1
|
Talbot LJ, Chabot A, Ross AB, Beckett A, Nguyen P, Fleming A, Chockley PJ, Shepphard H, Wang J, Gottschalk S, DeRenzo C. Redirecting B7-H3.CAR T Cells to Chemokines Expressed in Osteosarcoma Enhances Homing and Antitumor Activity in Preclinical Models. Clin Cancer Res 2024; 30:4434-4449. [PMID: 39101835 PMCID: PMC11443211 DOI: 10.1158/1078-0432.ccr-23-3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Clinical efficacy of chimeric antigen receptor (CAR) T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We sought to determine the primary chemokines secreted by OS and evaluate the efficacy of B7-H3.CAR T cells expressing the cognate receptors. EXPERIMENTAL DESIGN We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokine protein detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T-cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. RESULTS T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional control receptors. Differential homing kinetics were observed, with CXCR2.T-cell homing quickly and plateauing early, whereas CXCR6.T cells took longer to home but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing toward OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR-treated mice experienced prolonged survival in a metastatic model compared with B7-H3.CAR T-cell-treated mice. CONCLUSIONS Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced the homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for patients with OS.
Collapse
MESH Headings
- Osteosarcoma/immunology
- Osteosarcoma/therapy
- Osteosarcoma/pathology
- Osteosarcoma/genetics
- Animals
- Humans
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, CXCR6/genetics
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/immunology
- B7 Antigens/genetics
- B7 Antigens/metabolism
- Xenograft Model Antitumor Assays
- Chemokines/metabolism
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- Cell Movement
Collapse
Affiliation(s)
- Lindsay J Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aaron B Ross
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra Beckett
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter J Chockley
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Shepphard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
2
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
3
|
Bientinesi E, Lulli M, Becatti M, Ristori S, Margheri F, Monti D. Doxorubicin-induced senescence in normal fibroblasts promotes in vitro tumour cell growth and invasiveness: the role of Quercetin in modulating these processes. Mech Ageing Dev 2022; 206:111689. [PMID: 35728630 DOI: 10.1016/j.mad.2022.111689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 01/10/2023]
Abstract
Ageing is a complex biological phenomenon representing the major risk factor for developing age-related diseases, such as cardiovascular pathologies, neurodegenerative diseases, and cancer. Geroscience, the new vision of gerontology, identifies cellular senescence as an interconnected biological process that characterises ageing and age-related diseases. Therefore, many strategies have been employed in the last years to reduce the harmful effects of senescence, and among these, the most intriguing ones use nutraceutical compounds. Here we show that a pre-treatment with Quercetin, a bioactive flavonoid present in many fruits and vegetables, increasing cellular antioxidant defence, can alleviate Doxorubicin (Doxo)-induced cellular senescence in human normal WI-38 fibroblasts. Furthermore, our work demonstrates that Quercetin pre-treatment, reducing the number of senescent cells and the production of the senescence-associated secretory phenotype (SASP) factors, can decrease the pro-tumour effects of conditioned medium from Doxo-induced senescent fibroblasts on osteosarcoma cells. Overall, our findings are consistent with the hypothesis that targeting senescent cells can be an emerging strategy for cancer treatment, especially in elderly patients, in which senescent cells are already abundant in several tissues and organs.
Collapse
Affiliation(s)
- Elisa Bientinesi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy 50134
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy 50134.
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy 50134.
| | - Sara Ristori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy 50134.
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy 50134.
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy 50134.
| |
Collapse
|
4
|
Luo N, Chen DD, Liu L, Li L, Cheng ZP. CXCL12 promotes human ovarian cancer cell invasion through suppressing ARHGAP10 expression. Biochem Biophys Res Commun 2019; 518:416-422. [DOI: 10.1016/j.bbrc.2019.07.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
5
|
Danieau G, Morice S, Rédini F, Verrecchia F, Royer BBL. New Insights about the Wnt/β-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies? Int J Mol Sci 2019; 20:ijms20153751. [PMID: 31370265 PMCID: PMC6696068 DOI: 10.3390/ijms20153751] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/β-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/β-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/immunology
- Bone Neoplasms/mortality
- Bone and Bones
- Child
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Molecular Targeted Therapy/methods
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/mortality
- Neovascularization, Pathologic/prevention & control
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- Osteosarcoma/drug therapy
- Osteosarcoma/genetics
- Osteosarcoma/immunology
- Osteosarcoma/mortality
- Proto-Oncogene Proteins c-ets/antagonists & inhibitors
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/immunology
- RNA-Binding Protein EWS/antagonists & inhibitors
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/immunology
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/mortality
- Survival Analysis
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/drug effects
- Young Adult
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
- beta Catenin/immunology
Collapse
Affiliation(s)
- Geoffroy Danieau
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Sarah Morice
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Françoise Rédini
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Franck Verrecchia
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France.
