1
|
Zhu R, Zhou H, Chen W, Bai S, Liu F, Wang X. BCL2L1 is regulated by the lncRNA MIR4435-2HG-miR-513a-5p-BCL2L1 ceRNA axis and serves as a biomarker for pancreatic adenocarcinoma treatment and prognosis. Gene 2024; 925:148615. [PMID: 38788819 DOI: 10.1016/j.gene.2024.148615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most malignant cancers. After escaping death, cancer cells are made more metastatic, aggressive, and also drug-resistant through anoikis resistance. The aim of this study is to explore the molecular mechanisms of anoikis-related genes in PAAD and to identify potential key biomarkers. We integrated information about PAAD from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases and identified anoikis-related gene BCL2L1 by survival analysis, univariate Cox regression analysis, and multifactorial Cox regression analysis. Various bioinformatics approaches showed that BCL2L1 was a valuable prognostic marker that might be involved in PAAD development and progression through different mechanisms, including cancer intervention, genomic heterogeneity, and RNA modifications. Our analysis showed that BCL2L1 expression also closely correlates with the expression of various immune checkpoint inhibitors. In particular, we found that long non-coding RNA MIR4435-2HG acted as ceRNA sponging miR-513a-5p to promote the expression of BCL2L1, thereby promoting pancreatic cancer cells proliferation. In conclusion, BCL2L1 expression regulated by the MIR4435-2HG-miR-513a-5p-BCL2L1 ceRNA axis might be used as a biomarker for cancer prognosis, treatment selection, and follow-up in PAAD patients.
Collapse
Affiliation(s)
- Rongkun Zhu
- Department of Neurosurgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Hongjian Zhou
- Department of Neurosurgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Wei Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Shanwang Bai
- Department of Respiratory and Critical Care Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Fashun Liu
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Xiongwei Wang
- Department of Neurosurgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
2
|
Lu Z, Verginadis I, Kumazoe M, Castillo GM, Yao Y, Guerra RE, Bicher S, You M, McClung G, Qiu R, Xiao Z, Miao Z, George SS, Beiting DP, Nojiri T, Tanaka Y, Fujimura Y, Onda H, Hatakeyama Y, Nishimoto-Ashfield A, Bykova K, Guo W, Fan Y, Buynov NM, Diehl JA, Stanger BZ, Tachibana H, Gade TP, Puré E, Koumenis C, Bolotin EM, Fuchs SY. Modified C-type natriuretic peptide normalizes tumor vasculature, reinvigorates antitumor immunity, and improves solid tumor therapies. Sci Transl Med 2024; 16:eadn0904. [PMID: 39167664 DOI: 10.1126/scitranslmed.adn0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Deficit of oxygen and nutrients in the tumor microenvironment (TME) triggers abnormal angiogenesis that produces dysfunctional and leaky blood vessels, which fail to adequately perfuse tumor tissues. Resulting hypoxia, exacerbation of metabolic disturbances, and generation of an immunosuppressive TME undermine the efficacy of anticancer therapies. Use of carefully scheduled angiogenesis inhibitors has been suggested to overcome these problems and normalize the TME. Here, we propose an alternative agonist-based normalization approach using a derivative of the C-type natriuretic peptide (dCNP). Multiple gene expression signatures in tumor tissues were affected in mice treated with dCNP. In several mouse orthotopic and subcutaneous solid tumor models including colon and pancreatic adenocarcinomas, this well-tolerated agent stimulated formation of highly functional tumor blood vessels to reduce hypoxia. Administration of dCNP also inhibited stromagenesis and remodeling of the extracellular matrix and decreased tumor interstitial fluid pressure. In addition, treatment with dCNP reinvigorated the antitumor immune responses. Administration of dCNP decelerated growth of primary mouse tumors and suppressed their metastases. Moreover, inclusion of dCNP into the chemo-, radio-, or immune-therapeutic regimens increased their efficacy against solid tumors in immunocompetent mice. These results demonstrate the proof of principle for using vasculature normalizing agonists to improve therapies against solid tumors and characterize dCNP as the first in class among such agents.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Yao Yao
- PharmaIN Corp., Bothell, WA 98011, USA
| | | | - Sandra Bicher
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menghao You
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George McClung
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Qiu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Miao
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Nojiri
- Department of General Thoracic Surgery, Higashiosaka City Medical Center, Higashiosaka 578-8588, Japan
| | - Yasutake Tanaka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yui Hatakeyama
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | | | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Terence P Gade
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Izumi M, Costa DB, Kobayashi SS. Targeting of drug-tolerant persister cells as an approach to counter drug resistance in non-small cell lung cancer. Lung Cancer 2024; 194:107885. [PMID: 39002493 PMCID: PMC11305904 DOI: 10.1016/j.lungcan.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The advent of targeted therapies revolutionized treatments of advanced oncogene-driven non-small cell lung cancer (NSCLC). Nonetheless, despite initial dramatic responses, development of drug resistance is inevitable. Although mechanisms underlying acquired resistance, such as on-target mutations, bypass pathways, or lineage transformation, have been described, overcoming drug resistance remains challenging. Recent evidence suggests that drug-tolerant persister (DTP) cells, which are tumor cells tolerant to initial drug exposure, give rise to cells that acquire drug resistance. Thus, the possibility of eradicating cancer by targeting DTP cells is under investigation, and various strategies are proposed. Here, we review overall features of DTP cells, current efforts to define DTP markers, and potential therapeutic strategies to target and eradicate DTP cells in oncogene-driven NSCLC. We also discuss future challenges in the field.
