1
|
Kunikowska J, Pełka K, Bizoń M, Olszewski M. 68Ga-Prostate-Specific Membrane Antigen PET/CT in Endometrial Cancer: A Preliminary Report. Clin Nucl Med 2024; 49:e650-e655. [PMID: 39485875 DOI: 10.1097/rlu.0000000000005446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
PURPOSE OF THE REPORT Endometrial cancer is the most common gynecological cancer. Prostate-specific membrane antigen (PSMA) is expressed in prostate cancer cells but can be found in other cancers, such as endometrial cancer, during angiogenesis.The aim of this prospective pilot study was to evaluate the feasibility of using 68Ga-PSMA-11 PET/CT in endometrial cancer patients before surgical treatment. PATIENTS AND METHODS Seven women with a mean age of 58 ± 7.9 years were included in the study. All patients underwent standard imaging studies involving transvaginal ultrasound, ceCT scans of the chest and abdomen, and MRI as qualified for surgery. Additionally, PET/CT was performed on a Siemens Biograph scanner 60 minutes after the injection of 2 MBq/kg 68Ga-PSMA-11. RESULTS Six of 7 patients had positive 68Ga-PSMA-11 PET/CT images, and histopathology confirmed endometrial cancer. One patient also exhibited uptake in the left ovary, and final histopathology revealed a hemorrhagic cyst. Lymph node involvement was further confirmed after ceCT fusion with 68Ga-PSMA-11. The consensus of histopathological staging of endometrial cancer and ceCT was 4/7, that of MR was 6/7, and that of 68Ga-PSMA-11 PET/CT was 5/7. All methods were consistent in terms of staging in 3/7 patients. CONCLUSIONS The initial experience showed the possibility of using 68Ga-PSMA-11 in endometrial cancer patients. However, prospective large studies are needed to explore the real diagnostic role of radiolabelled PSMA in this field.This study was approved by the Ethical Committee of the Medical University of Warsaw (KB/2/A/2018).
Collapse
Affiliation(s)
- Jolanta Kunikowska
- From the Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
2
|
Sayar E, Patel RA, Coleman IM, Roudier MP, Zhang A, Mustafi P, Low JY, Hanratty B, Ang LS, Bhatia V, Adil M, Bakbak H, Quigley DA, Schweizer MT, Hawley JE, Kollath L, True LD, Feng FY, Bander NH, Corey E, Lee JK, Morrissey C, Gulati R, Nelson PS, Haffner MC. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight 2023; 8:e162907. [PMID: 36821396 PMCID: PMC10132157 DOI: 10.1172/jci.insight.162907] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies - in particular, HDAC inhibitors - can be used to augment PSMA levels.
Collapse
Affiliation(s)
- Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Radhika A. Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martine P. Roudier
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Ailin Zhang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Pallabi Mustafi
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vipul Bhatia
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hasim Bakbak
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David A. Quigley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Michael T. Schweizer
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jessica E. Hawley
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lori Kollath
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| | - Felix Y. Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Neil H. Bander
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Eva Corey
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - John K. Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Colm Morrissey
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| |
Collapse
|
3
|
Molecular Regulation of Androgen Receptors in Major Female Reproductive System Cancers. Int J Mol Sci 2022; 23:ijms23147556. [PMID: 35886904 PMCID: PMC9322163 DOI: 10.3390/ijms23147556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
There are three main types of cancer in the female reproductive system, specifically ovarian cancer (OVCA), endometrial cancer (EC), and cervical cancer (CC). They are common malignant tumors in women worldwide, with high morbidity and mortality. In recent years, androgen receptors (ARs) have been found to be closely related to the occurrence, progression, prognosis, and drug resistance of these three types of tumors. This paper summarizes current views on the role of AR in female reproductive system cancer, the associations between female reproductive system cancers and AR expression and polymorphisms. AR regulates the downstream target genes transcriptional activity and the expression via interacting with coactivators/corepressors and upstream/downstream regulators and through the gene transcription mechanism of “classical A/AR signaling” or “non-classical AR signaling”, involving a large number of regulatory factors and signaling pathways. ARs take part in the processes of cancer cell proliferation, migration/invasion, cancer cell stemness, and chemotherapeutic drug resistance. These findings suggest that the AR and related regulators could target the treatment of female reproductive system cancer.
