1
|
Li T, Sun G, Ye H, Song C, Shen Y, Cheng Y, Zou Y, Fang Z, Shi J, Wang K, Dai L, Wang P. ESCCPred: a machine learning model for diagnostic prediction of early esophageal squamous cell carcinoma using autoantibody profiles. Br J Cancer 2024; 131:883-894. [PMID: 38956246 PMCID: PMC11369250 DOI: 10.1038/s41416-024-02781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically ideal biomarkers for early diagnosis. The objective of this study was to develop and validate a user-friendly diagnostic tool for early ESCC detection. METHODS The study encompassed three phases: discovery, verification, and validation, comprising a total of 1309 individuals. Serum autoantibodies were profiled using the HuProtTM human proteome microarray, and autoantibody levels were measured using the enzyme-linked immunosorbent assay (ELISA). Twelve machine learning algorithms were employed to construct diagnostic models, and evaluated using the area under the receiver operating characteristic curve (AUC). The model application was facilitated through R Shiny, providing a graphical interface. RESULTS Thirteen autoantibodies targeting TAAs (CAST, FAM131A, GABPA, HDAC1, HDGFL1, HSF1, ISM2, PTMS, RNF219, SMARCE1, SNAP25, SRPK2, and ZPR1) were identified in the discovery phase. Subsequent verification and validation phases identified five TAAbs (anti-CAST, anti-HDAC1, anti-HSF1, anti-PTMS, and anti-ZPR1) that exhibited significant differences between ESCC and control subjects (P < 0.05). The support vector machine (SVM) model demonstrated robust performance, with AUCs of 0.86 (95% CI: 0.82-0.89) in the training set and 0.83 (95% CI: 0.78-0.88) in the test set. For early-stage ESCC, the SVM model achieved AUCs of 0.83 (95% CI: 0.79-0.88) in the training set and 0.83 (95% CI: 0.77-0.90) in the test set. Notably, promising results were observed for high-grade intraepithelial neoplasia, with an AUC of 0.87 (95% CI: 0.77-0.98). The web-based implementation of the early ESCC diagnostic tool is publicly accessible at https://litdong.shinyapps.io/ESCCPred/ . CONCLUSION This study provides a promising and easy-to-use diagnostic prediction model for early ESCC detection. It holds promise for improving early detection strategies and has potential implications for public health.
Collapse
Affiliation(s)
- Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Caijuan Song
- The Institution for Chronic and Noncommunicable Disease Control and Prevention, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, 450052, Henan Provinc, China
| | - Yajing Shen
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yifan Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yuanlin Zou
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Zhaoyang Fang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China.
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
2
|
Zhang L, Strange M, Elishaev E, Zaidi S, Modugno F, Radolec M, Edwards RP, Finn OJ, Vlad AM. Characterization of latently infected EBV+ antibody-secreting B cells isolated from ovarian tumors and malignant ascites. Front Immunol 2024; 15:1379175. [PMID: 39086481 PMCID: PMC11288875 DOI: 10.3389/fimmu.2024.1379175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Intra-tumoral B cells mediate a plethora of immune effector mechanisms with key roles in anti-tumor immunity and serve as positive prognostic indicators in a variety of solid tumor types, including epithelial ovarian cancer (EOC). Several aspects of intra-tumoral B cells remain unclear, such as their state of activation, antigenic repertoires, and capacity to mature into plasma cells. Methods B lymphocytes were isolated from primary EOC tissue and malignant ascites and were maintained in cell culture medium. The stably maintained cell lines were profiled with flow cytometry and B cell receptor sequencing. Secreted antibodies were tested with a human proteome array comprising more than 21,000 proteins, followed by ELISA for validation. Originating tumor samples were used for spatial profiling with chip cytometry. Results Antibody-secreting B lymphocytes were isolated from the ovarian tumor microenvironment (TME) of four different EOC patients. The highly clonal cell populations underwent spontaneous immortalization in vitro, were stably maintained in an antibody-secreting state, and showed presence of Epstein-Barr viral (EBV) proteins. All originating tumors had high frequency of tumor-infiltrating B cells, present as lymphoid aggregates, or tertiary lymphoid structures. The antigens recognized by three of the four cell lines are coil-coil domain containing protein 155 (CCDC155), growth factor receptor-bound protein 2 (GRB2), and pyruvate dehydrogenase phosphatase2 (PDP2), respectively. Anti-CCDC155 circulating IgG antibodies were detected in 9 of 20 (45%) of EOC patients' sera. Tissue analyses with multiparameter chip cytometry shows that the antibodies secreted by these novel human B cell lines engage their cognate antigens on tumor cells. Discussion These studies demonstrate that within the tumor-infiltrating lymphocyte population in EOC resides a low frequency population of antibody-secreting B cells that have been naturally exposed to EBV. Once stably maintained, these novel cell lines offer unique opportunities for future studies on intratumor B cell biology and new target antigen recognition, and for studies on EBV latency and/or viral reactivation in the TME of non-EBV related solid tumors such as the EOC.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Mary Strange
