1
|
Flanagan DJ, Woodcock SA, Phillips C, Eagle C, Sansom OJ. Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. Pharmacol Ther 2022; 238:108179. [PMID: 35358569 PMCID: PMC9531712 DOI: 10.1016/j.pharmthera.2022.108179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Gastrointestinal cancers are responsible for more cancer deaths than any other system of the body. This review summarises how Wnt pathway dysregulation contributes to the development of the most common gastrointestinal cancers, with a particular focus on the nature and frequency of upstream pathway aberrations. Tumors with upstream aberrations maintain a dependency on the presence of functional Wnt ligand, and are predicted to be tractable to inhibitors of Porcupine, an enzyme that plays a key role in Wnt secretion. We summarise available pre-clinical efficacy data from Porcupine inhibitors in vitro and in vivo, as well as potential toxicities and the data from early phase clinical trials. We appraise the rationale for biomarker-defined targeted approaches, as well as outlining future opportunities for combination with other therapeutics.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK; Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | | | | | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
2
|
Van Doren SR. MMP-7 marks severe pancreatic cancer and alters tumor cell signaling by proteolytic release of ectodomains. Biochem Soc Trans 2022; 50:839-851. [PMID: 35343563 PMCID: PMC10443904 DOI: 10.1042/bst20210640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice and is present throughout tumor progression. Enhancements to chemotherapies are needed for increasing the number of pancreatic tumors that can be removed and for preventing relapses after surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. Competitive and non-competitive modes of MMP-7 inhibition are discussed.
Collapse
Affiliation(s)
- Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
3
|
Sakihama K, Koga Y, Yamamoto T, Shimada Y, Yamada Y, Kawata J, Shindo K, Nakamura M, Oda Y. RNF43 as a predictor of malignant transformation of pancreatic mucinous cystic neoplasm. Virchows Arch 2022; 480:1189-1199. [PMID: 35066614 DOI: 10.1007/s00428-022-03277-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Mucinous cystic neoplasm (MCN) of the pancreas rarely progresses to invasive carcinoma, but few studies have analyzed genomic alterations involved in its malignant transformation. The relationships of ring finger protein 43 (RNF43) mutations with cytological atypia, RNF43 protein expression, and Wnt signaling proteins in MCN remain unclear. This study included 106 MCN cases, classified into 89 low-grade dysplasia (LG), 9 high-grade dysplasia (HG), and 8 invasive carcinoma (INV). We analyzed HG/INV and LG lesions of 9 HG/INV cases and LG lesions of 9 LG cases using targeted sequencing and confirmed the protein expression of RNF43 and β-catenin. The frequency of RNF43 mutations was significantly higher in HG/INV cases than in LG cases. Furthermore, HG/INV lesions (56%) and LG lesions (33%) of HG/INV cases possessed RNF43 mutation, whereas no such mutation was detected in any LG cases. The expression of RNF43 was reduced in 71% of HG/INV cases and significantly correlated with histological grade and aberrant expression of β-catenin. In 3 of 5 RNF43-mutated cases, the expression of RNF43 was reduced, but there was no significant correlation between RNF43 mutation and protein expression. MCNs frequently harbored KRAS mutations, at rates of 100% in HG/INV lesions and 50% in LG lesions of HG/INV and LG cases. There was no significant difference in mutation frequency in LG lesions between HG/INV and LG cases. These results suggest that RNF43 mutations may be involved in and predictive of malignant transformation from an early stage of MCN.
Collapse
Affiliation(s)
- Kukiko Sakihama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Koga
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Ma C, Cui Z, Wang Y, Zhang L, Wen J, Guo H, Li N, Zhang W. Bioinformatics analysis reveals TSPAN1 as a candidate biomarker of progression and prognosis in pancreatic cancer. Bosn J Basic Med Sci 2021; 21:47-60. [PMID: 33188589 PMCID: PMC7861625 DOI: 10.17305/bjbms.2020.5096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PCC) is a common malignant tumor of the digestive system that is resistant to traditional treatments and has an overall 5-year survival rate of <7%. Transcriptomics research provides reliable biomarkers for diagnosis, prognosis, and clinical precision treatment, as well as the identification of molecular targets for the development of drugs to improve patient survival. We sought to identify new biomarkers for PCC by combining transcriptomics and clinical data with current knowledge regarding molecular mechanisms. Consequently, we employed weighted gene co-expression network analysis and differentially expressed gene analysis to evaluate genes co-expressed in tumor versus normal tissues using pancreatic adenocarcinoma data from The Cancer Genome Atlas and dataset GSE16515 from the Gene Expression Omnibus. Twenty-one overlapping genes were identified, with enrichment of key Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, including epidermal growth factor receptor signaling, cadherin, cell adhesion, ubiquinone, and glycosphingolipid biosynthesis pathways, and retinol metabolism. Protein-protein interaction analysis highlighted 10 hub genes, according to Maximal Clique Centrality. Univariate and multivariate COX analyses indicated that TSPAN1 serves as an independent prognostic factor for PCC patients. Survival analysis distinguished TSPAN1 as an independent prognostic factor among hub genes in PCC. Finally, immunohistochemical staining results suggested that the TSPAN1 protein levels in the Human Protein Atlas were significantly higher in tumor tissue than in normal tissue. Therefore, TSPAN1 may be involved in PCC development and act as a critical biomarker for diagnosing and predicting PCC patient survival.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Hepatobiliary Medicine, Hebei General Hospital, Shijiazhuang, China. Graduate school of North China University of Science and Technology, Tangshan, China
| | - ZeLong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - YiChao Wang
- Graduate School of North China University of Science and Technology, Tangshan, China
| | - Lei Zhang
- Department of hepatobiliary, Hebei General Hospital, Shijiazhuang, China
| | - JunYe Wen
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - HuaiBin Guo
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - Na Li
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - WanXing Zhang
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
5
|
Zhao L, Liu H, Luo S, Moorman PG, Walsh KM, Li W, Wei Q. Associations between genetic variants of KIF5B, FMN1, and MGAT3 in the cadherin pathway and pancreatic cancer risk. Cancer Med 2020; 9:9620-9631. [PMID: 33200553 PMCID: PMC7774717 DOI: 10.1002/cam4.3603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Because the cadherin-mediated signaling pathway promotes cancer progression, we assessed associations between genetic variants in 109 cadherin-related genes and risk of pancreatic cancer (PanC) by using genotyping data from publically available genome-wide association studies (GWAS) datasets comprising 15,423 individuals of European ancestry. After initial single-locus analyses and subsequent meta-analysis with multiple testing correction for 29,963 single-nucleotide polymorphisms (SNPs), 11 SNPs remained statistically significant (p < 0.05). In the stepwise logistic regression analysis, three independent PanC risk-associated SNPs (KIF5B rs211304 C > G, FMN1 rs117648907 C > T, and MGAT3 rs34943118 T > C) remained statistically significant (p < 0.05), with odds ratios of 0.89 (95% confidence interval = 0.82-0.95 and p = 6.93 × 10-4 ), 1.33 (1.13-1.56 and 2.11 × 10-4 ), and 1.11 (1.05-1.17 and 8.10 × 10-5 ), respectively. Combined analysis of unfavorable genotypes of these three independent SNPs showed an upward trend in the genotype-risk association (ptrend < 0.001). Expression quantitative trait loci analyses indicated that the rs211304 G and rs34943118 C alleles were associated with increased mRNA expression levels of KIF5B and MGAT3, respectively (all p < 0.05). Additional bioinformatics prediction suggested that these three SNPs may affect enhancer histone marks that likely have an epigenetic effect on the genes. Our findings provide biological clues for these PanC risk-associated SNPs in cadherin-related genes in European ancestry populations, possibly by regulating the expression of the affected genes. However, our findings need to be validated in additional population, molecular and mechanistic investigations.
Collapse
Affiliation(s)
- Lingling Zhao
- Cancer CenterThe First Hospital of Jilin UniversityChangchunJilinChina
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Hongliang Liu
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Sheng Luo
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNCUSA
| | - Patricia G. Moorman
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Family Medicine and Community HealthDuke University Medical CenterNCUSA
| | - Kyle M. Walsh
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of NeurosurgeryDuke University School of MedicineDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Wei Li
- Cancer CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Qingyi Wei
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
6
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
7
|
Sommariva M, Gagliano N. E-Cadherin in Pancreatic Ductal Adenocarcinoma: A Multifaceted Actor during EMT. Cells 2020; 9:E1040. [PMID: 32331358 PMCID: PMC7226001 DOI: 10.3390/cells9041040] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a step-wise process observed in normal and tumor cells leading to a switch from epithelial to mesenchymal phenotype. In tumors, EMT provides cancer cells with a metastatic phenotype characterized by E-cadherin down-regulation, cytoskeleton reorganization, motile and invasive potential. E-cadherin down-regulation is known as a key event during EMT. However, E-cadherin expression can be influenced by the different experimental settings and environmental stimuli so that the paradigm of EMT based on the loss of E-cadherin determining tumor cell behavior and fate often becomes an open question. In this review, we aimed at focusing on some critical points in order to improve the knowledge of the dynamic role of epithelial cells plasticity in EMT and, specifically, address the role of E-cadherin as a marker for the EMT axis.