Collapse
|
4
|
Sun D, Zhang A, Gao B, Zou L, Huang H, Zhao X, Xu D. Identification of Alternative Splicing-Related Genes CYB561 and FOLH1 in the Tumor-Immune Microenvironment for Endometrial Cancer Based on TCGA Data Analysis. Front Genet 2022; 13:770569. [PMID: 35836577 PMCID: PMC9274141 DOI: 10.3389/fgene.2022.770569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Advanced and recurrent endometrial cancer EC remains controversial. Immunotherapy will play a landmark role in cancer treatment, and alternative splicing (AS) of messenger RNA (mRNA) may offer the potential of a broadened target space.Methods: We downloaded the clinical information and mRNA expression profiles from The Cancer Genome Atlas (TCGA) database. Hub genes were extracted from 11 AS-related genes to analyze the correlation between clinical parameters and the tumor-immune microenvironment. We also analyzed the correlations between the copy numbers, gene expressions of hub genes, and immune cells. The correlation between the risk score and the six most important checkpoint genes was also investigated. The ESTIMATE algorithm was finally performed on each EC sample based on the high- and low-risk groups.Results: The risk score was a reliable and stable independent risk predictor in the Uterine Corpus Endometrial Carcinoma (UCEC) cohort. CYB561|42921|AP and FOLH1|15817|ES were extracted. The expression of CYB561 and FOLH1 decreased gradually with the increased grade and International Federation of Gynecology and Obstetrics (FIGO) stage (p < 0.05). Gene copy number changes in CYB561 and FOLH1 led to the deletion number of myeloid DC cells and T cell CD8+. Low expression of both CYB561 and FOLH1 was associated with poor prognosis (p < 0.001). The checkpoint genes, CTLA-4 and PDCD1, exhibited a negative correlation with the risk score of AS in UCEC.Conclusion: AS-related gene signatures were related to the immune-tumor microenvironment and prognosis. These outcomes were significant for studying EC’s immune-related mechanisms and exploring novel prognostic predictors and precise therapy methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dabao Xu
- *Correspondence: Xingping Zhao, ; Dabao Xu,
| |
Collapse
|
5
|
Ramirez-Fort MK, Meier-Schiesser B, Lachance K, Mahase SS, Church CD, Niaz MJ, Liu H, Navarro V, Nikolopoulou A, Kazakov DV, Contassot E, Nguyen DP, Sach J, Hadravsky L, Sheng Y, Tagawa ST, Wu X, Lange CS, French LE, Nghiem PT, Bander NH. Folate hydrolase-1 (FOLH1) is a novel target for antibody-based brachytherapy in Merkel cell carcinoma. SKIN HEALTH AND DISEASE 2021; 1. [PMID: 34541577 PMCID: PMC8447486 DOI: 10.1002/ski2.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Backgrounds Folate Hydrolase‐1 (FOLH1; PSMA) is a type II transmembrane protein, luminally expressed by solid tumour neo‐vasculature. Monoclonal antibody (mAb), J591, is a vehicle for mAb‐based brachytherapy in FOLH1+ cancers. Brachytherapy is a form of radiotherapy that involves placing a radioactive material a short distance from the target tissue (e.g., on the skin or internally); brachytherapy is commonly accomplished with the use of catheters, needles, metal seeds and antibody or small peptide conjugates. Herein, FOLH1 expression in primary (p) and metastatic (m) Merkel cell carcinoma (MCC) is characterized to determine its targeting potential for J591‐brachytherapy. Materials & Methods Paraffin sections from pMCC and mMCC were evaluated by immunohistochemistry for FOLH1. Monte Carlo simulation was performed using the physical properties of conjugated radioisotope lutetium‐177. Kaplan–Meier survival curves were calculated based on patient outcome data and FOLH1 expression. Results Eighty‐one MCC tumours were evaluated. 67% (54/81) of all cases, 77% (24/31) pMCC and 60% (30/50) mMCC tumours were FOLH1+. Monte Carlo simulation showed highly localized ionizing tracks of electrons emitted from the targeted neo‐vessel. 42% (34/81) of patients with FOLH1+/− MCC had available survival data for analysis. No significant differences in our limited data set were detected based on FOLH1 status (p = 0.4718; p = 0.6470), staining intensity score (p = 0.6966; p = 0.9841) or by grouping staining intensity scores (− and + vs. ++, +++, +++) (p = 0.8022; p = 0.8496) for MCC‐specific survival or recurrence free survival, respectively. Conclusions We report the first evidence of prevalent FOLH1 expression within MCC‐associated neo‐vessels, in 60‐77% of patients in a large MCC cohort. Given this data, and the need for alternatives to immune therapies it is appropriate to explore the safety and efficacy of FOLH1‐targeted brachytherapy for MCC. What's already known about this topic? We report the first evidence of prevalent folate hydrolase‐1 (FOLH1; also known as prostate‐specific membrane antigen) expression within MCC‐associated neovessels.
