1
|
Metrangolo V, Blomquist MH, Dutta A, Gårdsvoll H, Krigslund O, Nørregaard KS, Jürgensen HJ, Ploug M, Flick MJ, Behrendt N, Engelholm LH. Targeting uPAR with an antibody-drug conjugate suppresses tumor growth and reshapes the immune landscape in pancreatic cancer models. SCIENCE ADVANCES 2025; 11:eadq0513. [PMID: 39823326 PMCID: PMC11740940 DOI: 10.1126/sciadv.adq0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692). In vitro, FL1-PNU exhibited potent and specific cytotoxicity against uPAR-expressing PDAC cell lines, stromal and immune cells, and bystander killing of uPAR-negative cells. In vivo, the ADC induced remission or sustained tumor regression and extended survival in xenograft models. In syngeneic orthotopic models, the antitumor effect promoted immunomodulation by enhancing infiltrating immune effectors and decreasing immunosuppressive cells. This study lays grounds for further exploring FL1-PNU as a putative clinical ADC candidate, potentially providing a promising therapeutic avenue for PDAC as a monotherapy or in combinatorial regimens.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Ananya Dutta
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | - Oliver Krigslund
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Matthew J. Flick
- Department of Medicine and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, GK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Valsasina B, Orsini P, Terenghi C, Ocana A. Present Scenario and Future Landscape of Payloads for ADCs: Focus on DNA-Interacting Agents. Pharmaceuticals (Basel) 2024; 17:1338. [PMID: 39458979 PMCID: PMC11510327 DOI: 10.3390/ph17101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
ADCs have emerged as a promising class of therapeutics, combining the targeting specificity of monoclonal antibodies with the cytotoxic potency of small-molecule drugs. Although the majority of approved ADCs are still based on microtubule binder payloads, the recent success of topoisomerase I inhibitors has revitalized interest in the identification of novel agents overcoming present limitations in the field including narrow therapeutic window and chemoresistance. The success of DNA binders as payload for ADCs has been very limited, up to now, due, among other factors, to high hydrophobicity and planar chemical structures resulting in most cases in ADCs with a strong tendency to aggregate, poor plasma stability, and limited therapeutic index. Some of these molecules, however, continue to be of interest due to their favorable properties in terms of cytotoxic potency even in chemoresistant settings, bystander and immunogenic cell death effects, and known combinability with approved drugs. We critically evaluated several clinically tested ADCs containing DNA binders, focusing on payload physicochemical properties, cytotoxic potency, and obtained clinical results. Our analysis suggests that further exploration of certain chemical classes, specifically anthracyclines and duocarmycins, based on the optimization of physicochemical parameters, reduction of cytotoxic potency, and careful design of targeting molecules is warranted. This approach will possibly result in a novel generation of payloads overcoming the limitations of clinically validated ADCs.
Collapse
Affiliation(s)
| | - Paolo Orsini
- Nerviano Medical Sciences, Viale Pasteur 10, 20014 Nerviano, Italy
| | - Chiara Terenghi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alberto Ocana
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 2546 Madrid, Spain
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 2546 Madrid, Spain
- Breast Cancer, Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 2546 Madrid, Spain
| |
Collapse
|
3
|
Nakazawa Y, Miyano M, Tsukamoto S, Kogai H, Yamamoto A, Iso K, Inoue S, Yamane Y, Yabe Y, Umihara H, Taguchi J, Akagi T, Yamaguchi A, Koga M, Toshimitsu K, Hirayama T, Mukai Y, Machinaga A. Delivery of a BET protein degrader via a CEACAM6-targeted antibody-drug conjugate inhibits tumour growth in pancreatic cancer models. Nat Commun 2024; 15:2192. [PMID: 38467634 PMCID: PMC10928091 DOI: 10.1038/s41467-024-46167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all cancers. To improve PDAC therapy, we establish screening systems based on organoid and co-culture technologies and find a payload of antibody-drug conjugate (ADC), a bromodomain and extra-terminal (BET) protein degrader named EBET. We select CEACAM6/CD66c as an ADC target and developed an antibody, #84.7, with minimal reactivity to CEACAM6-expressing normal cells. EBET-conjugated #84.7 (84-EBET) has lethal effects on various PDAC organoids and bystander efficacy on CEACAM6-negative PDAC cells and cancer-associated fibroblasts. In mouse studies, a single injection of 84-EBET induces marked tumor regression in various PDAC-patient-derived xenografts, with a decrease in the inflammatory phenotype of stromal cells and without significant body weight loss. Combination with standard chemotherapy or PD-1 antibody induces more profound and sustained regression without toxicity enhancement. Our preclinical evidence demonstrates potential efficacy by delivering BET protein degrader to PDAC and its microenvironment via CEACAM6-targeted ADC.
Collapse
Affiliation(s)
- Youya Nakazawa
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan.
| | - Masayuki Miyano
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Hiroyuki Kogai
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Kentaro Iso
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | - Satoshi Inoue
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Yuki Yabe
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Junichi Taguchi
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | - Tsuyoshi Akagi
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
- KAN Research Institute, Inc., Kobe, Japan
| | | | - Minaho Koga
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | | | | | | | - Akihito Machinaga
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
- KAN Research Institute, Inc., Kobe, Japan
| |
Collapse
|
4
|
Postupalenko V, Marx L, Pantin M, Viertl D, Gsponer N, Giudice G, Gasilova N, Schottelius M, Lévy F, Garrouste P, Segura JM, Nyanguile O. Site-selective template-directed synthesis of antibody Fc conjugates with concomitant ligand release. Chem Sci 2024; 15:1324-1337. [PMID: 38274063 PMCID: PMC10806771 DOI: 10.1039/d3sc04324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Template-directed methods are emerging as some of the most effective means to conjugate payloads at selective sites of monoclonal antibodies (mAbs). We have previously reported a method based on an engineered Fc-III reactive peptide to conjugate a radionuclide chelator to K317 of antibodies with the concomitant release of the Fc-III peptide ligand. Here, our method was redesigned to target two lysines proximal to the Fc-III binding site, K248 and K439. Using energy minimization predictions and a semi-combinatorial synthesis approach, we sampled multiple Fc-III amino acid substituents of A3, H5, L6 and E8, which were then converted into Fc-III reactive conjugates. Middle-down MS/MS subunit analysis of the resulting trastuzumab conjugates revealed that K248 and K439 can be selectively targeted using the Fc-III reactive variants L6Dap, L6Orn, L6Y and A3K or A3hK, respectively. Across all variants tested, L6Orn-carbonate appeared to be the best candidate, yielding a degree and yield of conjugation of almost 2 and 100% for a broad array of payloads including radionuclide chelators, fluorescent dyes, click-chemistry reagents, pre-targeted imaging reagents, and some cytotoxic small molecules. Furthermore, L6Orn carbonate appeared to yield similar conjugation results across multiple IgG subtypes. In vivo proof of concept was achieved by conjugation of NODAGA to the PD1/PD-L1 immune checkpoint inhibitor antibody atezolizumab, followed by PET imaging of PD-L1 expression in mice bearing PD-L1 expressing tumor xenograft using radiolabeled [64Cu]Cu-atezolizumab.
