reversing chemotherapy resistance in gynecological cancers. We summarized three critical pathways in regulating ferroptosis: the regulation of glutathione peroxidase 4 (GPX4), iron metabolism, and lipid peroxidation pathways, considering their prospects and challenges as strategies to reverse chemotherapy resistance. These studies provide a fresh perspective for future cancer treatment modalities.
Collapse
Affiliation(s)
- Jing Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Wang
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
18
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
19
|
Yin J, Chen J, Hong JH, Huang Y, Xiao R, Liu S, Deng P, Sun Y, Chai KXY, Zeng X, Chan JY, Guan P, Wang Y, Wang P, Tong C, Yu Q, Xia X, Ong CK, Teh BT, Xiong Y, Tan J. 4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer. JCI Insight 2024; 9:e177857. [PMID: 38842940 PMCID: PMC11383183 DOI: 10.1172/jci.insight.177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/05/2024] [Indexed: 08/13/2024] Open
Abstract
Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here, we show that ferroptosis negative regulation signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High-throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor-resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/eIF4E binding protein 1 (4EBP1) signaling promoted solute carrier family 7 member 11 (SLC7A11) protein synthesis, leading to ferroptosis inhibition in MEK inhibitor-resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR/4EBP1 axis to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.
Collapse
Affiliation(s)
- Jiaxin Yin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yulin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shini Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kelila Xin Ye Chai
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, and
| | - Xian Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore
| | - Yali Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chongjie Tong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, A*STAR, Singapore
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, and
- Genome Institute of Singapore, A*STAR, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Ying Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Hainan Academy of Medical Science, Hainan Medical University, Haikou, China
| |
Collapse
|
20
|
Guo W, Wang W, Lei F, Zheng R, Zhao X, Gu Y, Yang M, Tong Y, Wang Y. Angelica sinensis polysaccharide combined with cisplatin reverses cisplatin resistance of ovarian cancer by inducing ferroptosis via regulating GPX4. Biomed Pharmacother 2024; 175:116680. [PMID: 38703506 DOI: 10.1016/j.biopha.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Cisplatin (DDP) resistance poses a significant challenge in the treatment of ovarian cancer. Studies have shown that the combination of certain polysaccharides derived from plants with DDP is an effective approach to overcoming drug resistance in some cancers. Angelica sinensis (Oliv.) Diels has been used for centuries in China to treat gynecological ailments. Numerous studies indicate that Angelica sinensis polysaccharide (ASP), an extract from Angelica sinensis, can inhibit various forms of cancer. However, the impact of ASP on ovarian cancer remains unexplored. Through both in vitro and in vivo experiments, our study revealed the capability of ASP to effectively reversing DDP resistance in cisplatin-resistant ovarian cancer cells, while exhibiting acceptable safety profiles in vivo. To elucidate the mechanism underlying drug resistance reversal, we employed RNA-seq analysis and identified GPX4 as a key gene. Considering the role of GPX4 in ferroptosis, we conducted additional research to explore the effects of combining ASP with DDP on SKOV3/DDP cells. In summary, our findings demonstrate that the combination of ASP and DDP effectively suppresses GPX4 expression in SKOV3/DDP cells, thereby reversing their resistance to DDP.
Collapse
Affiliation(s)
- Weikang Guo
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Wanyue Wang
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar 161006, China
| | - Fei Lei
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Ruxin Zheng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xinyao Zhao
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yuze Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Mengdi Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yunshun Tong
- School of Science, Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yaoxian Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
21
|
Atwani R, Nagare RP, Rogers A, Prasad M, Lazar V, Sandusky G, Tong Y, Pin F, Condello S. Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer. J Exp Clin Cancer Res 2024; 43:156. [PMID: 38822429 PMCID: PMC11143768 DOI: 10.1186/s13046-024-03083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. METHODS TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. RESULTS In response to increased fibronectin secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. CONCLUSIONS This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.
Collapse
Affiliation(s)
- Rula Atwani
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Rohit Pravin Nagare
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Amber Rogers
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mayuri Prasad
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Virginie Lazar
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - George Sandusky
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yan Tong
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fabrizio Pin
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Masoudi M, Moti D, Masoudi R, Auwal A, Hossain MM, Pronoy TUH, Rashel KM, Gopalan V, Islam F. Metabolic adaptations in cancer stem cells: A key to therapy resistance. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167164. [PMID: 38599259 DOI: 10.1016/j.bbadis.2024.167164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that can initiate and sustain tumor growth and cause recurrence and metastasis. CSCs are particularly resistant to conventional therapies compared to their counterparts, owing greatly to their intrinsic metabolic plasticity. Metabolic plasticity allows CSCs to switch between different energy production and usage pathways based on environmental and extrinsic factors, including conditions imposed by conventional cancer therapies. To cope with nutrient deprivation and therapeutic stress, CSCs can transpose between glycolysis and oxidative phosphorylation (OXPHOS) metabolism. The mechanism behind the metabolic pathway switch in CSCs is not fully understood, however, some evidence suggests that the tumor microenvironment (TME) may play an influential role mediated by its release of signals, such as Wnt/β-catenin and Notch pathways, as well as a background of hypoxia. Exploring the factors that promote metabolic plasticity in CSCs offers the possibility of eventually developing therapies that may more effectively eliminate the crucial tumor cell subtype and alter the disease course substantially.