What does this study add? Herein, FOLH1 expression in Merkel cell carcinoma neovasculature is validated, and the therapeutic mechanism of specific, systemic targeting of disseminated disease with antibody‐based brachytherapy, is defined.
Collapse
Affiliation(s)
- M K Ramirez-Fort
- Department of Life Sciences, BioFort®, Guaynabo, Puerto Rico, USA.,Department of Urology, Weill Cornell Medicine, New York, New York, USA.,Department of Radiation Oncology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - B Meier-Schiesser
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - K Lachance
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - S S Mahase
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - C D Church
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - M J Niaz
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - H Liu
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - V Navarro
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - A Nikolopoulou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - D V Kazakov
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - E Contassot
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - D P Nguyen
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - J Sach
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - L Hadravsky
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Y Sheng
- Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - S T Tagawa
- Department of Urology, Weill Cornell Medicine, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - X Wu
- Shanghai Proton and Heavy Ion Center, Shanghai, China.,Innovative Cancer Institute, Miami, Florida, USA
| | - C S Lange
- Department of Life Sciences, BioFort®, Guaynabo, Puerto Rico, USA.,Department of Radiation Oncology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - L E French
- Department of Dermatology, Münich University Hospital, Münich, Germany
| | - P T Nghiem
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - N H Bander
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Shahrokhi P, Masteri Farahani A, Tamaddondar M, Rezazadeh F. The utility of radiolabeled PSMA ligands for tumor imaging. Chem Biol Drug Des 2021; 99:136-161. [PMID: 34472217 DOI: 10.1111/cbdd.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a glycosylated type-II transmembrane protein expressed in prostatic tissue and significantly overexpressed in several prostate cancer cells. Despite its name, PSMA has also been reported to be overexpressed in endothelial cells of benign and malignant non-prostate disease. So its clinical use was extended to detection, staging, and therapy of various tumor types. Recently small molecules targeting PSMA have been developed as imaging probes for diagnosis of several malignancies. Preliminary studies are emerging improved diagnostic sensitivity and specificity of PSMA imaging, leading to a change in patient management. In this review, we evaluated the first preclinical and clinical studies on PSMA ligands resulting future perspectives radiolabeled PSMA in staging and molecular characterization, based on histopathologic examinations of PSMA expression.
