1
|
Sadek KM, AbdEllatief HY, Mahmoud SFE, Alexiou A, Papadakis M, Al‐Hajeili M, Saad HM, Batiha GE. New insights on testicular cancer prevalence with novel diagnostic biomarkers and therapeutic approaches. Cancer Rep (Hoboken) 2024; 7:e2052. [PMID: 38507271 PMCID: PMC10953835 DOI: 10.1002/cnr2.2052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Testicular cancer (TC), comprising merely 1% of male neoplasms, holds the distinction of being the most commonly encountered neoplasm among young males. RECENT FINDINGS Most cases of testicular neoplasms can be classified into two main groups, namely germ cell tumors representing approximately 95% of the cases, and sex cord-stromal tumors accounting for about 5% of the cases. Moreover, its prevalence is on the rise across the globe. TC is a neoplastic condition characterized by a favorable prognosis. The advent of cisplatin-based chemotherapeutic agents in the latter part of the 1970s has led to a significant enhancement in the 5-year survival rate, which presently surpasses 95%. Given that TC is commonly detected before reaching the age of 40, it can be anticipated that these individuals will enjoy an additional 40-50 years of life following successful treatment. The potential causes of TC are multifactorial and related to different pathologies. Accurate identification is imperative to guarantee the utmost efficacious and suitable therapy. To a certain degree, this can be accomplished through the utilization of blood examinations for neoplastic indicators; nonetheless, an unequivocal diagnosis necessitates an evaluation of the histological composition of a specimen via a pathologist. CONCLUSION TC is multifactorial and has various pathologies, therefore this review aimed to revise the prenatal and postnatal causes as well as novel diagnostic biomarkers and the therapeutic strategies of TC.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary MedicineDamanhour UniversityAbadiyyat DamanhurEgypt
| | - Hazem Y. AbdEllatief
- Department of Biochemistry, Faculty of Veterinary MedicineDamanhour UniversityAbadiyyat DamanhurEgypt
| | - Sahar F. E. Mahmoud
- Department of Histology, Faculty of Veterinary MedicineDamanhour UniversityAbadiyyat DamanhurEgypt
| | - Athanasios Alexiou
- University Centre for Research and DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research and Development, FunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Marwan Al‐Hajeili
- Department of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
2
|
Törzsök P, Oswald D, Dieckmann KP, Angerer M, Scherer LC, Tymoszuk P, Kunz Y, Pinggera GM, Lusuardi L, Horninger W, Pichler R. Subsets of preoperative sex hormones in testicular germ cell cancer: a retrospective multicenter study. Sci Rep 2023; 13:14604. [PMID: 37669975 PMCID: PMC10480169 DOI: 10.1038/s41598-023-41915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Preoperative homeostasis of sex hormones in testicular germ cell tumor (TGCT) patients is scarcely characterized. We aimed to explore regulation of sex hormones and their implications for histopathological parameters and prognosis in TGCT using a data-driven explorative approach. Pre-surgery serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T), estradiol (E2) and prolactin were measured in a retrospective multicenter TGCT cohort (n = 518). Clusters of patients were defined by latent class analysis. Clinical, pathologic and survival parameters were compared between the clusters by statistical hypothesis testing, Random Forest modeling and Peto-Peto test. Cancer tissue expression of sex hormone-related genes was explored in the publicly available TCGA cohort (n = 149). We included 354 patients with pure seminoma and 164 patients with non-seminomatous germ cell tumors (NSGCT), with a median age of 36 years. Three hormonal clusters were defined: 'neutral' (n = 228) with normal sex hormone homeostasis, 'testicle' (n = 91) with elevated T and E2, low pituitary hormones, and finally 'pituitary' subset (n = 103) with increased FSH and LH paralleled by low-to-normal levels of the gonadal hormones. Relapse-free survival in the hormonal subsets was comparable (p = 0.64). Cancer tissue expression of luteinizing hormone- and follicle-stimulating hormone-coding genes was significantly higher in seminomas, while genes of T and E2 biosynthesis enzymes were strongly upregulated in NSGCT. Substantial percentages of TGCT patients are at increased risk of sex hormone dysfunction at primary diagnosis before orchiectomy. TGCT may directly influence systemic hormonal homeostasis by in-situ synthesis of sex hormones.