| |
Collapse
|
6
|
Li Z, Shen Y, Wang Y, Zhu L, Zhu C, Qian C, Sun M, Oupicky D. Perfluorocarbon Nanoemulsions for Combined Pulmonary siRNA Treatment of Lung Metastatic Osteosarcoma. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhaoting Li
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Yuexin Shen
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Yixin Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Lianghan Zhu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Chenfei Zhu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Chenggen Qian
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Minjie Sun
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - David Oupicky
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha, NE 68198 USA
| |
Collapse
|
7
|
Qi XT, Li YL, Zhang YQ, Xu T, Lu B, Fang L, Gao JQ, Yu LS, Zhu DF, Yang B, He QJ, Ying MD. KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacol Sin 2019; 40:546-555. [PMID: 29930276 DOI: 10.1038/s41401-018-0050-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022] Open
Abstract
Despite more effective chemotherapy combined with limb-salvage surgery for the osteosarcoma treatment, survival rates for osteosarcoma patients have stagnated over the past three decades due to the poor prognosis. Osteosarcoma cancer stem cells (OSCs) are responsible for the growth and metastasis of osteosarcoma. The existence of OSCs offers a theoretical explanation for therapeutic failures including tumor recurrence, metastasis, and drug resistance. Understanding the pathways that regulate properties of OSCs may shed light on mechanisms that lead to osteosarcoma and suggest better modes of treatment. In this study, we showed that the expression level of Kruppel-like factor 4 (KLF4) is highly associated with human osteosarcoma cancer stemness. KLF4-overexpressed osteosarcoma cells displayed characteristics of OSCs: increased sphere-forming potential, enhanced levels of stemness-associated genes, great chemoresistance to adriamycin and CDDP, as well as more metastasis potential. Inversely, KLF4 knockdown could reduce colony formation in vitro and inhibit tumorigenesis in vivo, supporting an oncogenic role for KLF4 in osteosarcoma pathogenesis. Furthermore, KLF4 was shown to activate the p38 MAPK signaling pathway to promote cancer stemness. Altogether, our studies uncover an essential role for KLF4 in regulation of OSCs and identify KLF4-p38 MAPK axis as a potential therapeutic target for osteosarcoma treatment.
Collapse
|
8
|
Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int J Mol Sci 2018; 20:ijms20010096. [PMID: 30591657 PMCID: PMC6337330 DOI: 10.3390/ijms20010096] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022] Open
Abstract
Metastasis still represents the primary cause of cancer morbidity and mortality worldwide. Chemokine signalling contributes to the overall process of cancer growth and metastasis, and their expression in both primary tumors and metastatic lesions correlate with prognosis. Chemokines promote tumor metastasization by directly supporting cancer cell survival and invasion, angiogenesis, and by indirectly shaping the pre-metastatic niches and antitumor immunity. Here, we will focus on the relevant chemokine/chemokine receptor axes that have been described to drive the metastatic process. We elaborate on their role in the regulation of tumor angiogenesis and immune cell recruitment at both the primary tumor lesions and the pre-metastatic foci. Furthermore, we also discuss the advantages and limits of current pharmacological strategies developed to target chemokine networks for cancer therapy.
Collapse
|
9
|
Kikuchi N, Ye J, Hirakawa J, Kawashima H. Forced Expression of CXCL10 Prevents Liver Metastasis of Colon Carcinoma Cells by the Recruitment of Natural Killer Cells. Biol Pharm Bull 2018; 42:57-65. [PMID: 30381616 DOI: 10.1248/bpb.b18-00538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CXC chemokine ligand 10 (CXCL10) is a CXC chemokine family protein that transmits signals by binding to its specific receptor, CXCR3. CXCL10 is also known as an interferon-γ-inducible chemokine involved in various biological phenomena, including chemotaxis of natural killer (NK) cells and cytotoxic T lymphocytes, that suppress tumor growth and inhibition of angiogenesis. In this study, we examined the effects of forced expression of CXCL10 in a murine colon carcinoma cell line (CT26) on growth and metastasis in syngeneic mice. We first established CT26 cells that were stably expressing murine CXCL10 (CT26/CXCL10) and compared their growth with their parental CT26 cells in vitro and in vivo. The in vitro growth of the CT26/CXCL10 and CT26 cells was comparable, whereas the in vivo growth of the CT26/CXCL10 cells in the skin was strongly suppressed. Liver metastasis of the CT26/CXCL10 cells was also significantly suppressed after intra-splenic implantation. Removal of NK cells by the administration of anti-asialo GM1 antibody canceled the suppression of subcutaneous growth and liver metastasis of CT26/CXCL10 cells. Immunofluorescence clearly showed that abundant NKp46-positive NK cells were recruited into the liver metastatic lesions of the CT26/CXCL10 cells, consistent with specific NK cell migration towards the culture supernatant from the CT26/CXCL10 cells in the chemotaxis assay using transwells. These findings indicate that CXCL10 prevents in vivo growth and metastasis of colon carcinoma cells by recruiting NK cells, suggesting that forced expression of CXCL10 in the colon tumors by gene delivery should lead to a favorable clinical outcome.