Collapse
Affiliation(s)
- Pejman Shahrokhi
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Arezou Masteri Farahani
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Mohammad Tamaddondar
- Nephrology Department, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Klein Nulent TJW, Valstar MH, Smit LA, Smeele LE, Zuithoff NPA, de Keizer B, de Bree R, van Es RJJ, Willems SM. Prostate-specific membrane antigen (PSMA) expression in adenoid cystic carcinoma of the head and neck. BMC Cancer 2020; 20:519. [PMID: 32503460 PMCID: PMC7275445 DOI: 10.1186/s12885-020-06847-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Treatment options for advanced head and neck adenoid cystic carcinoma (AdCC) are limited. Prostate-Specific Membrane Antigen (PSMA), a transmembrane protein that is known for its use in diagnostics and targeted therapy in prostate cancer, is also expressed by AdCC. This study aimed to analyse PSMA expression in a large cohort of primary, recurrent and metastasized AdCC of the head and neck. METHODS One hundred ten consecutive patients with histologically confirmed AdCC in the period 1990-2017 were included. An analysis was made of clinical details, revised pathology and semiquantitative immunohistochemical expression of PSMA on tissue microarray and whole slides. Associations of PSMA expression with clinicopathological parameters were explored and survival was analysed by multivariate Cox-proportional Hazard analysis. RESULTS PSMA expression was present in 94% of the 110 primary tumours, with a median of 31% positive cells (IQR 15-60%). Primary tumours (n = 18) that recurred (n = 15) and/or had metastases (n = 10) demonstrated 40, 60 and 23% expression respectively. Expression was not independently related to increased pathological stage, tumour grade, and the occurrence of locoregional recurrence or metastasis. After dichotomization, only primary tumour PSMA expression ≤10% appeared to be associated with reduced 10-years recurrence-free survival (HR 3.0, 95% CI 1.1-8.5, p = .04). CONCLUSIONS PSMA is highly expressed in primary, recurrent and metastatic AdCC of the salivary and seromucous glands. PSMA expression has no value in predicting clinical behaviour of AdCC although low expression may indicate a reduced recurrence-free survival. This study provides supporting results to consider using PSMA as target for imaging and therapy when other diagnostic and palliative treatment options fail.
Collapse
Affiliation(s)
- Thomas J W Klein Nulent
- Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Heidelberglaan 100, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands.
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Matthijs H Valstar
- Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura A Smit
- Department of Pathology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Ludwig E Smeele
- Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas P A Zuithoff
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart de Keizer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Heidelberglaan 100, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands
| | - Robert J J van Es
- Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Heidelberglaan 100, P.O. Box 85500, Utrecht, 3508, GA, The Netherlands
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
de Carvalho L, Vieira D. Evaluation of genotoxic potential of peptides used in nuclear medicine (PSMA -617 and -11, and ubiquicidine 29-41) using a flow-cytometric, semi-automated analysis of micronuclei frequency in cell cultures. Toxicol Rep 2020; 7:304-316. [PMID: 32071884 PMCID: PMC7016341 DOI: 10.1016/j.toxrep.2020.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022] Open
Abstract
Assays that rely on the assessment of frequency of micronuclei are important standard techniques currently used to quantify potential genotoxic damage after exposure to chemical or physical agents, such as ionizing radiation, or in pre-clinical studies, to assessment of the genotoxic potential of drugs or its components. The experiments are usually performed using conventional microscopy, but currently the protocols are being upgraded to automated approaches based on flow cytometry protocols based on the elimination of the plasma membrane by chemical agents, allowing quantification by flow cytometry. In this work, the genotoxic potential of peptides used as components of radiopharmaceuticals (PSMA-617 and 11 and Ubiquicidine) was evaluated exposing CHO-KI cells to a wide range of concentration (0.1X and 100X the maximum allowed concentration to human adults). Incubation with PSMA-11 or UBI29-41 did not induce genotoxicity. After 24 h of incubation, PSMA-617 induced genotoxicity only in non-practical concentration (100-fold). Results corroborate the safety of the pre-drugs and the wide detection range of technique.