Collapse
Affiliation(s)
- Péter Törzsök
- Department of Urology and Andrology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - David Oswald
- Department of Urology and Andrology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Markus Angerer
- Department of Urology, Hodentumorzentrum, Asklepios Klinik Altona, Hamburg, Germany
| | - Lukas Christian Scherer
- Department of Urology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | | | - Yannic Kunz
- Department of Urology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Germar-Michael Pinggera
- Department of Urology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lukas Lusuardi
- Department of Urology and Andrology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Wolfgang Horninger
- Department of Urology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Ribeiro MA, Estill MS, Fernandez GJ, Moraes LN, Krawetz SA, Scarano WR. Integrative transcriptome and microRNome analysis identifies dysregulated pathways in human Sertoli cells exposed to TCDD. Toxicology 2018; 409:112-118. [DOI: 10.1016/j.tox.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/09/2018] [Accepted: 08/04/2018] [Indexed: 01/24/2023]
|
4
|
Marcotte EL, Pankratz N, Amatruda JF, Frazier AL, Krailo M, Davies S, Starr JR, Lau CC, Roesler M, Langer E, Hallstrom C, Hooten AJ, Poynter JN. Variants in BAK1, SPRY4, and GAB2 are associated with pediatric germ cell tumors: A report from the children's oncology group. Genes Chromosomes Cancer 2017; 56:548-558. [PMID: 28295819 DOI: 10.1002/gcc.22457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Germ cell tumors (GCT) are a rare form of childhood cancer that originate from the primordial germ cell. Recent genome-wide association studies (GWAS) have identified susceptibility alleles for adult testicular GCT (TGCT). We test whether these SNPs are associated with GCT in pediatric and adolescent populations. This case-parent triad study includes individuals with GCT diagnosed between ages 0 and 19. We evaluated 26 SNPs from GWAS of adult TGCT and estimated main effects for pediatric GCT within complete trios (N = 366) using the transmission disequilibrium test. We used Estimation of Maternal, Imprinting and interaction effects using Multinomial modelling to evaluate maternal effects in non-Hispanic white trios and dyads (N = 244). We accounted for multiple comparisons using a Bonferroni correction. A variant in SPRY4 (rs4624820) was associated with reduced risk of GCT (OR [95% CI]: 0.70 [0.57, 0.86]). A variant in BAK1 (rs210138) was positively associated with GCT (OR [95% CI]: 1.70 [1.32, 2.18]), with a strong estimated effect for testis tumors (OR [95% CI]: 3.31 [1.89, 5.79]). Finally, a SNP in GAB2 (rs948662) was associated with increased risk for GCT (OR [95% CI]: 1.56 [1.20, 2.03]). Nominal associations (P < 0.05) were noted for eight additional loci. A maternal effect was observed for KITLG SNP rs4474514 (OR [95% CI]: 1.66 [1.21, 2.28]) and a paternal parent-of-origin effect was observed for rs7221274 (P = 0.00007), near TEX14, RAD51C, and PPM1E. We observed associations between SNPs in SPRY4, BAK1, and GAB2 and GCTs. This analysis suggests there may be common genetic risk factors for GCT in all age groups.