Collapse
Affiliation(s)
- Norihito Kikuchi
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Jiabin Ye
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
10
|
Zhu Y, Tang L, Zhao S, Sun B, Cheng L, Tang Y, Luo Z, Lin Z, Zhu J, Zhu W, Zhao R, Lu B, Long H. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is suppressed by MicroRNA-613. Cancer Sci 2018; 109:2412-2422. [PMID: 29845707 PMCID: PMC6113448 DOI: 10.1111/cas.13653] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy. Recently, studies showed chemokine receptor 4 (CXCR4) played a critical role in osteosarcoma. However, the regulation of CXCR4 is not fully understood. microRNAs are short, non‐coding RNAs that play an important roles in post‐transcriptional regulation of gene expression in a variety of diseases including osteosarcoma. miR‐613 is a newly discovered miRNA and has been reported to function as a tumor suppressor in many cancers. In this study, we confirmed that both Stromal Cell‐Derived Factor (SDF‐1) and CXCR4 could be prognostic markers for osteosarcoma. Meanwhile this study found that SDF‐1/CXCR4 pathway regulated osteosarcoma cells proliferation, migration and reduced apoptosis. Besides, we demonstrated that miR‐613 was significantly downregulated in osteosarcoma patients. Elevated expression of miR‐613 directly suppressed CXCR4 expression and then decreased the proliferation, migration and induced apoptosis of osteosarcoma cells. Moreover, our study found that CXCR4 promoted the development of lung metastases and inhibition of CXCR4 by miR‐613 reduced lung metastases. These data indicated that CXCR4 mediated osteosarcoma cell growth and lung metastases and this effect can be suppressed by miR‐613 through directly downregulating CXCR4.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Shushan Zhao
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Buhua Sun
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yifu Tang
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongwei Luo
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangyuan Lin
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxi Zhu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weihong Zhu
- Department of Orthopedic Surgery, The First People's hospital of Chenzhou, Chenzhou, China
| | - Ruibo Zhao
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bangbao Lu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haitao Long
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Li B, Wang Z, Wu H, Xue M, Lin P, Wang S, Lin N, Huang X, Pan W, Liu M, Yan X, Qu H, Sun L, Li H, Wu Y, Teng W, Wang Z, Zhou X, Chen H, Poznansky MC, Ye Z. Epigenetic Regulation of CXCL12 Plays a Critical Role in Mediating Tumor Progression and the Immune Response In Osteosarcoma. Cancer Res 2018; 78:3938-3953. [PMID: 29735547 DOI: 10.1158/0008-5472.can-17-3801] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/28/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022]
Abstract
The mechanism by which osteosarcomas metastasize is elusive, and challenges remain regarding its treatment with modalities including immunotherapy. CXCL12 is deeply involved in the process of tumor metastasis and T-cell homing, which is driven by a chemokine gradient, but healthy bones are supposed to preferentially express CXCL12. Here, we show for the first time that osteosarcomas epigenetically downregulate CXCL12 expression via DNA methyltransferase 1 (DNMT1) and consequently acquire the ability to metastasize and to impair cytotoxic T-cell homing to the tumor site. Analysis of human osteosarcoma cases further revealed that CXCL12 expression strongly correlated with overall survival. Evaluations on fresh human chemotherapy-free osteosarcoma samples also showed a positive correlation between CXCL12 concentration and the number of intratumoral lymphocytes. Critically, treatment targeting DNMT1 in immunocompetent mouse models significantly elevated expression of CXCL12 in tumors, resulting in a robust immune response and consequently eradicating early lung metastases in addition to suppressing subcutaneous tumor growth. These antitumor effects were abrogated by CXCL12-CXCR4 blockade or CD8+ T-cell depletion. Collectively, our data show that CXCL12 regulation plays a significant role in both tumor progression and immune response, and targeting CXCL12 is promising for therapeutics against osteosarcoma.Significance: Epigenetic regulation of CXCL12 controls metastasis and immune response in osteosarcoma, suggesting epigenetic therapies or therapies targeting CXCL12 have potential for therapeutic intervention in osteosarcoma. Cancer Res; 78(14); 3938-53. ©2018 AACR.