Collapse
Affiliation(s)
| | - D.P. Vieira
- Laboratório de Radiobiologia, Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Av. Lineu Prestes 2242, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Ramirez-Fort MK, Mahase SS, Osborne JR, Lange CS. Theragnostic Target, Prostate-Specific Membrane Antigen-Also Specific for Nonprostatic Malignancies. Int J Radiat Oncol Biol Phys 2018; 101:646-649. [PMID: 29893276 DOI: 10.1016/j.ijrobp.2018.03.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Marigdalia K Ramirez-Fort
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina; Department of Urology, Weill Cornell Medicine, New York, New York
| | - Sean S Mahase
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher S Lange
- Department of Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
10
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 1: DNA methylation. Epigenomics 2017; 9:737-755. [PMID: 28470096 DOI: 10.2217/epi-2016-0166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. The present review is the first part of this work, in which we examined the contribution of DNA methylation alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Pillai MRA, Nanabala R, Joy A, Sasikumar A, Russ Knapp FF. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol 2016; 43:692-720. [PMID: 27589333 DOI: 10.1016/j.nucmedbio.2016.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
Abstract
Because of the broad incidence, morbidity and mortality associated with prostate-derived cancer, the development of more effective new technologies continues to be an important goal for the accurate detection and treatment of localized prostate cancer, lymphatic involvement and metastases. Prostate-specific membrane antigen (PSMA; Glycoprotein II) is expressed in high levels on prostate-derived cells and is an important target for visualization and treatment of prostate cancer. Radiolabeled peptide targeting technologies have rapidly evolved over the last decade and have focused on the successful development of radiolabeled small molecules that act as inhibitors to the binding of the N-acetyl-l-aspartyl-l-glutamate (NAAG) substrate to the PSMA molecule. A number of radiolabeled PSMA inhibitors have been described in the literature and labeled with SPECT, PET and therapeutic radionuclides. Clinical studies with these agents have demonstrated the improved potential of PSMA-targeted PET imaging agents to detect metastatic prostate cancer in comparison with conventional imaging technologies. Although many of these agents have been evaluated in humans, by far the most extensive clinical literature has described use of the 68Ga and 177Lu agents. This review describes the design and development of these agents, with a focus on the broad clinical introduction of PSMA targeting motifs labeled with 68Ga for PET-CT imaging and 177Lu for therapy. In particular, because of availability from the long-lived 68Ge (T1/2=270days)/68Ga (T1/2=68min) generator system and increasing availability of PET-CT, the 68Ga-labeled PSMA targeted agent is receiving widespread interest and is one of the fastest growing radiopharmaceuticals for PET-CT imaging.
Collapse
Affiliation(s)
| | - Raviteja Nanabala
- KIMS DDNMRC PET Scans, KIMS Hospital, Trivandrum, Kerala, India, 691601
| | - Ajith Joy
- Molecular Group of Companies, Puthuvype, Ernakulam, Kerala, 682508, India
| | - Arun Sasikumar
- KIMS DDNMRC PET Scans, KIMS Hospital, Trivandrum, Kerala, India, 691601
| | - Furn F Russ Knapp
- Emeritus, Medical Radioisotope Program, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 37830
| |
Collapse
|
12
|
Mottaghy FM, Behrendt FF, Verburg FA. 68Ga-PSMA-HBED-CC PET/CT: where molecular imaging has an edge over morphological imaging. Eur J Nucl Med Mol Imaging 2015; 43:394-6. [DOI: 10.1007/s00259-015-3212-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance. PLoS One 2015; 10:e0125924. [PMID: 25978404 PMCID: PMC4433228 DOI: 10.1371/journal.pone.0125924] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/23/2015] [Indexed: 01/15/2023] Open
Abstract
Background Prostate-specific membrane antigen (PSMA) has been found in tumor neovasculature endothelial cells (NECs) of non-prostate cancers and may become the most promising target for anti-tumor therapy. To study the value of PSMA as a potential new target for lung cancer treatment, PSMA expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) tissues and its relationship with clinicopathology were investigated in the current study. Methods Immunohistochemistry was used to detect PSMA expression in a total of 150 lung specimens of patients with lung cancer. The data were analyzed using univariate and multivariate statistical analyses. Results The percentages of NSCLC patients who had PSMA (+) tumor cells and PSMA (+) NECs were 54.02% and 85.06%, respectively. The percentage of patients younger than 60 years old who had PSMA (+) tumor cells was 69.05%, which was significantly greater than the percentage of patients aged 60 years or older (40.00%, p<0.05). A significant difference was observed in the percentage of NSCLC patients with PMSA (+) NECs and stage I or II cancer (92.98%) and those patients with stage III or IV cancer (76.77%). In the SCLC tissues, NEC PSMA expression (70.00%) did not differ significantly from NSCLC. SCLC tumor cells and normal lung tissues cells were all negative. There was no significant correlation between the presence of PSMA (+) NECs in SCLC patients and the observed clinicopathological parameters. Conclusions PSMA is expressed not only in NECs of NSCLC and SCLC but also in tumor cells of most NSCLC patients. The presence of PSMA (+) tumor cells and PSMA (+) NECs in NSCLC was negatively correlated with age and the clinicopathological stage of the patients, respectively.