Collapse
Affiliation(s)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
8
|
Gao C, Chen G, Zhang DH, Zhang J, Kuan SF, Hu W, Esni F, Gao X, Guan JL, Chu E, Hu J. PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating β-Catenin Y654. Cell Mol Gastroenterol Hepatol 2019; 8:561-578. [PMID: 31330317 PMCID: PMC6889497 DOI: 10.1016/j.jcmgh.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Identification and validation of new functionally relevant and pharmacologically actionable targets for pancreatic ductal adenocarcinoma (PDAC) remains a great challenge. Premalignant acinar cell reprogramming (acinar-to-ductal metaplasia [ADM]) is a precursor of pancreatic intraepithelial neoplasia (PanIN) lesions that can progress to PDAC. This study investigated the role of proline-rich tyrosine kinase 2 (PYK2) in mutant Kras-induced and pancreatitis-associated ADM and PanIN formation, as well as in PDAC maintenance. METHODS Genetically engineered mouse models of mutant Kras (glycine 12 to aspartic acid) and Pyk2 deletion were used for investigating the role of PYK2 in PDAC genesis in mice. In vitro ADM assays were conducted using primary pancreatic acinar cells isolated from mice. Immunohistochemistry, immunofluorescence, and a series of biochemical experiments were used to investigate upstream regulators/downstream targets of PYK2 in pancreatic carcinogenesis. PDAC cell line xenograft experiments were performed to study the role of PYK2 and its downstream target in PDAC maintenance. RESULTS PYK2 was increased substantially in ADM lesions induced by mutant Kras or inflammatory injury. Pyk2 deletion remarkably suppressed ADM and PanIN formation in a mutant Kras-driven and pancreatitis-associated PDAC model, whereas PYK2 knockdown substantially inhibited PDAC cell growth in vitro and in nude mice. This study uncovered a novel yes-associated protein 1/transcriptional co-activator with PDZ binding motif/signal transducer and activator of transcription 3/PYK2/β-catenin regulation axis in PDAC. Our results suggest that PYK2 contributes to PDAC genesis and maintenance by activating the Wnt/β-catenin pathway through directly phosphorylating β-cateninY654. CONCLUSIONS The current study uncovers PYK2 as a novel downstream effector of mutant KRAS signaling, a previously unrecognized mediator of pancreatitis-induced ADM and a novel intervention target for PDAC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma in Situ/genetics
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/pathology
- Carcinoma, Acinar Cell/genetics
- Carcinoma, Acinar Cell/metabolism
- Carcinoma, Acinar Cell/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Cycle Proteins/metabolism
- Cellular Reprogramming/physiology
- Disease Models, Animal
- Female
- Focal Adhesion Kinase 2/genetics
- Focal Adhesion Kinase 2/metabolism
- Male
- Metaplasia
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phosphorylation
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Proto-Oncogene Proteins p21(ras)/metabolism
- Wnt Signaling Pathway
- YAP-Signaling Proteins
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Guangming Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dennis Han Zhang
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judy Zhang
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shih-Fan Kuan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Farzad Esni
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xuan Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Edward Chu
- UPMC, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Wu K, Wang W, Chen H, Gao W, Yu C. Insulin promotes proliferation of pancreatic ductal epithelial cells by increasing expression of PLK1 through PI3K/AKT and NF-κB pathway. Biochem Biophys Res Commun 2019; 509:925-930. [PMID: 30642632 DOI: 10.1016/j.bbrc.2018.12.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer has a poor prognosis. Many epidemiological evidence show that diabetes is closely related to the occurrence of pancreatic cancer. The concentration of insulin in pancreas local tissues is higher than that in systemic circulation. In this study, we aimed to investigate the effect of insulin on pancreatic duct epithelial cells and identify the potential mechanisms. We found that insulin promoted the proliferation of pancreatic duct epithelial cells in the dependent of increased PLK1. Furthermore, PI3K/AKT and NF-κB pathway were involved in this process. By using PI3K/AKT inhibitor LY294002 and NF-κB shRNA, the increased PLK1 was reversed and cells proliferation was inhibited. Additionally, immunofluorescence analysis revealed the co-localization between PLK1 and β-catenin. We showed that insulin can promote the increased expression of β-catenin dependent on PLK1. This study showed that insulin may promotes cell proliferative vitality of pancreatic ductal epithelial cells by inducing PLK1 through PI3K/AKT and NF-κB pathway; The upregulation of PLK1 may reduce the degradation of β-catenin. This may be one of the mechanisms by which T2DM promotes pancreatic cancer.
Collapse
Affiliation(s)
- Kai Wu
- Department of General Surgery, The Second Clinical Medical School of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Wulin Wang
- Department of General Surgery, The Second Clinical Medical School of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Hao Chen
- Department of General Surgery, The Second Clinical Medical School of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Wenjie Gao
- Department of General Surgery, The Second Clinical Medical School of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, The Second Clinical Medical School of Nanjing Medical University, 210029, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Liu L, Zhi Q, Shen M, Gong FR, Zhou BP, Lian L, Shen B, Chen K, Duan W, Wu MY, Tao M, Li W. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis. Oncotarget 2018; 7:47145-47162. [PMID: 27323403 PMCID: PMC5216931 DOI: 10.18632/oncotarget.9975] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022] Open
Abstract
The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Binhua P Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Departments of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China.,Department of Pathology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China.,Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Center for Systems Biology, Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China
| |
Collapse
|
11
|
Zhang WN, Li W, Wang XL, Hu Z, Zhu D, Ding WC, Liu D, Li KZ, Ma D, Wang H. CLDN1 expression in cervical cancer cells is related to tumor invasion and metastasis. Oncotarget 2018; 7:87449-87461. [PMID: 27974683 PMCID: PMC5350000 DOI: 10.18632/oncotarget.13871] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
Even though infection with human papillomaviruses (HPV) is very important, it is not the sole cause of cervical cancer. Because it is known that genetic variations that result from HPV infection are probably the most important causes of cervical cancer, we used human whole genome array comparative genomic hybridization to detect the copy number variations of genes in cervical squamous cell carcinoma. The results of the array were validated by PCR, FISH and immunohistochemistry. We find that the copy number and protein expression of claudin-1 (CLDN1) increase with the progression of cervical cancer. The strong positive staining of CLDN1 in the cervical lymph node metastasis group received a significantly higher score than the staining in the group with no lymph node metastasis of cervical cancer tissues. The overexpression of CLDN1 in SiHa cells can increase anti-apoptosis ability and promote invasive ability of these cells accompanied by a decrease in expression of the epithelial marker E-cadherin as well as an increase in the expression of the mesenchymal marker vimentin. CLDN1 induces the epithelial-mesenchymal transition (EMT) through its interaction with SNAI1. Furthermore, we demonstrate that CLDN1 overexpression has significant effects on the growth and metastasis of xenografted tumors in athymic mice. These data suggest that CLDN1 promotes invasion and metastasis in cervical cancer cells via the expression of EMT/invasion-related genes. Therefore, CLDN1 could be a potential therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Wei-Na Zhang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Wei Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiao-Li Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zheng Hu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Da Zhu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wen-Cheng Ding
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dan Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ke-Zhen Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
12
|
Siret C, Dobric A, Martirosyan A, Terciolo C, Germain S, Bonier R, Dirami T, Dusetti N, Tomasini R, Rubis M, Garcia S, Iovanna J, Lombardo D, Rigot V, André F. Cadherin-1 and cadherin-3 cooperation determines the aggressiveness of pancreatic ductal adenocarcinoma. Br J Cancer 2017; 118:546-557. [PMID: 29161242 PMCID: PMC5830586 DOI: 10.1038/bjc.2017.411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is characterised by an extensive tissue invasion and an early formation of metastasis. Alterations in the expression of cadherins have been reported in PDAC. Yet, how these changes contribute to tumour progression is poorly understood. Here, we investigated the relationship between cadherins expression and PDAC development. Methods: Cadherins expression was assessed by immunostaining in both human and murine tissue specimens. We have generated pancreatic cancer cell lines expressing both cadherin-1 and cadherin-3 or only one of these cadherins. Functional implications of such genetic alterations were analysed both in vitro and in vivo. Results: Cadherin-3 is detected early at the plasma membrane during progression of pancreatic intraepithelial neoplasia 1 (PanIN-1) to PDAC. Despite tumoural cells turn on cadherin-3, a significant amount of cadherin-1 remains expressed at the cell surface during tumourigenesis. We found that cadherin-3 regulates tumour growth, while cadherin-1 drives type I collagen organisation in the tumour. In vitro assays showed that cadherins differentially participate to PDAC aggressiveness. Cadherin-3 regulates cell migration, whereas cadherin-1 takes part in the invadopodia activity. Conclusions: Our results show differential, but complementary, roles for cadherins during PDAC carcinogenesis and illustrate how their expression conditions the PDAC aggressiveness.
Collapse
Affiliation(s)
- Carole Siret
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Aurélie Dobric
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Anna Martirosyan
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Chloé Terciolo
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Sébastien Germain
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Renaté Bonier
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Thassadite Dirami
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille 13009, France
| | - Richard Tomasini
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille 13009, France
| | - Marion Rubis
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille 13009, France
| | - Stéphane Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille 13009, France.,Hôpital Nord, Marseille 13015, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille 13009, France
| | - Dominique Lombardo
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Véronique Rigot
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| | - Frédéric André
- Aix-Marseille Université, Inserm UMR 911, CRO2, 27 blvd Jean Moulin, Marseille 13385, France
| |
Collapse
|
13
|
Lewis AM, Ough M, Du J, Tsao MS, Oberley LW, Cullen JJ. Targeting NAD(P)H:Quinone Oxidoreductase (NQO1) in Pancreatic Cancer. Mol Carcinog 2017; 56:1825-1834. [PMID: 28639725 DOI: 10.1002/mc.20199] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 01/19/2005] [Accepted: 02/24/2015] [Indexed: 11/07/2022]
Abstract
NAD(P)H Quinone oxidoreductase (NQO1) functions as an important part of cellular antioxidant defense by detoxifying quinones, thus preventing the formation of reactive oxygen species. The aims of our study were to determine if NQO1 is elevated in pancreatic cancer specimens and pancreatic cancer cell lines and if so, would compounds previously demonstrated to redox cycle with NQO1 be effective in killing pancreatic cancer cells. Immunohistochemistry of resected pancreatic specimens demonstrated an increased immunoreactivity for NQO1 in pancreatic cancer and pancreatic intraepithelial neoplasia (PanIN) specimens versus normal human pancreas. Immunocytochemistry and Western immunoblots demonstrated inceased immunoreactivity in pancreatic cancer cells when compared to a near normal immortalized human pancreatic ductal epithelial cell line and a colonic epithelial cell line. Streptonigrin, a compound known to cause redox cycling in the presence of NQO1, decreased clonogenic survival and decreased anchorage-independent growth in soft agar. Streptonigrin had little effect on cell lines with absent or reduced levels of NQO1. The effects of streptonigrin were reversed in pancreatic cancer cells pretreated with dicumarol, a known inhibitor of NQO1. NQO1 may be a therapeutic target in pancreatic cancer where survival is measured in months. © 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Anne M Lewis
- The University of Iowa College of Medicine, Iowa City, Iowa
| | - Matthew Ough
- The University of Iowa College of Medicine, Iowa City, Iowa
| | - Juan Du
- Departments of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, Iowa
| | - Ming-Sound Tsao
- Department of Pathology and Division of Cellular Molecular Biology and the Ontario Cancer Institute/Princess Margaret Hospital Toronto, and University of Toronto, Ontario, Canada
| | - Larry W Oberley
- Departments of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, Iowa
| | - Joseph J Cullen
- Departments of Surgery, The University of Iowa College of Medicine, Iowa City, Iowa
- Departments of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, Iowa
- The University of Iowa College of Medicine, Iowa City, Iowa
- Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
14
|
Li Y, Oliver PG, Lu W, Pathak V, Sridharan S, Augelli-Szafran CE, Buchsbaum DJ, Suto MJ. SRI36160 is a specific inhibitor of Wnt/β-catenin signaling in human pancreatic and colorectal cancer cells. Cancer Lett 2016; 389:41-48. [PMID: 28043913 DOI: 10.1016/j.canlet.2016.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023]
Abstract
Activation of Wnt/β-catenin signaling is associated with pancreatic and colorectal cancer, among others. To-date, there are no FDA-approved small molecule Wnt/β-catenin inhibitors and many past efforts resulted in compounds with undesirable off-target effects. We recently identified a series of benzimidazole analogs as potent inhibitors of Wnt/β-catenin signaling. Here, we show that the lead compound SRI36160 displayed selective Wnt inhibition and potent antiproliferative activity in pancreatic and colorectal cancer cells. Moreover, SRI36160 had no effect on STAT3 and mTORC1 signaling in pancreatic and colorectal cancer cells, and was not effective in inhibiting proliferation of non-cancerous cells. Our findings suggest that this series of benzimidazole analogs presents a novel approach for the treatment of Wnt-dependent cancers such as colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Yonghe Li
- Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35255, USA.