Collapse
Affiliation(s)
- Binghao Li
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China.,Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Zhan Wang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| | - Hao Wu
- Department of Bone and Soft Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | - Mingfeng Xue
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Department of Orthopedics, The Second Hospital of Jiaxing, Jiaxing, P.R. China
| | - Peng Lin
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| | - Shengdong Wang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| | - Nong Lin
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xin Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Weibo Pan
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Meng Liu
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiaobo Yan
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hao Qu
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Lingling Sun
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hengyuan Li
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yan Wu
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| | - Wangsiyuan Teng
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| | - Zenan Wang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| | - Xingzhi Zhou
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Zhaoming Ye
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China. .,Institute of Orthopedic Research, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
12
|
Pietrovito L, Leo A, Gori V, Lulli M, Parri M, Becherucci V, Piccini L, Bambi F, Taddei ML, Chiarugi P. Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Mol Oncol 2018. [PMID: 29517849 PMCID: PMC5928379 DOI: 10.1002/1878-0261.12189] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence to suggest that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) are key players in tumour stroma. Here, we investigated the cross‐talk between BM‐MSCs and osteosarcoma (OS) cells. We revealed a strong tropism of BM‐MSCs towards these tumour cells and identified monocyte chemoattractant protein (MCP)‐1, growth‐regulated oncogene (GRO)‐α and transforming growth factor (TGF)‐β1 as pivotal factors for BM‐MSC chemotaxis. Once in contact with OS cells, BM‐MSCs trans‐differentiate into cancer‐associated fibroblasts, further increasing MCP‐1, GRO‐α, interleukin (IL)‐6 and IL‐8 levels in the tumour microenvironment. These cytokines promote mesenchymal to amoeboid transition (MAT), driven by activation of the small GTPase RhoA, in OS cells, as illustrated by the in vitro assay and live imaging. The outcome is a significant increase of aggressiveness in OS cells in terms of motility, invasiveness and transendothelial migration. In keeping with their enhanced transendothelial migration abilities, OS cells stimulated by BM‐MSCs also sustain migration, invasion and formation of the in vitro capillary network of endothelial cells. Thus, BM‐MSC recruitment to the OS site and the consequent cytokine‐induced MAT are crucial events in OS malignancy.
Collapse
Affiliation(s)
- Laura Pietrovito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Valentina Gori
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Valentina Becherucci
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | - Luisa Piccini
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | | | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| |
Collapse
|
13
|
Jamaludin SYN, Azimi I, Davis FM, Peters AA, Gonda TJ, Thompson EW, Roberts-Thomson SJ, Monteith GR. Assessment of CXC ligand 12-mediated calcium signalling and its regulators in basal-like breast cancer cells. Oncol Lett 2018. [PMID: 29541196 PMCID: PMC5835901 DOI: 10.3892/ol.2018.7827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CXC ligand (L)12 is a chemokine implicated in the migration, invasion and metastasis of cancer cells via interaction with its receptors CXC chemokine receptor (CXCR)4 and CXCR7. In the present study, CXCL12-mediated Ca2+ signalling was compared with two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which demonstrate distinct metastatic potential. CXCL12 treatment induced Ca2+ responses in the more metastatic MDA-MB-231 cells but not in the less metastatic MDA-MB-468 cells. Assessment of mRNA levels of CXCL12 receptors and their potential modulators in both cell lines revealed that CXCR4 and CXCR7 levels were increased in MDA-MB-231 cells compared with MDA-MB-468 cells. Cluster of differentiation (CD)24, the negative regulator of CXCL12 responses, demonstrated increased expression in MDA-MB-468 cells compared with MDA-MB-231 cells, and the two cell lines expressed comparable levels of hypoxia-inducible factor (HIF)2α, a CXCR4 regulator. Induction of epithelial-mesenchymal transition (EMT) by epidermal growth factor exhibited opposite effects on CXCR4 mRNA levels compared with hypoxia-induced EMT. Neither EMT inducer exhibited an effect on CXCR7 expression, however hypoxia increased HIF2α expression levels in MDA-MB-468 cells. Analysis of the gene expression profiles of breast tumours revealed that the highest expression levels of CXCR4 and CXCR7 were in the Claudin-Low molecular subtype, which is markedly associated with EMT features.