Collapse
|
14
|
Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Evidence of androgen action in endometrial and ovarian cancers. Endocr Relat Cancer 2014; 21:T203-18. [PMID: 24623742 DOI: 10.1530/erc-13-0551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endometrial cancer (EC) and ovarian cancer are common gynaecological malignancies. The impact of androgen action in these cancers is poorly understood; however, there is emerging evidence to suggest that targeting androgen signalling may be of therapeutic benefit. Epidemiological evidence suggests that there is an increased risk of EC associated with exposure to elevated levels of androgens, and genetic variants in genes related to both androgen biosynthesis and action are associated with an increased risk of both EC and ovarian cancer. Androgen receptors (ARs) may be a potential therapeutic target in EC due to reported anti-proliferative activities of androgens. By contrast, androgens may promote growth of some ovarian cancers and anti-androgen therapy has been proposed. Introduction of new therapies targeting ARs expressed in EC or ovarian cancer will require a much greater understanding of the impacts of cell context-specific AR-dependent signalling and how ARs can crosstalk with other steroid receptors during progression of disease. This review considers the evidence that androgens may be important in the aetiology of EC and ovarian cancer with discussion of evidence for androgen action in normal and malignant endometrial and ovarian tissue.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioannis Simitsidellis
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Frances Collins
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippa T K Saunders
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
15
|
Strategies for imaging androgen receptor signaling pathway in prostate cancer: implications for hormonal manipulation and radiation treatment. BIOMED RESEARCH INTERNATIONAL 2013; 2013:460546. [PMID: 24286079 PMCID: PMC3830798 DOI: 10.1155/2013/460546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022]
Abstract
Prostate cancer (Pca) is a heterogeneous disease; its etiology appears to be related to genetic and epigenetic factors. Radiotherapy and hormone manipulation are effective treatments, but many tumors will progress despite these treatments. Molecular imaging provides novel opportunities for image-guided optimization and management of these treatment modalities. Here we reviewed the advances in targeted imaging of key biomarkers of androgen receptor signaling pathways. A computerized search was performed to identify all relevant studies in Medline up to 2013. There are well-known limitations and inaccuracies of current imaging approaches for monitoring biological changes governing tumor progression. The close integration of molecular biology and clinical imaging could ease the development of new molecular imaging agents providing novel tools to monitor a number of biological events that, until a few years ago, were studied by conventional molecular assays. Advances in translational research may represent the next step in improving the oncological outcome of men with Pca who remain at high risk for systemic failure. This aim may be obtained by combining the anatomical properties of conventional imaging modalities with biological information to better predict tumor response to conventional treatments.
Collapse
|
16
|
Liu T, Wu LY, Fulton MD, Johnson JM, Berkman CE. Prolonged androgen deprivation leads to downregulation of androgen receptor and prostate-specific membrane antigen in prostate cancer cells. Int J Oncol 2012; 41:2087-92. [PMID: 23041906 PMCID: PMC3583693 DOI: 10.3892/ijo.2012.1649] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/12/2012] [Indexed: 02/07/2023] Open
Abstract
Emergence of androgen-independent cancer cells during androgen deprivation therapy presents a significant challenge to successful treatment outcomes in prostate cancer. Elucidating the role of androgen deprivation in the transition from an androgen-dependent to an androgen-independent state may enable the development of more effective therapeutic strategies against prostate cancer. Herein, we describe an in vitro model for assessing the effects of continuous androgen-deprivation on prostate cancer cells (LNCaP) with respect to the expression of two prostate-specific markers: the androgen receptor (AR) and prostate-specific membrane antigen (PSMA). Compared with androgen-containing normal growth medium, androgen-deprived medium apparently induced the concomitant downregulation of AR and PSMA over time. Decreased protein levels were confirmed by fluorescence imaging, western blotting and enzymatic activity studies. In contrast to the current understanding of AR and PSMA in prostate cancer progression, our data demonstrated that androgen-deprivation induced a decrease in AR and PSMA levels in androgen-sensitive LNCaP cells, which may be associated with the development of more aggressive disease-state following androgen deprivation therapy.