| | - Patsy G Oliver
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenyan Lu
- Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Vibha Pathak
- Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Sivaram Sridharan
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Donald J Buchsbaum
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark J Suto
- Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| |
Collapse
|
15
|
Zhao T, Jiang W, Wang X, Wang H, Zheng C, Li Y, Sun Y, Huang C, Han ZB, Yang S, Jia Z, Xie K, Ren H, Hao J. ESE3 Inhibits Pancreatic Cancer Metastasis by Upregulating E-Cadherin. Cancer Res 2016; 77:874-885. [PMID: 27923832 DOI: 10.1158/0008-5472.can-16-2170] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/12/2016] [Accepted: 11/19/2016] [Indexed: 12/15/2022]
Abstract
The ETS family transcription factor ESE3 is a crucial element in differentiation and development programs for many epithelial tissues. Here we report its role as a tumor suppressor in pancreatic cancer. We observed drastically lower ESE3 expression in pancreatic ductal adenocarcinomas (PDAC) compared with adjacent normal pancreatic tissue. Reduced expression of ESE3 in PDAC correlated closely with an increase in lymph node metastasis and vessel invasion and a decrease in relapse-free and overall survival in patients. In functional experiments, downregulating the expression of ESE3 promoted PDAC cell motility and invasiveness along with metastasis in an orthotopic mouse model. Mechanistic studies in PDAC cell lines, the orthotopic mouse model, and human PDAC specimens demonstrated that ESE3 inhibited PDAC metastasis by directly upregulating E-cadherin expression at the level of its transcription. Collectively, our results establish ESE3 as a negative regulator of PDAC progression and metastasis by enforcing E-cadherin upregulation. Cancer Res; 77(4); 874-85. ©2016 AACR.
Collapse
Affiliation(s)
- Tiansuo Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenna Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Xiuchao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Hongwei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Chen Zheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Yang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Zhi-Bo Han
- Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Shengyu Yang
- Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - He Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China.
| |
Collapse
|
16
|
Zhang B, Dong S, Zhu R, Hu C, Hou J, Li Y, Zhao Q, Shao X, Bu Q, Li H, Wu Y, Cen X, Zhao Y. Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3. Oncotarget 2016; 6:22799-811. [PMID: 26078354 PMCID: PMC4673200 DOI: 10.18632/oncotarget.4332] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/25/2015] [Indexed: 02/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) plays critical roles in cancer. PRMT5 has been implicated in several types of tumors. However, the role of PRMT5 in cancer development remains to be fully elucidated. Here, we provide evidence that PRMT5 is overexpressed in colorectal cancer (CRC) cells and patient-derived primary tumors, correlated with increased cell growth and decreased overall patient survival. Arginine methyltransferase inhibitor 1 (AMI-1)strongly inhibited tumor growth, increased the ratio of Bax/Bcl-2, and induced apoptosis in mouse CRC xenograt model. AMI-1 also induced apoptosis and decreased the migratory activity in several CRC cells. In CRC xenografts AMI-1 significantly decreased symmetric dimethylation of histone 4 (H4R3me2s), a histone mark of type II PRMT5, but not the expression of H4R3me2a, a histone mark of type I PRMTs. These results suggest that the inhibition of PRMT5 contributes to the antitumor efficacy of AMI-1. Chromatin immunoprecipitation (ChIP) identified FGFR3 and eIF4E as two key genes regulated by PRMT5. PRMT5 knockdown reduced the levels of H4R3me2s and H3R8me2s methylation on FGFR3 and eIF4E promoters, leading to decreased expressions of FGFR3 and eIF4E. Collectively, our findings provide new evidence that PRMT5 plays an important role in CRC pathogenesis through epigenetically regulating arginine methylation of oncogenes such as eIF4E and FGFR3.
Collapse
Affiliation(s)
- Baolai Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruiming Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chunyan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xue Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qian Bu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hongyu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
17
|
Clinicopathological Implications of Wingless/int1 (WNT) Signaling Pathway in Pancreatic Ductal Adenocarcinoma. J UOEH 2016; 38:1-8. [PMID: 26972939 DOI: 10.7888/juoeh.38.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreatic cancer is still one of the most lethal malignancies in the world, and a more thorough understanding of its detailed pathogenetic mechanisms and the development of more effective therapeutic strategies are urgently required. Pancreatic ductal adenocarcinoma (PDA), the most common type of pancreatic cancer, is characterized by consistent genetic abnormalities such as point mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) and in the tumor suppressor protein p53 (TP53) genes. Alterations in intracellular core signal pathways have also been shown to induce the development or progression of PDA. The Wingless/int1 (WNT) signal pathway plays a pivotal role in embryonic development, cellular proliferation and differentiation, and dysregulation of WNT signaling can lead to neoplastic transformation in a variety of organ systems, including the pancreas. Recent studies have shown that altered WNT signaling is associated with a poor prognosis in patients with PDA, suggesting that the pathway is a predictor of patients' survival and a potential therapeutic target of PDA. In this review, the clinicopathological implications of WNT signaling in PDA are highlighted.
Collapse
|
18
|
Li B, Shi H, Wang F, Hong D, Lv W, Xie X, Cheng X. Expression of E-, P- and N-Cadherin and Its Clinical Significance in Cervical Squamous Cell Carcinoma and Precancerous Lesions. PLoS One 2016; 11:e0155910. [PMID: 27223886 PMCID: PMC4880319 DOI: 10.1371/journal.pone.0155910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/08/2016] [Indexed: 01/08/2023] Open
Abstract
Aberrant expression of classical cadherins has been observed in tumor invasion and metastasis, but its involvement in cervical carcinogenesis and cancer progression is not clear. We investigated E-, P- and N-cadherin expression and its significance in cervical squamous cell carcinoma (SCC) and cervical intraepithelial neoplasia (CIN). This retrospective study enrolled 508 patients admitted to Women's Hospital, School of Medicine, Zhejiang University with cervical lesions between January 2006 and December 2010. Immunochemical staining was performed in 98 samples of normal cervical epithelium (NC), 283 of CIN, and 127 of early-stage SCC. The association of cadherin staining with clinical characteristics and survival of the patients was evaluated by univariate and multivariate analysis. We found gradients of decreasing E-cadherin expression and increasing P-cadherin expression from NC through CIN to SCC. Aberrant E-cadherin and P-cadherin expression were significantly associated with clinical parameters indicating poor prognosis and shorter patient survival. Interestingly, we found very low levels of positive N-cadherin expression in CIN and SCC tissues that were not related to CIN or cancer. Pearson chi-square tests showed that E-cadherin expression in SCC was inversely correlated with P-cadherin expression (E-P switch), and was not correlated with N-cadherin expression. More important, patients with tissues exhibiting an E-P switch in expression had highly aggressive phenotypes and poorer prognosis than those without E-P switch expression. Our findings suggest that E-cadherin and P-cadherin, but not N-cadherin staining, might be useful in diagnosing CIN and for predicting prognosis in patients with early-stage SCC.
Collapse
Affiliation(s)
- Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyan Shi
- Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fenfen Wang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Die Hong
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiguo Lv
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
19
|
Pramanik KC, Fofaria NM, Gupta P, Ranjan A, Kim SH, Srivastava SK. Inhibition of β-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear β-catenin/TCF-1 complex: critical role of STAT-3. Oncotarget 2016; 6:11561-74. [PMID: 25869100 PMCID: PMC4484476 DOI: 10.18632/oncotarget.3427] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/13/2023] Open
Abstract
Aberrant activation of β-catenin/TCF signaling is related to the invasiveness of pancreatic cancer. In the present study, we evaluated the effect of capsaicin on β-catenin/TCF signaling. In a concentration and time-dependent study, we observed that capsaicin treatment inhibits the activation of dishevelled (Dsh) protein DvI-1 in L3.6PL, PanC-1 and MiaPaCa-2 pancreatic cancer cells. Capsaicin treatment induced GSK-3β by inhibiting its phosphorylation and further activated APC and Axin multicomplex, leading to the proteasomal degradation of β-catenin. Expression of TCF-1 and β-catenin-responsive proteins, c-Myc and cyclin D1 also decreased in response to capsaicin treatment. Pre-treatment of cells with MG-132 blocked capsaicin-mediated proteasomal degradation of β-catenin. To establish the involvement of β-catenin in capsaicin-induced apoptosis, cells were treated with LiCl or SB415286, inhibitors of GSK-3β. Our results reveal that capsaicin treatment suppressed LiCl or SB415286-mediated activation of β-catenin signaling. Our results further showed that capsaicin blocked nuclear translocation of β-catenin, TCF-1 and p-STAT-3 (Tyr705). The immunoprecipitation results indicated that capsaicin treatment reduced the interaction of β-catenin and TCF-1 in the nucleus. Moreover, capsaicin treatment significantly decreased the phosphorylation of STAT-3 at Tyr705. Interestingly, STAT-3 over expression or STAT-3 activation by IL-6, significantly increased the levels of β-catenin and attenuated the effects of capsaicin in inhibiting β-catenin signaling. Finally, capsaicin mediated inhibition of orthotopic tumor growth was associated with inhibition of β-catenin/TCF-1 signaling. Taken together, our results suggest that capsaicin-induced apoptosis in pancreatic cancer cells was associated with inhibition of β-catenin signaling due to the dissociation of β-catenin/TCF-1 complex and the process was orchestrated by STAT-3.