Collapse
Affiliation(s)
- Matthew Masoudi
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Dilpreet Moti
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Raha Masoudi
- Faculty of Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M Matakabbir Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Vinod Gopalan
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
23
|
Wu X, Sun Y, Wei S, Hu H, Yang B. Identification of Potential Ferroptosis Biomarkers and Analysis of Immune Cell Infiltration in Psoriasis Using Machine Learning. Clin Cosmet Investig Dermatol 2024; 17:1281-1295. [PMID: 38835517 PMCID: PMC11149635 DOI: 10.2147/ccid.s457958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Background Ferroptosis is a type of cell death characterized by the accumulation of iron-dependent lethal lipid peroxides, which is associated with various pathophysiological processes. Psoriasis is a chronic autoimmune skin disease accompanied by abnormal immune cell infiltration and excessive production of lipid reactive oxygen species (ROS). Currently, its pathogenesis remains elusive, especially the potential role of ferroptosis in its pathophysiological process. Methods The microarrays GSE13355 (58 psoriatic skin specimens versus 122 healthy skin specimens) and the ferroptosis database were employed to identify the common differentially expressed genes (DEGs) associated with psoriasis and ferroptosis. The functions of common DEGs were investigated through functional enrichment analysis and protein-protein interaction analysis. The potential diagnostic markers for psoriasis among the common DEGs were identified using four machine-learning algorithms. DGIdb was utilized to explore potential therapeutic agents for psoriasis. Additionally, CIBERSORT was employed to investigate immune infiltration in psoriasis. Results A total of 8 common DEGs associated with psoriasis and ferroptosis were identified, which are involved in intercellular signaling and affect pathways of cell response to stress and stimulation. Four machine-learning algorithms were employed to identify poly (ADP-ribose) polymerase 12 (PARP12), frizzled homolog 7 (FZD7), and arachidonate 15-lipoxygenase (ALOX15B) among the eight common DEGs as potential diagnostic markers for psoriasis. A total of 18 drugs targeting the five common DEGs were identified as potential candidates for treating psoriasis. Additionally, significant changes were observed in the immune microenvironment of patients with psoriasis. Conclusion This study has contributed to our enhanced comprehension of ferroptosis-related genes as potential biomarkers for psoriasis diagnosis, as well as the alterations in the immune microenvironment associated with psoriasis. Our findings offer valuable insights into the diagnosis and treatment of psoriasis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Yuzhe Sun
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Shuyi Wei
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Huoyou Hu
- Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
| | - Bin Yang
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
24
|
Holic L. Common skin cancers and their association with other non-cutaneous primary malignancies: a review of the literature. Med Oncol 2024; 41:157. [PMID: 38758457 DOI: 10.1007/s12032-024-02385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
It has long been recognized that a history of skin cancer puts one at risk for additional primary skin cancers. However, more variable data exists for the risk of developing a non-cutaneous primary cancer following a diagnosis of skin cancer. The data are most variable for Basal Cell Carcinoma (BCC), the most common and least aggressive type of skin cancer. While early studies imply that BCC does not impart a larger risk of other primary non-cutaneous cancers, more recent studies with larger populations suggest otherwise. The cancers most significantly associated with BCC are lip, oropharyngeal, and salivary gland cancer. There is also burgeoning evidence to suggest a link between BCC and prostate, breast, and colorectal cancer, but more data are needed to draw a concrete conclusion. Squamous Cell Carcinoma (SCC), the second most common type of skin cancer, has a slightly more defined risk to other non-cutaneous primary malignancies. There is a notable link between SCC and non-Hodgkin's lymphoma (NHL), possibly due to immunosuppression. There is also an increased risk of other cancers derived from squamous epithelium following SCC, including oropharyngeal, lip, and salivary gland cancer. Some studies also suggest an increased risk of respiratory tract cancer following SCC, possibly due to shared risk factors. Melanoma, a more severe type of skin cancer, shows a well-defined risk of additional primary non-cutaneous malignancies. The most significant of these risks include NHL, thyroid cancer, prostate cancer, and breast cancer along with a host of other cancers. Each of these three main skin cancer types has a profile of genetic mutations that have also been linked to non-cutaneous malignancies. In this review, we discuss a selection of these genes to highlight the complex interplay between different tumorigenesis processes.
Collapse
Affiliation(s)
- Lindsay Holic
- Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA.
| |
Collapse
|
25
|
Li SQ, Lv F, Xu WT, Yin YX, Wei HT, Li KZ, Hu BL. lncRNA SNHG4 inhibits ferroptosis by orchestrating miR-150-5p/c-Myb axis in colorectal cancer. Int J Biol Macromol 2024; 268:131961. [PMID: 38692535 DOI: 10.1016/j.ijbiomac.2024.131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/07/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
LncRNAs have shown to regulate ferroptosis in colorectal cancer (CRC), but the mechanism remains largely unknown. This study unveiled the mechanism of SNHG4 underlying ferroptosis in CRC. RNA-seq and RT-PCR assay confirmed SNHG4 was decreased after Erastin treatment in CRC cells. Overexpression of SNHG4 inhibited and silence promoted CRC cells ferroptosis. SNHG4 was positively correlated to c-Myb in CRC tissues and both located in cytoplasm of CRC cells. RIP and RNA pull-down assays verified the interaction between SNHG4 and c-Myb. Silence of c-Myb alleviated the suppressing effect on ferroptosis by SNHG4 in CRC cells. Dual-luciferase reporter assay revealed that SNHG4 sponging miR-150-5p in CRC cells. Overexpression of SNHG4 decreased the miR-150-5p and increased c-Myb expression. c-Myb was a direct target gene of miR-150-5p in CRC cells. Moreover, effect of CDO1 on ferroptosis was regulated transcriptionally by c-Myb, overexpression of c-Myb reduce CDO1 expression and enhance the GPX4 levels. The animal models confirmed that regulatory effect of SNHG4 on miR-150-5p and c-Myb after inducing ferroptosis. We concluded that SNHG4 inhibited Erastin-induce ferroptosis in CRC, this effect is via sponging miR-150-5p to regulate c-Myb expression, and activated CDO1/GPX4 axis. These findings provide insights into the regulatory mechanism of SNHG4 on ferroptosis.
Collapse
Affiliation(s)
- Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Feng Lv
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Wen-Ting Xu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Hao-Tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China.
| |
Collapse
|
26
|
Sang J, Liu CK, Liu J, Luo GC, Zheng WJ, Bai Y, Jiang DY, Pu JN, An S, Xu TR. Jolkinolide B synergistically potentiates the antitumor activity of GPX4 inhibitors via inhibiting TrxR1 in cisplatin-resistant bladder cancer cells. Biochem Pharmacol 2024; 223:116194. [PMID: 38583812 DOI: 10.1016/j.bcp.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.
