1
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K, de Parrodi CA, López-Mena ER, Mejía-Méndez JL, Lozada-Ramírez JD. Recent Advances in the Therapeutic Potential of Carotenoids in Preventing and Managing Metabolic Disorders. PLANTS (BASEL, SWITZERLAND) 2024; 13:1584. [PMID: 38931016 PMCID: PMC11207240 DOI: 10.3390/plants13121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Carotenoids constitute compounds of significant biological interest due to their multiple biological activities, such as antimicrobial, anticancer, antiadipogenic, antidiabetic, and antioxidant properties. Metabolic syndrome (MetS) comprehends a series of metabolic abnormalities (e.g., hypertension, obesity, and atherogenic dyslipidemia) that can affect children, adolescents, and the elderly. The treatment of MetS involves numerous medications, which, despite their efficacy, pose challenges due to prolonged use, high costs, and various side effects. Carotenoids and their derivatives have been proposed as alternative treatments to MetS because they reduce serum triglyceride concentrations, promote insulin response, inhibit adipogenesis, and downregulate angiotensin-converting enzyme activity. However, carotenoids are notably sensitive to pH, light exposure, and temperature. This review addresses the activity of carotenoids such as lycopene, lutein, fucoxanthin, astaxanthin, crocin, and β-carotene towards MetS. It includes a discussion of sources, extraction methods, and characterization techniques for analyzing carotenoids. Encapsulation approaches are critically reviewed as alternatives to prevent degradation and improve the biological performance of carotenoids. A brief overview of the physiopathology and epidemiology of the diseases, including MetS, is also provided.
Collapse
Affiliation(s)
- Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico;
| | - Juan Alonso Martínez-Thomas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Karen Schürenkämper-Carrillo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Zapopan 45121, Colonia Nuevo México, Mexico;
| | - Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| |
Collapse
|
3
|
Corso G, Fusco N, Guerini-Rocco E, Leonardi MC, Criscitiello C, Zagami P, Nicolò E, Mazzarol G, La Vecchia C, Pesapane F, Zanzottera C, Tarantino P, Petitto S, Bianchi B, Massari G, Boato A, Sibilio A, Polizzi A, Curigliano G, De Scalzi AM, Lauria F, Bonanni B, Marabelli M, Rotili A, Nicosia L, Albini A, Calvello M, Mukhtar RA, Robson ME, Sacchini V, Rennert G, Galimberti V, Veronesi P, Magnoni F. Invasive lobular breast cancer: Focus on prevention, genetics, diagnosis, and treatment. Semin Oncol 2024; 51:106-122. [PMID: 38897820 DOI: 10.1053/j.seminoncol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
Invasive lobular cancer (ILC) is the most common of the breast cancer special types, accounting for up to 15% of all breast malignancies. The distinctive biological features of ILC include the loss of the cell adhesion molecule E-cadherin, which drives the tumor's peculiar discohesive growth pattern, with cells arranged in single file and dispersed throughout the stroma. Typically, such tumors originate in the lobules, are more commonly bilateral compared to invasive ductal cancer (IDC) and require a more accurate diagnostic examination through imaging. They are luminal in molecular subtype, and exhibit estrogen and progesterone receptor positivity and HER2 negativity, thus presenting a more unpredictable response to neoadjuvant therapies. There has been a significant increase in research focused on this distinctive breast cancer subtype, including studies on its pathology, its clinical and surgical management, and the high-resolution definition of its genomic profile, as well as the development of new therapeutic perspectives. This review will summarize the heterogeneous pattern of this unique disease, focusing on challenges in its comprehensive clinical management and on future insights and research objectives.