Collapse
Affiliation(s)
- Kartick C Pramanik
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Dongdaemun-ku, Seoul 131-701, South Korea
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.,Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Dongdaemun-ku, Seoul 131-701, South Korea
| |
Collapse
|
20
|
Zhang B, Dong S, Li Z, Lu L, Zhang S, Chen X, Cen X, Wu Y. Targeting protein arginine methyltransferase 5 inhibits human hepatocellular carcinoma growth via the downregulation of beta-catenin. J Transl Med 2015; 13:349. [PMID: 26541651 PMCID: PMC4635578 DOI: 10.1186/s12967-015-0721-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Protein arginine methyltransferase 5 (PRMT5), a type II PRMT, is highly expressed in some tumors, but its role in hepatocellular carcinoma (HCC) is still unknown. METHODS PRMT5 level in HCC specimens was determined by immunohistochemical staining and the association with clinicopathologic features was evaluated. PRMT5 was inhibited by AMI-1 (a small molecule inhibitor of PRMTs) or small interference RNA (siRNA). The proliferation of HCC cells was tested by Cell Counting Kit-8, cell migration was evaluated by Transwell assay and cell cycle and apoptosis were analyzed by flow cytometry. The effect of AMI-1 on HCC in vivo was examined by mouse xenograft model. RESULTS PRMT5 expression was markedly upregulated in HCC tissues, and correlated inversely with overall patient survival. Knockdown of PRMT5 significantly reduced the proliferation of HCC cells, but did not affect the growth of normal liver cells. Furthermore, β-catenin was identified as a target of PRMT5. Silencing PRMT5 significantly down-regulated the expression of β-catenin and the downstream effector Cyclin D1 in HCC cells. AMI-1 strongly inhibited HCC growth in vivo, increased the ratio of Bax/Bcl-2, and led to apoptosis and loss of migratory activity in several HCC cells. Meanwhile, AMI-1 decreased the expression levels of symmetric dimethylation of H4 (H4R3me2s), a histone mark of PRMT5. CONCLUSIONS PRMT5 plays an important role in HCC. PRMT5 may be a promising target for HCC therapy.
Collapse
Affiliation(s)
- Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University; Key Lab of Preclinical Study for New Drugs of Gansu Province, No 199, Dongang West Road, Lanzhou, 730000, Gansu, China.
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University; Key Lab of Preclinical Study for New Drugs of Gansu Province, No 199, Dongang West Road, Lanzhou, 730000, Gansu, China.
| | - Zhongxin Li
- Gansu Provincial Second People's Hospital, Lanzhou, 730000, China.
| | - Li Lu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University; Key Lab of Preclinical Study for New Drugs of Gansu Province, No 199, Dongang West Road, Lanzhou, 730000, Gansu, China.
| | - Su Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University; Key Lab of Preclinical Study for New Drugs of Gansu Province, No 199, Dongang West Road, Lanzhou, 730000, Gansu, China.
| | - Xue Chen
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University; Key Lab of Preclinical Study for New Drugs of Gansu Province, No 199, Dongang West Road, Lanzhou, 730000, Gansu, China.
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University; Key Lab of Preclinical Study for New Drugs of Gansu Province, No 199, Dongang West Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
21
|
Abstract
OBJECTIVE The aim of this study is to explore how quercetin interacts with pancreatic cancer stem-like cells and the mechanism underlying the effective quercetin-mediated suppression. METHODS A model of pancreatic cancer stem-like cells was generated by using a sphere formation culture system. A comparative analysis was performed between the parent cells and pancreatic cancer stem-like cells with a related treatment strategy focusing on cancer stem cell (CSC) properties and drug-resistance-related mechanisms in vitro. RESULTS Our data show that pancreatic cancer stem-like cells have greater resistance to gemcitabine and stronger CSC properties compared with the parent cells. In contrast to the pancreatic cancer stem-like cells, overexpression of β-catenin was observed in the parent cells. Quercetin suppressed proliferation, invasion and self-renewal capacity, and CSC surface markers expression, with alterations of β-catenin in pancreatic cancer stem-like cells. The combination of quercetin and gemcitabine can reduce tumor growth and decrease drug resistance in pancreatic cancer. CONCLUSIONS β-Catenin plays an important role in maintenance and progression of pancreatic cancer. Targeting β-catenin using quercetin combined with gemcitabine may be a treatment strategy to improve prognosis in patients with pancreatic cancer.
Collapse
|
22
|
N-cadherin functions as a growth suppressor in a model of K-ras-induced PanIN. Oncogene 2015; 35:3335-41. [PMID: 26477318 PMCID: PMC4837100 DOI: 10.1038/onc.2015.382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
Abstract
Cadherin subtype switching from E-cadherin to N-cadherin is associated with the epithelial-to-mesenchymal transition (EMT), a process required for invasion and dissemination of carcinoma cells. We found N-cadherin is expressed in human and mouse pancreatic intraepithelial neoplasia (PanIN), suggesting that N-cadherin may also play a role in early stage pancreatic cancer. To investigate the role of N-cadherin in mouse PanIN (mPanIN), we simultaneously activated oncogenic K-rasG12D and deleted the N-cadherin (Cdh2) gene in the murine pancreas. Genetic ablation of N-cadherin (N-cad KO) caused hyperproliferation, accelerated mPanIN progression, and early tumor development in K-rasG12D mice. Decreased E-cadherin and redistribution of β-catenin accompanied the loss of N-cadherin in pancreatic ductal epithelial cells (PDEC). Nuclear accumulation of β-catenin and its transcription co-activator Tcf4 led to activation of Wnt/β-catenin target genes. Unexpectedly, loss of N-cadherin in the K-rasG12D model resulted in increased mPanIN progression and tumor incidence. These in vivo results demonstrate for the first time that N-cadherin functions as a growth suppressor in the context of oncogenic K-ras.
Collapse
|
23
|
Pai P, Rachagani S, Lakshmanan I, Macha MA, Sheinin Y, Smith LM, Ponnusamy MP, Batra SK. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol 2015; 10:224-39. [PMID: 26526617 DOI: 10.1016/j.molonc.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrant Wnt signaling frequently occurs in pancreatic cancer (PC) and contributes to disease progression/metastases. Likewise, the transmembrane-mucin MUC4 is expressed de novo in early pancreatic intraepithelial neoplasia (PanINs) and incrementally increases with PC progression, contributing to metastasis. To determine the mechanism of MUC4 upregulation in PC, we examined factors deregulated in early PC progression, such as Wnt/β-catenin signaling. MUC4 promoter analysis revealed the presence of three putative TCF/LEF-binding sites, leading us to hypothesize that MUC4 can be regulated by β-catenin. Immunohistochemical (IHC) analysis of rapid autopsy PC tissues showed a correlation between MUC4 and cytosolic/nuclear β-catenin expression. Knock down (KD) of β-catenin in CD18/HPAF and T3M4 cell lines resulted in decreased MUC4 transcript and protein. Three MUC4 promoter luciferase constructs, p3778, p3000, and p2700, were generated. The construct p3778, encompassing the entire MUC4 promoter, elicited increased luciferase activity in the presence of stabilized β-catenin. Mutation of the TCF/LEF site closest to the transcription start site (i.e., -2629/-2612) and furthest from the start site (i.e., -3425/-3408) reduced MUC4 promoter luciferase activity. Transfection with dominant negative TCF4 decreased MUC4 transcript and protein levels. Chromatin immunoprecipitation confirmed enrichment of β-catenin on -2629/-2612 and -3425/-3408 of the MUC4 promoter in CD18/HPAF. Functionally, CD18/HPAF and T3M4 β-catenin KD cells showed decreased migration and decreased Vimentin, N-cadherin, and pERK1/2 expression. Tumorigenicity studies in athymic nude mice showed CD18/HPAF β-catenin KD cells significantly reduced primary tumor sizes and metastases compared to scrambled control cells. We show for the first time that β-catenin directly governs MUC4 in PC.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Yuri Sheinin
- Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA
| | - Lynette M Smith
- Department of Biostatistics, UNMC College of Public Health, UNMC, Omaha, NE 68198-4375, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, UNMC, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, UNMC, Omaha, NE 68198-5950, USA; Fred and Pamela Buffett Cancer Center, UNMC, Omaha, NE 68198, USA.
| |
Collapse
|
24
|
Sahin IH, Iacobuzio-Donahue CA, O'Reilly EM. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy. Expert Opin Ther Targets 2015; 20:341-59. [PMID: 26439702 PMCID: PMC4985526 DOI: 10.1517/14728222.2016.1094057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. AREAS COVERED In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. EXPERT OPINION Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a 'precision medicine' approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes.