Collapse
Affiliation(s)
- Jun Sang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chen-Kai Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jue Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guan-Cong Luo
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei-Ji Zheng
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ya Bai
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - De-Yun Jiang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiang-Ni Pu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Su An
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tian-Rui Xu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
27
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
28
|
Bian MM, Xu YM, Zhang L, Yan HZ, Gao JX, Fu GQ, Wang YY, Lü HZ. The beneficial effect of α-lipoic acid on spinal cord injury repair in rats is mediated through inhibition of oxidative stress: A transcriptomic analysis. J Spinal Cord Med 2024:1-14. [PMID: 38647358 DOI: 10.1080/10790268.2024.2342058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Oxidative stress is a crucial factor contributing to the occurrence and development of secondary damage in spinal cord injuries (SCI), ultimately impacting the recovery process. α-lipoic acid (ALA) exhibits potent antioxidant properties, effectively reducing secondary damage and providing neuroprotective benefits. However, the precise mechanism by which ALA plays its antioxidant role remains unknown. METHODS We established a model of moderate spinal cord contusion in rats. Experimental rats were randomly divided into 3 distinct groups: the sham group, the model control group (SCI_Veh), and the ALA treatment group (SCI_ALA). The sham group rats were exposed only to the SC without contusion injury. Rats belonging to SCI_Veh group were not administered any treatment after SCI. Rats of SCI_ALA group were intraperitoneally injected with the corresponding volume of ALA according to body weight for three consecutive days after the surgery. Subsequently, three days after SCI, spinal cord samples were obtained from three groups of rats: the sham group, model control group, and administration group. Thereafter, total RNA was extracted from the samples and the expression of three sets of differential genes was analyzed by transcriptome sequencing technology. Real-time PCR was used to verify the sequencing results. The impact of ALA on oxidative stress in rats following SCI was assessed by measuring their total antioxidant capacity and hydrogen peroxide (H2O2) content. The effects of ALA on rat recovery following SCI was investigated through Beattie and Bresnahan (BBB) score and footprint analysis. RESULTS The findings from the transcriptome sequencing analysis revealed that the model control group had 2975 genes with altered expression levels when compared to the ALA treatment group. Among these genes, 1583 were found to be upregulated while 1392 were down-regulated. Gene ontology (GO) displayed significant enrichment in terms of functionality, specifically in oxidative phosphorylation, oxidoreductase activity, and signaling receptor activity. The Kyoto encyclopedia of genes and genomes (KEGG) pathway was enriched in oxidative phosphorylation, glutathione metabolism and cell cycle. ALA was found to have multiple benefits for rats after SCI, including increasing their antioxidant capacity and reducing H2O2 levels. Additionally, it was effective in improving motor function (such as 7 days after SCI, the BBB score for SCI_ALA was 8.400 ± 0.937 compared to 7.050 ± 1.141 for SCI_Veh) and promoting histological recovery after SCI (The results of HE demonstrated that the percentage of damage area in was 44.002 ± 6.680 in the SCI_ALA and 57.215 ± 3.964 in the SCI_Veh at the center of injury.). The sequence data from this study has been deposited into Sequence Read Archive (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242507). CONCLUSION Overall, the findings of this study confirmed the beneficial effects of ALA on recovery in SCI rats through transcriptome sequencing, behavioral, as well histology analyses.
Collapse
Affiliation(s)
- Ming-Ming Bian
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, People's Republic of China
| | - Yao-Mei Xu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Lin Zhang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, People's Republic of China
| | - Hua-Zheng Yan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Jian-Xiong Gao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, People's Republic of China
| | - Gui-Qiang Fu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, People's Republic of China
| | - Yang-Yang Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, People's Republic of China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, People's Republic of China
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, People's Republic of China
| |
Collapse
|
29
|
Chang Q, Wang P, Zeng Q, Wang X. A review on ferroptosis and photodynamic therapy synergism: Enhancing anticancer treatment. Heliyon 2024; 10:e28942. [PMID: 38601678 PMCID: PMC11004815 DOI: 10.1016/j.heliyon.2024.e28942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death modality, which has showed great potential in anticancer treatment. Photodynamic therapy (PDT) is widely used in clinic as an anticancer therapy. PDT combined with ferroptosis-promoting therapy has been found to be a promising strategy to improve anti-cancer therapy efficacy. Fenton reaction in ferroptosis can provide oxygen for PDT, and PDT can produce reactive oxygen species for Fenton reaction to enhance ferroptosis. In this review, we briefly present the importance of ferroptosis in anticancer treatment, mechanism of ferroptosis, researches on PDT induced ferroptosis, and the mechanism of the synergistic effect of PDT and ferroptosis on cancer killing.