Collapse
Affiliation(s)
- Viktoriia Postupalenko
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Léo Marx
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Mathilde Pantin
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne CH-1011 Lausanne
| | - Nadège Gsponer
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Gaëlle Giudice
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Natalia Gasilova
- EPFL Valais Wallis, MSEAP, ISIC-GE-VS rue de l'Industrie 17 1951 Sion Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- Agora, pôle de recherche sur le cancer 1011 Lausanne Switzerland
| | - Frédéric Lévy
- Debiopharm International SA Forum "après-demain", Chemin Messidor 5-7, Case postale 5911 1002 Lausanne Switzerland
| | - Patrick Garrouste
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Origène Nyanguile
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| |
Collapse
|
5
|
Ganju V, Marx G, Pattison S, Amaro-Mugridge NB, Zhao JT, Williams BRG, MacDiarmid JA, Brahmbhatt H. Phase I/IIa Trial in Advanced Pancreatic Ductal Adenocarcinoma Treated with Cytotoxic Drug-Packaged, EGFR-Targeted Nanocells and Glycolipid-Packaged Nanocells. Clin Cancer Res 2024; 30:304-314. [PMID: 37976042 DOI: 10.1158/1078-0432.ccr-23-1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE We assessed the safety and efficacy of an EGFR-targeted, super-cytotoxic drug, PNU-159682-packaged nanocells with α-galactosyl ceramide-packaged nanocells (E-EDV-D682/GC) in patients with advanced pancreatic ductal adenocarcinoma (PDAC) who had exhausted all treatment options. PATIENTS AND METHODS ENG9 was a first-in-man, single-arm, open-label, phase I/IIa, dose-escalation clinical trial. Eligible patients had advanced PDAC, Eastern Cooperative Oncology Group status 0 to 1, and failed all treatments. Primary endpoints were safety and overall survival (OS). RESULTS Of 25 enrolled patients, seven were withdrawn due to rapidly progressive disease and one patient withdrew consent. All 25 patients were assessed for toxicity, 24 patients were assessed for OS, which was also assessed for 17 patients completing one treatment cycle [evaluable subset (ES)]. Nineteen patients (76.0%) experienced at least one treatment-related adverse event (graded 1 to 2) resolving within hours. There were no safety concerns, dose reductions, patient withdrawal, or treatment-related deaths. Median OS (mOS) was 4.4 months; however, mOS of the 17 ES patients was 6.9 months [208 days; range, 83-591 days; 95.0% confidence interval (CI), 5.6-10.3 months] and mOS of seven patients who did not complete one cycle was 1.8 months (54 days; range, 21-72; 95.0% CI, 1.2-2.2 months). Of the ES, 47.1% achieved stable disease and one partial response. Ten subjects in the ES survived over 6 months, the longest 19.7 months. During treatments, 82.0% of the ES maintained stable weight. CONCLUSIONS E-EDV-D682/GC provided significant OS, minimal side effects, and weight stabilization in patients with advanced PDAC. Advanced PDAC can be safely treated with super-cytotoxic drugs via EnGeneIC Dream Vectors to overcome multidrug resistance.
Collapse
Affiliation(s)
- Vinod Ganju
- Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
- Peninsula and Southeast Oncology (PASO), Frankston Private Hospital, Frankston, Australia
| | - Gavin Marx
- Sydney Adventist Hospital, Sydney, New South Wales, Australia
| | | | | | | | - Bryan R G Williams
- Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
| | | | | |
Collapse
|
6
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
7
|
Subhan MA, Torchilin VP. Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics 2023; 15:1242. [PMID: 37111727 PMCID: PMC10144345 DOI: 10.3390/pharmaceutics15041242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a potential and promising therapy for a wide variety of cancers, including breast cancer. ADC-based drugs represent a rapidly growing field of breast cancer therapy. Various ADC drug therapies have progressed over the past decade and have generated diverse opportunities for designing of state-of-the-art ADCs. Clinical progress with ADCs for the targeted therapy of breast cancer have shown promise. Off-target toxicities and drug resistance to ADC-based therapy have hampered effective therapy development due to the intracellular mechanism of action and limited antigen expression on breast tumors. However, innovative non-internalizing ADCs targeting the tumor microenvironment (TME) component and extracellular payload delivery mechanisms have led to reduced drug resistance and enhanced ADC effectiveness. Novel ADC drugs may deliver potent cytotoxic agents to breast tumor cells with reduced off-target effects, which may overcome difficulties related to delivery efficiency and enhance the therapeutic efficacy of cytotoxic cancer drugs for breast cancer therapy. This review discusses the development of ADC-based targeted breast cancer therapy and the clinical translation of ADC drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Testa C, Papini AM, Zeidler R, Vullo D, Carta F, Supuran CT, Rovero P. First studies on tumor associated carbonic anhydrases IX and XII monoclonal antibodies conjugated to small molecule inhibitors. J Enzyme Inhib Med Chem 2022; 37:592-596. [PMID: 35057692 PMCID: PMC8786240 DOI: 10.1080/14756366.2021.2004593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
We report for the first time Antibody-Drug-Conjugates (ADCs) containing human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) directed Monoclonal Antibodies (MAbs) linked to low molecular weight inhibitors of the same enzymes by means of hydrophilic peptide spacers. In agreement with the incorporated CA directed MAb fragments, in vitro inhibition data of the obtained ADCs showed sub-nanomolar KI values for the tumour associated CAs IX and XII which were up to 10-fold more potent when compared to the corresponding unconjugated MAbs. In addition, the introduction of the CA inhibitor (CAI) benzenesulfonamide allowed the ADCs to potently inhibit the housekeeping tumoral off-target human CA II isoform. Such results are supporting the definition of an unprecedented reported class of ADCs able to hit simultaneously multiple hCAs physiologically cooperative in maintaining altered cellular metabolic pathways, and therefore ideal for the treatment of chronic diseases such as cancers and inflammation diseases.
Collapse
Affiliation(s)
- Chiara Testa
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology”, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology”, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Reinhard Zeidler
- Research Group Therapeutic Antibodies, Helmholtz Centre Munich German Research Centre for Environmental Health, Munich, Germany
- Department of Otorhinolaryngology, Klinikum der Universitaet, Munich, Germany
| | - Daniela Vullo
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, via Ugo Schff 6, Sesto Fiorentino (Florence), 50019Italy
| | - Fabrizio Carta
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, via Ugo Schff 6, Sesto Fiorentino (Florence), 50019Italy
| | - Claudiu T. Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, via Ugo Schff 6, Sesto Fiorentino (Florence), 50019Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology”, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Mastrangelo S, Attina G, Triarico S, Romano A, Maurizi P, Ruggiero A. The DNA-topoisomerase Inhibitors in Cancer Therapy. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:553-562. [DOI: 10.13005/bpj/2396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
DNA-topoisomerases are ubiquitous enzymes essential for major cellular processes. In recent years, interest in DNA-topoisomerases has increased not only because of their crucial role in promoting DNA replication and transcription processes, but also because they are the target of numerous active ingredients. The possibility of exploiting for therapeutic purposes the blocking of the activity of these enzymes has led to the development of a new class of anticancer agents capable of inducing apoptosis of tumor cells following DNA damage and its failure to repair.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Giorgio Attina
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Tang LWT, Wei W, Verma RK, Koh SK, Zhou L, Fan H, Chan ECY. Direct and Sequential Bioactivation of Pemigatinib to Reactive Iminium Ion Intermediates Culminate in Mechanism-Based Inactivation of Cytochrome P450 3A. Drug Metab Dispos 2022; 50:529-540. [DOI: 10.1124/dmd.121.000804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
|
11
|
Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X, Li S. Antibody-drug conjugates: Recent advances in linker chemistry. Acta Pharm Sin B 2021; 11:3889-3907. [PMID: 35024314 PMCID: PMC8727783 DOI: 10.1016/j.apsb.2021.03.042] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers.
Collapse
Affiliation(s)
- Zheng Su
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Corresponding author. Tel: +86 10 66930603 (Shiyong Fan), +86 10 66930673 (Xinbo Zhou).