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Syed Zaidi
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Mackenzy Radolec
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
- Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Robert P. Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
- Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anda M. Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Gumilar KE, Chin Y, Ibrahim IH, Tjokroprawiro BA, Yang JY, Zhou M, Gassman NR, Tan M. Heat Shock Factor 1 Inhibition: A Novel Anti-Cancer Strategy with Promise for Precision Oncology. Cancers (Basel) 2023; 15:5167. [PMID: 37958341 PMCID: PMC10649344 DOI: 10.3390/cancers15215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock factor 1 (HSF1) is a transcription factor crucial for regulating heat shock response (HSR), one of the significant cellular protective mechanisms. When cells are exposed to proteotoxic stress, HSF1 induces the expression of heat shock proteins (HSPs) to act as chaperones, correcting the protein-folding process and maintaining proteostasis. In addition to its role in HSR, HSF1 is overexpressed in multiple cancer cells, where its activation promotes malignancy and leads to poor prognosis. The mechanisms of HSF1-induced tumorigenesis are complex and involve diverse signaling pathways, dependent on cancer type. With its important roles in tumorigenesis and tumor progression, targeting HSF1 offers a novel cancer treatment strategy. In this article, we examine the basic function of HSF1 and its regulatory mechanisms, focus on the mechanisms involved in HSF1's roles in different cancer types, and examine current HSF1 inhibitors as novel therapeutics to treat cancers.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Yeh Chin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ibrahim Haruna Ibrahim
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Brahmana A. Tjokroprawiro
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Jer-Yen Yang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Institute of Biochemistry and Molecular Biology, Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
4
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
5
|
Shanina EV, Breker F, Lysov NA, Shanin VY, Ponomareva YV, Supil'nikov AA. Chemotherapy-Induced Broadly Reactive Autoantibodies in a Colon Cancer Patient. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2023.1.clin.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The link between cancer and autoimmunity is well known. However, the extent to which chemotherapy induces autoimmune responses is still unclear. Here, we quantified IgM responses to various human tissues and patient tumors before and during adjuvant chemotherapy (seven cycles of the FOLFIRI plus cetuximab regimen) with metastasized colorectal cancer. IgM levels against all tissues tested increased shortly after the first cycle and further increased in the second and third cycles. Autoimmune responses then declined during cycles four through seven, but remained above baseline for most tissues. Our results suggest that chemotherapy can induce wide-reactive autoimmune responses. Monitoring self-reactive IgM responses during treatment may help alleviate the side effects associated with autoimmunity.
Collapse
|
6
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
7
|
Muacevic A, Adler JR, Lysov N, Shanin V. Chemotherapy-Induced, Broadly Reactive Autoantibodies in a Colon Cancer Patient. Cureus 2022; 14:e31954. [PMID: 36582563 PMCID: PMC9795272 DOI: 10.7759/cureus.31954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The link between cancer and autoimmunity is well-established. For example, increased levels of autoantibodies are frequently found in cancer patients, and autoimmune diseases are linked to an increased risk for certain neoplasms. However, the extent to which chemotherapy induces autoimmune reactions remains largely elusive. Here, we quantified immunoglobulin M (IgM) responses to various human tissues and the patient's tumor before and during adjuvanted chemotherapy (seven cycles of the FOLFIRI regimen (folinic acid/fluorouracil/irinotecan) plus cetuximab) of a patient with metastasized colon cancer. IgM levels against all investigated tissues increased shortly after the first cycle and were further boosted by cycles two and three. Autoimmune responses then decreased during cycles four to seven but remained above baseline levels for most tissues. Our findings suggest that chemotherapy can induce broadly reactive autoimmune responses. Monitoring self-reactive IgM responses during treatment may help alleviate autoimmunity-related adverse events.