Collapse
Affiliation(s)
- S Y N Jamaludin
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia.,Faculty of Medicine, Universiti Sultan Zainal Abidin, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - I Azimi
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia.,The Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - F M Davis
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - A A Peters
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia.,The Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - T J Gonda
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - E W Thompson
- The Translational Research Institute, Brisbane, Queensland 4102, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia.,University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - S J Roberts-Thomson
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - G R Monteith
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia.,The Translational Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
14
|
Gatti M, Solari A, Pattarozzi A, Campanella C, Thellung S, Maniscalco L, De Maria R, Würth R, Corsaro A, Bajetto A, Ratto A, Ferrari A, Daga A, Barbieri F, Florio T. In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Exp Cell Res 2018; 363:48-64. [PMID: 29305964 DOI: 10.1016/j.yexcr.2018.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions. Spontaneous canine osteosarcoma shares clinical and biological features with the human tumors, representing a model for translational studies. We characterized three CSC-enriched canine osteosarcoma cultures. In serum-free conditions, these CSC cultures grow as anchorage-independent spheroids, show mesenchymal-like properties and in vivo tumorigenicity, recapitulating the heterogeneity of the original osteosarcoma. Osteosarcoma CSCs express stem-related factors (Sox2, Oct4, CD133) and chemokine receptors and ligands (CXCR4, CXCL12) involved in tumor proliferation and self-renewal. Standard drugs for osteosarcoma treatment (doxorubicin and cisplatin) affected CSC-enriched and parental primary cultures, showing different efficacy within tumors. Moreover, metformin, a type-2 diabetes drug, significantly inhibits osteosarcoma CSC viability, migration and self-renewal and, in co-treatment with doxorubicin and cisplatin, enhances drug cytotoxicity. Collectively, we demonstrate that canine osteosarcoma primary cultures contain CSCs exhibiting distinctive sensitivity to anticancer agents, as a reliable experimental model to assay drug efficacy. We also provide proof-of-principle of metformin efficacy, alone or in combination, as pharmacological strategy to target osteosarcoma CSCs.
Collapse
Affiliation(s)
- Monica Gatti
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Agnese Solari
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Pattarozzi
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Roberto Würth
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Adriana Bajetto
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Antonio Daga
- IRCCS-AOU San Martino-IST, Largo Benzi 10, 16132 Genova, Italy
| | - Federica Barbieri
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| |
Collapse
|
15
|
Zhang K, Gao J, Ni Y. Screening of candidate key genes associated with human osteosarcoma using bioinformatics analysis. Oncol Lett 2017; 14:2887-2893. [PMID: 28928828 PMCID: PMC5588164 DOI: 10.3892/ol.2017.6519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/23/2017] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to identify the key genes associated with osteosarcoma (OS) using a bioinformatics approach. Microarray data (GSE36004) was downloaded from the Gene Expression Omnibus database, including 19 OS cell lines and 6 normal controls. Differentially expressed genes (DEGs) in the OS cell lines were identified using the Limma package, and differentially methylated regions were screened with methyAnalysis in R. Copy number analysis was performed and genes with copy number gains/losses were further screened using DNAcopy and cghMCR packages. Functional enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery online tool, and protein-protein interactions were identified based on information obtained from the Search Tool for the Retrieval of Interacting Genes database. A total of 47 downregulated genes were screened in hyper-methylated regions, including the fragment crystallizable (Fc) region of immunoglobulin E, high affinity I, receptor for; γ polypeptide (FCER1G), leptin (LEP) and feline Gardner-Rasheed sarcoma viral oncogene homolog (FGR). In addition, a total of 17 upregulated genes, including the TPase family, AAA domain containing 2 (ATAD2) and cyclin-dependent kinase 4 (CDK4), exhibited copy number gains, while 5 downregulated genes, including Rho GTPase activating protein 9 (ARHGAP9) and major histocompatibility complex, class II, DO α (HLA-DOA), exhibited copy number losses. These results indicate that hyper-methylation of FCER1G, LEP, and FGR may serve a crucial function in the development of OS. In addition, copy number alterations of these DEGs, including ATAD2, CDK4, ARHGAP9 and HLA-DOA, may also contribute to OS progression. These DEGs may be candidate targets for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Kefeng Zhang