Collapse
Affiliation(s)
- Ibrahim H Sahin
- a 1 Icahn School of Medicine at Mount Sinai St Luke's Roosevelt Hospital Center , NY, USA
| | | | - Eileen M O'Reilly
- b 2 Memorial Sloan Kettering Cancer Center , NY, USA
- c 3 Weill Medical College of Cornell University, David M. Rubenstein Center for Pancreatic Cancer Research , 300 East 66th street, office 1021, NY 10065, USA ;
| |
Collapse
|
25
|
Stark AP, Chang HH, Jung X, Moro A, Hertzer K, Xu M, Schmidt A, Hines OJ, Eibl G. E-cadherin expression in obesity-associated, Kras-initiated pancreatic ductal adenocarcinoma in mice. Surgery 2015; 158:1564-72. [PMID: 26297056 DOI: 10.1016/j.surg.2015.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is critical in the development of invasive epithelial malignancies. EMT is accelerated by inflammation and results in decreased E-cadherin expression. Diet-induced obesity is an inflammatory state that accelerates pancreatic carcinogenesis; its effect on EMT and E-cadherin expression in the development of pancreatic ductal adenocarcinoma is unclear. METHODS Conditional Kras(G12D) mice were fed a control diet or a high-fat, high-calorie diet for 3 or 9 months (n = 10 each). Immunohistochemistry with anti-E-cadherin antibody was performed. E-cadherin expression was characterized by staining intensity, location, and proportion of positive cells. In vitro expression of E-cadherin and Slug in primary pancreatic intraepithelial neoplasia (PanIN) and cancer cells was determined by Western blot. RESULTS The HFCD led to increased weight gain in both 3- (15.8 vs 5.6 g, P < .001) and 9-month (19.8 vs 12.9 g, P = .007) mice. No differences in E-cadherin expression among various stages of preinvasive PanIN lesions were found--regardless of age or diet. In invasive cancer, E-cadherin expression was aberrant, with loss of membranous staining and prominent cytoplasmic staining, associated with strong, cytoplasmic expression of β-catenin. In vitro expression of E-cadherin was greatest in primary PanIN cells, accompanied by absent Slug expression. Cancer cell lines demonstrated significantly decreased E-cadherin expression in the presence of upregulated Slug. CONCLUSION Despite increased pancreatic inflammation and accelerated carcinogenesis, the high-fat, high-calorie diet did not induce changes in E-cadherin expression in PanIN lesions of all stages. Invasive lesions demonstrated aberrant cytoplasmic E-cadherin staining. Loss of normal membranous localization may reflect a functional loss of E-cadherin.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Intake
- Epithelial-Mesenchymal Transition
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- In Vitro Techniques
- Mice
- Mice, Mutant Strains
- Mutation/genetics
- Neoplasm Staging
- Obesity/complications
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Snail Family Transcription Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Alexander P Stark
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui-Hua Chang
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Xiaoman Jung
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aune Moro
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathleen Hertzer
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Mu Xu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrea Schmidt
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - O Joe Hines
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| |
Collapse
|
26
|
Ben-Josef E, George A, Regine WF, Abrams R, Morgan M, Thomas D, Schaefer PL, DiPetrillo TA, Fromm M, Small W, Narayan S, Winter K, Griffith KA, Guha C, Williams TM. Glycogen Synthase Kinase 3 Beta Predicts Survival in Resected Adenocarcinoma of the Pancreas. Clin Cancer Res 2015; 21:5612-8. [PMID: 26240274 DOI: 10.1158/1078-0432.ccr-15-0789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE GSK3β is a protein kinase that can suppress a number of key oncoproteins. We have previously shown in preclinical models of pancreatic ductal adenocarcinoma (PDAC) that inhibition of GSK3β causes stabilization and nuclear translocation of β-catenin, poor differentiation, proliferation, and resistance to radiation. The objective of this study was to determine its utility as a biomarker of clinical outcomes. EXPERIMENTAL DESIGN Automated Quantitative Immunofluorescence Analysis (AQUA) of GSK3β was performed on a tissue microarray with samples from 163 patients treated on RTOG 9704. On the basis of findings in an exploratory cohort, GSK3β was analyzed as a categorical variable using its upper quartile (>Q3) as a cut point. Overall survival (OS) and disease-free survival (DFS) were estimated with the Kaplan-Meier method, and GSK3β groupings were compared using the log-rank test. Univariable and multivariable Cox proportional hazards models were used to determine associations between GSK3β and OS/DFS. RESULTS The 3-year OS rates for GSK3β≤Q3 versus GSK3β >Q3 were 16% (95% confidence intervals; CI, 10%-23%) and 30% (95% CI, 17%-44%), respectively, P = 0.0082. The 3-year DFS rates were 9% (95% CI, 5%-15%) and 20% (95% CI, 9%-33%) respectively, P value = 0.0081. On multivariable analysis, GSK3β was a significant predictor of OS. Patients with GSK3β >Q3 had a 46% reduced risk of dying of pancreatic cancer (HR, 0.54; 95% CI, 0.31-0.96, P value = 0.034). The HR for DFS was 0.65 (95% CI, 0.39-1.07; P value = 0.092). CONCLUSIONS GSK3β expression is a strong prognosticator in PDAC, independent of other known factors such as tumor (T) stage, nodal status, surgical margins and CA19-9. Clin Cancer Res; 21(24); 5612-8. ©2015 AACR.
Collapse
Affiliation(s)
| | - Asha George
- Radiation Therapy Oncology Group-Statistical Center, Philadelphia, Pennsylvania
| | | | - Ross Abrams
- Rush University Medical Center, Chicago, Illinois
| | | | - Dafydd Thomas
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Paul L Schaefer
- Toledo Community Hospital Oncology Program CCOP, Toledo, Ohio
| | | | | | | | - Samir Narayan
- Michigan Cancer Research Consortium CCOP, Ann Arbor, Michigan
| | - Kathryn Winter
- Radiation Therapy Oncology Group-Statistical Center, Philadelphia, Pennsylvania
| | | | - Chandan Guha
- Montefiore Medical Center, Moses Campus, Bronx, New York
| | | |
Collapse
|
27
|
Ying X, Jing L, Ma S, Li Q, Luo X, Pan Z, Feng Y, Feng P. GSK3β mediates pancreatic cancer cell invasion in vitro via the CXCR4/MMP-2 Pathway. Cancer Cell Int 2015. [PMID: 26213494 PMCID: PMC4513390 DOI: 10.1186/s12935-015-0216-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK3β) expression and activity are upregulated in pancreatic cancer tissues. In our previous study, we found that stromal cell-derived factor-1/ chemokine receptor C-X-C motif chemokine receptor 4 (SDF-1α/CXCR4) upregulated matrix metalloproteinase 2 (MMP-2) and promoted invasion in PANC1 and SW-1990 pancreatic cancer cells by activating p38 mitogen-activated protein kinase (p38 MAPK). Additionally, inhibition of GSK3β reduced MMP-2 secretion. METHODS To investigate the molecular mechanism of GSK3β in pancreatic cancer tissues, we created stable PANC1 cells up-regulation of GSK3β by transfecting GSK3β overexpression plasmid, and down-regulation of GSK3β using two different types of RNA interference. RESULTS Western blotting showed that overexpression of GSK3β up-regulated CXCR4 and MMP-2 expression; suppression of GSK3β down-regulated CXCR4 and MMP-2 protein expression. Up-regulation of MMP2 induced by overexpression of GSK3β was blocked by inhibition of CXCR4. Overexpression of GSK3β promoted PANC1 cell invasion, and down-regulation of GSK3β suppressed PANC1 cell invasion in the transwell invasion assays. However, inhibition of CXCR4 using shRNA attenuated the ability of GSK3β to promote PANC1 cell invasion. CONCLUSIONS This study demonstrated that GSK3β promotes PANC1 cell invasion via the CXCR4/MMP-2 pathway.
Collapse
Affiliation(s)
- Xu Ying
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Li Jing
- Department of Hepatology, Huai'an Fourth People's Hospital, No.128, Yan an East Road, Qing pu District, Huai'an, Jiangsu 223300 People's Republic of China
| | - Shijie Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Qianjun Li
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Xiaoling Luo
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Zhenguo Pan
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Yanling Feng
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Pan Feng
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| |
Collapse
|
28
|
Lee S, Heinrich EL, Li L, Lu J, Choi AH, Levy RA, Wagner JE, Yip MLR, Vaidehi N, Kim J. CCR9-mediated signaling through β-catenin and identification of a novel CCR9 antagonist. Mol Oncol 2015; 9:1599-611. [PMID: 26003048 DOI: 10.1016/j.molonc.2015.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Elevated levels of chemokine receptor CCR9 expression in solid tumors may contribute to poor patient prognosis. In this study, we characterized a novel CCR9-mediated pathway that promotes pancreatic cancer cell invasion and drug resistance, indicating that CCR9 may play a critical role in cancer progression through activation of β-catenin. We noted that the CCL25/CCR9 axis in pancreatic cancer cells induced the activation of β-catenin, which enhanced cell proliferation, invasion, and drug resistance. CCR9-mediated activation of β-catenin and the resulting downstream effects were effectively inhibited by blockade of the PI3K/AKT pathway, but not by antagonism of Wnt. Importantly, we discovered that CCR9/CCL25 increased the lethal dose of gemcitabine, suggesting decreased efficacy of anti-cancer drugs with CCR9 signaling. Through in silico computational modeling, we identified candidate CCR9 antagonists and tested their effects on CCR9/β-catenin regulation of cell signaling and drug sensitivity. When combined with gemcitabine, it resulted in synergistic cytotoxicity. Our results show that CCR9/β-catenin signaling enhances pancreatic cancer invasiveness and chemoresistance, and may be a highly novel therapeutic target.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Eileen L Heinrich
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Lily Li
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Jianming Lu
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Audrey H Choi
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Rachel A Levy
- Department of Immunology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Jeffrey E Wagner
- Department of Immunology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - M L Richard Yip
- HTS Lab, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Nagarajan Vaidehi
- Department of Immunology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Joseph Kim
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA.
| |
Collapse
|
29
|
Singh D, Upadhyay G, Srivastava RK, Shankar S. Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochim Biophys Acta Rev Cancer 2015; 1856:13-27. [PMID: 25977074 DOI: 10.1016/j.bbcan.2015.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related death in United States. Efforts have been made towards the development of the viable solution for its treatment with constrained accomplishment because of its complex biology. It is well established that pancreatic cancer stem cells (CSCs), albeit present in a little count, contribute incredibly to PC initiation, progression, and metastasis. Customary chemo and radiotherapeutic alternatives, however, expands general survival, the related side effects are the significant concern. Amid the most recent decade, our insight about molecular and cellular pathways involved in PC and role of CSCs in its progression has increased enormously. Presently the focus is to target CSCs. The herbal products have gained much consideration recently as they, usually, sensitize CSCs to chemotherapy and target molecular signaling involved in various tumors including PC. Some planned studies have indicated promising results proposing that examinations in this course have a lot to offer for the treatment of PC. Although preclinical studies uncovered the importance of herbal products in attenuating pancreatic carcinoma, limited studies have been conducted to evaluate their role in clinics. The present review provides a new insight to recent advances in pancreatic cancer biology, treatment and current status of herbal products in its anticipation.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biology, City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Ghanshyam Upadhyay
- Department of Biology, City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA.