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Corresponding author. Tel: +86 10 66930603 (Shiyong Fan), +86 10 66930673 (Xinbo Zhou).
| | - Song Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
12
|
Peng H. Perspectives on the development of antibody-drug conjugates targeting ROR1 for hematological and solid cancers. Antib Ther 2021; 4:222-227. [PMID: 34805745 PMCID: PMC8597957 DOI: 10.1093/abt/tbab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Antibody–drug conjugates (ADCs) are targeted therapeutics generated by conjugation of cytotoxic small molecules to monoclonal antibodies (mAbs) via chemical linkers. Due to their selective delivery of toxic payloads to antigen-positive cancer cells, ADCs demonstrate wider therapeutic indexes compared with conventional chemotherapy. After decades of intensive research and development, significant advances have been made in the field, leading to a total of 10 U.S. food and drug administration (FDA)-approved ADCs to treat cancer patients. Currently, ~80 ADCs targeting different antigens are under clinical evaluation for treatment of either hematological or solid malignancies. Notably, three ADCs targeting the same oncofetal protein, receptor tyrosine kinase like orphan receptor 1 (ROR1), have attracted considerable attention when they were acquired or licensed successively in the fourth quarter of 2020 by three major pharmaceutical companies. Apparently, ROR1 has emerged as an attractive target for cancer therapy. Since all the components of ADCs, including the antibody, linker and payload, as well as the conjugation method, play critical roles in ADC’s efficacy and performance, their choice and combination will determine how far they can be advanced. This review summarizes the design and development of current anti-ROR1 ADCs and highlights an emerging trend to target ROR1 for cancer therapy.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, C278, Jupiter, FL 33458, USA
| |
Collapse
|
13
|
Buongervino S, Lane MV, Garrigan E, Zhelev DV, Dimitrov DS, Bosse KR. Antibody-Drug Conjugate Efficacy in Neuroblastoma: Role of Payload, Resistance Mechanisms, Target Density, and Antibody Internalization. Mol Cancer Ther 2021; 20:2228-2239. [PMID: 34465595 DOI: 10.1158/1535-7163.mct-20-1034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) are a targeted cancer therapy that utilize the specificity of antibodies to deliver potent drugs selectively to tumors. Here we define the complex interaction among factors that dictate ADC efficacy in neuroblastoma by testing both a comprehensive panel of ADC payloads in a diverse set of neuroblastoma cell lines and utilizing the glypican 2 (GPC2)-targeting D3-GPC2-PBD ADC to study the role of target antigen density and antibody internalization in ADC efficacy in neuroblastoma. We first find that DNA binding drugs are significantly more cytotoxic to neuroblastomas than payloads that bind tubulin or inhibit DNA topoisomerase 1. We additionally show that neuroblastomas with high expression of the ABCB1 drug transporter or that harbor a TP53 mutation are significantly more resistant to tubulin and DNA/DNA topoisomerase 1 binding payloads, respectively. Next, we utilized the GPC2-specific D3-GPC2-IgG1 antibody to show that neuroblastomas internalize this antibody/GPC2 complex at significantly different rates and that these antibody internalization kinetics correlate significantly with GPC2 cell surface density. However, sensitivity to pyrrolobenzodiazepine (PBD) dimers primarily dictated sensitivity to the corresponding D3-GPC2-PBD ADC, overall having a larger influence on ADC efficacy than GPC2 cell surface density or antibody internalization. Finally, we utilized GPC2 isogenic Kelly neuroblastoma cells with different levels of cell surface GPC2 expression to define the threshold of target density required for ADC efficacy. Taken together, DNA binding ADC payloads should be prioritized for development for neuroblastoma given their superior efficacy and considering that ADC payload sensitivity is a major determinant of ADC efficacy.
Collapse
Affiliation(s)
- Samantha Buongervino
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, Pennsylvania
| | - Maria V Lane
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, Pennsylvania
| | - Emily Garrigan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, Pennsylvania
| | - Doncho V Zhelev
- Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, Pennsylvania. .,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Adv 2021; 5:3152-3162. [PMID: 34424320 DOI: 10.1182/bloodadvances.2020003276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.
Collapse
|
15
|
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20:55. [PMID: 33761944 PMCID: PMC7987750 DOI: 10.1186/s12943-021-01346-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Collapse
Affiliation(s)
- Tina Briolay
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | - Morgane Fouet
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | | | | |
Collapse
|
16
|
Slemmons KK, Mukherjee S, Meltzer P, Purcell JW, Helman LJ. LRRC15 antibody-drug conjugates show promise as osteosarcoma therapeutics in preclinical studies. Pediatr Blood Cancer 2021; 68:e28771. [PMID: 33063919 PMCID: PMC9137401 DOI: 10.1002/pbc.28771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Osteosarcoma (OS), the most common bone tumor in children and adolescents, has high rates of metastasis leading to poor survival. Leucine-rich repeat containing 15 (LRRC15), a transmembrane protein whose expression is modulated by TGFβ, was recently shown to be highly expressed on the surface of OS tumor cells. Here, we evaluate a novel antibody-drug conjugate (ADC) targeting LRRC15 in OS human cell lines and murine xenografts. We compare this new ADC, which is conjugated to the anthracycline derivative PNU-159682 (PNU), to a previously studied LRRC15 ADC that is conjugated to the tubulin inhibitor monomethyl auristatin E (MMAE), since anthracyclines are standard of care in OS. PROCEDURE We evaluated LRRC15 expression in OS cells using Western blots and flow cytometry, and analyzed the epigenetic landscape of the LRRC15 locus using chromatin immunoprecipitation. Efficacy of ADCs on cell growth was analyzed by IncuCyte live cell imaging. Intramuscular xenograft tumor growth was assessed by bioluminescence imaging and hematoxylin and eosin staining. RESULTS LRRC15-PNU is more effective at inhibiting growth in vitro and in vivo than an isotype antibody control or the LRRC15-MMAE ADC in two high LRRC15 expressing OS cell lines. Low expressing cell lines are not sensitive to either ADC. Importantly, cells with low LRRC15 expression are amenable to re-expression after TGFβ treatment, suggesting a potential to sensitize insensitive OS cells to LRRC15 ADC treatment. In vivo, LRRC15-PNU had cure rates of 40-100% in OS xenograft models. CONCLUSIONS Overall, LRRC15-directed ADCs are a promising new avenue for OS treatment.
Collapse
Affiliation(s)
- Katherine K. Slemmons
- Department of Hematology/Oncology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Sanjit Mukherjee
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Paul Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Lee J. Helman
- Department of Hematology/Oncology, Children’s Hospital Los Angeles, Los Angeles, California,Departments of Pediatrics and Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Holte D, Lyssikatos JP, Valdiosera AM, Swinney Z, Sisodiya V, Sandoval J, Lee C, Aujay MA, Tchelepi RB, Hamdy OM, Gu C, Lin B, Sarvaiya H, Pysz MA, Laysang A, Williams S, Jun Lee D, Holda MK, Purcell JW, Gavrilyuk J. Evaluation of PNU-159682 antibody drug conjugates (ADCs). Bioorg Med Chem Lett 2020; 30:127640. [PMID: 33127540 DOI: 10.1016/j.bmcl.2020.127640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022]
Abstract
PNU-159682 is a highly potent secondary metabolite of nemorubicin belonging to the anthracycline class of natural products. Due to its extremely high potency and only partially understood mechanism of action, it was deemed an interesting starting point for the development of a new suite of linker drugs for antibody drug conjugates (ADCs). Structure activity relationships were explored on the small molecule which led to six linker drugs being developed for conjugation to antibodies. Herein we describe the synthesis of novel PNU-159682 derivatives and the subsequent linker drugs as well as the corresponding biological evaluations of the small molecules and ADCs.
