1
|
Kennedy SP, Treacy O, Allott EH, Eustace AJ, Lynam-Lennon N, Buckley N, Robson T. Precision Medicine and Novel Therapeutic Strategies in Detection and Treatment of Cancer: Highlights from the 58th IACR Annual Conference. Cancers (Basel) 2022; 14:6213. [PMID: 36551698 PMCID: PMC9777219 DOI: 10.3390/cancers14246213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Innovation in both detection and treatment of cancer is necessary for the constant improvement in therapeutic strategies, especially in patients with novel or resistant variants of cancer. Cancer mortality rates have declined by almost 30% since 1991, however, depending on the cancer type, acquired resistance can occur to varying degrees. To combat this, researchers are looking towards advancing our understanding of cancer biology, in order to inform early detection, and guide novel therapeutic approaches. Through combination of these approaches, it is believed that a more complete and thorough intervention on cancer can be achieved. Here, we will discuss the advances and approaches in both detection and treatment of cancer, presented at the 58th Irish Association for Cancer Research (IACR) annual conference.
Collapse
Affiliation(s)
- Sean P. Kennedy
- School of Biological, Health and Sports Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Emma H. Allott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Alex J. Eustace
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St James’s Cancer Institute, Trinity Translational Medicine Institute, St James’s Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
2
|
Wang V, Geybels MS, Jordahl KM, Gerke T, Hamid A, Penney KL, Markt SC, Freedman M, Pomerantz M, Lee GSM, Rana H, Börnigen D, Rebbeck TR, Huttenhower C, Eeles RA, Stanford JL, Consortium P, Berndt SI, Claessens F, Sørensen KD, Park JY, Vega A, Usmani N, Mucci L, Sweeney CJ. A polymorphism in the promoter of FRAS1 is a candidate SNP associated with metastatic prostate cancer. Prostate 2021; 81:683-693. [PMID: 33956343 PMCID: PMC8491321 DOI: 10.1002/pros.24148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inflammation and one of its mediators, NF-kappa B (NFκB), have been implicated in prostate cancer carcinogenesis. We assessed whether germline polymorphisms associated with NFκB are associated with the risk of developing lethal disease (metastases or death from prostate cancer). METHODS Using a Bayesian approach leveraging NFκB biology with integration of publicly available datasets we used a previously defined genome-wide functional association network specific to NFκB and lethal prostate cancer. A dense-module-searching method identified modules enriched with significant genes from a genome-wide association study (GWAS) study in a discovery data set, Physicians' Health Study and Health Professionals Follow-up Study (PHS/HPFS). The top 48 candidate single nucleotide polymorphisms (SNPs) from the dense-module-searching method were then assessed in an independent prostate cancer cohort and the one SNP reproducibly associated with lethality was tested in a third cohort. Logistic regression models evaluated the association between each SNP and lethal prostate cancer. The candidate SNP was assessed for association with lethal prostate cancer in 6 of 28 studies in the prostate cancer association group to investigate cancer associated alterations in the genome (PRACTICAL) Consortium where there was some medical record review for death ascertainment which also had SNP data from the ONCOARRAY platform. All men self-identified as Caucasian. RESULTS The rs1910301 SNP which was reproducibly associated with lethal disease was nominally associated with lethal disease (odds ratio [OR] = 1.40; p = .02) in the discovery cohort and the minor allele was also associated with lethal disease in two independent cohorts (OR = 1.35; p = .04 and OR = 1.35; p = .07). Fixed effects meta-analysis of all three cohorts found an association: OR = 1.37 (95% confidence interval [CI]: 1.15-1.62, p = .0003). This SNP is in the promoter region of FRAS1, a gene involved in epidermal-basement membrane adhesion and is present at a higher frequency in men with African ancestry. No association was found in the subset of studies from the PRACTICAL consortium studies which had a total of 106 deaths out total of 3263 patients and a median follow-up of 4.4 years. CONCLUSIONS Through its connection with the NFκB pathway, a candidate SNP with a higher frequency in men of African ancestry without cancer was found to be associated with lethal prostate cancer across three well-annotated independent cohorts of Caucasian men.