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA; Department of Pathology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
30
|
(Pro)renin receptor is crucial for Wnt/β-catenin-dependent genesis of pancreatic ductal adenocarcinoma. Sci Rep 2015; 5:8854. [PMID: 25747895 PMCID: PMC4352858 DOI: 10.1038/srep08854] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/13/2015] [Indexed: 01/05/2023] Open
Abstract
Although Wnt/β-catenin signaling is known to be aberrantly activated in PDAC, mutations of CTNNB1, APC or other pathway components are rare in this tumor type, suggesting alternative mechanisms for Wnt/β-catenin activation. Recent studies have implicated the (pro)renin receptor ((P)RR) is related to the Wnt/β-catenin signaling pathway. We therefore investigated the possible role of (P)RR in pancreatic carcinogenesis. Plasma s(P)RR levels were significantly (P < 0.0001) higher in patients with PDAC than in healthy matched controls. We also identified aberrant expression of (P)RR in premalignant PanIN and PDAC lesions and all the PDAC cell lines examined. Inhibiting (P)RR with an siRNA attenuated activation of Wnt/β-catenin signaling pathway and reduced the proliferative ability of PDAC cells in vitro and the growth of engrafted tumors in vivo. Loss of (P)RR induced apoptosis of human PDAC cells. This is the first demonstration that (P)RR may be profoundly involved in ductal tumorigenesis in the pancreas.
Collapse
|
31
|
Mizuuchi Y, Aishima S, Ohuchida K, Shindo K, Fujino M, Hattori M, Miyazaki T, Mizumoto K, Tanaka M, Oda Y. Anterior gradient 2 downregulation in a subset of pancreatic ductal adenocarcinoma is a prognostic factor indicative of epithelial-mesenchymal transition. J Transl Med 2015; 95:193-206. [PMID: 25418581 DOI: 10.1038/labinvest.2014.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 08/28/2014] [Accepted: 09/22/2014] [Indexed: 12/24/2022] Open
Abstract
Anterior gradient 2 (AGR2), a member of the protein disulfide isomerase family, has been implicated in various cancers including pancreatic ductal adenocarcinoma (PDAC) and is known to promote cancer progression. However, the prognostic value of AGR2 expression and the interaction with epithelial-mesenchymal transition (EMT) remain unclear. We investigated the clinical significance of AGR2 and EMT markers in PDAC patients by immunohistochemical analyses. Although AGR2 expression was not observed in normal pancreas, all pancreatic precursor neoplastic lesions were positive for AGR2, even at the earliest stages, including pancreatic intraepithelial neoplasia-1A, AGR2 expression was reduced in 27.7% (54/195 cases) of PDAC patients. AGR2 downregulation correlated with EMT markers (vimentin overexpression and reduced membranous E-cadherin expression), high Union for International Cancer Control stage (P<0.0001), high histological cellular grade (P<0.0001), and adverse outcome (P<0.0001). In vitro, targeted silencing of AGR2 in cancer cells using siRNA reduced cell proliferation, colony formation, cell invasiveness, and migration, but did not alter EMT markers. To confer a more aggressive phenotype and induce EMT in PDAC cells, we co-cultured PDAC cell lines with primary-cultured pancreatic stellate cells (PSCs) and found that AGR2 was downregulated in co-cultured PDAC cells compared with PDAC monocultures. Treatment with transforming growth factor beta-1 (TGF-β), secreted from PSCs, decreased AGR2 expression, whereas inhibition of TGF-β signaling using recombinant soluble human TGF-β receptor type II and TGF-β-neutralizing antibodies restored AGR2 expression. We conclude that AGR2 downregulation is a useful prognostic marker, induced by EMT, and that secreted TGF-β from PSCs may partially contribute to AGR2 downregulation in PDAC patients. AGR2 downregulation does not induce EMT or a more aggressive phenotype, but is a secondary effect of these processes in advanced PDAC.
Collapse
Affiliation(s)
- Yusuke Mizuuchi
- 1] Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan [2] Reserch Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shinichi Aishima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- 1] Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan [2] Reserch Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Minoru Fujino
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masami Hattori
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuyuki Miyazaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Glycogen synthase kinase 3 protein kinase activity is frequently elevated in human non-small cell lung carcinoma and supports tumour cell proliferation. PLoS One 2014; 9:e114725. [PMID: 25486534 PMCID: PMC4259366 DOI: 10.1371/journal.pone.0114725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
Abstract
Background Glycogen synthase kinase 3 (GSK3) is a central regulator of cellular metabolism, development and growth. GSK3 activity was thought to oppose tumourigenesis, yet recent studies indicate that it may support tumour growth in some cancer types including in non-small cell lung carcinoma (NSCLC). We examined the undefined role of GSK3 protein kinase activity in tissue from human NSCLC. Methods The expression and protein kinase activity of GSK3 was determined in 29 fresh frozen samples of human NSCLC and patient-matched normal lung tissue by quantitative immunoassay and western blotting for the phosphorylation of three distinct GSK3 substrates in situ (glycogen synthase, RelA and CRMP-2). The proliferation and sensitivity to the small-molecule GSK3 inhibitor; CHIR99021, of NSCLC cell lines (Hcc193, H1975, PC9 and A549) and non-neoplastic type II pneumocytes was further assessed in adherent culture. Results Expression and protein kinase activity of GSK3 was elevated in 41% of human NSCLC samples when compared to patient-matched control tissue. Phosphorylation of GSK3α/β at the inhibitory S21/9 residue was a poor biomarker for activity in tumour samples. The GSK3 inhibitor, CHIR99021 dose-dependently reduced the proliferation of three NSCLC cell lines yet was ineffective against type II pneumocytes. Conclusion NSCLC tumours with elevated GSK3 protein kinase activity may have evolved dependence on the kinase for sustained growth. Our results provide further important rationale for exploring the use of GSK3 inhibitors in treating NSCLC.
Collapse
|
33
|
Polarization of the vacuolar adenosine triphosphatase delineates a transition to high-grade pancreatic intraepithelial neoplasm lesions. Pancreas 2014; 43:1256-63. [PMID: 25072283 PMCID: PMC4519037 DOI: 10.1097/mpa.0000000000000201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES A functional vacuolar adenosine triphosphatase (v-ATPase) complex regulates canonical Wnt/β-catenin signaling. The goal of this study was to identify the distribution of the v-ATPase in human and murine models of pancreatic intraepithelial neoplasms (PanINs) and assess its role in Wnt/β-catenin signaling. METHODS We evaluated the immunolabeling pattern of the v-ATPase in human PanIN specimens and murine PanIN-1 and PanIN-2 lesions obtained from Ptf1a(Cre/+); LSL-Kras(G12D) mice. Wnt/β-catenin signaling was interrogated in primary PanIN cells by examining the phosphorylated levels of its surface coreceptor, low-density lipoprotein receptor-related protein-6 (LRP6), and its intracellular effector, nonphosphorylated β-catenin. The response of primary PanIN cells to epidermal growth factor (EGF) was assessed in the absence and presence of the v-ATPase inhibitor, concanamycin. RESULTS In advanced (PanIN-2), but not early (PanIN-1), lesions, the v-ATPase assumed a polarized phenotype. Blocking the v-ATPase disrupted Wnt/β-catenin signaling in primary PanIN cells despite significantly higher levels of the total and activated Wnt cell surface coreceptor, LRP6. Vacuolar adenosine triphosphatase blockade significantly decreased the total and activated levels of EGF receptor, a determinant of PanIN progression. The activation of EGF receptor and its intracellular mediator, p44/42 mitogen-activated protein kinase, was also reduced by v-ATPase blockade. This led to diminished proliferation in response to EGF ligand. CONCLUSIONS The v-ATPase regulates Wnt/β-catenin and EGF receptor signaling in PanINs.
Collapse
|
34
|
Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:817613. [PMID: 25147816 PMCID: PMC4131462 DOI: 10.1155/2014/817613] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022]
Abstract
Extensive accumulation of the glycosaminoglycan hyaluronan is found in pancreatic cancer. The role of hyaluronan synthases 2 and 3 (HAS2, 3) was investigated in pancreatic cancer growth and the tumor microenvironment. Overexpression of HAS3 increased hyaluronan synthesis in BxPC-3 pancreatic cancer cells. In vivo, overexpression of HAS3 led to faster growing xenograft tumors with abundant extracellular hyaluronan accumulation. Treatment with pegylated human recombinant hyaluronidase (PEGPH20) removed extracellular hyaluronan and dramatically decreased the growth rate of BxPC-3 HAS3 tumors compared to parental tumors. PEGPH20 had a weaker effect on HAS2-overexpressing tumors which grew more slowly and contained both extracellular and intracellular hyaluronan. Accumulation of hyaluronan was associated with loss of plasma membrane E-cadherin and accumulation of cytoplasmic β-catenin, suggesting disruption of adherens junctions. PEGPH20 decreased the amount of nuclear hypoxia-related proteins and induced translocation of E-cadherin and β-catenin to the plasma membrane. Translocation of E-cadherin was also seen in tumors from a transgenic mouse model of pancreatic cancer and in a human non-small cell lung cancer sample from a patient treated with PEGPH20. In conclusion, hyaluronan accumulation by HAS3 favors pancreatic cancer growth, at least in part by decreasing epithelial cell adhesion, and PEGPH20 inhibits these changes and suppresses tumor growth.
Collapse
|
35
|
Colvin EK, Scarlett CJ. A historical perspective of pancreatic cancer mouse models. Semin Cell Dev Biol 2014; 27:96-105. [PMID: 24685616 DOI: 10.1016/j.semcdb.2014.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is an inherently aggressive disease with an extremely poor prognosis and lack of effective treatments. Over the past few decades, much has been uncovered regarding the pathogenesis of pancreatic cancer and the underlying genetic alterations necessary for tumour initiation and progression. Much of what we know about pancreatic cancer has come from mouse models of this disease. This review focusses on the development of genetically engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer, as well as the increasing use of patient-derived xenografts for preclinical studies and the development of personalised medicine strategies.