- Department of Spinal Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jianwen Gao
- Department of Spinal Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yong Ni
- Department of Spinal Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
16
|
Han Y, Wu C, Wang J, Liu N. CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment. Tumour Biol 2017; 39:1010428317701631. [PMID: 28468584 DOI: 10.1177/1010428317701631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The major cause of death in osteosarcoma is the invasion and metastasis. Better understanding of the molecular mechanism of osteosarcoma invasion is essential in developing effective tumor-suppressive therapies. Interaction between chemokine receptors plays a crucial role in regulating osteosarcoma invasion. Here, we investigated the relationship between CXCR7 and CXCR4 in osteosarcoma invasion induced by bone marrow microenvironment. Human bone marrow mesenchymal stem cells were co-cultured with osteosarcoma cells to mimic actual bone marrow microenvironment. Osteosarcoma cell invasion and CXCL12/CXCR4 activation were observed within this co-culture model. Interestingly, in this co-culture model, osteosarcoma cell invasion was not inhibited by suppressing CXCR4 expression with neutralizing antibody or specific inhibitor AMD3100. Downstream signaling extracellular signal-regulated kinase and signal transducer and activator of transcription 3 were not significantly affected by CXCR4 inhibition. However, suppressing CXCR4 led to CXCR7 upregulation. Constitutive expression of CXCR7 could maintain osteosarcoma cell invasion when CXCR4 was suppressed. Simultaneously, inhibiting CXCR4 and CXCR7 compromised osteosarcoma invasion in co-culture system and suppressed extracellular signal-regulated kinase and signal transducer and activator of transcription 3 signals. Moreover, bone marrow microenvironment, not CXCL12 alone, is required for CXCR7 activation after CXCR4 suppression. Taken together, suppressing CXCR4 is not enough to impede osteosarcoma invasion in bone marrow microenvironment since CXCR7 is activated to sustain invasion. Therefore, inhibiting both CXCR4 and CXCR7 could be a promising strategy in controlling osteosarcoma invasion.
Collapse
Affiliation(s)
- Yan Han
- 1 Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Chunlei Wu
- 1 Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Jing Wang
- 1 Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Na Liu
- 2 Department of Traditional Medical Traumatology Orthopedics, Xi'an Honghui Hospital, Xi'an, P.R. China
| |
Collapse
|
17
|
Zhang H, Gao P, Xiao X, Heger M, Geng L, Fan B, Yuan Y, Huang C, Chen G, Liu Y, Hu Y, Yu X, Wu S, Wang L, Wang Z. A liquid biopsy-based method for the detection and quantification of circulating tumor cells in surgical osteosarcoma patients. Int J Oncol 2017; 50:1075-1086. [PMID: 28350107 PMCID: PMC5363882 DOI: 10.3892/ijo.2017.3905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/14/2017] [Indexed: 11/06/2022] Open
Abstract
A method for the enumeration and quantification of osteosarcoma (OS) circulating tumor cells (CTCs) is currently not available. A correlation between the number of CTCs and progression-free survival (PFS) has been established for other cancers, but not for OS CTCs. A method was therefore developed for CTC quantification in OS and validated in a prospective cohort of surgical patients with primary and recurrent/metastatic OS (N=23). Human OS cells, acting as CTCs, were enumerated from spiked human peripheral blood (PB) following erythrocyte and leukocyte depletion. The OS cells were quantified microscopically based on aneuploidy and a CK18-/CD45- phenotype. Aneuploidy was assayed by fluorescence in situ hybridization (FISH) using fluorescence-labeled alpha-satellite probes for the centromeres of chromosome (CEP 8). CK18 and CD45 phenotyping was performed with immunocytochemistry. HOS cells in spiked PB could be effectively retrieved with the FISH-based enumeration method, which was subsequently employed in an OS patient cohort. PB of recurrent/metastatic OS patients contained more CTCs than the PB of primary OS patients. OS patients with ≥2 CTCs per 7.5 ml of PB had worse PFS than patients whose PB contained <2 CTCs. In 2 cases, CTCs were present in PB of OS patients with negative X-ray and chest CT scans. In conclusion, our method was able to quantitate CTCs in liquid biopsies of OS patients. The number of CTCs has diagnostic and prognostic value.