Collapse
Affiliation(s)
- Tiancheng Liu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
17
|
Balch C, Matei DE, Huang THM, Nephew KP. Role of epigenomics in ovarian and endometrial cancers. Epigenomics 2012; 2:419-47. [PMID: 22121902 DOI: 10.2217/epi.10.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and while constituting only 3% of all female cancers, it causes 14,600 deaths in the USA annually. Endometrial cancer, the most diagnosed and second-most fatal gynecologic cancer, afflicts over 40,000 US women annually, causing an estimated 7780 deaths in 2009. In both advanced ovarian and endometrial carcinomas, the majority of initially therapy-responsive tumors eventually evolve to a fully drug-resistant phenotype. In addition to genetic mutations, epigenetic anomalies are frequent in both gynecologic malignancies, including aberrant DNA methylation, atypical histone modifications and dysregulated expression of distinct microRNAs, resulting in altered gene-expression patterns favoring cell survival. In this article, we summarize the most recent hypotheses regarding the role of epigenetics in ovarian and endometrial cancers, including a possible role in tumor 'stemness' and also evaluate the possible therapeutic benefits of reversal of these oncogenic chromatin aberrations.
Collapse
Affiliation(s)
- Curtis Balch
- Medical Sciences Program, Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Jordan Hall 302, 1001 East Third Street, Bloomington, IN 47408, USA
| | | | | | | |
Collapse
|
18
|
Zeng C, Ke ZF, Yang Z, Wang Z, Yang SC, Luo CQ, Wang LT. Prostate-specific membrane antigen: a new potential prognostic marker of osteosarcoma. Med Oncol 2011; 29:2234-9. [PMID: 22009216 DOI: 10.1007/s12032-011-0089-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Previous studies have demonstrated that the expression of prostate-specific membrane antigen (PSMA) is restricted to endothelium from tumor-associated neovasculature. But the expression of PSMA in osteosarcoma and its clinical significance are unknown. Using immunohistochemical analysis and quantum dot probes, we found that 46.7% (21/45) of the osteosarcoma showed positive staining for PSMA while no PSMA staining in osteofibrous dysplasia. The expression and localization of PSMA was confirmed by CD34 staining. More importantly, the expression of PSMA is correlated with tumor size, pulmonary metastasis and worse survival (survival rate 63.2% in the PSMA-negative group versus 36.6% in the PSMA-positive group). Thus, PSMA could be used as an independent prognostic marker for the osteosarcoma patients, and PSMA staining in tumor-associated neovasculature may be a potential target for antineovasculature-based therapy in osteosarcoma.
Collapse
Affiliation(s)
- Chao Zeng
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Smith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res 2011; 71:6785-95. [PMID: 21880588 DOI: 10.1158/0008-5472.can-11-2127] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent U.S. Food and Drug Administration approval of the first immunotherapy for prostate cancer encourages efforts to improve immune targeting of this disease. The synovial sarcoma X chromosome breakpoint (SSX) proteins comprise a set of cancer-testis antigens that are upregulated in MHC class I-deficient germline cells and in various types of advanced cancers with a poor prognosis. Humoral and cell-mediated immune responses to the SSX family member SSX2 can arise spontaneously in prostate cancer patients. Thus, SSX2 and other proteins of the SSX family may offer useful targets for tumor immunotherapy. In this study, we evaluated the expression of SSX family members in prostate cancer cell lines and tumor biopsies to identify which members might be most appropriate for immune targeting. We found that SSX2 was expressed most frequently in prostate cell lines, but that SSX1 and SSX5 were also expressed after treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine. Immunohistochemical analysis of microarrayed tissue biopsies confirmed a differential level of SSX protein expression in human prostate cancers. Notably, SSX expression in patient tumor samples was restricted to metastatic lesions (5/22; 23%) and no expression was detected in primary prostate tumors examined (0/73; P < 0.001). We determined that cross-reactive immune responses to a dominant HLA-A2-specific SSX epitope (p103-111) could be elicited by immunization of A2/DR1 transgenic mice with SSX vaccines. Our findings suggest that multiple SSX family members are expressed in metastatic prostate cancers which are amenable to simultaneous targeting.