Collapse
Affiliation(s)
- Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | - Christopher J Scarlett
- Pancreatic Cancer Research, Nutrition, Food and Health Research Group, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia.
| |
Collapse
|
36
|
Cullis J, Meiri D, Sandi MJ, Radulovich N, Kent OA, Medrano M, Mokady D, Normand J, Larose J, Marcotte R, Marshall CB, Ikura M, Ketela T, Moffat J, Neel BG, Gingras AC, Tsao MS, Rottapel R. The RhoGEF GEF-H1 is required for oncogenic RAS signaling via KSR-1. Cancer Cell 2014; 25:181-95. [PMID: 24525234 DOI: 10.1016/j.ccr.2014.01.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Cellular transformation by oncogenic RAS engages the MAPK pathway under strict regulation by the scaffold protein KSR-1. Here, we report that the guanine nucleotide exchange factor GEF-H1 plays a critical role in a positive feedback loop for the RAS/MAPK pathway independent of its RhoGEF activity. GEF-H1 acts as an adaptor protein linking the PP2A B' subunits to KSR-1, thereby mediating the dephosphorylation of KSR-1 S392 and activation of MAPK signaling. GEF-H1 is important for the growth and survival of HRAS(V12)-transformed cells and pancreatic tumor xenografts. GEF-H1 expression is induced by oncogenic RAS and is correlated with pancreatic neoplastic progression. Our results, therefore, identify GEF-H1 as an amplifier of MAPK signaling and provide mechanistic insight into the progression of RAS mutant tumors.
Collapse
Affiliation(s)
- Jane Cullis
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - David Meiri
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Maria Jose Sandi
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Oliver A Kent
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mauricio Medrano
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Daphna Mokady
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Josee Normand
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jose Larose
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Richard Marcotte
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Troy Ketela
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Banting and Best Department of Medical Research, 160 College Street, Room 8-804, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Banting and Best Department of Medical Research, 160 College Street, Room 8-804, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin G Neel
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 992A, Toronto, ON M5G 1X5, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
37
|
Sarkar S, Mandal C, Sangwan R, Mandal C. Coupling G2/M arrest to the Wnt/β-catenin pathway restrains pancreatic adenocarcinoma. Endocr Relat Cancer 2014; 21:113-25. [PMID: 24402132 DOI: 10.1530/erc-13-0315] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
β-catenin plays a pivotal role in organogenesis and oncogenesis. Alterations in β-catenin expression are common in pancreatic cancer, which is an extremely aggressive malignancy with a notably poor prognosis. In this report, we analyzed the apoptotic activity of withanolide-D (witha-D), a steroidal lactone that was purified from an Indian medicinal plant, Withania somnifera, and its underlying mechanism of action. Witha-D induced apoptosis in pancreatic ductal adenocarcinoma cells by prompting cell-cycle arrest at the G2/M phase. This lactone abrogated β-catenin signaling in these cells regardless of disease grade, mutational status, and gemcitabine sensitivity. Witha-D also upregulated E-cadherin in most cells, thereby supporting the inversion of the epithelial-mesenchymal transition. Furthermore, the Akt/Gsk3β kinase cascade was identified as a critical mediator of G2/M regulation and β-catenin signaling. Witha-D deactivated Akt, which failed to promote Gsk3β deactivation phosphorylation. Consequently, activated Gsk3β facilitated β-catenin destruction in pancreatic carcinoma cells. The knockdown of Chk1 and Chk2 further activated Akt and reversed the molecular signal. Taken together, the results of the current study represent the first evidence of β-catenin signal crosstalk during the G2/M phase by functionally inactivating Akt via witha-D treatment in pancreatic cancer cells. In conclusion, this finding suggests the potential identification of a new lead molecule in the treatment of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Sayantani Sarkar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, West Bengal, India Bio-Processing Unit, Department of Bio-Technology, Govt. of India, Mohali, Punjab, India
| | | | | | | |
Collapse
|
38
|
Handra-Luca A, Hammel P, Sauvanet A, Lesty C, Ruszniewski P, Couvelard A. EGFR expression in pancreatic adenocarcinoma. Relationship to tumour morphology and cell adhesion proteins. J Clin Pathol 2013; 67:295-300. [DOI: 10.1136/jclinpath-2013-201662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
MicroRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/β-catenin signaling pathway. Oncogene 2013; 33:5017-27. [DOI: 10.1038/onc.2013.448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/20/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022]
|
40
|
Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 2013; 110:12649-54. [PMID: 23847203 DOI: 10.1073/pnas.1307218110] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A growing number of agents targeting ligand-induced Wnt/β-catenin signaling are being developed for cancer therapy. However, clinical development of these molecules is challenging because of the lack of a genetic strategy to identify human tumors dependent on ligand-induced Wnt/β-catenin signaling. Ubiquitin E3 ligase ring finger 43 (RNF43) has been suggested as a negative regulator of Wnt signaling, and mutations of RNF43 have been identified in various tumors, including cystic pancreatic tumors. However, loss of function study of RNF43 in cell culture has not been conducted, and the functional significance of RNF43 mutations in cancer is unknown. Here, we show that RNF43 inhibits Wnt/β-catenin signaling by reducing the membrane level of Frizzled in pancreatic cancer cells, serving as a negative feedback mechanism. Inhibition of endogenous Wnt/β-catenin signaling increased the cell surface level of Frizzled. A panel of 39 pancreatic cancer cell lines was tested for Wnt dependency using LGK974, a selective Porcupine inhibitor being examined in a phase 1 clinical trial. Strikingly, all LGK974-sensitive lines carried inactivating mutations of RNF43. Inhibition of Wnt secretion, depletion of β-catenin, or expression of wild-type RNF43 blocked proliferation of RNF43 mutant but not RNF43-wild-type pancreatic cancer cells. LGK974 inhibited proliferation and induced differentiation of RNF43-mutant pancreatic adenocarcinoma xenograft models. Our data suggest that mutational inactivation of RNF43 in pancreatic adenocarcinoma confers Wnt dependency, and the presence of RNF43 mutations could be used as a predictive biomarker for patient selection supporting the clinical development of Wnt inhibitors in subtypes of cancer.
Collapse
|
41
|
Zhang Y, Morris JP, Yan W, Schofield HK, Gurney A, Simeone DM, Millar SE, Hoey T, Hebrok M, Pasca di Magliano M. Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res 2013; 73:4909-22. [PMID: 23761328 DOI: 10.1158/0008-5472.can-12-4384] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt ligand expression and activation of the Wnt/β-catenin pathway have been associated with pancreatic ductal adenocarcinoma, but whether Wnt activity is required for the development of pancreatic cancer has remained unclear. Here, we report the results of three different approaches to inhibit the Wnt/β-catenin pathway in a established transgenic mouse model of pancreatic cancer. First, we found that β-catenin null cells were incapable of undergoing acinar to ductal metaplasia, a process associated with development of premalignant pancreatic intraepithelial neoplasia lesions. Second, we addressed the specific role of ligand-mediated Wnt signaling through inducible expression of Dkk1, an endogenous secreted inhibitor of the canonical Wnt pathway. Finally, we targeted the Wnt pathway with OMP-18R5, a therapeutic antibody that interacts with multiple Frizzled receptors. Together, these approaches showed that ligand-mediated activation of the Wnt/β-catenin pathway is required to initiate pancreatic cancer. Moreover, they establish that Wnt signaling is also critical for progression of pancreatic cancer, a finding with potential therapeutic implications.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Surgery, University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yee NS. Toward the goal of personalized therapy in pancreatic cancer by targeting the molecular phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:91-143. [PMID: 23288637 DOI: 10.1007/978-1-4614-6176-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to provide a critical review of the molecular alterations in pancreatic cancer that are clinically investigated as therapeutic targets and their potential impact on clinical outcomes. Adenocarcinoma of exocrine pancreas is generally associated with poor prognosis and the conventional therapies are marginally effective. Advances in understanding the genetic regulation of normal and neoplastic development of pancreas have led to development and clinical evaluation of new therapeutic strategies that target the signaling pathways and molecular alterations in pancreatic cancer. Applications have begun to utilize the genetic targets as biomarkers for prediction of therapeutic responses and selection of treatment options. The goal of accomplishing personalized tumor-specific therapy with tolerable side effects for patients with pancreatic cancer is hopefully within reach in the foreseeable future.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033-0850, USA.
| |
Collapse
|
43
|
Gaida MM, Steffen TG, Günther F, Tschaharganeh DF, Felix K, Bergmann F, Schirmacher P, Hänsch GM. Polymorphonuclear neutrophils promote dyshesion of tumor cells and elastase-mediated degradation of E-cadherin in pancreatic tumors. Eur J Immunol 2012; 42:3369-80. [PMID: 23001948 DOI: 10.1002/eji.201242628] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/02/2012] [Accepted: 09/17/2012] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presenting with a micropapillary growth pattern is frequently associated with a prominent neutrophil infiltration into the tumor. The relevance of neutrophil infiltrates for tumor progression, however, is still debated. To gain insight into the role of polymorphonuclear neutrophils (PMNs) in PDAC, we assessed their effect on pancreatic tumor cells grown in vitro as monolayers. Time-lapse video microscopy showed a PMN-induced dyshesion of the tumor cells, and subsequent experiments revealed that this dyshesion was due to PMN elastase-mediated degradation of E-cadherin, an adhesion molecule that mediates the intercellular contact of the tumor cells. E-cadherin degradation by elastase or--(for comparison) down-modulation by specific siRNA, significantly increased the migratory capacity of the pancreatic tumor cells, leading to the hypothesis that PMNs could contribute to the invasive tumor growth. To address this issue, biopsies of patients with PDAC (n = 112) were analyzed. We found that E-cadherin expression correlated negatively with PMN infiltration, compatible with the notion that E-cadherin is cleaved by PMN-derived elastase, which in turn could result in the dispersal of the tumor cells, enhanced migratory capacity and thus invasive tumor growth.