Collapse
|
8
|
Dong Q, Xiu Y, Wang Y, Hodgson C, Borcherding N, Jordan C, Buchanan J, Taylor E, Wagner B, Leidinger M, Holman C, Thiele DJ, O’Brien S, Xue HH, Zhao J, Li Q, Meyerson H, Boyce BF, Zhao C. HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia. Nat Commun 2022; 13:6107. [PMID: 36245043 PMCID: PMC9573868 DOI: 10.1038/s41467-022-33861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is maintained by self-renewing leukemic stem cells (LSCs). A fundamental problem in treating AML is that conventional therapy fails to eliminate LSCs, which can reinitiate leukemia. Heat shock transcription factor 1 (HSF1), a central regulator of the stress response, has emerged as an important target in cancer therapy. Using genetic Hsf1 deletion and a direct HSF1 small molecule inhibitor, we show that HSF1 is specifically required for the maintenance of AML, while sparing steady-state and stressed hematopoiesis. Mechanistically, deletion of Hsf1 dysregulates multifaceted genes involved in LSC stemness and suppresses mitochondrial oxidative phosphorylation through downregulation of succinate dehydrogenase C (SDHC), a direct HSF1 target. Forced expression of SDHC largely restores the Hsf1 ablation-induced AML developmental defect. Importantly, the growth and engraftment of human AML cells are suppressed by HSF1 inhibition. Our data provide a rationale for developing efficacious small molecules to specifically target HSF1 in AML.
Collapse
Affiliation(s)
- Qianze Dong
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Yan Xiu
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA
| | - Yang Wang
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Nick Borcherding
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Craig Jordan
- grid.241116.10000000107903411Division of Hematology, University of Colorado Anschutz Campus, Denver, CO 80045 USA
| | - Jane Buchanan
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Eric Taylor
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Brett Wagner
- grid.214572.70000 0004 1936 8294Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
| | - Mariah Leidinger
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | - Carol Holman
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | | | | | - Hai-hui Xue
- grid.239835.60000 0004 0407 6328Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110 USA
| | - Jinming Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Qingchang Li
- grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Howard Meyerson
- grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Brendan F. Boyce
- grid.412750.50000 0004 1936 9166Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Chen Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA ,grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| |
Collapse
|
9
|
Liberto JM, Chen SY, Shih IM, Wang TH, Wang TL, Pisanic TR. Current and Emerging Methods for Ovarian Cancer Screening and Diagnostics: A Comprehensive Review. Cancers (Basel) 2022; 14:2885. [PMID: 35740550 PMCID: PMC9221480 DOI: 10.3390/cancers14122885] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
With a 5-year survival rate of less than 50%, ovarian high-grade serous carcinoma (HGSC) is one of the most highly aggressive gynecological malignancies affecting women today. The high mortality rate of HGSC is largely attributable to delays in diagnosis, as most patients remain undiagnosed until the late stages of -disease. There are currently no recommended screening tests for ovarian cancer and there thus remains an urgent need for new diagnostic methods, particularly those that can detect the disease at early stages when clinical intervention remains effective. While diagnostics for ovarian cancer share many of the same technical hurdles as for other cancer types, the low prevalence of the disease in the general population, coupled with a notable lack of sensitive and specific biomarkers, have made the development of a clinically useful screening strategy particularly challenging. Here, we present a detailed review of the overall landscape of ovarian cancer diagnostics, with emphasis on emerging methods that employ novel protein, genetic, epigenetic and imaging-based biomarkers and/or advanced diagnostic technologies for the noninvasive detection of HGSC, particularly in women at high risk due to germline mutations such as BRCA1/2. Lastly, we discuss the translational potential of these approaches for achieving a clinically implementable solution for screening and diagnostics of early-stage ovarian cancer as a means of ultimately improving patient outcomes in both the general and high-risk populations.