Collapse
Affiliation(s)
- Erin L Marcotte
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - James F Amatruda
- Departments of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Mark Krailo
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Stella Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Michelle Roesler
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Erica Langer
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Caroline Hallstrom
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Anthony J Hooten
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jenny N Poynter
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
5
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Boublikova L, Buchler T, Stary J, Abrahamova J, Trka J. Molecular biology of testicular germ cell tumors: Unique features awaiting clinical application. Crit Rev Oncol Hematol 2014; 89:366-85. [DOI: 10.1016/j.critrevonc.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
|
7
|
Schumacher FR, Wang Z, Skotheim RI, Koster R, Chung CC, Hildebrandt MAT, Kratz CP, Bakken AC, Bishop DT, Cook MB, Erickson RL, Fosså SD, Greene MH, Jacobs KB, Kanetsky PA, Kolonel LN, Loud JT, Korde LA, Le Marchand L, Lewinger JP, Lothe RA, Pike MC, Rahman N, Rubertone MV, Schwartz SM, Siegmund KD, Skinner EC, Turnbull C, Van Den Berg DJ, Wu X, Yeager M, Nathanson KL, Chanock SJ, Cortessis VK, McGlynn KA. Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Hum Mol Genet 2013; 22:2748-53. [PMID: 23462292 DOI: 10.1093/hmg/ddt109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified multiple common genetic variants associated with an increased risk of testicular germ cell tumors (TGCTs). A previous GWAS reported a possible TGCT susceptibility locus on chromosome 1q23 in the UCK2 gene, but failed to reach genome-wide significance following replication. We interrogated this region by conducting a meta-analysis of two independent GWASs including a total of 940 TGCT cases and 1559 controls for 122 single-nucleotide polymorphisms (SNPs) on chromosome 1q23 and followed up the most significant SNPs in an additional 2202 TGCT cases and 2386 controls from four case-control studies. We observed genome-wide significant associations for several UCK2 markers, the most significant of which was for rs3790665 (PCombined = 6.0 × 10(-9)). Additional support is provided from an independent familial study of TGCT where a significant over-transmission for rs3790665 with TGCT risk was observed (PFBAT = 2.3 × 10(-3)). Here, we provide substantial evidence for the association between UCK2 genetic variation and TGCT risk.
Collapse
Affiliation(s)
- Fredrick R Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kristiansen W, Andreassen K, Karlsson R, Aschim E, Bremnes R, Dahl O, Fosså S, Klepp O, Langberg C, Solberg A, Tretli S, Adami HO, Wiklund F, Grotmol T, Haugen T. Gene variations in sex hormone pathways and the risk of testicular germ cell tumour: a case–parent triad study in a Norwegian–Swedish population. Hum Reprod 2012; 27:1525-35. [DOI: 10.1093/humrep/des075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
9
|
Kristiansen W, Haugen TB, Witczak O, Andersen JM, Fosså SD, Aschim EL. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility. ACTA ACUST UNITED AC 2011; 34:77-83. [PMID: 20345875 DOI: 10.1111/j.1365-2605.2010.01057.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Testicular cancer (TC) incidence is increasing worldwide, but the aetiology remains largely unknown. An unbalanced level of oestrogens and androgens in utero is hypothesized to influence TC risk. Polymorphisms in genes encoding cytochrome P450 (CYP) enzymes involved in metabolism of reproductive hormones, such as CYP1A1, CYP3A5 and CYP3A7, may contribute to variability of an individual's susceptibility to TC. The aim of this case-control study was to investigate possible associations between different CYP genotypes and TC, as well as histological type of TC. The study comprised 652 TC cases and 199 controls of Norwegian Caucasian origin. Genotyping of the CYP1A1*2A (MspI), CYP1A1*2C (I462V), CYP1A1*4 (T461N), CYP3A5*3C (A6986G) and CYP3A7*2 (T409R) polymorphisms was performed using TaqMan allelic discrimination or sequencing. The CYP1A1*2A allele was associated with 44% reduced risk of TC with each polymorphic allele [odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.40-0.78, p(trend) = 0.001], whereas the CYP1A1*2C allele was associated with 56% reduced risk of TC with each polymorphic allele (OR = 0.44, 95% CI = 0.25-0.75, p(trend) = 0.003). The decreased risk per allele was significant for seminomas (OR = 0.46, 95% CI, 0.31-0.70, p(trend) < 0.001 and OR = 0.31, 95% CI = 0.14-0.66, p(trend) = 0.002, respectively), but only borderline significant for non-seminomas (OR = 0.65, 95% CI = 0.45-0.95, p(trend) = 0.027 and OR = 0.55, 95% CI = 0.30-1.01, p(trend) = 0.052, respectively). There were no statistically significant differences in the distribution of the CYP3A5*3C and CYP3A7*2 polymorphic alleles between TC cases and controls. This study suggests that polymorphisms in the CYP1A1 gene may contribute to variability of individual susceptibility to TC.