Collapse
Affiliation(s)
- Matthias M Gaida
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Iakovlev V, Siegel ER, Tsao MS, Haun RS. Expression of kallikrein-related peptidase 7 predicts poor prognosis in patients with unresectable pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2012; 21:1135-42. [PMID: 22573795 DOI: 10.1158/1055-9965.epi-11-1079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Kallikrein-related peptidase 7 (KLK7) is overexpressed in pancreatic ductal adenocarcinomas (PDAC). The aims of this study were to examine the expression of KLK7 during progression of pancreatic intraepithelial neoplasia (PanIN) to invasive PDAC and to assess its prognostic significance for PDAC. METHODS Immunohistochemistry was used to assess KLK7 expression using a tissue microarray (TMA) and full sections of pancreatic tissue containing normal tissue, PanIN, and invasive adenocarcinoma, and the association between KLK7 expression and prognosis was examined by a population-based pancreatic cancer TMA. RESULTS Normal pancreatic epithelium was negative for KLK7 in either TMAs or full sections. Analysis by TMAs showed that 91% of cases showed KLK7 positivity in the adenocarcinoma component, which was significantly higher than PanIN 2/3. In full tissue sections of PDAC, KLK7 expression was detected in less than 1% of cells among PanIN 1A lesions, and increased with grade among PanIN 1B and PanIN2/3 lesions before reaching 69% in the invasive PDAC. In patients with unresected PDAC, KLK7 positivity was significantly associated with shorter overall survival. CONCLUSIONS Aberrant KLK7 expression starts in intermediate-to-late stages of PanIN progression, and KLK7-positive staining is associated with almost a three-fold increase in mortality rate of patients with unresected PDAC. IMPACT The association of KLK7 expression and poor outcome of patients with unresectable PDAC suggests that inhibiting either KLK7 expression and/or activity could be a therapeutic strategy. Because the vast majority of patients present with unresectable disease, such an intervention could have a significant impact upon the overall survival of this patient population.
Collapse
Affiliation(s)
- Vladimir Iakovlev
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Marchand B, Tremblay I, Cagnol S, Boucher MJ. Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms. Carcinogenesis 2011; 33:529-37. [PMID: 22201186 DOI: 10.1093/carcin/bgr309] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent evidences suggest that the activity of glycogen synthase kinase-3 (GSK3) contributes to the tumorigenic potential of pancreatic cancer cells through modulation of cell proliferation and survival. However, further investigations are needed to identify GSK3-dependent mechanisms involved in the control of pancreatic cancer cell proliferation and survival. This study was undertaken to provide further support for a role of GSK3 in pancreatic cancer cell growth as well as to identify new cellular and molecular mechanisms involved. Herein, we demonstrate that prolonged inhibition of GSK3 triggers an apoptotic response only in human pancreatic cancer cells but not in human non-transformed pancreatic epithelial cells. We show that prolonged inhibition of GSK3 activity increases Bim messenger RNA and protein expressions. Moreover, we provide evidence that activation of the c-jun N-terminal kinase (JNK) pathway is necessary for the GSK3 inhibition-mediated increase in Bim expression and apoptotic response. Finally, we demonstrate that concomitant inhibition of GSK3 potentiates the death ligand-induced apoptotic response in pancreatic cancer cells but not in non-transformed pancreatic epithelial cells and that this effect also requires JNK activity. Considering that different approaches leading to stimulation of death receptor signaling are under clinical trials for treatment of unresectable or metastatic pancreatic cancer, inhibition of GSK3 could represent an attractive new avenue to improve their effectiveness.
Collapse
Affiliation(s)
- Benoît Marchand
- Service de Gastroentérologie, Département de Médecine, Université de Sherbrooke, 3001, 12e avenue nord, Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
46
|
Bednar F, Simeone DM. Pancreatic cancer stem cell biology and its therapeutic implications. J Gastroenterol 2011; 46:1345-52. [PMID: 22048257 DOI: 10.1007/s00535-011-0494-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/08/2011] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer remains one of the most difficult malignancies to treat. Significant developments in our understanding of pancreatic cancer biology have occurred over the past decade. One of the key advances has been the formulation of the cancer stem cell model of tumor growth and subsequent experimental proof of pancreatic cancer stem cell existence. Cancer stem cells contribute to pancreatic tumor growth and progression and are at least partially responsible for the relative resistance of the tumor to systemic chemotherapy and radiation. Significant questions remain about how the mutational profile of the tumor, the tumor microenvironment, and normal pancreatic developmental pathways contribute to pancreatic cancer stem cell biology. Answers to these questions will likely yield new therapeutic approaches for this deadly disease.
Collapse
Affiliation(s)
- Filip Bednar
- Department of Surgery, Box 5343, University of Michigan Medical Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | |
Collapse
|
47
|
Gaujoux S, Tissier F, Ragazzon B, Rebours V, Saloustros E, Perlemoine K, Vincent-Dejean C, Meurette G, Cassagnau E, Dousset B, Bertagna X, Horvath A, Terris B, Carney JA, Stratakis CA, Bertherat J. Pancreatic ductal and acinar cell neoplasms in Carney complex: a possible new association. J Clin Endocrinol Metab 2011; 96:E1888-95. [PMID: 21900385 PMCID: PMC3205895 DOI: 10.1210/jc.2011-1433] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Carney complex (CNC) is a rare disease inherited as an autosomal dominant trait, associated with various tumors, and caused most frequently by inactivation of the PRKAR1A gene. OBJECTIVES In our recent investigation of a large cohort of CNC patients, we identified several cases of pancreatic neoplasms. This possible association and PRKAR1A's possible involvement in pancreatic tumor have not been reported previously. PATIENTS AND METHODS Nine patients (2.5%) with CNC and pancreatic neoplasms in an international cohort of 354 CNC patients were identified; we studied six of them. Immunohistochemistry and PRKAR1A sequencing were obtained. RESULTS Three men and three women with a mean age of 49 yr (range 34-75 yr) had acinar cell carcinoma (n = 2), adenocarcinoma (n = 1), and intraductal pancreatic mucinous neoplasm (n = 3). Five patients had a germline PRKAR1A mutation, including two patients with acinar cell carcinoma, for whom mutations were found in a hemizygous state in the tumor, suggesting loss of heterozygosity. PRKAR1A expression was not detected in five of the six pancreatic neoplasms from CNC patients, whereas the protein was amply expressed on other sporadic pancreatic tumors and normal tissue. CONCLUSION An unexpectedly high prevalence of rare pancreatic tumors was found among CNC patients. Immunohistochemistry and loss-of-heterozygosity studies suggest that PRKAR1A could function as a tumor suppressor gene in pancreatic tissue, at least in the context of CNC. Clinicians taking care of CNC patients should be aware of the possible association of CNC with a potentially aggressive pancreatic neoplasm.
Collapse
|
48
|
Li Y, Wang W, Wang W, Yang R, Wang T, Su T, Weng D, Tao T, Li W, Ma D, Wang S. Correlation of TWIST2 up-regulation and epithelial-mesenchymal transition during tumorigenesis and progression of cervical carcinoma. Gynecol Oncol 2011; 124:112-8. [PMID: 22018873 DOI: 10.1016/j.ygyno.2011.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Globally, cervical cancer is the second most common cancer among women, and determining potential targets involved in tumor progression is necessary. This study investigated the clinic-pathological significance of twist homolog 2 (TWIST2), a basic helix-loop-helix transcription factor, and correlated TWIST2 and E-cadherin expression in cervical cancer. METHODS A series of 142 samples, including 14 cases of normal cervical tissues, 58 cases of cervical intraepithelial neoplasia (CIN) and 70 cases of squamous cell carcinoma (SCC), were examined TWIST2 and E-cadherin immunohistochemical staining and statistical analysis. RESULTS Increased cytoplasmic and nuclear expression levels of TWIST2 were associated with the malignant transformation of cervical epithelium and the histological progression of cervical cancer. A logistic test showed that TWIST2 was a relatively independent predictor of lymph node metastasis of SCC. Further, increased levels of TWIST2 were also associated with aberrant expression of E-cadherin, an important EMT indicator. CONCLUSIONS The present data suggest that TWIST2 overexpression was significantly linked to cervical cancer progression, which makes it a promising marker for determining the metastatic potential of cervical cancer, and up-regulation of TWIST2, in combination with aberrant E-cadherin expression in primary cervical cancer tissues, may predict the malignant transformation and distal metastasis of carcinomas.
Collapse
Affiliation(s)
- Yan Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Weekes CD, Winn RA. The many faces of wnt and pancreatic ductal adenocarcinoma oncogenesis. Cancers (Basel) 2011; 3:3676-86. [PMID: 24212973 PMCID: PMC3759216 DOI: 10.3390/cancers3033676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 08/23/2011] [Accepted: 09/15/2011] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains amongst the most lethal human cancers. PDAC is characterized by the tumor mass containing a paucity of malignant cells in association with a large desmoplastic reaction comprised of a variety of stromal components. Sporadic PDAC oncogenesis occurs as a result of the sequential acquisition of genetic aberrations occurring in core genetic pathways. Unfortunately, the average PDAC contains a large number of genetic aberrations that are not uniform between individual cancers. The interplay between the complex genetics and stromal component may represent a significant barrier to the development of effective therapy for this disease and ultimately be an important factor in PDAC lethality. The Wnt pathway has been identified as a one of the common pathways undergoing genetic alterations in PDAC. Wnt is a complex signal transduction pathway utilizing both a β-catenin dependent (canonical) and β-catenin independent (noncanonical) signals to affect a wide array of intracellular events. Wnt signal transduction is an integral component of pancreas organogenesis promoting the expansion and development of the exocrine pancreas. Pancreatic cancer may utilize the Wnt signaling pathway in concert with other signaling pathways such as notch during tumorigenesis. This review will focus on the role of Wnt signal transduction in pancreatic cancer biology.
Collapse
Affiliation(s)
- Colin D. Weekes
- Division of Medical Oncology, Department of Medicine, University of Colorado Cancer Center, University of Colorado Denver Anschutz Medical Campus, 12801 E. 17 Avenue, Aurora, CO 80045, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-303-724-0295; Fax: +1-303-724-3892
| | - Robert A. Winn
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Cancer Center, University of Colorado Denver Anschutz Medical Campus, 12605 E. 16 Avenue, Aurora, CO 80045, USA; E-Mail:
- Denver Veteran's Affairs Medical Center, 1055 Clermont Street, Denver, CO 80220, USA
| |
Collapse
|
50
|
Molecular biology of pancreatic ductal adenocarcinoma progression: aberrant activation of developmental pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 97:41-78. [PMID: 21074729 DOI: 10.1016/b978-0-12-385233-5.00002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic development marks a period of peak tissue growth and morphogenesis in the mammalian lifecycle. Many of the pathways that underlie cell proliferation and movement are relatively quiescent in adult animals but become reactivated during carcinogenesis. This phenomenon has been particularly well documented in pancreatic cancer, where detailed genetic studies and a robust mouse model have permitted investigators to test the role of various developmental signals in cancer progression. In this chapter, we review current knowledge regarding the signaling pathways that act during pancreatic development and the evidence that the reactivation of developmentally important signals is critical for the pathogenesis of this treatment-refractory malignancy.
Collapse
|