Collapse
Affiliation(s)
- Juliane M. Liberto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (J.M.L.); (I.-M.S.); (T.-L.W.)
| | - Sheng-Yin Chen
- School of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan;
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (J.M.L.); (I.-M.S.); (T.-L.W.)
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Tza-Huei Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (J.M.L.); (I.-M.S.); (T.-L.W.)
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
10
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Cheng Q, Li L, Yu M. Construction and validation of a transcription factors-based prognostic signature for ovarian cancer. J Ovarian Res 2022; 15:29. [PMID: 35227285 PMCID: PMC8886838 DOI: 10.1186/s13048-021-00938-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common and lethal malignant tumors worldwide and the prognosis of OC remains unsatisfactory. Transcription factors (TFs) are demonstrated to be associated with the clinical outcome of many types of cancers, yet their roles in the prognostic prediction and gene regulatory network in patients with OC need to be further investigated. METHODS TFs from GEO datasets were collected and analyzed. Differential expression analysis, WGCNA and Cox-LASSO regression model were used to identify the hub-TFs and a prognostic signature based on these TFs was constructed and validated. Moreover, tumor-infiltrating immune cells were analyzed, and a nomogram containing age, histology, FIGO_stage and TFs-based signature were established. Potential biological functions, pathways and the gene regulatory network of TFs in signature was also explored. RESULTS In this study, 6 TFs significantly associated with the prognosis of OC were identified. These TFs were used to build up a TFs-based signature for predicting the survival of patients with OC. Patients with OC in training and testing datasets were divided into high-risk and low-risk groups, according to the median value of risk scores determined by the signature. The two groups were further used to validate the performance of the signature, and the results showed the TFs-based signature had effective prediction ability. Immune infiltrating analysis was conducted and abundance of B cells naïve, T cells CD4 memory resting, Macrophages M2 and Mast cells activated were significantly higher in high-risk group. A nomogram based on the signature was established and illustrated good predictive efficiencies for 1, 2, and 3-year overall survival. Furthermore, the construction of the TFs-target gene regulatory network revealed the potential mechanisms of TFs in OC. CONCLUSIONS To our best knowledge, it is for the first time to develop a prognostic signature based on TFs in OC. The TFs-based signature is proven to be effective in predicting the survival of patients with OC. Our study may facilitate the clinical decision-making for patients with OC and help to elucidate the underlying mechanism of TFs in OC.
Collapse
Affiliation(s)
- Qingyuan Cheng
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liman Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev 2022; 21:103041. [DOI: 10.1016/j.autrev.2022.103041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|
13
|
Yang F, Tang J, Zhao Z, Zhao C, Xiang Y. Circulating tumor DNA: a noninvasive biomarker for tracking ovarian cancer. Reprod Biol Endocrinol 2021; 19:178. [PMID: 34861867 PMCID: PMC8641226 DOI: 10.1186/s12958-021-00860-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer-related mortality in women worldwide. Despite the development of technologies over decades to improve the diagnosis and treatment of patients with ovarian cancer, the survival rate remains dismal, mainly because most patients are diagnosed at a late stage. Traditional treatment methods and biomarkers such as cancer antigen-125 as a cancer screening tool lack specificity and cannot offer personalized combinatorial therapy schemes. Circulating tumor DNA (ctDNA) is a promising biomarker for ovarian cancer and can be detected using a noninvasive liquid biopsy. A wide variety of ctDNA applications are being elucidated in multiple studies for tracking ovarian carcinoma during diagnostic and prognostic evaluations of patients and are being integrated into clinical trials to evaluate the disease. Furthermore, ctDNA analysis may be used in combination with multiple "omic" techniques to analyze proteins, epigenetics, RNA, nucleosomes, exosomes, and associated immune markers to promote early detection. However, several technical and biological hurdles impede the application of ctDNA analysis. Certain intrinsic features of ctDNA that may enhance its utility as a biomarker are problematic for its detection, including ctDNA lengths, copy number variations, and methylation. Before the development of ctDNA assays for integration in the clinic, such issues are required to be resolved since these assays have substantial potential as a test for cancer screening. This review focuses on studies concerning the potential clinical applications of ctDNA in ovarian cancer diagnosis and discusses our perspective on the clinical research aimed to treat this daunting form of cancer.