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Carmen Criscitiello
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Zagami
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giovanni Mazzarol
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Tarantino
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Salvatore Petitto
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Beatrice Bianchi
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Giulia Massari
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Anthony Boato
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Andrea Sibilio
- Division of Breast Surgery Forlì (Ravenna), AUSL Romagna, Ravenna, Italy
| | - Andrea Polizzi
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Federica Lauria
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Adriana Albini
- Scientific Directorate, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy; Division of Hematology, Clinica Moncucco, Lugano, Switzerland
| | - Rita A Mukhtar
- Department of Surgery, Division of Surgical Oncology, University of California San Francisco, San Francisco, CA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Virgilio Sacchini
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Viviana Galimberti
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Francesca Magnoni
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| |
Collapse
|
4
|
Neagu AN, Jayaweera T, Corrice L, Johnson K, Darie CC. Breast Cancer Exposomics. Life (Basel) 2024; 14:402. [PMID: 38541726 PMCID: PMC10971462 DOI: 10.3390/life14030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 12/15/2024] Open
Abstract
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Lilian Corrice
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Kaya Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| |
Collapse
|
5
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
6
|
Dehnavi MK, Ebrahimpour-Koujan S, Lotfi K, Azadbakht L. The Association between Circulating Carotenoids and Risk of Breast Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2024; 15:100135. [PMID: 38436219 PMCID: PMC10694674 DOI: 10.1016/j.advnut.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 03/05/2024] Open
Abstract
Carotenoids appear to have anticancer effects. Prospective evidence for the relation between serum carotenoids and breast cancer is controversial. The present systematic review and meta-analysis aimed to investigate the link between circulating carotenoids and the risk of breast cancer. We performed a systematic search of PubMed, Scopus, and Web of Science up to 30 November, 2022. Prospective studies on adults aged ≥18 y that have reported risk estimates for the association between circulating carotenoids and breast cancer risk were considered. Study quality was assessed using the Newcastle-Ottawa Scale. A random-effects model was used for combining studies' risk estimates. Dose-response relations were explored through a 1-stage random-effects model. Fifteen publications (17 nested case-control studies and 1 cohort study) with 20,188 participants and 7608 cases were included. We observed an inverse association between the highest level of circulating total carotenoids (relative risk [RR]: 0.76; 95% confidence interval [CI]: 0.62, 0.93; n = 8), α-carotene (RR: 0.77; 95% CI: 0.68, 0.87; n = 13), β-carotene (RR: 0.80; 95% CI: 0.65, 0.98; n = 15), β-cryptoxanthin (RR: 0.85; 95% CI: 0.74, 0.96; n = 11), lycopene (RR: 0.86; 95% CI: 0.76, 0.98; n = 13), and lutein (RR: 0.70; 95% CI: 0.52, 0.93; n = 6) and the risk of breast cancer compared with the lowest level. Additionally, each 10 μg/dL of total carotenoids, α-carotene, β-carotene, and β-cryptoxanthin was associated with 2%, 22%, 4%, and 10% lower risk of breast cancer, respectively. This relationship was stronger at lower levels of total carotenoids and β-cryptoxanthin. The certainty of evidence was rated from very low to low. Most studies were performed among Western nations, which should be acknowledged for extrapolation of findings. Total circulating carotenoids, α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein seem to be related to a decreased risk of breast cancer. Our findings could have practical importance for public health. This study was registered at PROSPERO as CRD42023434983.
Collapse
Affiliation(s)
- Maryam Karim Dehnavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraiya Ebrahimpour-Koujan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Autoimmune Bullous Disease Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Bohn T, Balbuena E, Ulus H, Iddir M, Wang G, Crook N, Eroglu A. Carotenoids in Health as Studied by Omics-Related Endpoints. Adv Nutr 2023; 14:1538-1578. [PMID: 37678712 PMCID: PMC10721521 DOI: 10.1016/j.advnut.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Carotenoids have been associated with risk reduction for several chronic diseases, including the association of their dietary intake/circulating levels with reduced incidence of obesity, type 2 diabetes, certain types of cancer, and even lower total mortality. In addition to some carotenoids constituting vitamin A precursors, they are implicated in potential antioxidant effects and pathways related to inflammation and oxidative stress, including transcription factors such as nuclear factor κB and nuclear factor erythroid 2-related factor 2. Carotenoids and metabolites may also interact with nuclear receptors, mainly retinoic acid receptor/retinoid X receptor and peroxisome proliferator-activated receptors, which play a role in the immune system and cellular differentiation. Therefore, a large number of downstream targets are likely influenced by carotenoids, including but not limited to genes and proteins implicated in oxidative stress and inflammation, antioxidation, and cellular differentiation processes. Furthermore, recent studies also propose an association between carotenoid intake and gut microbiota. While all these endpoints could be individually assessed, a more complete/integrative way to determine a multitude of health-related aspects of carotenoids includes (multi)omics-related techniques, especially transcriptomics, proteomics, lipidomics, and metabolomics, as well as metagenomics, measured in a variety of biospecimens including plasma, urine, stool, white blood cells, or other tissue cellular extracts. In this review, we highlight the use of omics technologies to assess health-related effects of carotenoids in mammalian organisms and models.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Hande Ulus