Collapse
Affiliation(s)
- Dane Holte
- AbbVie Chemical Development & Manufacturing, 995 East Arques Avenue, Sunnyvale, CA 94085, USA.
| | - Joseph P Lyssikatos
- Enliven Therapeutics, 6200 Lookout Road, First Floor, Boulder, CO 80301, USA
| | | | - Zachary Swinney
- Mantra Bio, 455 Mission Bay Boulevard, South San Francisco, CA 94158, USA
| | - Vikram Sisodiya
- Denali Therapeutics, 161 Oyster Point Bloulevard, South San Francisco, CA 94080, USA
| | - Joseph Sandoval
- Fate Therapeutics, 3535 General Atomics Court, Suite 200, San Diego 92121, USA
| | - Christina Lee
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Monette A Aujay
- Enliven Therapeutics, 6200 Lookout Road, First Floor, Boulder, CO 80301, USA
| | - Robert B Tchelepi
- Bolt Biotherapeutics, 640 Galveston Drive, Redwood City, CA 94063, USA
| | - Omar M Hamdy
- Applied Molecular Transport, 1 Tower Place, Suite 850, South San Francisco, CA 94080, USA
| | - Christine Gu
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA; AbbVie Research & Development, 995 East Arques Avenue, Sunnyvale, CA 94085, USA
| | - Baiwei Lin
- Maze Therapeutics, 131 Oyster Point Blvd, Suite 200, South San Francisco, CA 94080, USA
| | - Hetal Sarvaiya
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Marybeth A Pysz
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Amy Laysang
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Samuel Williams
- ArsenalBio, Inc. 2 Tower Place, South San Francisco, CA 94080, USA
| | - Dong Jun Lee
- AbbVie Research & Development, 995 East Arques Avenue, Sunnyvale, CA 94085, USA
| | - Magda K Holda
- AbbVie Research & Development, 1500 Seaport Blvd, Redwood City, CA 94063, USA
| | - James W Purcell
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Julia Gavrilyuk
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| |
Collapse
|
18
|
Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B 2020; 10:1589-1600. [PMID: 33088681 PMCID: PMC7564033 DOI: 10.1016/j.apsb.2020.04.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Antibody drug conjugates (ADCs) normally compose of a humanized antibody and small molecular drug via a chemical linker. After decades of preclinical and clinical studies, a series of ADCs have been widely used for treating specific tumor types in the clinic such as brentuximab vedotin (Adcetris®) for relapsed Hodgkin's lymphoma and systemic anaplastic large cell lymphoma, gemtuzumab ozogamicin (Mylotarg®) for acute myeloid leukemia, ado-trastuzumab emtansine (Kadcyla®) for HER2-positive metastatic breast cancer, inotuzumab ozogamicin (Besponsa®) and most recently polatuzumab vedotin-piiq (Polivy®) for B cell malignancies. More than eighty ADCs have been investigated in different clinical stages from approximately six hundred clinical trials to date. This review summarizes the key elements of ADCs and highlights recent advances of ADCs, as well as important lessons learned from clinical data, and future directions.
Collapse
|
19
|
Sagnella SM, Yang L, Stubbs GE, Boslem E, Martino-Echarri E, Smolarczyk K, Pattison SL, Vanegas N, St Clair E, Clarke S, Boockvar J, MacDiarmid JA, Brahmbhatt H. Cyto-Immuno-Therapy for Cancer: A Pathway Elicited by Tumor-Targeted, Cytotoxic Drug-Packaged Bacterially Derived Nanocells. Cancer Cell 2020; 37:354-370.e7. [PMID: 32183951 DOI: 10.1016/j.ccell.2020.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 08/08/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Abstract
Immunotherapy has emerged as a powerful new chapter in the fight against cancer. However, it has yet to reach its full potential due in part to the complexity of the cancer immune response. We demonstrate that tumor-targeting EDV nanocells function as an immunotherapeutic by delivering a cytotoxin in conjunction with activation of the immune system. These nanocells polarize M1 macrophages and activate NK cells concurrently producing a Th1 cytokine response resulting in potent antitumor function. Dendritic cell maturation and antigen presentation follows, which generates tumor-specific CD8+ T cells, conferring prolonged tumor remission. The combination of cytotoxin delivery and activation of innate and adaptive antitumor immune responses results in a potent cyto-immunotherapeutic with potential in clinical oncology.
Collapse
Affiliation(s)
- Sharon M Sagnella
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Lu Yang
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Gemma E Stubbs
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Ebru Boslem
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | | | - Katarzyna Smolarczyk
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Stacey L Pattison
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Natasha Vanegas
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Eva St Clair
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Stephen Clarke
- ANZAC Research Institute - Royal North Shore Hospital 38 Pacific Highway, Sydney, NSW 2065, Australia
| | - John Boockvar
- Northwell School of Medicine, 3(rd) Floor, 130 East 77(th) Street, New York, NY 10075, USA
| | - Jennifer A MacDiarmid
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Himanshu Brahmbhatt
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia.
| |
Collapse
|
20
|
Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen. Nat Commun 2019; 10:5382. [PMID: 31772160 PMCID: PMC6879612 DOI: 10.1038/s41467-019-13305-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/02/2019] [Indexed: 01/09/2023] Open
Abstract
Accumulation of mutant p53 proteins is frequently found in a wide range of cancers. While conventional antibodies fail to target intracellular proteins, proteosomal degradation results in the presentation of p53-derived peptides on the tumour cell surface by class I molecules of the major histocompatibility complex (MHC). Elevated levels of such p53-derived peptide-MHCs on tumour cells potentially differentiate them from healthy tissues. Here, we report the engineering of an affinity-matured human antibody, P1C1TM, specific for the unmutated p53125-134 peptide in complex with the HLA-A24 class I MHC molecule. We show that P1C1TM distinguishes between mutant and wild-type p53 expressing HLA-A24+ cells, and mediates antibody dependent cellular cytotoxicity of mutant p53 expressing cells in vitro. Furthermore, we show that cytotoxic PNU-159682-P1C1TM drug conjugates specifically inhibit growth of mutant p53 expressing cells in vitro and in vivo. Hence, p53-associated peptide-MHCs are attractive targets for the immunotherapy against mutant p53 expressing tumours. Several cancers harbour mutant p53 and express higher levels of p53-derived peptide-MHCs. Here, the authors report affinity matured human antibody, P1C1TM, specific for the p53125-134 peptide in complex with the HLA-A24 class I MHC molecule and show its efficacy and specificity for mutant p53 expressing tumours.
Collapse
|
21
|
Nilchan N, Li X, Pedzisa L, Nanna AR, Roush WR, Rader C. Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib Ther 2019; 2:71-78. [PMID: 31930187 PMCID: PMC6953743 DOI: 10.1093/abt/tbz009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background While all clinically translated antibody-drug conjugates (ADCs) contain a single-drug payload, most systemic cancer chemotherapies involve use of a combination of drugs. These regimens improve treatment outcomes and slow development of drug resistance. We here report the generation of an ADC with a dual-drug payload that combines two distinct mechanisms of action. Methods Virtual DNA crosslinking agent PNU-159682 and tubulin polymerization inhibitor monomethyl auristatin F (MMAF) were conjugated to a HER2-targeting antibody via site-specific conjugation at engineered selenocysteine and cysteine residues (thio-selenomab). Results The dual-drug ADC showed selective and potent cytotoxicity against HER2-expressing cell lines and exhibited dual mechanisms of action consistent with the attached drugs. While PNU-159682 caused S-phase cell cycle arrest due to its DNA-damaging activity, MMAF simultaneously inhibited tubulin polymerization and caused G2/M-phase cell cycle arrest. Conclusion The thio-selenomab platform enables the assembly of dual-drug ADCs with two distinct mechanisms of action.