Collapse
Affiliation(s)
- Fang Yang
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Tang
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zihao Zhao
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chunling Zhao
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
14
|
Qiu C, Duan Y, Wang B, Shi J, Wang P, Ye H, Dai L, Zhang J, Wang X. Serum Anti-PDLIM1 Autoantibody as Diagnostic Marker in Ovarian Cancer. Front Immunol 2021; 12:698312. [PMID: 34489945 PMCID: PMC8417125 DOI: 10.3389/fimmu.2021.698312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background Serum autoantibodies (AAbs) against tumor-associated antigens (TAAs) could be useful biomarkers for cancer detection. This study aims to evaluate the diagnostic value of autoantibody against PDLIM1 for improving the detection of ovarian cancer (OC). Methods Immunohistochemistry (IHC) test in tissue array containing 280 OC tissues, 20 adjacent tissues, and 8 normal ovarian tissues was performed to analyze the expression of PDLIM1 in tissues. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the autoantibody to PDLIM1 in 545 sera samples from 182 patients with OC, 181 patients with ovarian benign diseases, and 182 healthy controls. Results The results of IHC indicated that 84.3% (236/280) OC tissues were positively stained with PDLIM1, while no positive staining was found in adjacent or normal ovarian tissues. The frequency of anti-PDLIM1 autoantibody was significantly higher in OC patients than that in healthy and ovarian benign controls in both training (n=122) and validation (n=423) sets. The area under the curves (AUCs) of anti-PDLIM1 autoantibody for discriminating OC from healthy controls were 0.765 in training set and 0.740 in validation set, and the AUC of anti-PDLIM1 autoantibody for discriminating OC from ovarian benign controls was 0.757 in validation set. Overall, it was able to distinguish 35.7% of OC, 40.6% of patients with early-stage, and 39.5% of patients with late-stage. When combined with CA125, the AUC increased to 0.846, and 79.2% of OC were detected, which is statistically higher than CA125 (61.7%) or anti-PDLIM1(35.7%) alone (p<0.001). Also, anti-PDLIM1 autoantibody could identify 15% (18/120) of patients that were negative with CA125 (CA125 <35 U/ml). Conclusions The anti-PDLIM1 autoantibody response in OC patients was positively correlated with PDLIM1 high expression in OC tissues, suggesting that the autoantibody against PDLIM1 might have the potential to be a novel serological biomarker of OC, serving as a complementary measure of CA125, which could improve the power of OC detection.
Collapse
Affiliation(s)
- Cuipeng Qiu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Yaru Duan
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bofei Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Jianxiang Shi
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Peng Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China.,Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China.,Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| |
Collapse
|
15
|
Moody R, Wilson K, Kampan NC, McNally OM, Jobling TW, Jaworowski A, Stephens AN, Plebanski M. Mapping Epitopes Recognised by Autoantibodies Shows Potential for the Diagnosis of High-Grade Serous Ovarian Cancer and Monitoring Response to Therapy for This Malignancy. Cancers (Basel) 2021; 13:cancers13164201. [PMID: 34439354 PMCID: PMC8392293 DOI: 10.3390/cancers13164201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Most women are diagnosed with high-grade serous ovarian cancer (HGSOC) at stage III, when the cancer has already spread, contributing to poor survival outcomes. However, while earlier diagnosis increases survival rates, there is a lack of early diagnosis biomarkers. Previously, autoantibodies specific for phosphorylated heat shock factor 1 (HSF1-PO4) were suggested as a potential diagnostic biomarker for early-stage HGSOC. In the present study, specific