Collapse
Affiliation(s)
- W Kristiansen
- Faculty of Health Sciences, Oslo University College, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Turnbull C, Rahman N. Genome-wide association studies provide new insights into the genetic basis of testicular germ-cell tumour. ACTA ACUST UNITED AC 2011; 34:e86-96; discussion e96-7. [PMID: 21623831 DOI: 10.1111/j.1365-2605.2011.01162.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Testicular germ-cell tumour (TGCT) is the most common cancer in young men, and genetic epidemiological studies suggest that the disease has a strong genetic basis. Until 2009, very little of this genetic component had been explained. Genome-wide association studies have since identified eight SNPs at six loci which together account for approximately 15% of the genetic risk of TGCT and offer novel biological insights into testicular germ-cell oncogenesis. In this review, we summarize the genetic epidemiology of TGCT, detail the contribution genome-wide association studies have made to our understanding of the genetic basis of TGCT and reflect on how future technological advances may assist in revealing the remaining genetic factors underlying TGCT susceptibility.
Collapse
Affiliation(s)
- C Turnbull
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, UK.
| | | |
Collapse
|
11
|
Kanetsky PA, Mitra N, Vardhanabhuti S, Vaughn DJ, Li M, Ciosek SL, Letrero R, D'Andrea K, Vaddi M, Doody DR, Weaver J, Chen C, Starr JR, Håkonarson H, Rader DJ, Godwin AK, Reilly MP, Schwartz SM, Nathanson KL. A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum Mol Genet 2011; 20:3109-17. [PMID: 21551455 DOI: 10.1093/hmg/ddr207] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to testicular germ cell tumors (TGCT) has a significant heritable component, and genome-wide association studies (GWASs) have identified association with variants in several genes, including KITLG, SPRY4, BAK1, TERT, DMRT1 and ATF7IP. In our GWAS, we genotyped 349 TGCT cases and 919 controls and replicated top hits in an independent set of 439 cases and 960 controls in an attempt to find novel TGCT susceptibility loci. We identified a second marker (rs7040024) in the doublesex and mab-3-related transcription factor 1 (DMRT1) gene that is independent of the previously described risk allele (rs755383) at this locus. In combined analysis that mutually conditions on both DMRT1 single nucleotide polymorphism markers, TGCT cases had elevated odds of carriage of the rs7040024 major A allele [per-allele odds ratio (OR) = 1.48, 95% confidence interval (CI) 1.23, 1.78; P = 2.52 × 10(-5)] compared with controls, while the association with rs755383 persisted (per allele OR = 1.26, 95% CI 1.08, 1.47, P = 0.0036). In similar analyses, the association of rs7040024 among men with seminomatous tumors did not differ from that among men with non-seminomatous tumors. In combination with KITLG, the strongest TGCT susceptibility locus found to date, men with TGCT had greatly elevated odds (OR = 14.1, 95% CI 5.12, 38.6; P = 2.98 × 10(-7)) of being double homozygotes for the risk (major) alleles at DMRT (rs7040024) and KITLG (rs4474514) when compared with men without TGCT. Our findings continue to corroborate that genes influencing male germ cell development and differentiation have emerged as the major players in inherited TGCT susceptibility.
Collapse
Affiliation(s)
- Peter A Kanetsky
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Marchenko MM, Kopyl'chuk GP, Ketsa OV. [Effect of low doses of x-ray irradiation on the liver detoxication system in rats with transplanted Guerin's carcinoma]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2011; 56:266-73. [PMID: 21341514 DOI: 10.18097/pbmc20105602266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activity of detoxication enzymes in liver microsomal fraction of preliminary radiation-exposed rats was investigated. It was shown that preliminary organism exposure to radiation reduced cytochrome P450 and glutathione-S-transferase activity in liver microsomal fraction in the latent and logarithmic phases of oncogenesis compared with the unirradiated rats with tumor. Low level of cytochrome P450 activity can be caused by transition of microsomal cytochrome P450 in P420 inactive form. The preliminary radiation does not influence the enzyme activity of liver cytochrome P450 and glutathione-S-transferase on terminal stages of Guerin's carcinoma growth.