Collapse
Affiliation(s)
- Napon Nilchan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiuling Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Lee Pedzisa
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alex R Nanna
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
22
|
Park S, Kim SY, Cho J, Jung D, Seo D, Lee J, Lee S, Yun S, Lee H, Park O, Seo B, Woo SH, Park TK. Aryl Sulfate is a Useful Motif for Conjugating and Releasing Phenolic Molecules: Sulfur Fluorine Exchange Click Chemistry Enables Discovery of Ortho-Hydroxy-Protected Aryl Sulfate Linker. Bioconjug Chem 2019; 30:1957-1968. [PMID: 31251583 DOI: 10.1021/acs.bioconjchem.9b00340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new self-immolative linker motif, Ortho Hydroxy-Protected Aryl Sulfate (OHPAS), was devised, and OHPAS-containing antibody drug conjugates (ADC) were tested in vitro and in vivo. Conveniently synthesized using Sulfur Fluorine Exchange (SuFEx) chemistry, it is based structurally on diaryl sulfate, with one aryl acting as a payload and the other as a self-immolative sulfate unit having a latent phenol function at the ortho position. The chemically stable OHPAS linker was stable in plasma samples from 5 different species, yet it can release the payload molecule smoothly upon chemical or biological triggering. The payload release proceeds via intramolecular cyclization, producing a cyclic sulfate coproduct that eventually hydrolyzes to a catechol monosulfate. A set of OHPAS-containing ADCs based on Trastuzumab were prepared with a drug to antibody ratio of ∼2, and were shown to be cytotoxic in 5 different cancer cell lines in vitro and dose-dependently inhibited tumor growth in a NCI-N87 mouse xenograft model. We conclude that OHPAS conjugates will be of considerable use for delivering phenol-containing payloads to tissues targeted for medical intervention.
Collapse
|
23
|
Park S, Kim SY, Cho J, Jung D, Seo D, Lee J, Lee S, Yun S, Lee H, Park O, Seo B, Kim S, Seol M, Woo SH, Park TK. Introduction of Para-Hydroxy Benzyl Spacer Greatly Expands the Utility of Ortho-Hydroxy-Protected Aryl Sulfate System: Application to Nonphenolic Payloads. Bioconjug Chem 2019; 30:1969-1978. [DOI: 10.1021/acs.bioconjchem.9b00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Sun R, Chen M, Hu Y, Lan Y, Gan L, You G, Yue M, Wang H, Xia B, Zhao J, Tang L, Cai Z, Liu Z, Ye L. CYP3A4/5 mediates the metabolic detoxification of humantenmine, a highly toxic alkaloid from Gelsemium elegans Benth. J Appl Toxicol 2019; 39:1283-1292. [PMID: 31119768 DOI: 10.1002/jat.3813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023]
Abstract
Gelsemium elegans Benth., a well-known toxic herbal plant, is widely used to treat rheumatic arthritis, inflammation and other diseases. Gelsemium contains humantenmine (HMT), which is an important bioactive and toxic alkaloid. Cytochrome P450 enzymes (CYPs) play important roles in the elimination and detoxification of exogenous substances. This study aimed to investigate the roles of CYPs in the metabolism and detoxification of HMT. First, metabolic studies were performed in vitro by using human liver microsomes, selective chemical inhibitors and recombinant human CYPs. Results indicated that four metabolites, including hydroxylation and oxidation metabolites, were found in human liver microsomes and identified based on their high-resolution mass spectrum. The isoform responsible for HMT metabolism was mainly CYP3A4/5. Second, the toxicity of HMT on L02 cells in the presence of the nicotinamide adenine dinucleotide phosphate system (NADPH) was significantly less than that without NADPH system. A CYP3A4/5 activity inhibition model was established by intraperitoneally injecting ketoconazole in mice and used to evaluate the role of CYP3A4/5 in HMT detoxification. In this model, the 14-day survival rate of the mice decreased to 17% after they were intragastrically treated with HMT, along with hepatic injury and increasing alanine aminotransferase (ALT) /aspartate aminotransferase (AST) levels. Overall, CYP3A4/5 mediated the metabolism and detoxification of HMT.
Collapse
Affiliation(s)
- Rongjin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Minghao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxian Hu
- Center For Certification And Evaluation, Guangdong Food And Drug Administration, Guangzhou, China
| | - Yao Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lili Gan
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guoquan You
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Min Yue
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hongmei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bijun Xia
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zeng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ling Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Hellmann I, Waldmeier L, Bannwarth-Escher MC, Maslova K, Wolter FI, Grawunder U, Beerli RR. Novel Antibody Drug Conjugates Targeting Tumor-Associated Receptor Tyrosine Kinase ROR2 by Functional Screening of Fully Human Antibody Libraries Using Transpo-mAb Display on Progenitor B Cells. Front Immunol 2018; 9:2490. [PMID: 30450096 PMCID: PMC6224377 DOI: 10.3389/fimmu.2018.02490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has been identified as a highly relevant tumor-associated antigen in a variety of cancer indications of high unmet medical need, including renal cell carcinoma and osteosarcoma, making it an attractive target for targeted cancer therapy. Here, we describe the de novo discovery of fully human ROR2-specific antibodies and potent antibody drug conjugates (ADCs) derived thereof by combining antibody discovery from immune libraries of human immunoglobulin transgenic animals using the Transpo-mAb mammalian cell-based IgG display platform with functional screening for internalizing antibodies using a secondary ADC assay. The discovery strategy entailed immunization of transgenic mice with the cancer antigen ROR2, harboring transgenic IgH and IgL chain gene loci with limited number of fully human V, D, and J gene segments. This was followed by recovering antibody repertoires from the immunized animals, expressing and screening them as full-length human IgG libraries by transposon-mediated display in progenitor B lymphocytes ("Transpo-mAb Display") for ROR2 binding. Individual cellular "Transpo-mAb" clones isolated by single cell sorting and capable of expressing membrane-bound as well as secreted human IgG were directly screened during antibody discovery, not only for high affinity binding to human ROR2, but also functionally as ADCs using a cytotoxicity assay with a secondary anti-human IgG-toxin-conjugate. Using this strategy, we identified and validated 12 fully human, monoclonal anti-human ROR2 antibodies with nanomolar affinities that are highly potent as ADCs and could be promising candidates for the therapy of human cancer. The screening for functional and internalizing antibodies during the early phase of antibody discovery demonstrates the utility of the mammalian cell-based Transpo-mAb Display platform to select for functional binders and as a powerful tool to improve the efficiency for the development of therapeutically relevant ADCs.
Collapse
|
26
|
Errington RJ, Sadiq M, Cosentino L, Wiltshire M, Sadiq O, Sini M, Lizano E, Pujol MD, Morais GR, Pors K. Probing cytochrome P450 bioactivation and fluorescent properties with morpholinyl-tethered anthraquinones. Bioorg Med Chem Lett 2018; 28:1274-1277. [PMID: 29576510 DOI: 10.1016/j.bmcl.2018.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Structural features from the anticancer prodrug nemorubicin (MMDX) and the DNA-binding molecule DRAQ5™ were used to prepare anthraquinone-based compounds, which were assessed for their potential to interrogate cytochrome P450 (CYP) functional activity and localisation. 1,4-disubstituted anthraquinone 8 was shown to be 5-fold more potent in EJ138 bladder cancer cells after CYP1A2 bioactivation. In contrast, 1,5-bis((2-morpholinoethyl)amino) substituted anthraquinone 10 was not CYP-bioactivated but was shown to be fluorescent and subsequently photo-activated by a light pulse (at a bandwidth 532-587 nm), resulting in punctuated foci accumulation in the cytoplasm. It also showed low toxicity in human osteosarcoma cells. These combined properties provide an interesting prospective approach for opto-tagging single or a sub-population of cells and seeking their location without the need for continuous monitoring.