Collapse
Affiliation(s)
- Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
30
|
Wang Y, Calvert AE, Cardenas H, Rink JS, Nahotko D, Qiang W, Ndukwe CE, Chen F, Keathley R, Zhang Y, Cheng J, Thaxton CS, Matei D. Nanoparticle Targeting in Chemo-Resistant Ovarian Cancer Reveals Dual Axis of Therapeutic Vulnerability Involving Cholesterol Uptake and Cell Redox Balance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305212. [PMID: 38263873 PMCID: PMC10987123 DOI: 10.1002/advs.202305212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/18/2023] [Indexed: 01/25/2024]
Abstract
Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Andrea E. Calvert
- Simpson Querrey Institute for BioNanotechnologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Horacio Cardenas
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Jonathon S. Rink
- Division of Hematology/ OncologyDepartment of MedicineFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Dominik Nahotko
- Division of Hematology/ OncologyDepartment of MedicineFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Wenan Qiang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Center for Developmental Therapeutics,Feinberg School of MedicineNorthwestern UniversityEvanstonIL60208USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
| | - C. Estelle Ndukwe
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Fukai Chen
- Department of PhysicsBoston UniversityBostonMA02215USA
| | - Russell Keathley
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Yaqi Zhang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Ji‐Xin Cheng
- Department of PhysicsBoston UniversityBostonMA02215USA
| | - C. Shad Thaxton
- Simpson Querrey Institute for BioNanotechnologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Daniela Matei
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
- Jesse Brown Veteran Affairs Medical CenterChicagoIL60612USA
| |
Collapse
|
31
|
Wang Y, Situ X, Cardenas H, Siu E, Alhunayan SA, Keathley R, Tanner E, Wei JJ, Tan Y, Dessai CVP, Cheng JX, Matei D. Preclinical Evaluation of NTX-301, a Novel DNA Hypomethylating Agent in Ovarian Cancer. Clin Cancer Res 2024; 30:1175-1188. [PMID: 38231483 PMCID: PMC10947827 DOI: 10.1158/1078-0432.ccr-23-2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development. EXPERIMENTAL DESIGN The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy. RESULTS Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts. CONCLUSIONS NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiaolei Situ
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ellie Siu
- Department of Biological Sciences, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL
| | | | - Russell Keathley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL
| | - Edward Tanner
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Yuying Tan
- Department of Physics, Boston University, Boston, MA
| | | | - Ji-Xin Cheng
- Department of Physics, Boston University, Boston, MA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Jesse Brown Veteran Affairs Medical Center, Chicago, IL
| |
Collapse
|
32
|
Atwani R, Rogers A, Nagare R, Prasad M, Lazar V, Sandusky G, Pin F, Condello S. Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer. RESEARCH SQUARE 2024:rs.3.rs-4086737. [PMID: 38559125 PMCID: PMC10980163 DOI: 10.21203/rs.3.rs-4086737/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. Methods TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. Results In response to increased fibronectin (FN) secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and showed a strong correlation with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. Conclusions This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may represent a new therapeutic strategy to eradicate OCSCs and improve patient outcomes.
Collapse
|
33
|
Chen Y, Feng Y, Lin Y, Zhou X, Wang L, Zhou Y, Lin K, Cai L. GSTM3 enhances radiosensitivity of nasopharyngeal carcinoma by promoting radiation-induced ferroptosis through USP14/FASN axis and GPX4. Br J Cancer 2024; 130:755-768. [PMID: 38228715 PMCID: PMC10912431 DOI: 10.1038/s41416-024-02574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Radiotherapy is a critical treatment modality for nasopharyngeal carcinoma (NPC). However, the mechanisms underlying radiation resistance and tumour recurrence in NPC remain incompletely understood. METHODS Oxidised lipids were assessed through targeted metabolomics. Ferroptosis levels were evaluated using cell viability, clonogenic survival, lipid peroxidation, and transmission electron microscopy. We investigated the biological functions of glutathione S-transferase mu 3 (GSTM3) in cell lines and xenograft tumours. Co-immunoprecipitation, mass spectrometry, and immunofluorescence were conducted to explore the molecular mechanisms involving GSTM3. Immunohistochemistry was performed to investigate the clinical characteristics of GSTM3. RESULTS Ionising radiation (IR) promoted lipid peroxidation and induced ferroptosis in NPC cells. GSTM3 was upregulated following IR exposure and correlated with IR-induced ferroptosis, enhancing NPC radiosensitivity in vitro and in vivo. Mechanistically, GSTM3 stabilised ubiquitin-specific peptidase 14 (USP14), thereby inhibiting the ubiquitination and subsequent degradation of fatty acid synthase (FASN). Additionally, GSTM3 interacted with glutathione peroxidase 4 (GPX4) and suppressed GPX4 expression. Combining IR treatment with ferroptosis inducers synergistically improved NPC radiosensitivity and suppressed tumour growth. Notably, a decrease in GSTM3 abundance predicted tumour relapse and poor prognosis. CONCLUSIONS Our findings elucidate the pivotal role of GSTM3 in IR-induced ferroptosis, offering strategies for the treatment of radiation-resistant or recurrent NPC.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yuanyuan Feng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Lingzhi Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yingtong Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Kefan Lin
- First Clinical Medical College, Southern Medical University, 510515, Guangzhou, China
| | - Longmei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
34
|
Zhang H, Chen N, Ding C, Zhang H, Liu D, Liu S. Ferroptosis and EMT resistance in cancer: a comprehensive review of the interplay. Front Oncol 2024; 14:1344290. [PMID: 38469234 PMCID: PMC10926930 DOI: 10.3389/fonc.2024.1344290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Ferroptosis differs from traditional cell death mechanisms like apoptosis, necrosis, and autophagy, primarily due to its reliance on iron metabolism and the loss of glutathione peroxidase activity, leading to lipid peroxidation and cell death. The dysregulation of iron metabolism is a hallmark of various cancers, contributing to tumor progression, metastasis, and notably, drug resistance. The acquisition of mesenchymal characteristics by epithelial cells is known as Epithelial-Mesenchymal Transition (EMT), a biological process intricately linked to cancer development, promoting traits such as invasiveness, metastasis, and resistance to therapeutic interventions. EMT plays a pivotal role in cancer progression and contributes significantly to the complex dynamics of carcinogenesis. Research findings indicate that mesenchymal cancer cells exhibit greater susceptibility to ferroptosis compared to their epithelial counterparts. The induction of ferroptosis becomes more effective in eliminating drug-resistant cancer cells during the process of EMT. The interplay between ferroptosis and EMT, a process where epithelial cells transform into mobile mesenchymal cells, is crucial in understanding cancer progression. EMT is associated with increased cancer metastasis and drug resistance. The review delves into how ferroptosis and EMT influence each other, highlighting the role of key proteins like GPX4, which protects against lipid peroxidation, and its inhibition can induce ferroptosis. Conversely, increased GPX4 expression is linked to heightened resistance to ferroptosis in cancer cells. Moreover, the review discusses the implications of EMT-induced transcription factors such as Snail, Zeb1, and Twist in modulating the sensitivity of tumor cells to ferroptosis, thereby affecting drug resistance and cancer treatment outcomes. Targeting the ferroptosis pathway offers a promising therapeutic strategy, particularly for tumors resistant to conventional treatments. The induction of ferroptosis in these cells could potentially overcome drug resistance. However, translating these findings into clinical practice presents challenges, including understanding the precise mechanisms of ferroptosis induction, identifying predictive biomarkers, and optimizing combination therapies. The review underscores the need for further research to unravel the complex interactions between ferroptosis, EMT, and drug resistance in cancer. This could lead to the development of more effective, targeted cancer treatments, particularly for drug-resistant tumors, offering new hope in cancer therapeutics.