regions within HSF1 were identified, tested and confirmed as useful biomarkers, with comparable diagnostic potential to the full protein, across two separate clinical cohorts. Additionally, antibody responses to HSF1-PO4 and the corresponding peptides were found to increase following a round of standard first-line chemotherapy. Together, our data suggest that the identified short peptide sequences could be used as practical alternatives to support early diagnosis or monitor responses to chemotherapy. Abstract Autoantibodies recognising phosphorylated heat shock factor 1 (HSF1-PO4) protein are suggested as potential new diagnostic biomarkers for early-stage high-grade serous ovarian cancer (HGSOC). We predicted in silico B-cell epitopes in human and murine HSF1. Three epitope regions were synthesised as peptides. Circulating immunoglobulin A (cIgA) against the predicted peptide epitopes or HSF1-PO4 was measured using ELISA, across two small human clinical trials of HGSOC patients at diagnosis. To determine whether chemotherapy would promote changes in reactivity to either HSF1-PO4 or the HSF-1 peptide epitopes, IgA responses were further assessed in a sample of patients after a full cycle of chemotherapy. Anti-HSF1-PO4 responses correlated with antibody responses to the three selected epitope regions, regardless of phosphorylation, with substantial cross-recognition of the corresponding human and murine peptide epitope variants. Assessing reactivity to individual peptide epitopes, compared to HSF1-PO4, improved assay sensitivity. IgA responses to HSF1-PO4 further increased significantly post treatment, indicating that HSF1-PO4 is a target for immunity in response to chemotherapy. Although performed in a small cohort, these results offer potential insights into the interplay between autoimmunity and ovarian cancer and offer new peptide biomarkers for early-stage HGSOC diagnosis, to monitor responses to chemotherapy, and widely for pre-clinical HGSOC research.
Collapse
Affiliation(s)
- Rhiane Moody
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | - Thomas W. Jobling
- Department of Gynaecological Oncology, Monash Medical Centre, Bentleigh East, VIC 3165, Australia;
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
- Correspondence:
| |
Collapse
|
16
|
de Jonge H, Iamele L, Maggi M, Pessino G, Scotti C. Anti-Cancer Auto-Antibodies: Roles, Applications and Open Issues. Cancers (Basel) 2021; 13:813. [PMID: 33672007 PMCID: PMC7919283 DOI: 10.3390/cancers13040813] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Auto-antibodies are classically associated with autoimmune diseases, where they are an integral part of diagnostic panels. However, recent evidence is accumulating on the presence of auto-antibodies against single or selected panels of auto-antigens in many types of cancer. Auto-antibodies might initially represent an epiphenomenon derived from the inflammatory environment induced by the tumor. However, their effect on tumor evolution can be crucial, as is discussed in this paper. It has been demonstrated that some of these auto-antibodies can be used for early detection and cancer staging, as well as for monitoring of cancer regression during treatment and follow up. Interestingly, certain auto-antibodies were found to promote cancer progression and metastasis, while others contribute to the body's defense against it. Moreover, auto-antibodies are of a polyclonal nature, which means that often several antibodies are involved in the response to a single tumor antigen. Dissection of these antibody specificities is now possible, allowing their identification at the genetic, structural, and epitope levels. In this review, we report the evidence available on the presence of auto-antibodies in the main cancer types and discuss some of the open issues that still need to be addressed by the research community.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (H.d.J.); (L.I.); (M.M.); (G.P.)