Collapse
Affiliation(s)
- Rachel J Errington
- Tumour MicroEnvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff CF14 4XN, UK
| | - Maria Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Laura Cosentino
- Tumour MicroEnvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff CF14 4XN, UK; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Marie Wiltshire
- Tumour MicroEnvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff CF14 4XN, UK
| | - Omair Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Marcella Sini
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Enric Lizano
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK; Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Gonal 643, E-08028 Barcelona, Spain
| | - Maria D Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Gonal 643, E-08028 Barcelona, Spain
| | - Goreti R Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK.
| |
Collapse
|
27
|
Zheng J, Xin Y, Zhang J, Subramanian R, Murray BP, Whitney JA, Warr MR, Ling J, Moorehead L, Kwan E, Hemenway J, Smith BJ, Silverman JA. Pharmacokinetics and Disposition of Momelotinib Revealed a Disproportionate Human Metabolite-Resolution for Clinical Development. Drug Metab Dispos 2018; 46:237-247. [PMID: 29311136 DOI: 10.1124/dmd.117.078899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Momelotinib (MMB), a small-molecule inhibitor of Janus kinase (JAK)1/2 and of activin A receptor type 1 (ACVR1), is in clinical development for the treatment of myeloproliferative neoplasms. The pharmacokinetics and disposition of [14C]MMB were characterized in a single-dose, human mass-balance study. Metabolism and the pharmacologic activity of key metabolites were elucidated in multiple in vitro and in vivo experiments. MMB was rapidly absorbed following oral dosing with approximately 97% of the radioactivity recovered, primarily in feces with urine as a secondary route. Mean blood-to-plasma [14C] area under the plasma concentration-time curve ratio was 0.72, suggesting low association of MMB and metabolites with blood cells. [14C]MMB-derived radioactivity was detectable in blood for ≤48 hours, suggesting no irreversible binding of MMB or its metabolites. The major circulating human metabolite, M21 (a morpholino lactam), is a potent inhibitor of JAK1/2 and ACVR1 in vitro. Estimation of pharmacological activity index suggests M21 contributes significantly to the pharmacological activity of MMB for the inhibition of both JAK1/2 and ACVR1. M21 was observed in disproportionately higher amounts in human plasma than in rat or dog, the rodent and nonrodent species used for the general nonclinical safety assessment of this molecule. This discrepancy was resolved with additional nonclinical studies wherein the circulating metabolites and drug-drug interactions were further characterized. The human metabolism of MMB was mediated primarily by multiple cytochrome P450 enzymes, whereas M21 formation involved initial P450 oxidation of the morpholine ring followed by metabolism via aldehyde oxidase.
Collapse
Affiliation(s)
- Jim Zheng
- Gilead Sciences, Inc., Foster City, California
| | - Yan Xin
- Gilead Sciences, Inc., Foster City, California
| | | | | | | | | | | | - John Ling
- Gilead Sciences, Inc., Foster City, California
| | | | - Ellen Kwan
- Gilead Sciences, Inc., Foster City, California
| | | | | | | |
Collapse
|
28
|
Dal Corso A, Gébleux R, Murer P, Soltermann A, Neri D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J Control Release 2017; 264:211-218. [PMID: 28867376 DOI: 10.1016/j.jconrel.2017.08.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022]
Abstract
Antibody-drug conjugates are generally believed to crucially rely on internalization into cancer cells for therapeutic activity. Here, we show that a non-internalizing antibody-drug conjugate, based on the F16 antibody specific to the alternatively spliced A1 domain of tenascin-C, mediates a potent therapeutic activity when equipped with the anthracycline PNU159682. The peptide linker, connecting the F16 antibody in IgG format at a specific cysteine residue to the drug, was stable in serum but could be efficiently cleaved in the subendothelial extracellular matrix by proteases released by the dying tumor cells. The results indicate that there may be a broader potential applicability of non-internalizing antibody-drug conjugates for cancer therapy than what had previously been assumed.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Rémy Gébleux
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Alex Soltermann
- Institute of Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland.
| |
Collapse
|
29
|
Stefan N, Gébleux R, Waldmeier L, Hell T, Escher M, Wolter FI, Grawunder U, Beerli RR. Highly Potent, Anthracycline-based Antibody–Drug Conjugates Generated by Enzymatic, Site-specific Conjugation. Mol Cancer Ther 2017; 16:879-892. [DOI: 10.1158/1535-7163.mct-16-0688] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/14/2016] [Accepted: 02/02/2017] [Indexed: 11/16/2022]
|
30
|
Novel linkers and connections for antibody-drug conjugates to treat cancer and infectious disease. Pharm Pat Anal 2017; 6:25-33. [PMID: 28155578 DOI: 10.4155/ppa-2016-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibody-drug conjugates (ADCs) are an exciting therapeutic, combining the extreme potency of a small molecule cytotoxic drug with the exquisite selectivity of a monoclonal antibody. Despite the promising concept and many decades of research and clinical experiments, only two ADCs are approved for human use. Among the lessons learned, have been the need for highly stable and potentially releasable linkers and the empirical nature of therapeutic index supporting the testing of many diverse cytotoxics, many requiring new linker connections for the drug's available functional groups. This article will focus on our efforts at Genentech to develop a new disulfide linker as well as our discovery of a novel quaternary ammonium salt linker connection and the application to ADCs for cancer and infectious disease.
Collapse
|
31
|
Scalabrin M, Quintieri L, Palumbo M, Riccardi Sirtori F, Gatto B. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA. Chem Res Toxicol 2017; 30:614-624. [PMID: 28068470 DOI: 10.1021/acs.chemrestox.6b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Luigi Quintieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Federico Riccardi Sirtori
- Oncology-Chemical Core Technologies Department, Nerviano Medical Sciences , viale Pasteur 10, Nerviano, 20014 Milano, Italy
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| |
Collapse
|
32
|
Yu SF, Zheng B, Go M, Lau J, Spencer S, Raab H, Soriano R, Jhunjhunwala S, Cohen R, Caruso M, Polakis P, Flygare J, Polson AG. A Novel Anti-CD22 Anthracycline-Based Antibody–Drug Conjugate (ADC) That Overcomes Resistance to Auristatin-Based ADCs. Clin Cancer Res 2015; 21:3298-306. [DOI: 10.1158/1078-0432.ccr-14-2035] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/02/2015] [Indexed: 11/16/2022]
|
33
|
Zhu L, Liu X, Zhu L, Zhang X, Fu X, Huang J, Yuan M. Identification of human cytochrome P450 isozymes involved in the metabolism of naftopidil enantiomers in vitro. J Pharm Pharmacol 2014; 66:1534-51. [DOI: 10.1111/jphp.12281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/15/2014] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Naftopidil (NAF) is a chiral compound with two enantiomers (R(+)-NAF and S(−)-NAF) and is used as a racemic mixture in clinical practice. This study aims to investigate the metabolism of NAF enantiomers in pooled human liver microsomes (HLMs) and cytochrome P450 isozymes (CYPs) involved in their metabolism.
Methods
Metabolism studies were conducted in vitro using HLMs. Specific chemical inhibitors and recombinant human CYPs were used to confirm that the CYPs contributed to the metabolism of NAF enantiomers.
Key findings
Three metabolites were found and characterized in the HLMs incubations from R(+)-NAF and S(−)-NAF, respectively. The major metabolic pathways of R(+)-NAF and S(−)-NAF were demethylation and hydroxylation. CYP2C9 and CYP2C19 inhibitors strongly inhibited R(+)-NAF metabolism, and CYP1A2, CYP2C8, CYP2D6 and CYP3A4/5 inhibitors moderately inhibited R(+)-NAF metabolism. CYP2C9 inhibitors strongly inhibited S(−)-NAF metabolism, and CYP2C8, CYP2C19 and CYP3A4/5 inhibitors moderately inhibited S(−)-NAF metabolism. Consistent with the results of chemical inhibitors experiments, recombinant human CYP2C9 and CYP2C19 contributed greatly to R(+)-NAF metabolism, and CYP2C9 contributed greatly to S(−)-NAF metabolism.
Conclusion
Both R(+)-NAF and S(−)-NAF are metabolized to three metabolites in HLMs. CYP2C9 plays the most important role in the demethylation and hydroxylation of both NAF enantiomers, CYP2C19 is another major CYP isoform that is involved in R(+)-NAF metabolism.