Collapse
Affiliation(s)
- Huiming Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Naifeng Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Chenglong Ding
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Huinan Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Dejiang Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
35
|
Sazonova EV, Yapryntseva MA, Pervushin NV, Tsvetcov RI, Zhivotovsky B, Kopeina GS. Cancer Drug Resistance: Targeting Proliferation or Programmed Cell Death. Cells 2024; 13:388. [PMID: 38474352 DOI: 10.3390/cells13050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The development of resistance to chemotherapy is one of the main problems for effective cancer treatment. Drug resistance may result from disturbances in two important physiological processes-cell proliferation and cell death. Importantly, both processes characterize alterations in cell metabolism, the level of which is often measured using MTT/MTS assays. To examine resistance to chemotherapy, different cancer cell lines are usually used for the in vitro modulation of developing resistance. However, after the creation of resistant cell lines, researchers often have difficulty in starting investigations of the mechanisms of insensitivity. In the first stage, researchers should address the question of whether the drug resistance results from a depression of cell proliferation or an inhibition of cell death. To simplify the choice of research strategy, we have suggested a combination of different approaches which reveal the actual mechanism. This combination includes rapid and high-throughput methods such as the MTS test, the LIVE/DEAD assay, real-time cell metabolic analysis, and Western blotting. To create chemoresistant tumor cells, we used four different cancer cell lines of various origins and utilized the most clinically relevant pulse-selection approach. Applying a set of methodological approaches, we demonstrated that three of them were more capable of modulating proliferation to avoid the cytostatic effects of anti-cancer drugs. At the same time, one of the studied cell lines developed resistance to cell death, overcoming the cytotoxic action.
Collapse
Affiliation(s)
- Elena V Sazonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria A Yapryntseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolay V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman I Tsvetcov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, P.O. Box 210, 17177 Stockholm, Sweden
| | - Gelina S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
36
|
Jin W, Sun Y, Wang J, Wang Y, Chen D, Fang M, He J, Zhong L, Ren H, Zhang Y, Yin H, Wu S, Chen R, Yan W. Arsenic trioxide suppresses lung adenocarcinoma stem cell stemness by inhibiting m6A modification to promote ferroptosis. Am J Cancer Res 2024; 14:507-525. [PMID: 38455419 PMCID: PMC10915325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Arsenic trioxide (ATO) is well known for its inhibitory effects on cancer progression, including lung adenocarcinoma (LUAD), but the molecular mechanism remains elusive. This study aimed to investigate the roles of ATO in regulating LUAD stem cells (LASCs) and the underlying mechanisms. To induce LASCs, cells cultured in an F12 medium, containing B27, epidermal growth factor, and basic fibroblast growth factor, induced LASCs. LASCs stemness was assessed through tumor sphere formation assay, and percentages of CD133+ cells were detected by flow cytometry. The Cell Counting Kit-8 method was used to assess LASCs viability, while reactive oxygen species (ROS) and iron ion levels were quantitated by fluorescence microscopy and spectrophotometry, respectively, and total m6A levels were measured by dot blot. Additionally, LASCs mitochondrial alterations were analyzed via transmission electron microscopy. Finally, the tumorigenicity of LASCs was assessed using a cancer cell line-based xenograft model. Tumor sphere formation and CD133 expression were used to validate the successful induction of LASCs from A549 and NCI-H1975 cells. ATO significantly inhibited proliferation, reduced ZC3H13 expression and total m6A modification levels, and increased ROS and iron ion content, but repressed sphere formation and CD133 expression in LASCs. ZC3H13 overexpression or ferrostatin-1 treatment abrogated LASCs stemness inhibition caused by ATO treatment, and interference with ZC3H13 inhibited LASCs stemness. Furthermore, the promotion of LASCs ferroptosis by ATO was effectively mitigated by ZC3H13 overexpression, while interference with ZC3H13 further promoted ferroptosis. Moreover, si-ZC3H13 promoted ferroptosis and impaired stemness in LASCs, which ferrostatin-1 abrogated. Finally, ZC3H13 overexpression alleviated the inhibitory effects of ATO on LASCs tumorigenicity. Taken together, ATO treatment substantially impaired the stemness of LUAD stem cells by promoting the ferroptosis program, which was mediated by its ZC3H13 gene expression inhibition to suppress m6A medication.