Collapse
Affiliation(s)
- Haoqiang Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Peng Gao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Lei Geng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Fan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yulin Yuan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chen Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guojing Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yao Liu
- Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Yongchen Hu
- Department of Orthopedic Oncology, Tianjin Hospital, Tianjin 300210, P.R. China
| | - Xiuchun Yu
- Department of Orthopedics, The General Hospital of Jinan Military Commanding Region, Jinan, Shandong 250031, P.R. China
| | - Sujia Wu
- Department of Orthopedics, The General Hospital of Nanjing Military Commanding Region, Nanjing, Jiangsu 210008, P.R. China
| | - Ling Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhen Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
18
|
Kelleher FC, O'Sullivan H. Monocytes, Macrophages, and Osteoclasts in Osteosarcoma. J Adolesc Young Adult Oncol 2017; 6:396-405. [PMID: 28263668 DOI: 10.1089/jayao.2016.0078] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophages appear to have a fundamental role in the pathogenesis of osteosarcoma. These highly diverse plastic cells are subdivided into classical or inflammatory macrophages known as M1 and alternative macrophages, which decrease inflammation and are reparative, called M2. Although primary and metastatic osteosarcomas are infiltrated with M2 macrophages, targeting the M1 macrophages with the immune adjuvant muramyl tripeptide phosphatidyl ethanolamine (MTP-PE) has been the greatest recent therapeutic advance in osteosarcoma. This discrepancy between the presence of M2 and activation of M1 macrophages is intriguing and is likely explained either by the plasticity of M1 and M2 macrophages or nonclassical patrolling monocytes (PMos). To date, MTP-PE has been approved in combination with chemotherapy for nonmetastatic osteosarcoma, but its use in metastatic tumors has not been investigated. In this review, we focus on macrophages, monocytes, and osteoclasts, their role in osteosarcoma, and the potential for targeting these cells in this disease.
Collapse
Affiliation(s)
- Fergal C Kelleher
- 1 Trinity College Dublin , Dublin, Ireland .,2 Department of Medical Oncology, St. James Hospital , Dublin, Ireland
| | - Hazel O'Sullivan
- 2 Department of Medical Oncology, St. James Hospital , Dublin, Ireland .,3 Whangarei Base Hospital , Whangarei, New Zealand
| |
Collapse
|
19
|
Benslimane-Ahmim Z, Pereira J, Lokajczyk A, Dizier B, Galy-Fauroux I, Fischer AM, Heymann D, Boisson-Vidal C. Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization. Cancer Lett 2017; 395:11-19. [PMID: 28263839 DOI: 10.1016/j.canlet.2017.02.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 01/07/2023]
Abstract
We previously reported that OPG is involved in ischemic tissue neovascularization through the secretion of SDF-1 by pretreated-OPG endothelial colony-forming cells (ECFCs). As the vascularization is one of the key factor influencing the tumour growth and cancer cell dissemination, we investigated whether OPG was able to modulate the invasion of human MNNG-HOS osteosarcoma and DU145 prostate cancer cell lines in vitro and in vivo. Cell motility was analysed in vitro by using Boyden chambers. Human GFP-labelled MMNG-HOS cells were inoculated in immunodeficient mice and the tumour nodules formed were then injected with OPG and/or FGF-2, AMD3100 or 0.9% NaCl (control group). Tumour growth was manually followed and angiogenesis was assessed by immunohistochemistry. In vitro, SDF-1 released by OPG-pretreated ECFCs markedly attracted both MNNG-HOS and DU145 cells and induced spontaneous migration of cancer cells. In vivo, tumour volumes were significantly increased in OPG-treated group compared to the control group and OPG potentiated the effect of FGF-2. Concomitantly, OPG alone or combined with FGF-2 increased the number of new vasculature compared to the control group. Interestingly AMD3100, an inhibitor of SDF-1, prevented the in vivo effects of OPG induced by SDF-1 This study provides experimental evidence that OPG promotes tumour development trough SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Zahia Benslimane-Ahmim
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Jessica Pereira
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Anna Lokajczyk
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Blandine Dizier
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Isabelle Galy-Fauroux
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France
| | - Anne-Marie Fischer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France; AP-HP, Haematology Department, Hôpital European Georges Pompidou, Paris, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, S10 2RX, Sheffield, UK; INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue Contre le Cancer 2012, University of Nantes, Faculty of Medicine, 44035, Nantes, France; Nantes University Hospital, Nantes, 44035, France.
| | - Catherine Boisson-Vidal
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S1140, Paris, France.