Collapse
|
13
|
Looijenga LHJ, Hersmus R, de Leeuw BHCGM, Stoop H, Cools M, Oosterhuis JW, Drop SLS, Wolffenbuttel KP. Gonadal tumours and DSD. Best Pract Res Clin Endocrinol Metab 2010; 24:291-310. [PMID: 20541153 DOI: 10.1016/j.beem.2009.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disorders of sex development (DSD), previously referred to as intersex, has been recognised as one of the main risk factors for development of type II germ cell tumours (GCTs), that is, seminomas/dysgerminomas and non-seminomas (e.g., embryonal carcinoma, yolk sac tumour, choriocarcinoma and teratoma). Within the testis, this type of cancer is the most frequent malignancy in adolescent and young adult Caucasian males. Although these males are not known to have dysgenetic gonads, the similarities in the resulting tumours suggest a common aetiological mechanism(s),--genetically, environmentally or a combination of both. Within the group of DSD patients, being in fact congenital conditions, the risk of malignant transformation of germ cells is highly heterogeneous, depending on a number of parameters, some of which have only recently been identified. Understanding of these recent insights will stimulate further research, with the final aim to develop an informative clinical decision tree for DSD patients, which includes optimal (early) diagnosis without overtreatment, such as prophylactic gonadectomy in the case of a low tumour risk.
Collapse
Affiliation(s)
- Leendert H J Looijenga
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 2009; 41:811-5. [PMID: 19483682 DOI: 10.1038/ng.393] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 05/05/2009] [Indexed: 12/19/2022]
Abstract
Testicular germ cell tumors (TGCT) have been expected to have a strong underlying genetic component. We conducted a genome-wide scan among 277 TGCT cases and 919 controls and found that seven markers at 12p22 within KITLG (c-KIT ligand) reached genome-wide significance (P < 5.0 x 10(-8) in discovery). In independent replication, TGCT risk was increased threefold per copy of the major allele at rs3782179 and rs4474514 (OR = 3.08, 95% CI = 2.29-4.13; OR = 3.07, 95% CI = 2.29-4.13, respectively). We found associations with rs4324715 and rs6897876 at 5q31.3 near SPRY4 (sprouty 4; P < 5.0 x 10(-6) in discovery). In independent replication, risk of TGCT was increased nearly 40% per copy of the major allele (OR = 1.37, 95% CI = 1.14-1.64; OR = 1.39, 95% CI = 1.16-1.66, respectively). All of the genotypes were associated with both seminoma and nonseminoma TGCT subtypes. These results demonstrate that common genetic variants affect TGCT risk and implicate KITLG and SPRY4 as genes involved in TGCT susceptibility.
Collapse
|
15
|
Martin O, Shialis T, Lester J, Scrimshaw M, Boobis A, Voulvoulis N. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis. CIENCIA & SAUDE COLETIVA 2009; 13:1601-18. [PMID: 18813661 DOI: 10.1590/s1413-81232008000500024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 11/07/2007] [Indexed: 05/25/2023] Open
Abstract
Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The only quantitative summary estimate of the link between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago; other reviews of the link between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-alpha-mediated mode of action was specifically explored. Eight studies were included, investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population.
Collapse
Affiliation(s)
- Olwenn Martin
- Centre for Environmental Policy, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Hsu L, Starr JR, Zheng Y, Schwartz SM. On combining triads and unrelated subjects data in candidate gene studies: an application to data on testicular cancer. Hum Hered 2008; 67:88-103. [PMID: 19077426 PMCID: PMC2763779 DOI: 10.1159/000179557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022] Open
Abstract
Combining data collected from different sources is a cost-effective and time-efficient approach for enhancing the statistical efficiency in estimating weak-to-modest genetic effects or gene-gene or gene-environment interactions. However, combining data across studies becomes complicated when data are collected under different study designs, such as family-based and unrelated individual-based (e.g., population-based case-control design). In this paper, we describe a general method that permits the joint estimation of effects on disease risk of genes, environmental factors, and gene-gene/gene-environment interactions under a hybrid design that includes cases, parents of cases, and unrelated individuals. We provide both asymptotic theory and statistical inference. Extensive simulation experiments demonstrate that the proposed estimation and inferential methods perform well in realistic settings. We illustrate the method by an application to a study of testicular cancer.