Collapse
Affiliation(s)
- Wen Jin
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Yu Sun
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Jiaqi Wang
- Department of Oncology, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Yan Wang
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Dan Chen
- Department of Oncology, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Ming Fang
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Jie He
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Linsheng Zhong
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Hao Ren
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Yuanmei Zhang
- Department of Ultrasound, The First Affiliate Hospital of Guangzhou Medical UniversityGuangzhou 510120, Guangdong, China
| | - Hao Yin
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Shijia Wu
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Ruqin Chen
- Department of Traditional Chinese Medicine, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Wen Yan
- Department of Oncology, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| |
Collapse
|
37
|
Liu Z, Jing C, Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J Ovarian Res 2024; 17:39. [PMID: 38347608 PMCID: PMC10860311 DOI: 10.1186/s13048-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Ovarian clear-cell cancer is a rare subtype of epithelial ovarian cancer with unique clinical and biological features. Despite optimal cytoreductive surgery and platinum-based chemotherapy being the standard of care, most patients experience drug resistance and a poor prognosis. Therefore, novel therapeutic approaches have been developed, including immune checkpoint blockade, angiogenesis-targeted therapy, ARID1A synthetic lethal interactions, targeting hepatocyte nuclear factor 1β, and ferroptosis. Refining predictive biomarkers can lead to more personalized medicine, identifying patients who would benefit from chemotherapy, targeted therapy, or immunotherapy. Collaboration between academic research groups is crucial for developing prognostic outcomes and conducting clinical trials to advance treatment for ovarian clear-cell cancer. Immediate progress is essential, and research efforts should prioritize the development of more effective therapeutic strategies to benefit all patients.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
38
|
Valdivia A, Cowan M, Cardenas H, Isac AM, Zhao G, Huang H, Matei D. E2F1 mediates competition, proliferation and response to cisplatin in cohabitating resistant and sensitive ovarian cancer cells. Front Oncol 2024; 14:1304691. [PMID: 38344207 PMCID: PMC10853425 DOI: 10.3389/fonc.2024.1304691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background Tumor heterogeneity is one of the key factors leading to chemo-resistance relapse. It remains unknown how resistant cancer cells influence sensitive cells during cohabitation and growth within a heterogenous tumors. The goal of our study was to identify driving factors that mediate the interactions between resistant and sensitive cancer cells and to determine the effects of cohabitation on both phenotypes. Methods We used isogenic ovarian cancer (OC) cell lines pairs, sensitive and resistant to platinum: OVCAR5 vs. OVCAR5 CisR and PE01 vs. PE04, respectively, to perform long term direct culture and to study the phenotypical changes of the interaction of these cells. Results Long term direct co-culture of sensitive and resistant OC cells promoted proliferation (p < 0.001) of sensitive cells and increased the proportion of cells in the G1 and S cell cycle phase in both PE01 and OVCAR5 cells. Direct co-culture led to a decrease in the IC50 to platinum in the cisplatin-sensitive cells (5.92 µM to 2.79 µM for PE01, and from 2.05 µM to 1.51 µM for OVCAR5). RNAseq analysis of co-cultured cells showed enrichment of Cell Cycle Control, Cyclins and Cell Cycle Regulation pathways. The transcription factor E2F1 was predicted as the main effector responsible for the transcriptomic changes in sensitive cells. Western blot and qRT-PCR confirmed upregulation of E2F1 in co-cultured vs monoculture. Furthermore, an E2F1 inhibitor reverted the increase in proliferation rate induced by co-culture to baseline levels. Conclusion Our data suggest that long term cohabitation of chemo-sensitive and -resistant cancer cells drive sensitive cells to a higher proliferative state, more responsive to platinum. Our results reveal an unexpected effect caused by direct interactions between cancer cells with different proliferative rates and levels of platinum resistance, modelling competition between cells in heterogeneous tumors.
Collapse
Affiliation(s)
- Andres Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Matthew Cowan
- Department of Obstetrics & Gynecology and Women’s Health, Montefiore Medical Center, Bronx, NY, United States
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ana Maria Isac
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
39
|
Long H, Zhang H, Ran L, Xiang L, Xie P, Zou L, Yi L, Tang X, Chen L, Li Q, Zhao H. Bioinformatics analysis and experimental validation reveal the anti-ferroptosis effect of FZD7 in acute kidney injury. Biochem Biophys Res Commun 2024; 692:149359. [PMID: 38071893 DOI: 10.1016/j.bbrc.2023.149359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ferroptosis plays an important role in acute kidney injury (AKI), but the specific regulatory mechanism of ferroptosis in AKI remains unclear. This study is expected to analyze ferroptosis-related genes (FRGs) in AKI and explore their underlying mechanisms. RESULTS A total of 479 differentially expressed genes (DEGs), including 196 up-regulated genes and 283 down-regulated genes were identified in the AKI chip GSE30718. 341 FRGs were obtained from the Genecard, OMIM and NCBI database. Totally 11 ferroptosis-related DEGs in AKI were found, in which 7 genes (CD44, TIGAR, RB1, LCN2, JUN, ARNTL, ACSL4) were up-regulated and 4 genes (FZD7, EP300, FOXC1, DLST) were down-regulated. Three core genes (FZD7, JUN, EP300) were obtained by PPI and KEGG analysis, among which the function of FZD7 in AKI is unclear. The WGCNA analysis found that FZD7 belongs to a module that was negatively correlated with AKI. Further basic experiments confirmed that FZD7 is down-regulated in mouse model of ischemia-reperfusion-AKI and cellular model of hypoxia-reoxygenation(H/R). In addition, knockdown of FZD7 could further aggravate the down-regulation of cell viability induced by H/R and Erastin, while overexpression of FZD7 can rescue its down-regulation to some extent. Furthermore, we verified that knockdown of FZD7 decreased the expression of GPX4 and overexpression of FZD7 increased the expression of GPX4, suggesting that FZD7 may inhibit ferroptosis by regulating the expression of GPX4 and plays a vital role in the onset and development of AKI. CONCLUSIONS This article revealed the anti-ferroptosis effect of FZD7 in acute kidney injury through bioinformatics analysis and experimental validation, suggesting that FZD7 is a promising target for AKI and provided more evidence about the vital role of ferroptosis in AKI.