| |
Collapse
|
20
|
Jiang C, Fang X, Zhang H, Wang X, Li M, Jiang W, Tian F, Zhu L, Bian Z. AMD3100 combined with triptolide inhibit proliferation, invasion and metastasis and induce apoptosis of human U2OS osteosarcoma cells. Biomed Pharmacother 2017; 86:677-685. [DOI: 10.1016/j.biopha.2016.12.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023] Open
|
21
|
Abstract
![]()
An HPMA-based polymeric prodrug of
a CXCR4 antagonist, AMD3465
(P-SS-AMD), was developed as a dual-function carrier of therapeutic
miRNA. P-SS-AMD was synthesized by a copolymerization of HPMA with
a methacrylamide monomer in which the AMD3465 was attached via a self-immolative
disulfide linker. P-SS-AMD showed effective release of the parent
AMD3465 drug following treatment with intracellular levels of glutathione
(GSH). The AMD3465 was released in the cells and exhibited functional
CXCR4 antagonism, demonstrated by inhibition of the CXCR4-mediated
cancer cell invasion. Due to its cationic character, P-SS-AMD could
form polyplexes with miRNA and mediate efficient transfection of miR-200c
mimics to downregulate expression of a downstream target ZEB-1 in
cancer cells. The combined P-SS-AMD/miR-200c polyplexes showed improved
ability to inhibit cancer cell migration when compared with individual
treatments. The reported findings validate P-SS-AMD as a dual-function
delivery vector that can simultaneously deliver a therapeutic miRNA
and function as a polymeric prodrug of CXCR4 antagonist.
Collapse
Affiliation(s)
- Zheng-Hong Peng
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Yan Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
22
|
Zandueta C, Ormazábal C, Perurena N, Martínez-Canarias S, Zalacaín M, Julián MS, Grigoriadis AE, Valencia K, Campos-Laborie FJ, Rivas JDL, Vicent S, Patiño-García A, Lecanda F. Matrix-Gla protein promotes osteosarcoma lung metastasis and associates with poor prognosis. J Pathol 2016; 239:438-49. [PMID: 27172275 DOI: 10.1002/path.4740] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/11/2022]
Abstract
Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFβ-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carolina Zandueta
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Cristina Ormazábal
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Naiara Perurena
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Susana Martínez-Canarias
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Marta Zalacaín
- Department of Paediatrics, Clínica Universidad de Navarra (CUN), School of Medicine, University of Navarra, Pamplona, Spain
| | - Mikel San Julián
- Department of Orthopaedics, Clínica Universidad de Navarra (CUN), School of Medicine, University of Navarra, Pamplona, Spain
| | - Agamemnon E Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, Guy's Hospital, King's College, London, UK
| | - Karmele Valencia
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Francisco J Campos-Laborie
- Bioinformatics and Functional Genomics Research Group, Cancer Research Centre (IBMCC-CIC), CSIC, and University of Salamanca (CSIC/USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Centre (IBMCC-CIC), CSIC, and University of Salamanca (CSIC/USAL), Salamanca, Spain
| | - Silvestre Vicent
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Patiño-García
- Department of Paediatrics, Clínica Universidad de Navarra (CUN), School of Medicine, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fernando Lecanda
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
23
|
Duan Y, Zhang S, Wang L, Zhou X, He Q, Liu S, Yue K, Wang X. Targeted silencing of CXCR4 inhibits epithelial-mesenchymal transition in oral squamous cell carcinoma. Oncol Lett 2016; 12:2055-2061. [PMID: 27602138 DOI: 10.3892/ol.2016.4838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
Aberrant overexpression of C-X-C chemokine receptor type 4 (CXCR4) is a critical event during tumor metastasis. It has been previously reported that the expression of CXCR4 is linked with epithelial-mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC) tissues derived from patients. The present study addresses the role of CXCR4 in EMT in tongue squamous cell carcinoma (TSCCA) cells in vitro and in xenograft models. Small interfering (si) RNA sequences targeting the CXCR4 gene were transfected into TSCCA cells. Cell migration, invasion, apoptosis and EMT markers were determined in TSCCA cells using wound healing and Transwell assays, Annexin V/propdidum iodide double staining and western blot analysis, respectively. In vivo, tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice. Phenotypic EMT markers and regulatory factors were detected in the tumor tissues derived from the mice. In vitro, silencing of CXCR4 expression suppressed cell migration and invasion, and induced apoptosis. The protein expression of the EMT-associated markers N-cadherin and matrix metalloproteinases 2/9 were attenuated, while E-cadherin was increased. In vivo, CXCR4 siRNA inhibited tumor growth, and EMT-associated proteins had similar expression patterns to the experimental results observed in vitro. In conclusion, the present study demonstrated that CXCR4 silencing suppressed EMT in OSCC, thus affecting tumor metastasis.
Collapse
Affiliation(s)
- Yuansheng Duan
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Shu Zhang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Longlong Wang
- Department of Thyroid Surgery, Baotou Cancer Hospital, Baotou, Inner Mongolia 014030, P.R. China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Qinghua He
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Su Liu
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|