Collapse
Affiliation(s)
- Li Hsu
- Biostatistics and Biomathematics Program, Fred Hutchinson Cancer Research Center, Seattle, Wash., USA.
| | | | | | | |
Collapse
|
17
|
Foresta C, Zuccarello D, Garolla A, Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev 2008; 29:560-80. [PMID: 18436703 DOI: 10.1210/er.2007-0042] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptorchidism is the most frequent congenital birth defect in male children (2-4% in full-term male births), and it has the potential to impact the health of the human male. In fact, although it is often considered a mild malformation, it represents the best-characterized risk factor for reduced fertility and testicular cancer. Furthermore, some reports have highlighted a significant increase in the prevalence of cryptorchidism over the last few decades. Etiology of cryptorchidism remains for the most part unknown, and cryptorchidism itself might be considered a complex disease. Major regulators of testicular descent from intraabdominal location into the bottom of the scrotum are the Leydig-cell-derived hormones testosterone and insulin-like factor 3. Research on possible genetic causes of cryptorchidism has increased recently. Abundant animal evidence supports a genetic cause, whereas the genetic contribution to human cryptorchidism is being elucidated only recently. Mutations in the gene for insulin-like factor 3 and its receptor and in the androgen receptor gene have been recognized as causes of cryptorchidism in some cases, but some chromosomal alterations, above all the Klinefelter syndrome, are also frequently involved. Environmental factors acting as endocrine disruptors of testicular descent might also contribute to the etiology of cryptorchidism and its increased incidence in recent years. Furthermore, polymorphisms in different genes have recently been investigated as contributing risk factors for cryptorchidism, alone or by influencing susceptibility to endocrine disruptors. Obviously, the interaction of environmental and genetic factors is fundamental, and many aspects have been clarified only recently.
Collapse
Affiliation(s)
- Carlo Foresta
- University of Padova, Department of Histology, Microbiology and Medical Biotechnologies, Section of Clinical Pathology and Centre for Male Gamete Cryopreservation, Via Gabelli 63, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
18
|
Cook MB, Sigurdson AJ, Jones IM, Thomas CB, Graubard BI, Korde L, Greene MH, McGlynn KA. Endogenous DNA damage and testicular germ cell tumors. ACTA ACUST UNITED AC 2008; 32:599-606. [PMID: 18657195 DOI: 10.1111/j.1365-2605.2008.00905.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Testicular germ cell tumors are comprised of two histologic groups, seminomas and non-seminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable levels of net endogenous DNA damage. To test our hypothesis, we conducted a case-case analysis of 51 seminoma and 61 non-seminoma patients using data and specimens from the Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort. A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modelled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with non-seminoma compared with seminoma (OR(50th percentile) = 3.31, 95% CI: 1.00, 10.98; OR(75th percentile) = 3.71, 95% CI: 1.04, 13.20; p for trend = 0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR(50th percentile) = 2.27, 95% CI: 0.75, 6.87; OR(75th percentile) = 2.40, 95% CI: 0.75, 7.71; p for trend = 0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that net endogenous levels are higher in patients who develop non-seminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.
Collapse
Affiliation(s)
- M B Cook
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-7234, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Figueroa JD, Sakoda LC, Graubard BI, Chanock S, Rubertone MV, Erickson RL, McGlynn KA. Genetic variation in hormone metabolizing genes and risk of testicular germ cell tumors. Cancer Causes Control 2008; 19:917-29. [DOI: 10.1007/s10552-008-9153-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 03/23/2008] [Indexed: 10/22/2022]
|
20
|
Garner M, Turner MC, Ghadirian P, Krewski D, Wade M. Testicular cancer and hormonally active agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:260-75. [PMID: 18368556 DOI: 10.1080/10937400701873696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Testicular cancer (TC) is a rare form of cancer, accounting for 1% of all new cancer cases in Canadian males. TC is the most common malignancy among young men, aged 25-34 yr old. Over previous decades, the incidence of TC has increased in many Western countries. Countries with a sufficiently long period of cancer registration, such as Denmark, document this trend back to the first half of the 20th century. The etiology of TC remains poorly understood. Most of the established risk factors are likely related to in utero events, including some factors that are purported to be surrogate measures for exposure to endogenous estrogens. The correlation of TC with other testicular abnormalities and with pregnancy factors led to the proposal that these conditions are a constellation of sequelae of impairment of testicular development called testis dysgenesis syndrome. There is some limited evidence suggesting that exposure to pharmacological estrogens may contribute to some cases of TC. There is currently no compelling evidence that exposure to environmental estrogenic or other hormonally active substances is contributing to the rise in TC incidence observed in Western nations over the last several decades; however, this question has not been extensively studied. The (1) rarity of this condition in the population, (2) long lag time between the presumed sensitive period during fetal development and clinical appearance of the condition, and (3) lack of a good animal model to study the progression of the disease have greatly hindered the understanding of environmental influences on TC risk.