| |
Collapse
|
17
|
Bast RC, Lu Z, Han CY, Lu KH, Anderson KS, Drescher CW, Skates SJ. Biomarkers and Strategies for Early Detection of Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:2504-2512. [PMID: 33051337 PMCID: PMC7710577 DOI: 10.1158/1055-9965.epi-20-1057] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/29/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection of ovarian cancer remains an important unmet medical need. Effective screening could reduce mortality by 10%-30%. Used individually, neither serum CA125 nor transvaginal sonography (TVS) is sufficiently sensitive or specific. Two-stage strategies have proven more effective, where a significant rise above a woman's baseline CA125 prompts TVS and an abnormal sonogram prompts surgery. Two major screening trials have documented that this strategy has adequate specificity, but sensitivity for early-stage (I-II) disease must improve to have a greater impact on mortality. To improve the first stage, different panels of protein biomarkers have detected cases missed by CA125. Autoantibodies against TP53 have detected 20% of early-stage ovarian cancers 8 months before elevation of CA125 and 22 months before clinical diagnosis. Panels of autoantibodies and antigen-autoantibody complexes are being evaluated with the goal of detecting >90% of early-stage ovarian cancers, alone or in combination with CA125, while maintaining 98% specificity in control subjects. Other biomarkers, including micro-RNAs, ctDNA, methylated DNA, and combinations of ctDNA alterations, are being tested to provide an optimal first-stage test. New technologies are also being developed with greater sensitivity than TVS to image small volumes of tumor.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chae Young Han
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Charles W Drescher
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Steven J Skates
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
19
|
Campos-Carrillo A, Weitzel JN, Sahoo P, Rockne R, Mokhnatkin JV, Murtaza M, Gray SW, Goetz L, Goel A, Schork N, Slavin TP. Circulating tumor DNA as an early cancer detection tool. Pharmacol Ther 2020; 207:107458. [PMID: 31863816 PMCID: PMC6957244 DOI: 10.1016/j.pharmthera.2019.107458] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Circulating tumor DNA holds substantial promise as an early detection biomarker, particularly for cancers that do not have currently accepted screening methodologies, such as ovarian, pancreatic, and gastric cancers. Many features intrinsic to ctDNA analysis may be leveraged to enhance its use as an early cancer detection biomarker: including ctDNA fragment lengths, DNA copy number variations, and associated patient phenotypic information. Furthermore, ctDNA testing may be synergistically used with other multi-omic biomarkers to enhance early detection. For instance, assays may incorporate early detection proteins (i.e., CA-125), epigenetic markers, circulating tumor RNA, nucleosomes, exosomes, and associated immune markers. Many companies are currently competing to develop a marketable early cancer detection test that leverages ctDNA. Although some hurdles (like early stage disease assay accuracy, high implementation costs, confounding from clonal hematopoiesis, and lack of clinical utility studies) need to be addressed before integration into healthcare, ctDNA assays hold substantial potential as an early cancer screening test.
Collapse
Affiliation(s)
| | | | - Prativa Sahoo
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Russell Rockne
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Muhammed Murtaza
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Stacy W Gray
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Laura Goetz
- City of Hope National Medical Center, Duarte, CA 91010, USA; Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Ajay Goel
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nicholas Schork
- City of Hope National Medical Center, Duarte, CA 91010, USA; Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Thomas P Slavin
- City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
20
|
Proteome Profiling Uncovers an Autoimmune Response Signature That Reflects Ovarian Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12020485. [PMID: 32092936 PMCID: PMC7072578 DOI: 10.3390/cancers12020485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Harnessing the immune response to tumor antigens in the form of autoantibodies, which occurs early during tumor development, has relevance to the detection of cancer at early stages. We conducted an initial screen of antigens associated with an autoantibody response in serous ovarian cancer using recombinant protein arrays. The top 25 recombinants that exhibited increased reactivity with cases compared to controls revealed TP53 and MYC, which are ovarian cancer driver genes, as major network nodes. A mass spectrometry based independent analysis of circulating immunoglobulin (Ig)-bound proteins in ovarian cancer and of ovarian cancer cell surface MHC-II bound peptides also revealed a TP53–MYC related network of antigens. Our findings support the occurrence of a humoral immune response to antigens linked to ovarian cancer driver genes that may have utility for early detection applications.
Collapse
|
21
|
Kobayashi M, Katayama H, Fahrmann JF, Hanash SM. Development of autoantibody signatures for common cancers. Semin Immunol 2020; 47:101388. [DOI: 10.1016/j.smim.2020.101388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
|
22
|
B Cells as an Immune-Regulatory Signature in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11070894. [PMID: 31248034 PMCID: PMC6678944 DOI: 10.3390/cancers11070894] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that the immune system plays a dynamic role in the progression of ovarian cancer, the deadliest gynecological malignancy worldwide. Accumulation of tumor-infiltrating lymphocytes has been associated with increased survival in ovarian cancer patients, and diverse interactions among immune cells in the tumor microenvironment determine tumor progression. While the regulatory functions of T cells among tumor-infiltrating lymphocytes are well defined and also involve therapeutic interventions, the role of B cells in ovarian cancer progression is still limited to their impact on survival. Recent studies have identified both pro- and anti-tumor responses of B cells in solid tumors, as different subsets of B cells play diverse roles in progression. Thus, in-depth characterization of B cell subtypes in each disease stage is crucial for understanding the importance and therapeutic potential of these cells in ovarian cancer. In this review, we summarize current knowledge about B cells in ovarian cancer and discuss emerging therapeutic interventions that could harness B cells to combat this deadly disease.