Collapse
Affiliation(s)
- Heath A Smith
- Department of Medicine and Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
20
|
Abstract
In recent years, nanoparticulate-mediated drug delivery research has examined a full spectrum of nanoparticles that can be used in diagnostic and therapeutic cancer applications. A key aspect of this technology is in the potential to specifically target the nanoparticles to diseased cells using a range of molecules, in particular antibodies. Antibody–nanoparticle conjugates have the potential to elicit effective targeting and release of therapeutic targets at the disease site, while minimizing off-target side effects caused by dosing of normal tissues. This article provides an overview of various antibody-conjugated nanoparticle strategies, focusing on the rationale of cell-surface receptors targeted and their potential clinical application.
Collapse
Affiliation(s)
- Francois Fay
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
21
|
Hypermethylation of SOX2 Promoter in Endometrial Carcinogenesis. Obstet Gynecol Int 2010; 2010. [PMID: 20814443 PMCID: PMC2929617 DOI: 10.1155/2010/682504] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/04/2010] [Accepted: 07/07/2010] [Indexed: 01/19/2023] Open
Abstract
This paper aimed at investigating the expression and methylation profiles of SOX2, a gene coding for the stem cell-related transcription factor SOX2, in endometrial carcinomas. By methylation-specific polymerase chain reaction (MS-PCR), the methylation status of SOX2 promoter region in 72 endometrial carcinomas and 12 normal endometrial samples was examined. Methylated allele was found in 37.5% (27/72) of endometrial carcinomas but only in 8.3% (1/12) of normal endometrial, significantly more frequent in cancers (P = .0472). SOX2 mRNA level was significantly reduced in endometrial carcinoma compared with nonneoplastic endometrium (P = .045). A significant correlation between SOX2 mRNA expression and hypermethylation of SOX2 was found (P = .024). Hypermethylation of SOX2 tended to be more frequently found in type II serous or clear cell adenocarcinoma. SOX2 methylation was also significantly correlated with shorter survival of patients (P = .046). In conclusion, epigenetic mechanisms may play a crucial role on the transcriptional regulation of SOX2 and loss of SOX2 expression may be related to endometrial carcinogenesis.
Collapse
|
22
|
Mouraviev V, Madden JF, Broadwater G, Mayes JM, Burchette JL, Schneider F, Smith J, Tsivian M, Wong T, Polascik TJ. Use of
111
In-Capromab Pendetide Immunoscintigraphy to Image Localized Prostate Cancer Foci Within the Prostate Gland. J Urol 2009; 182:938-47. [DOI: 10.1016/j.juro.2009.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Indexed: 01/10/2023]
Affiliation(s)
- Vladimir Mouraviev
- Duke Prostate Center and Division of Urologic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - John F. Madden
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Gloria Broadwater
- Cancer Center Biostatistics, Duke University Medical Center, Durham, North Carolina
| | - Janice M. Mayes
- Cancer Center Biostatistics, Duke University Medical Center, Durham, North Carolina
| | - James L. Burchette
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Frank Schneider
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Jill Smith
- Duke Prostate Center and Division of Urologic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Matvey Tsivian
- Duke Prostate Center and Division of Urologic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Terence Wong
- Department of Radiology/Nuclear Medicine, Duke University Medical Center, Durham, North Carolina
| | - Thomas J. Polascik
- Duke Prostate Center and Division of Urologic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|