Collapse
Affiliation(s)
- Michael Garner
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Martin OV, Shialis T, Lester JN, Scrimshaw MD, Boobis AR, Voulvoulis N. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:149-57. [PMID: 18288311 PMCID: PMC2235228 DOI: 10.1289/ehp.10545] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 11/07/2007] [Indexed: 05/22/2023]
Abstract
BACKGROUND Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The hypothesis that in utero exposure to estrogenic agents could induce these disorders was first proposed in 1993. The only quantitative summary estimate of the association between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago, and other systematic reviews of the association between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. OBJECTIVES We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-alpha-mediated mode of action was specifically explored. RESULTS We included in this meta-analysis eight studies investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. CONCLUSIONS The doubling of the risk ratios for all three end points investigated after DES exposure is consistent with a shared etiology and the TDS hypothesis but does not constitute evidence of an estrogenic mode of action. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population.
Collapse
Affiliation(s)
- Olwenn V. Martin
- Centre for Environmental Policy and
- Experimental Medicine and Toxicology Group, Imperial College London, United Kingdom
| | | | - John N. Lester
- Centre for Water Sciences, Cranfield University, Cranfield, United Kingdom
| | - Mark D. Scrimshaw
- Institute for the Environment, Brunel University, Uxbridge, United Kingdom
| | - Alan R. Boobis
- Experimental Medicine and Toxicology Group, Imperial College London, United Kingdom
| | | |
Collapse
|
22
|
Microarray Analysis of the Global Alterations in the Gene Expression in the Placentas From Cigarette-smoking Mothers. Clin Pharmacol Ther 2007; 83:542-50. [DOI: 10.1038/sj.clpt.6100376] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Rajpert-De Meyts E. Recent advances and future directions in research on testicular germ cell cancer. ACTA ACUST UNITED AC 2007; 30:192-7. [PMID: 17705803 DOI: 10.1111/j.1365-2605.2007.00810.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Richiardi L, Pettersson A, Akre O. Genetic and environmental risk factors for testicular cancer. ACTA ACUST UNITED AC 2007; 30:230-40; discussion 240-1. [PMID: 17488341 DOI: 10.1111/j.1365-2605.2007.00760.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Germ-cell testicular cancer has a well-characterized descriptive epidemiology, whereas the aetiology remains largely unknown. It is believed that exposures acting prenatally are instrumental to germ-cell cancer development, although no specific exposure has been identified. Several epidemiological studies have investigated a number of indicators of prenatal exposures, such as birth order, gestational duration, birth weight, maternal age and nausea during pregnancy, but results are inconsistent. This paper briefly reviews the current support for genetic and environmental factors in testicular cancer aetiology. In particular, we have summarized the evidence suggesting a strong role of inherited susceptibility, which is probably carried by the effect of several unknown moderate-risk genes. We have illustrated inconsistencies in the previous studies on prenatal factors by estimating the heterogeneity and pooled odds ratios among twelve studies investigating the association between low birth weight and testicular cancer. We have discussed the possibility that puberty is another time window during which environmental factors may increase the risk of testicular cancer. Finally, we have reviewed the results from studies on cryptorchidism and impaired fertility in relation to risk for testicular cancer. In conclusion, we propose that future aetiological studies on testicular cancer should take postnatal exposures acting during puberty into account and, whenever possible, investigate both main effects and interactions among prenatal factors, genetic factors and postnatal factors.
Collapse
Affiliation(s)
- Lorenzo Richiardi
- Cancer Epidemiology Unit, CeRMS and CPO-Piemonte, University of Turin, Turin, Italy.
| | | | | |
Collapse
|