1
|
Pearson ADJ, Federico S, Gatz SA, Ortiz M, Lesa G, Scobie N, Gounaris I, Weiner SL, Weigel B, Unger TJ, Stewart E, Smith M, Slotkin EK, Reaman G, Pappo A, Nysom K, Norga K, McDonough J, Marshall LV, Ludwinski D, Ligas F, Karres D, Kool M, Horner TJ, Henssen A, Heenen D, Hawkins DS, Gore L, Bender JG, Galluzzo S, Fox E, de Rojas T, Davies BR, Chakrabarti J, Carmichael J, Bradford D, Blanc P, Bernardi R, Benchetrit S, Akindele K, Vassal G. Paediatric Strategy Forum for medicinal product development of DNA damage response pathway inhibitors in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2023; 190:112950. [PMID: 37441939 DOI: 10.1016/j.ejca.2023.112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.
Collapse
Affiliation(s)
- Andrew D J Pearson
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium.
| | - Sara Federico
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Michael Ortiz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | | | - Ioannis Gounaris
- Merck Serono Ltd (an affiliate of Merck KGaA, Darmstadt, Germany), Feltham, UK
| | | | | | - T J Unger
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | | | - Gregory Reaman
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency (EMA), Amsterdam, the Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Marcel Kool
- Hopp Children's Cancer Center, Heidelberg, Germany
| | | | | | | | - Douglas S Hawkins
- Seattle Children's Hospital, Seattle, WA, USA; Children's Oncology Group, Seattle, WA, USA
| | - Lia Gore
- Children's Hospital Colorado, Aurora, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa de Rojas
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium
| | | | | | - Juliet Carmichael
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Diana Bradford
- US Food and Drug Administration, Silver Springs, MD, USA
| | | | - Ronald Bernardi
- Genentech, a Member of the Roche Group, South San Francisco, CA, USA
| | - Sylvie Benchetrit
- National Agency for the Safety of Medicine and Health Products, Paris, France
| | | | - Gilles Vassal
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
2
|
Adamovich AI, Diabate M, Banerjee T, Nagy G, Smith N, Duncan K, Mendoza Mendoza E, Prida G, Freitas MA, Starita LM, Parvin JD. The functional impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break repair assays. Am J Hum Genet 2022; 109:618-630. [PMID: 35196514 DOI: 10.1016/j.ajhg.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.
Collapse
Affiliation(s)
- Aleksandra I Adamovich
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mariame Diabate
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gregory Nagy
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Nahum Smith
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kathryn Duncan
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Erika Mendoza Mendoza
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gisselle Prida
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|