Collapse
Affiliation(s)
- Lijun Zhu
- The Drug Research Center, Guangzhou Medical University, Guangzhou, China
| | - Xiawen Liu
- The Drug Research Center, Guangzhou Medical University, Guangzhou, China
| | - Liu Zhu
- The Drug Research Center, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Zhang
- The Drug Research Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Fu
- The Drug Research Center, Guangzhou Medical University, Guangzhou, China
| | - Junjun Huang
- The Drug Research Center, Guangzhou Medical University, Guangzhou, China
| | - Mu Yuan
- The Drug Research Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Bolleddula J, DeMent K, Driscoll JP, Worboys P, Brassil PJ, Bourdet DL. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules. Drug Metab Rev 2014; 46:379-419. [DOI: 10.3109/03602532.2014.924962] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Paclitaxel-hyaluronan hydrosoluble bioconjugate: Mechanism of action in human bladder cancer cell lines. Urol Oncol 2013; 31:1261-9. [DOI: 10.1016/j.urolonc.2012.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 11/19/2022]
|
36
|
Abstract
Nemorubicin is a 3'-deamino-3'[2-(S)-methoxy-4-morpholinyl]derivative of doxorubicin. This derivative has been synthesized in the early 1990s by the Farmitalia CarloErba Research Center in Italy. The idea was to develop doxorubicin analogues able to circumvent the emergenceof chemoresistance, in particular the multi-drug resistance. The drug was reported to be active in vitroagainst both murine and human tumor cells resistant to doxorubicin. Similar results were obtained whenthe drug was administered in vivo to mice bearing multi-drug resistant tumors. The compound retained thesame activity also in alkylating agents and topoisomerase II resistant tumors and showed an increased potencyrelative to the parent drug doxorubicin. It is metabolized via P450 CYP3A enzyme to an extremely cytotoxicderivative. Both nemorubicin and its metabolite have a mechanism of action different from that ofdoxorubicin, with a key role played by the nucleotide excision repair system. The drug is activelytested in clinics as a single agent or in combination with cisplatin.
Collapse
Affiliation(s)
- Massimo Broggini
- Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy,
| |
Collapse
|
37
|
Abstract
Anthracyclines have received significant attention due to their effectiveness and extensive use as anticancer agents. At present, the clinical use of these drugs is offset by drug resistance in tumours and cardiotoxicity. Therefore, a relentless search for the 'better anthracycline' has been ongoing since the inception of these drugs > 30 years ago. This review focuses on the most recent pharmacology and medicinal chemistry developments on the design and use of anthracyclines. Based on their crystal structures as well as molecular modelling, a more detailed mechanism of topoisomerase poisoning by these new anthracyclines has emerged. Chemical modifications of anthracyclines have been found to possibly change the target selectivity among various topoisomerases and, thus, vary their anticancer activity. Additionally, recent sugar modifications of anthracyclines have also been found to overcome P-glycoprotein-mediated drug resistance in cancer therapy. The continued improvement of anthracycline clinical applications so far and the clinical trials of the 'third generation' of anthracyclines (such as sabarubicin) are also discussed. To finally find the 'better' anthracycline, further areas of research still need to be explored such as: the elucidation of the topoisomerase and P-glycoprotein crystal structures, molecular modelling based on crystal structure in order to design the next generation of better anthracycline drugs, the continued modifications of the anthracycline sugar moieties, and the further improvement of anthracycline drug delivery methods.
Collapse
Affiliation(s)
- Janos Nadas
- Department of Chemistry, College of Pharmacy, The Ohio Sate University, Columbus, OH 43210, USA
| | | |
Collapse
|
38
|
Mazzini S, Scaglioni L, Mondelli R, Caruso M, Sirtori FR. The interaction of nemorubicin metabolite PNU-159682 with DNA fragments d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) shows a strong but reversible binding to G:C base pairs. Bioorg Med Chem 2012; 20:6979-88. [PMID: 23154079 DOI: 10.1016/j.bmc.2012.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 11/20/2022]
Abstract
The antitumor anthracycline nemorubicin is converted by human liver microsomes to a major metabolite, PNU-159682 (PNU), which was found to be much more potent than its parent drug toward cultured tumor cells and in vivo tumor models. The mechanism of action of nemorubicin appears different from other anthracyclines and until now is the object of studies. In fact PNU is deemed to play a dominant, but still unclear, role in the in vivo antitumor activity of nemorubicin. The interaction of PNU with the oligonucleotides d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) was studied with a combined use of (1)H and (31)P NMR spectroscopy and by ESI-mass experiments. The NMR studies allowed to establish that the intercalation between the base pairs of the duplex leads to very stable complexes and at the same time to exclude the formation of covalent bonds. Melting experiments monitored by NMR, allowed to observe with high accuracy the behaviour of the imine protons with temperature, and the results showed that the re-annealing occurs after melting. The formation of reversible complexes was confirmed by HPLC-tandem mass spectra, also combined with endonuclease P1digestion. The MS/MS spectra showed the loss of neutral PNU before breaking the double helix, a behaviour typical of intercalators. After digestion with the enzyme, the spectra did not show any compound with PNU bound to the bases. The evidence of a reversible process appears from both proton and phosphorus NOESY spectra of PNU bound to d(CGTACG)(2) and to d(CGATCG)(2). The dissociation rate constants (k(off)) of the slow step of the intercalation process, measured by (31)P NMR NOE-exchange experiments, showed that the kinetics of the process is slower for PNU than for doxorubicin and nemorubicin, leading to a 10- to 20-fold increase of the residence time of PNU into the intercalation sites, with respect to doxorubicin. A relevant number of NOE interactions allowed to derive a model of the complexes in solution from restrained MD calculations. The conformation of PNU bound to the oligonucleotides was also derived from the coupling constant values.
Collapse
Affiliation(s)
- Stefania Mazzini
- DeFENS-Department of Food, Environmental and Nutritional Sciences, via Celoria 2, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
39
|
Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem 2011; 46:4769-807. [DOI: 10.1016/j.ejmech.2011.07.057] [Citation(s) in RCA: 565] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/16/2022]
|
40
|
Tang L, Ye L, Lv C, Zheng Z, Gong Y, Liu Z. Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes. Toxicol Lett 2011; 202:47-54. [PMID: 21277363 DOI: 10.1016/j.toxlet.2011.01.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/28/2022]
Abstract
Aconitine (AC), a famous major Aconitum alkaloid, has effective antirheumatic function with high toxicity. The aim of our study was to in-depth investigate cytochrome P450 isozymes (CYPs) involved in aconitine metabolism in vitro. We used human liver microsomes (HLMs) as well as recombinant CYPs to investigate the metabolism pathways of aconitine by liquid chromatography-tandem mass spectrometry. Fluvoxamine maleate, gemfibrozil, amiodarone hydrochloride, omeprazole, quinidine, diethyldithiocarbamic acid and ketoconazole were successfully applied as test inhibitors for CYP1A2, CYP2C8, CYP2C9, CYP2C19*1, CYP2D6*1, CYP2E1 and CYP3A4/5 in HLMs, respectively. Six CYP-mediated metabolites were found and characterized in human liver microsomes and eight recombinant CYP isoforms. The inhibitor of CYP 3A had a strong inhibitory effect, the inhibitors of CYP 2C9, 2C8 and CYP2D6 had little inhibitory effects, whereas CYP2C19, 1A2 and 2E1 had no obvious inhibitory effects on AC metabolism. Hydroxylation and di-demethylation of aconitine were conducted by human recombinant CYP 3A5 and 2D6, dehydrogenation was only processed by CYP3A4/5, and the main CYP isoforms metabolizing aconitine to demethyl-aconitine and N-deethyl-aconitine were CYP3A4/5 and CYP2D6. In conclusion, aconitine can be transformed into at least six CYP-mediated metabolites in HLMs, CYP 3A4/5 and 2D6 were the most important CYP isoforms responsible for the de-methylation, N-deethylation, dehydrogenation, and hydroxylation of aconitine.