Collapse
Affiliation(s)
- Motohiro Izumi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel B Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Susumu S Kobayashi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Sussman JH, Kim N, Kemp SB, Traum D, Katsuda T, Kahn BM, Xu J, Kim IK, Eskandarian C, Delman D, Beatty GL, Kaestner KH, Simpson AL, Stanger BZ. Multiplexed Imaging Mass Cytometry Analysis Characterizes the Vascular Niche in Pancreatic Cancer. Cancer Res 2024; 84:2364-2376. [PMID: 38695869 PMCID: PMC11250934 DOI: 10.1158/0008-5472.can-23-2352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Oncogenesis and progression of pancreatic ductal adenocarcinoma (PDAC) are driven by complex interactions between the neoplastic component and the tumor microenvironment, which includes immune, stromal, and parenchymal cells. In particular, most PDACs are characterized by a hypovascular and hypoxic environment that alters tumor cell behavior and limits the efficacy of chemotherapy and immunotherapy. Characterization of the spatial features of the vascular niche could advance our understanding of inter- and intratumoral heterogeneity in PDAC. In this study, we investigated the vascular microenvironment of PDAC by applying imaging mass cytometry using a 26-antibody panel on 35 regions of interest across 9 patients, capturing more than 140,000 single cells. The approach distinguished major cell types, including multiple populations of lymphoid and myeloid cells, endocrine cells, ductal cells, stromal cells, and endothelial cells. Evaluation of cellular neighborhoods identified 10 distinct spatial domains, including multiple immune and tumor-enriched environments as well as the vascular niche. Focused analysis revealed differential interactions between immune populations and the vasculature and identified distinct spatial domains wherein tumor cell proliferation occurs. Importantly, the vascular niche was closely associated with a population of CD44-expressing macrophages enriched for a proangiogenic gene signature. Taken together, this study provides insights into the spatial heterogeneity of PDAC and suggests a role for CD44-expressing macrophages in shaping the vascular niche. Significance: Imaging mass cytometry revealed that pancreatic ductal cancers are composed of 10 distinct cellular neighborhoods, including a vascular niche enriched for macrophages expressing high levels of CD44 and a proangiogenic gene signature.
Collapse
Affiliation(s)
- Jonathan H. Sussman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathalia Kim
- Department of Biomedical and Molecular Sciences/School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Samantha B Kemp
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Daniel Traum
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Takeshi Katsuda
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Benjamin M. Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Il-Kyu Kim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Cody Eskandarian
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Devora Delman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory L. Beatty
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Amber L. Simpson
- Department of Biomedical and Molecular Sciences/School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Ben Z. Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Mehta A, Stanger BZ. Lineage Plasticity: The New Cancer Hallmark on the Block. Cancer Res 2024; 84:184-191. [PMID: 37963209 PMCID: PMC10841583 DOI: 10.1158/0008-5472.can-23-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Plasticity refers to the ability of cells to adopt a spectrum of states or phenotypes. In cancer, it is a critical contributor to tumor initiation, progression, invasiveness, and therapy resistance, and it has recently been recognized as an emerging cancer hallmark. Plasticity can occur as a result of cell-intrinsic factors (e.g., genetic, transcriptional, or epigenetic fluctuations), or through cell-extrinsic cues (e.g., signaling from components of the tumor microenvironment or selective pressure from therapy). Over the past decade, technological advances, analysis of patient samples, and studies in mouse model systems have led to a deeper understanding of how such plastic states come about. In this review, we discuss: (i) the definition of plasticity; (ii) methods to measure and quantify plasticity; (iii) the clinical relevance of plasticity; and (iv) therapeutic hypotheses to modulate plasticity in the clinic.
Collapse
Affiliation(s)
- Arnav Mehta
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ben Z. Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Apiz Saab JJ, Dzierozynski LN, Jonker PB, AminiTabrizi R, Shah H, Menjivar RE, Scott AJ, Nwosu ZC, Zhu Z, Chen RN, Oh M, Sheehan C, Wahl DR, Pasca di Magliano M, Lyssiotis CA, Macleod KF, Weber CR, Muir A. Pancreatic tumors exhibit myeloid-driven amino acid stress and upregulate arginine biosynthesis. eLife 2023; 12:e81289. [PMID: 37254839 PMCID: PMC10260022 DOI: 10.7554/elife.81289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.
Collapse
Affiliation(s)
- Juan J Apiz Saab
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Patrick B Jonker
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Rosa Elena Menjivar
- Cellular and Molecular Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Andrew J Scott
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Zhou Zhu
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Riona N Chen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Moses Oh
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Colin Sheehan
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | | | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Kay F Macleod
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Alexander Muir
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
7
|
Liu R, Liu P, Bi H, Ling J, Zhang H, Zhang M, Hu Y, Chiao PJ, Huang P, Liu J. Malignant transformation by oncogenic K-ras requires IDH2-mediated reductive carboxylation to promote glutamine utilization. Cancer Commun (Lond) 2023; 43:285-289. [PMID: 36251752 PMCID: PMC9926954 DOI: 10.1002/cac2.12369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rui Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Panpan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Huiqin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Mingquan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Metabolic Research Platform, Center for Precision Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Jinyun Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Metabolic Research Platform, Center for Precision Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| |
Collapse
|