Collapse
Affiliation(s)
- Huanping Long
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Huhai Zhang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lingyu Ran
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lunli Xiang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Pan Xie
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liying Zou
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Li Yi
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Xiaopeng Tang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liping Chen
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Qixuan Li
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Hongwen Zhao
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
40
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
41
|
Wang Y, Duval AJ, Adli M, Matei D. Biology-driven therapy advances in high-grade serous ovarian cancer. J Clin Invest 2024; 134:e174013. [PMID: 38165032 PMCID: PMC10760962 DOI: 10.1172/jci174013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Following a period of slow progress, the completion of genome sequencing and the paradigm shift relative to the cell of origin for high grade serous ovarian cancer (HGSOC) led to a new perspective on the biology and therapeutic solutions for this deadly cancer. Experimental models were revisited to address old questions, and improved tools were generated. Additional pathways emerging as drivers of ovarian tumorigenesis and key dependencies for therapeutic targeting, in particular, VEGF-driven angiogenesis and homologous recombination deficiency, were discovered. Molecular profiling of histological subtypes of ovarian cancer defined distinct genetic events for each entity, enabling the first attempts toward personalized treatment. Armed with this knowledge, HGSOC treatment was revised to include new agents. Among them, PARP inhibitors (PARPis) were shown to induce unprecedented improvement in clinical benefit for selected subsets of patients. Research on mechanisms of resistance to PARPis is beginning to discover vulnerabilities and point to new treatment possibilities. This Review highlights these advances, the remaining challenges, and unsolved problems in the field.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and Gynecology and
| | - Alexander James Duval
- Department of Obstetrics and Gynecology and
- Driskill Graduate Program, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology and
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology and
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
- Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
42
|
Sun K, Zhi Y, Ren W, Li S, Zhou X, Gao L, Zhi K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed Pharmacother 2023; 169:115892. [PMID: 37976895 DOI: 10.1016/j.biopha.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death, mainly manifested by the production of reactive oxygen species and accumulation of lipid peroxides. It is distinct from other forms of cell death with regard to morphology and biochemistry, particularly in disrupting mitochondrial function. Mitochondria are essential compartments where the organism generates energy and are closely associated with the fate of ferroptosis. Currently, researchers focus on the potential value of ferroptosis and mitochondria for overcoming drug sensitivity and assisting in cancer therapy. In this review, we summarize the main mechanisms of ferroptosis (the GPX4-realated pathway, FSP1-related pathway, and iron metabolism pathway) and the functions and regulating pathways of mitochondria (the TCA cycle, oxidative phosphorylation, mitochondrial regulation of iron ions, and mtDNA) in ferroptosis. We believe that exploring the role of mitochondria in ferroptosis will help us understand the potential regulatory mechanisms of ferroptosis in cancer and help us find new therapeutic targets.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoqing Zhou
- Department of the Stomatology, Jining NO.1 People' hospital, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
43
|
Zhang L, Zhao T, Wu X, Tian H, Gao P, Chen Q, Chen C, Zhang Y, Wang S, Qi X, Sun N. Construction of a ferroptosis-based prognostic model for breast cancer helps to discriminate high/low risk groups and treatment priority. Front Immunol 2023; 14:1264206. [PMID: 38152394 PMCID: PMC10751362 DOI: 10.3389/fimmu.2023.1264206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Breast cancer is a common malignant tumor associated with high morbidity and mortality. The role of ferroptosis, a regulated form of cell death, in breast cancer development and prognosis remains unclear. This study aims to investigate the relationship between ferroptosis-related genes and breast cancer and develop a prognostic model. Methods RNA-seq expression datasets and clinical samples of breast cancer patients were obtained from public databases. Immunity- and drug resistance-related data were integrated. A preliminary screening was performed, resulting in the identification of 73 candidate ferroptosis factors. Univariate Cox regression analysis was conducted to select 12 genes, followed by LASSO Cox regression analysis to construct a prognostic risk prediction model consisting of 10 ferroptosis-related genes. The model was further characterized by immune cell infiltration. The expression levels of ferroptosis-related genes were validated in human breast cancer cell lines, and immunohistochemical (IHC) analysis was conducted on cancer specimens to assess ferroptosis-related protein expression. Results The study identified 10 ferroptosis-related genes that were significantly associated with breast cancer prognosis. The constructed prognostic risk prediction model showed potential for predicting the prognostic value of these genes. In addition, the infiltration of immune cells was observed to be a characteristic of the model. The expression levels of ferroptosis-related genes were confirmed in human breast cancer cell lines, and IHC analysis provided evidence of ferroptosis-related protein expression in cancer specimens. Discussion This study provides a novel prognostic model for breast cancer, incorporating 10 ferroptosis-related genes. The model demonstrates the potential for predicting breast cancer prognosis and highlights the involvement of immune cell infiltration. The expression levels of ferroptosis-related genes and proteins further support the association between ferroptosis and breast cancer development.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pingping Gao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qingqiu Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shushu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Na Sun
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
44
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
45
|
Ruan D, Wen J, Fang F, Lei Y, Zhao Z, Miao Y. Ferroptosis in epithelial ovarian cancer: a burgeoning target with extraordinary therapeutic potential. Cell Death Discov 2023; 9:434. [PMID: 38040696 PMCID: PMC10692128 DOI: 10.1038/s41420-023-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is universally acknowledged as a terrifying women killer for its high mortality. Recent research advances support that ferroptosis, an emerging iron-dependent type of regulated cell death (RCD) triggered by the excessive accumulation of lipid peroxides probably possesses extraordinary therapeutic potential in EOC therapy. Herein, we firstly provide a very concise introduction of ferroptosis. Special emphasis will be put on the ferroptosis's vital role in EOC, primarily covering its role in tumorigenesis and progression of EOC, the capability of reversing chemotherapy resistance, and the research and development of related therapeutic strategies. Furthermore, the construction of ferroptosis-related prognostic prediction systems, and mechanisms of ferroptosis resistance in EOC are also discussed. Finally, we propose and highlight several important yet unanswered problems and some future research directions in this field.