Collapse
|
23
|
Wilson AL, Wilson KL, Bilandzic M, Moffitt LR, Makanji M, Gorrell MD, Oehler MK, Rainczuk A, Stephens AN, Plebanski M. Non-Invasive Fluorescent Monitoring of Ovarian Cancer in an Immunocompetent Mouse Model. Cancers (Basel) 2018; 11:E32. [PMID: 30602661 PMCID: PMC6356411 DOI: 10.3390/cancers11010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancers (OCs) are the most lethal gynaecological malignancy, with high levels of relapse and acquired chemo-resistance. Whilst the tumour⁻immune nexus controls both cancer progression and regression, the lack of an appropriate system to accurately model tumour stage and immune status has hampered the validation of clinically relevant immunotherapies and therapeutic vaccines to date. To address this need, we stably integrated the near-infrared phytochrome iRFP720 at the ROSA26 genomic locus of ID8 mouse OC cells. Intrabursal ovarian implantation into C57BL/6 mice, followed by regular, non-invasive fluorescence imaging, permitted the direct visualization of tumour mass and distribution over the course of progression. Four distinct phases of tumour growth and dissemination were detectable over time that closely mimicked clinical OC progression. Progression-related changes in immune cells also paralleled typical immune profiles observed in human OCs. Specifically, we observed changes in both the CD8+ T cell effector (Teff):regulatory (Treg) ratio, as well as the dendritic cell (DC)-to-myeloid derived suppressor cell (MDSC) ratio over time across multiple immune cell compartments and in peritoneal ascites. Importantly, iRFP720 expression had no detectible influence over immune profiles. This new model permits non-invasive, longitudinal tumour monitoring whilst preserving host⁻tumour immune interactions, and allows for the pre-clinical assessment of immune profiles throughout disease progression as well as the direct visualization of therapeutic responses. This simple fluorescence-based approach provides a useful new tool for the validation of novel immuno-therapeutics against OC.
Collapse
Affiliation(s)
- Amy L Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
- Department of Immunology and Pathology, Monash University, Clayton 3168, Australia.
| | - Kirsty L Wilson
- Department of Immunology and Pathology, Monash University, Clayton 3168, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Laura R Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Ming Makanji
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Sydney 2006, Australia.
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia.
- Robinson Institute, University of Adelaide, Adelaide 5000, Australia.
| | - Adam Rainczuk
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
- Bruker Biosciences Pty Ltd., Preston 3072, Australia.
| | - Andrew N Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| |
Collapse
|
24
|
Gupta V, Bernardini MQ. Algorithms Used in Ovarian Cancer Detection: A Minireview on Current and Future Applications. J Appl Lab Med 2018; 3:290-299. [PMID: 33636930 DOI: 10.1373/jalm.2017.025817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/24/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ovarian cancer is the 5th most common cause of cancer death among women in the US. Currently, there is no screening algorithm for asymptomatic women that has been shown to lower mortality rates. Screening is currently not recommended and has been shown to increase harm. Epithelial ovarian cancer (EOC) detection is reviewed, with a focus on high-grade serous, clear-cell, and endometrioid histotypes. CONTENT A review of current literature surrounding tools used in detection of ovarian cancer will be presented. CA 125, HE4, risk of ovarian cancer algorithm (ROCA), risk of malignancy algorithm (ROMA), risk of malignancy (RMI), OVA1, and future potential biomarkers are reviewed. SUMMARY Screening and early identification of EOC is currently managed as a single disease entity. However, recent evidence has shown ovarian cancer varies with relation to cellular origin, pathogenesis, molecular alterations, and prognosis, depending on histotype. There is a clear need for future studies identifying histotype-specific preclinical tumor markers to aid in detection and improvement of survival rates.
Collapse
Affiliation(s)
- Vishaal Gupta
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Marcus Q Bernardini
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Princess Margaret Hospital/University Health Network, Toronto, Ontario, Canada
| |
Collapse
|