Collapse
Affiliation(s)
- Victoria Wang
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Milan S Geybels
- Division of Public Health Sciences, Fred Hutchison Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Kristina M Jordahl
- Division of Public Health Sciences, Fred Hutchison Cancer Research Center, Seattle, Washington, USA
| | - Travis Gerke
- Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anis Hamid
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah C Markt
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Matthew Freedman
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark Pomerantz
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gwo-Shu M Lee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Huma Rana
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniela Börnigen
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Timothy R Rebbeck
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ros A Eeles
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchison Cancer Research Center, Seattle, Washington, USA
| | - Practical Consortium
- Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lorelei Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Christopher J Sweeney
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Zhang D, Zhou Z, Yang R, Zhang S, Zhang B, Tan Y, Chen L, Li T, Tu J. Tristetraprolin, a Potential Safeguard Against Carcinoma: Role in the Tumor Microenvironment. Front Oncol 2021; 11:632189. [PMID: 34026612 PMCID: PMC8138596 DOI: 10.3389/fonc.2021.632189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), a well-known RNA-binding protein, primarily affects the expression of inflammation-related proteins by binding to the targeted AU-rich element in the 3' untranslated region after transcription and subsequently mediates messenger RNA decay. Recent studies have focused on the role of TTP in tumors and their related microenvironments, most of which have referred to TTP as a potential tumor suppressor involved in regulating cell proliferation, apoptosis, and metastasis of various cancers, as well as tumor immunity, inflammation, and metabolism of the microenvironment. Elevated TTP expression levels could aid the diagnosis and treatment of different cancers, improving the prognosis of patients. The aim of this review is to describe the role of TTP as a potential safeguard against carcinoma.
Collapse
Affiliation(s)
- Diwen Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhigang Zhou
- The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ruixia Yang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Sujun Zhang
- Department of Experimental Animals, University of South China, Hengyang, China
| | - Bin Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yanxuan Tan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lingyao Chen
- Pharmacy School of Guilin Medical University, Guilin, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Science, Shanghai, China
| | - Jian Tu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Pharmacy School of Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
Bitaraf A, Razmara E, Bakhshinejad B, Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC, Babashah S. The oncogenic and tumor suppressive roles of RNA-binding proteins in human cancers. J Cell Physiol 2021; 236:6200-6224. [PMID: 33559213 DOI: 10.1002/jcp.30311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation is a mechanism for the cells to control gene regulation at the RNA level. In this process, RNA-binding proteins (RBPs) play central roles and orchestrate the function of RNA molecules in multiple steps. Accumulating evidence has shown that the aberrant regulation of RBPs makes contributions to the initiation and progression of tumorigenesis via numerous mechanisms such as genetic changes, epigenetic alterations, and noncoding RNA-mediated regulations. In this article, we review the effects caused by RBPs and their functional diversity in the malignant transformation of cancer cells that occurs through the involvement of these proteins in various stages of RNA regulation including alternative splicing, stability, polyadenylation, localization, and translation. Besides this, we review the various interactions between RBPs and other crucial posttranscriptional regulators such as microRNAs and long noncoding RNAs in the pathogenesis of cancer. Finally, we discuss the potential approaches for targeting RBPs in human cancers.
Collapse
Affiliation(s)
- Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Mousa Vatanmakanian
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Berglund AE, Putney RM, Creed JH, Aden-Buie G, Gerke TA, Rounbehler RJ. Accessible Pipeline for Translational Research Using TCGA: Examples of Relating Gene Mechanism to Disease-Specific Outcomes. Methods Mol Biol 2021; 2194:127-142. [PMID: 32926365 DOI: 10.1007/978-1-0716-0849-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioinformatic scientists are often asked to do widespread analyses of publicly available datasets in order to identify genetic alterations in cancer for genes of interest; therefore, we sought to create a set of tools to conduct common statistical analyses of The Cancer Genome Atlas (TCGA) data. These tools have been developed in response to requests from our collaborators to ask questions, validate findings, and better understand the function of their gene of interest. We describe here what data we have used, how to obtain it, and what figures we have found useful.
Collapse
Affiliation(s)
- Anders E Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Ryan M Putney
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jordan H Creed
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Garrick Aden-Buie
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Travis A Gerke
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Robert J Rounbehler
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|