1
|
Waks AG, Martínez-Sáez O, Tarantino P, Braso-Maristany F, Pascual T, Cortés J, Tolaney SM, Prat A. Dual HER2 inhibition: mechanisms of synergy, patient selection, and resistance. Nat Rev Clin Oncol 2024; 21:818-832. [PMID: 39271787 DOI: 10.1038/s41571-024-00939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
HER2-targeted therapies for patients with HER2+ breast cancer are rapidly evolving, offering a range of more complex and personalized treatment options. Currently, an array of anti-HER2 monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates are administered, sometimes alongside chemotherapy or endocrine therapy, both in curative and palliative contexts. However, the heterogeneous nature of HER2+ breast cancer demands a deeper understanding of disease biology and its role in responsiveness to novel HER2-targeted agents, as well as non-HER2-targeted therapies, in order to optimize patient outcomes. In this Review, we revisit the mechanisms of action of HER2-targeted agents, examine the evidence supporting the use of dual HER2 blockade in patients with HER2-amplified tumours, and explore the role of biomarkers in guiding future treatment strategies. We also discuss potential implications for the future treatment of patients with HER2+ breast cancer.
Collapse
Affiliation(s)
- Adrienne G Waks
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olga Martínez-Sáez
- Cancer Institute, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Paolo Tarantino
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Fara Braso-Maristany
- Cancer Institute, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tomás Pascual
- Cancer Institute, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- SOLTI Cancer Research Group, Barcelona, Spain
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- IOB Madrid, Hospital Beata Maria Ana, Madrid, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aleix Prat
- Cancer Institute, Hospital Clinic of Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Department of Medicine, University of Barcelona, Barcelona, Spain.
- Breast Cancer Unit, IOB-QuirónSalud, Barcelona, Spain.
- Reveal Genomics, Barcelona, Spain.
| |
Collapse
|
2
|
Britten K, McAndrew N. New approaches for human epidermal growth factor receptor 2-low and human epidermal growth factor receptor 2-overexpressing metastatic breast cancer. Curr Opin Obstet Gynecol 2024; 36:34-39. [PMID: 38170550 DOI: 10.1097/gco.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW In recent years, there has been a flurry of activity in the human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer space. New, powerful drugs like trastuzumab deruxtecan have challenged our fundamental definition of what HER2 expression means as a predictive biomarker. RECENT FINDINGS Recent approvals of multiple agents in the second line-metastatic setting have given patients access to a variety of new agents, but also raise questions with regard to optimal sequencing. SUMMARY This review will explore current issues with HER2 testing, recently approved drugs in the HER2+ and HER2 low spaces, as well as novel agents/combinations on the horizon.
Collapse
Affiliation(s)
- Karissa Britten
- Division of Hematology/Oncology; University of California, Los Angeles, CA, USA
| | | |
Collapse
|
3
|
McAndrew NP, Hurvitz SA. Systemic Therapy for Early- and Late-Stage, Human Epidermal Growth Factor Receptor-2-Positive Breast Cancer. Hematol Oncol Clin North Am 2023; 37:103-115. [PMID: 36435604 DOI: 10.1016/j.hoc.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Systemic therapy for both early-stage and metastatic human epidermal growth factor receptor-2-positive (HER2+) breast cancer has seen significant evolution over the last 20 or more years. Innovative trials leveraging the prognostic and predictive information that neoadjuvant chemotherapy provides has led to preoperative systemic therapy becoming the overwhelmingly favored sequencing in the early-stage setting. However, deintensification of therapy is important to consider for patients with good-risk disease or significant comorbidities. Finally, with the abundance of newly approved agents, drug sequencing in the second-line setting has become an important and individualized decision for patients with metastatic disease.
Collapse
Affiliation(s)
| | - Sara A Hurvitz
- Division of Hematology/Oncology, UCLA David Geffen School of Medicine
| |
Collapse
|
4
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
5
|
Jacobs AT, Martinez Castaneda-Cruz D, Rose MM, Connelly L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem Pharmacol 2022; 204:115209. [PMID: 35973582 DOI: 10.1016/j.bcp.2022.115209] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022]
Abstract
The last 25 years have seen significant growth in new therapeutic options for breast cancer, termed targeted therapies based on their ability to block specific pathways known to drive breast tumor growth and survival. Introduction of these drugs has been made possible through advances in the understanding of breast cancer biology. While the promise of targeted therapy for breast cancer has been clear for some time, the experience of the clinical use of multiple drugs and drug classes allows us to now present a summary and perspective as to the success and impact of this endeavor. Here we will review breast cancer targeted therapeutics in clinical use. We will provide the rationale for their indications and summarize clinical data in patients with different breast cancer subtypes, their impact on breast cancer progression and survival and their major adverse effects. The focus of this review will be on the development that has occurred within classes of targeted therapies and subsequent impact on breast cancer patient outcomes. We will conclude with a perspective on the role of targeted therapy in breast cancer treatment and highlight future areas of development.
Collapse
Affiliation(s)
- Aaron T Jacobs
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | | | - Mark M Rose
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | - Linda Connelly
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States.
| |
Collapse
|
6
|
Shagisultanova E, Crump LS, Borakove M, Hall JK, Rasti AR, Harrison BA, Kabos P, Lyons TR, Borges VF. Triple Targeting of Breast Tumors Driven by Hormonal Receptors and HER2. Mol Cancer Ther 2022; 21:48-57. [PMID: 34728571 PMCID: PMC8742793 DOI: 10.1158/1535-7163.mct-21-0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023]
Abstract
Breast cancers that express hormonal receptors (HR) and HER2 display resistance to targeted therapy. Tumor-promotional signaling from the HER2 and estrogen receptor (ER) pathways converges at the cyclin D1 and cyclin-dependent kinases (CDK) 4 and 6 complex, which drives cell-cycle progression and development of therapeutic resistance. Therefore, we hypothesized that co-targeting of ER, HER2, and CDK4/6 may result in improved tumoricidal activity and suppress drug-resistant subclones that arise on therapy. We tested the activity of the triple targeted combination therapy with tucatinib (HER2 small-molecule inhibitor), palbociclib (CKD4/6 inhibitor), and fulvestrant (selective ER degrader) in HR+/HER2+ human breast tumor cell lines and xenograft models. In addition, we evaluated whether triple targeted combination prevents growth of tucatinib or palbociclib-resistant subclones in vitro and in vivo Triple targeted combination significantly reduced HR+/HER2+ tumor cell viability, clonogenic survival, and in vivo growth. Moreover, survival of HR+/HER2+ cells that were resistant to the third drug in the regimen was reduced by the other two drugs in combination. We propose that a targeted triple combination approach will be clinically effective in the treatment of otherwise drug-resistant tumors, inducing robust responses in patients.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| | - Lyndsey S. Crump
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.,Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle Borakove
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| | - Jessica K. Hall
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| | - Aryana R. Rasti
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| | - Benjamin A. Harrison
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R. Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| | - Virginia F. Borges
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.,Corresponding Author: Virginia F. Borges, University of Colorado School of Medicine, PO Box 6511, MS 8117, 12801 East 17th Avenue, Room 8121, Aurora, CO 80045. Phone: 303-724-0186; Fax: 303-724-3889; E-mail:
| |
Collapse
|