Collapse
Affiliation(s)
- Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | | | | | | | | | | |
Collapse
|
41
|
Ye L, Tang L, Gong Y, Lv C, Zheng Z, Jiang Z, Liu Z. Characterization of metabolites and human P450 isoforms involved in the microsomal metabolism of mesaconitine. Xenobiotica 2010; 41:46-58. [DOI: 10.3109/00498254.2010.524950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Sabatino MA, Marabese M, Ganzinelli M, Caiola E, Geroni C, Broggini M. Down-regulation of the nucleotide excision repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells. Mol Cancer 2010; 9:259. [PMID: 20868484 PMCID: PMC2955619 DOI: 10.1186/1476-4598-9-259] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/24/2010] [Indexed: 12/31/2022] Open
Abstract
Background Drug resistance is one of the major obstacles limiting the activity of anticancer agents. Activation of DNA repair mechanism often accounts for increase resistance to cancer chemotherapy. Results We present evidence that nemorubicin, a doxorubicin derivative currently in clinical evaluation, acts through a mechanism of action different from classical anthracyclines, requiring an intact nucleotide excision repair (NER) system to exert its activity. Cells made resistant to nemorubicin show increased sensitivity to UV damage. We have analysed the mechanism of resistance and discovered a previously unknown mechanism resulting from methylation-dependent silencing of the XPG gene. Restoration of NER activity through XPG gene transfer or treatment with demethylating agents restored sensitivity to nemorubicin. Furthermore, we found that a significant proportion of ovarian tumors present methylation of the XPG promoter. Conclusions Methylation of a NER gene, as described here, is a completely new mechanism of drug resistance and this is the first evidence that XPG gene expression can be influenced by an epigenetic mechanism. The reported methylation of XPG gene could be an important determinant of the response to platinum based therapy. In addition, the mechanism of resistance reported opens up the possibility of reverting the resistant phenotype using combinations with demethylating agents, molecules already employed in the clinical setting.
Collapse
|
43
|
Lu H, Chen CS, Waxman DJ. Potentiation of methoxymorpholinyl doxorubicin antitumor activity by P450 3A4 gene transfer. Cancer Gene Ther 2008; 16:393-404. [PMID: 19011599 DOI: 10.1038/cgt.2008.93] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Preclinical and clinical studies of CYP gene-directed enzyme prodrug therapy have been focused on anticancer prodrugs activated by CYP2B enzymes, which have low endogenous expression in human liver; however, the gene therapeutic potential of CYP3A enzymes, which are highly expressed in human liver, remains unknown. This study investigated methoxymorpholinyl doxorubicin (MMDX; nemorubicin), a novel CYP3A-activated anticancer prodrug. Retroviral transfer of CYP3A4 increased 9L gliosarcoma cell chemosensitivity to MMDX 120-fold (IC(50)=0.2 nM in 9L/3A4 cells). In CHO cells, overexpression of P450 reductase in combination with CYP3A4 enhanced chemosensitivity to MMDX, and to ifosfamide, another CYP3A4 prodrug, 11- to 23-fold compared with CYP3A4 expression alone. CYP3A4 expression and MMDX chemosensitivity were increased in human lung (A549) and brain (U251) tumor cells infected with replication-defective adenovirus encoding CYP3A4. Coinfection with Onyx-017, a replication-conditional adenovirus that coamplifies and coreplicates the Adeno-3A4 virus, led to large increases in CYP3A4 RNA but only modest increases in CYP3A4 protein and activity. MMDX induced remarkable growth delay of 9L/3A4 tumors, but not the P450-deficient parental 9L tumors, in immunodeficient mice administered low-dose MMDX either intravenous or by direct intratumoral (i.t.) injection (60 microg kg(-1), every 7 days x 3). Notably, the i.t. route was substantially less toxic to the mouse host. No antitumor activity was observed with intraperitoneal MMDX treatment, suggesting a substantial hepatic first pass effect, with activated MMDX metabolites formed in the liver having poor access to the tumor site. These studies demonstrate that human CYP3A4 has strong potential for MMDX prodrug-activation therapy and suggest that endogenous tumor cell expression of CYP3A4, and not hepatic CYP3A4 activity, is a key determinant of responsiveness to MMDX therapy in cancer patients in vivo.
Collapse
Affiliation(s)
- H Lu
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
44
|
Quintieri L, Fantin M, Palatini P, De Martin S, Rosato A, Caruso M, Geroni C, Floreani M. In vitro hepatic conversion of the anticancer agent nemorubicin to its active metabolite PNU-159682 in mice, rats and dogs: A comparison with human liver microsomes. Biochem Pharmacol 2008; 76:784-95. [DOI: 10.1016/j.bcp.2008.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 11/16/2022]
|
45
|
Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008; 25:475-516. [PMID: 18497896 DOI: 10.1039/b514294f] [Citation(s) in RCA: 520] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or are in registration (as at 31st December 2007) have been reviewed, as well as natural product-derived compounds for which clinical trials have been halted or discontinued since 2005. Also discussed are natural product-derived drugs launched since 2005, new natural product templates and late-stage development candidates.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn 05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|
46
|
Apetoh L, Mignot G, Panaretakis T, Kroemer G, Zitvogel L. Immunogenicity of anthracyclines: moving towards more personalized medicine. Trends Mol Med 2008; 14:141-51. [DOI: 10.1016/j.molmed.2008.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/29/2008] [Accepted: 02/01/2008] [Indexed: 12/22/2022]
|
47
|
Kalet BT, McBryde MB, Espinosa JM, Koch TH. Doxazolidine induction of apoptosis by a topoisomerase II independent mechanism. J Med Chem 2007; 50:4493-500. [PMID: 17696516 PMCID: PMC2919335 DOI: 10.1021/jm070569b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanism of doxorubicin is compared with that of doxazolidine, a doxorubicin-formaldehyde conjugate. The IC(50) for growth inhibition of 67 human cancer cell lines, but not cardiomyocytes, is 32-fold lower with doxazolidine than with doxorubicin. Growth inhibition by doxazolidine correlates better with growth inhibition by DNA cross-linking agents than with growth inhibition by doxorubicin. Doxorubicin induces G2/M arrest in HCT-116 colon cancer cells and HL-60 leukemia cells through a well-documented topoisomerase II dependent mechanism. Doxazolidine fails to induce a G2/M arrest in HCT-116 cells but induces apoptosis 4-fold better than doxorubicin. The IC(50) for doxazolidine growth inhibition of HL-60/MX2 cells, a topoisomerase II deficient derivative of HL-60 cells, is 1420-fold lower than the IC(50) for doxorubicin, and doxazolidine induces apoptosis 15-fold better. Further, doxazolidine has little effect in a topoisomerase II activity assay. These data indicate that doxorubicin and doxazolidine induce apoptosis via different mechanisms and doxazolidine cytotoxicity is topoisomerase II independent.
Collapse
Affiliation(s)
- Brian T. Kalet
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Meagan B. McBryde
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Joaquin M. Espinosa
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Tad H. Koch
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215. Phone: 303-492-6193; Fax: 303-492-5894.
| |
Collapse
|
48
|
Anthracycline–Formaldehyde Conjugates and Their Targeted Prodrugs. Top Curr Chem (Cham) 2007; 283:141-70. [DOI: 10.1007/128_2007_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Puhlmann U, Schäfer D, Ziemann C. Update on COX-2 inhibitor patents with a focus on optimised formulation and therapeutic scope of drug combinations making use of COX-2 inhibitors. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.4.403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|