Collapse
Affiliation(s)
- Danhua Ruan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yuqin Lei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
46
|
Chen B, Zhao L, Yang R, Xu T. The recent advancements of ferroptosis in the diagnosis, treatment and prognosis of ovarian cancer. Front Genet 2023; 14:1275154. [PMID: 38028615 PMCID: PMC10665572 DOI: 10.3389/fgene.2023.1275154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Ovarian cancer affects the female reproductive system and is the primary cause of cancer related mortality globally. The imprecise and non-specific nature of ovarian cancer symptoms often results in patients being diagnosed at an advanced stage, with metastatic lesions extending beyond the ovary. This presents a significant clinical challenge and imposes a substantial economic burden on both patients and society. Despite advancements in surgery, chemotherapy, and immunotherapy, the prognosis for most patients with ovarian cancer remains unsatisfactory. Therefore, the development of novel treatment strategies is imperative. Ferroptosis, a distinct form of regulated cell death, characterized by iron-dependent lipid peroxidation, differs from autophagy, apoptosis, and necrosis, and may hold promise as a novel cell death. Numerous studies have demonstrated the involvement of ferroptosis in various conventional signaling pathways and biological processes. Recent investigations have revealed the significant contribution of ferroptosis in the initiation, progression, and metastasis of diverse malignant tumors, including ovarian cancer. Moreover, ferroptosis exhibits a synergistic effect with chemotherapy, radiotherapy, and immunotherapy in restraining the proliferation of ovarian cancer cells. The aforementioned implies that ferroptosis holds considerable importance in the management of ovarian cancer and has the potential to serve as a novel therapeutic target. The present review provides a comprehensive overview of the salient features of ferroptosis, encompassing its underlying mechanisms and functional role in ovarian cancer, along with the associated signaling pathways and genes. Furthermore, the review highlights the prospective utility of ferroptosis in the treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Lan S, Zhang Z, Li Q. FZD7: A potential biomarker for endometriosis. Medicine (Baltimore) 2023; 102:e35406. [PMID: 37800830 PMCID: PMC10553041 DOI: 10.1097/md.0000000000035406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Endometriosis is a chronic inflammatory, benign disorder that often co-occurs with adenomyosis and/or leiomyoma. The overall incidence of endometriosis in reproductive period women was nearly 10%. However, the exact mechanisms of endometriosis-associated pathogenesis are still unknown. METHODS In this study, we aimed to investigate whether Frizzled-7 (FZD7) would effectively promote the development of endometriosis. The microarray-based data analysis was performed to screen endometriosis-related differentially expressed genes. This process uncovered specific hub genes, and the nexus of vital genes and ferroptosis-related genes were pinpointed. Then, we collected human endometrial and endometriotic tissues from patients with endometriosis of the ovary (n = 39) and control patients without endometriosis (n = 10, who underwent hysterectomy for uterine fibroids) to compare the expression of FZD7. RESULTS These findings indicated that the expression of FZD7 was high compared with normal endometrium, and FZD7 may promote the progression of endometriosis. CONCLUSION FZD7 may serve as a potential therapeutic target for endometriosis treatment.
Collapse
Affiliation(s)
- Suwei Lan
- Hebei Medical University, Hebei, China
- Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zhengmao Zhang
- Department of Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Qing Li
- Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
48
|
Shi Z, Yuan H, Cao L, Lin Y. AKT1 participates in ferroptosis vulnerability by driving autophagic degradation of FTH1 in cisplatin-resistant ovarian cancer. Biochem Cell Biol 2023; 101:422-431. [PMID: 37011414 DOI: 10.1139/bcb-2022-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Resistance to cisplatin (DDP)-based chemotherapy is an important reason for the failure of ovarian cancer treatment. However, tumor cells resistant to chemotherapy may expose vulnerability to other cell death pathways. Here, we found that DDP-resistant ovarian cancer cells are more susceptible to erastin-induced ferroptosis. It should be noted that this vulnerability does not depend on the weakening of classical ferroptosis defense proteins, but is caused by the reduction of ferritin heavy chain (FTH1). DDP-resistant ovarian cancer cells maintain a high level of autophagy to escape the pressure of chemotherapy, which ultimately leads to increased autophagic degradation of FTH1. We further revealed that the loss of AKT1 was the reason for the increased autophagy level of DDP-resistant ovarian cancer cells. Our study provides new insights into reversing DDP resistance in ovarian cancer by targeting ferroptosis pathway, and AKT1 may be a molecular marker of susceptibility to ferroptosis.
Collapse
Affiliation(s)
- Zhikun Shi
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| | - Hao Yuan
- Department of Prosthetic Dentistry, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lanqing Cao
- Department of Pathology, the Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Liu M, Wu K, Wu Y. The emerging role of ferroptosis in female reproductive disorders. Biomed Pharmacother 2023; 166:115415. [PMID: 37660655 DOI: 10.1016/j.biopha.2023.115415] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Iron, as an essential trace element for the organism, is vital for maintaining the organism's health. Excessive iron can promote reactive oxygen species (ROS) accumulation, thus damaging cells and tissues. Ferroptosis is a novel form of programmed cell death distinguished by iron overload and lipid peroxidation, which is unique from autophagy, apoptosis and necrosis, more and more studies are focusing on ferroptosis. Recent evidence suggests that ferroptosis is associated with the development of female reproductive disorders (FRDs), including polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI), endometriosis (EMs), ovarian cancer (OC), preeclampsia (PE) and spontaneous abortion (SA). Pathways and genes associated with ferroptosis may participate in processes that regulate granulosa cell proliferation and secretion, oocyte development, ovarian reserve function, early embryonic development and placental oxidative stress. However, its exact mechanism has not been fully revealed. Therefore, our review systematically elaborates the occurrence mechanism of ferroptosis and its research progress in the development of FRDs, with a view to providing literature references for clinical targeting of ferroptosis -related pathways and regulatory factors for the management of FRDs.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| |
Collapse
|
50
|
Li J, Xian L, Zhu Z, Wang Y, Zhang W, Zheng R, Xue W, Li J. Role of CELF2 in ferroptosis: Potential targets for cancer therapy (Review). Int J Mol Med 2023; 52:88. [PMID: 37594127 PMCID: PMC10500222 DOI: 10.3892/ijmm.2023.5291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Ferroptosis is a novel form of regulated cellular necrosis that plays a critical role in promoting cancer progression and developing drug resistance. The main characteristic of ferroptosis is iron‑dependent lipid peroxidation caused by excess intracellular levels of reactive oxygen species. CUGBP ELAV‑like family number 2 (CELF2) is an RNA‑binding protein that is downregulated in various types of cancer and is associated with poor patient prognoses. CELF2 can directly bind mRNA to a variety of ferroptosis control factors; however, direct evidence of the regulatory role of CELF2 in ferroptosis is currently limited. The aim of the present review was to summarise the findings of previous studies on CELF2 and its role in regulating cellular redox homeostasis. The present review may provide insight into the possible mechanisms through which CELF2 affects ferroptosis and to provide recommendations for future studies.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Xian
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zifeng Zhu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Wang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenlei Zhang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wang Xue
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|