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| |
Collapse
|
8
|
Tsai HH, Yu JC, Hsu HM, Chu CH, Chang TM, Hong ZJ, Feng AC, Fu CY, Hsu KF, Dai MS, Liao GS. The Risk of Breast Cancer between Western and Mediterranean Dietary Patterns. Nutrients 2023; 15:2057. [PMID: 37432206 DOI: 10.3390/nu15092057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/12/2023] Open
Abstract
Breast cancer is a significant public health problem globally and prevention strategies have become of great interest as its incidence rises. Exploring the connection between dietary patterns and the reduction of breast cancer risk is considered a promising approach. High levels of fiber, phytochemicals, a good antioxidant profile, and a composition of advantageous fatty acids are characteristics of healthy dietary programs such as the Mediterranean diet. This review summarized and discussed the active compounds that are considered important in preventing breast cancer, including dietary components from recent related reports. These include polyunsaturated fatty acids, fiber, phytochemicals, and alcohol. Although the exact mechanism for preventing breast cancer using these dietary factors is not well understood, the combination of all the elements in a healthy diet plays a role in reducing breast cancer risk. Considering the elevated probability of breast cancer relapse and mortality, it is crucial to investigate the correlation between a nutritious dietary pattern and breast cancer, while identifying bioactive components that have the potential to mitigate the risk of breast cancer incidence.
Collapse
Affiliation(s)
- Hsueh-Han Tsai
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Huan-Ming Hsu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chi-Hong Chu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Tzu-Ming Chang
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Zhi-Jie Hong
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - An-Chieh Feng
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Yu Fu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Feng Hsu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Shen Dai
- Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Guo-Shiou Liao
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
9
|
Li Y, Zhan M, Li J, Zhang W, Shang X. Lycopene alleviates lipopolysaccharide-induced testicular injury in rats by activating the PPAR signaling pathway to integrate lipid metabolism and the inflammatory response. Transl Androl Urol 2023; 12:271-285. [PMID: 36915878 PMCID: PMC10006007 DOI: 10.21037/tau-22-864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background Male fertility can be hampered by systemic and testicular infections and inflammation, which can lead to impaired spermatogenesis that often cannot be reversed by antibiotic treatment. There has been some suggestion that lycopene (LYC) may be useful in the preservation of fertility, although its mechanisms are complex. This current study examined the therapeutic efficacy of LYC on testicular damage and its underlying mechanisms. Methods Lipopolysaccharide (LPS; 5 mg/kg) was injected intraperitoneally to induce inflammation of the testes in mature male rats. The rats in the experimental group were administered 5 mg/kg LYC intragastrically for 4 weeks. The testes were harvested from the euthanized rats for lipidomics, RNA sequencing, and related experimental tests. Results Laboratory data suggested that LPS-induced systemic inflammation induced cytokine excess and oxidative stress in the testes. Administration of oral LYC inhibited the excess cytokine production and oxidative stress, mitigating damage to the testes. Lipidomic studies identified significant changes to 258 lipids and 5 metabolism pathways. Coupled with RNA sequencing analysis, 1,116 genes were found to be significantly regulated and many lipid metabolism-related signaling pathways were identified. The expression of retinoid X receptor alpha (RXR) in the peroxisome proliferator-activated receptor (PPAR) signaling pathway was significantly upregulated after LYC treatment, which activated the RXR/PPAR easy dimer. The expression of downstream genes such as fatty acid binding protein 3 (FABP3) and carnitine palmitoyltransferase 1A (CPT1A) was increased. These genes are involved in the control of fatty acid metabolism, fatty acid degradation, fatty acid chain elongation, and lipid metabolism, which partially explains the changes in the content and composition of lipids. Conclusions LYC regulates the lipid metabolism of testes and lipid metabolism-related signaling pathways, such as the PPAR signaling pathway. Furthermore, LYC ameliorated the LPS-induced dysregulation of lipid metabolism in the testes, as well as the LPS-induced inflammatory response. This study offers a new perspective for the investigation of the mechanisms in inflammatory testicular damage and potential therapeutic targets.
Collapse
Affiliation(s)
- Yu Li
- Department of Urology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Mingwei Zhan
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jindong Li
- Department of Urology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.,Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Wei Zhang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.,Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|