1
|
Mann B, Artz N, Darawsheh R, Kram DE, Hingtgen S, Satterlee AB. Opportunities and challenges for patient-derived models of brain tumors in functional precision medicine. NPJ Precis Oncol 2025; 9:47. [PMID: 39953052 PMCID: PMC11828933 DOI: 10.1038/s41698-025-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Here, we review a growing paradigm shift from genomics-based precision medicine toward functional precision medicine, which evaluates therapeutic efficacy by directly treating living patient tumors ex vivo to better predict patient-specific responses to treatment. We discuss several classes of patient-derived models of central nervous system tumors, highlighting unique features of each. Each class of models holds promise to improve treatment selection, prolong survival, and enhance patient outcomes.
Collapse
Affiliation(s)
- Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichole Artz
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rami Darawsheh
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Hegde MM, Palkar P, Mutalik SP, Mutalik S, Goda JS, Rao BSS. Enhancing glioblastoma cytotoxicity through encapsulating O6-benzylguanine and temozolomide in PEGylated liposomal nanocarrier: an in vitro study. 3 Biotech 2024; 14:275. [PMID: 39450422 PMCID: PMC11499494 DOI: 10.1007/s13205-024-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Glioblastoma (GBM) (grade IV glioma) is the most fatal brain tumor, with a median survival of just 14 months despite current treatments. Temozolomide (TMZ), an alkylating agent used with radiation, faces challenges such as systemic toxicity, poor absorption, and drug resistance. To enhance TMZ effectiveness, we developed poly(ethylene glycol) (PEG) liposomes co-loaded with TMZ and O6-benzylguanine (O6-BG) for targeted glioma therapy. These liposomes, prepared using the thin-layer hydration method, had an average size of 146.33 ± 6.75 nm and a negative zeta potential (-49.6 ± 3.1 mV). Drug release was slower at physiological pH, with 66.84 ± 4.62% of TMZ and 69.70 ± 2.88% of O6-BG released, indicating stability at physiological conditions. The liposomes showed significantly higher cellular uptake (p < 0.05) than the free dye. The dual drug-loaded liposomes exhibited superior cytotoxicity against U87 glioma cells, with a lower IC50 value (3.99µg/mL) than the free drug combination, demonstrating enhanced anticancer efficacy. The liposome formulation induced higher apoptosis (19.42 ± 3.5%) by causing sub-G0/G1 cell cycle arrest. The novelty of our study lies in co-encapsulating TMZ and O6-BG within PEGylated liposomes, effectively overcoming drug resistance and improving targeted delivery for glioma treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04123-2.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pranoti Palkar
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - Sadhana P. Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayant Sastri Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
- Department of Radiation Oncology, Advanced Centre for Treatment Research Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - B. S. Satish Rao
- Manipal School of Life Sciences & Director-Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Özkan A, Yağcı Küpeli B, Küpeli S, Sezgin G, Bayram İ. Nimotuzumab-vinorelbine combination therapy versus other regimens in the treatment of pediatric diffuse intrinsic pontine glioma. Childs Nerv Syst 2024; 40:1671-1680. [PMID: 38478066 DOI: 10.1007/s00381-024-06329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/21/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE Pediatric diffuse intrinsic pontine glioma (DIPG) is a fatal disease associated with a median survival of < 1 year despite aggressive treatments. This retrospective study analyzed the treatment outcomes of patients aged < 18 years who were diagnosed with DIPG between 2012 and 2022 and who received different chemotherapy regimens. METHODS After radiotherapy, patients with DIPG received nimotuzumab-vinorelbine combination or temozolomide-containing therapy. When nimotuzumab was unavailable, it was replaced by vincristine, etoposide, and carboplatin/cyclophosphamide (VECC). Temozolomide was administered as a single agent or a part of the combination chemotherapy comprising temozolomide, irinotecan, and bevacizumab. Furthermore, 1- and 3-year overall survival (OS), progression-free survival (PFS), and median OS and PFS were analyzed. RESULTS The median age of 40 patients with DIPG was 97 ± 46.93 (23-213) months; the median follow-up time was 12 months. One and 3-year OS were 35.0% and 7.5%, respectively. Median OS was 12 months in all patients (n = 40), and it was 16, 10, and 11 months in those who received first-line nimotuzumab-vinorelbine combination (n = 13), temozolomide-based (n = 14), and VECC (n = 6) chemotherapy regimens, respectively (p = 0.360). One patient who received gefitinib survived for 16 months. Conversely, patients who never received radiotherapy and any antineoplastic medicamentous therapy (n = 6) had a median OS of 4 months. CONCLUSION Nimotuzumab-vinorelbine combination therapy prolonged OS by 6 months compared with temozolomide-containing chemotherapy, although the difference was not statistically significant.
Collapse
Affiliation(s)
- Ayşe Özkan
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey.
| | - Begül Yağcı Küpeli
- Department of Pediatric Hematology and Oncology, Adana City Training and Research Hospital, University of Health Sciences, Adana, Turkey
| | - Serhan Küpeli
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey
| | - Gülay Sezgin
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey
| | - İbrahim Bayram
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey
| |
Collapse
|
4
|
Liu J, Wang K, Zhu Q, Zhang Y, Chen Y, Lou Z, Yuan J. USP19 regulates DNA methylation damage repair and confers temozolomide resistance through MGMT stabilization. CNS Neurosci Ther 2024; 30:e14711. [PMID: 38644551 PMCID: PMC11033335 DOI: 10.1111/cns.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVE To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of OncologyMayo ClinicRochesterMinnesotaUSA
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Qian Zhu
- Department of Radiation Oncology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuping Chen
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Zhenkun Lou
- Department of OncologyMayo ClinicRochesterMinnesotaUSA
| | - Jian Yuan
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
7
|
Das D, Duncton MAJ, Georgiadis TM, Pellicena P, Clark J, Sobol RW, Georgiadis MM, King-Underwood J, Jobes DV, Chang C, Gao Y, Deacon AM, Wilson DM. A New Drug Discovery Platform: Application to DNA Polymerase Eta and Apurinic/Apyrimidinic Endonuclease 1. Int J Mol Sci 2023; 24:16637. [PMID: 38068959 PMCID: PMC10706420 DOI: 10.3390/ijms242316637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM ("SAR by X-ray Poses Quickly") platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or "undruggable" targets, allows for (i) hit generation; (ii) the mapping of protein-ligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target.
Collapse
Affiliation(s)
- Debanu Das
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | | | | | | | - Jennifer Clark
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology & Laboratory Medicine, Warrant Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Millie M. Georgiadis
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - David V. Jobes
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Mid-Atlantic BioTherapeutics, Inc., Doylestown, PA 18902, USA
| | - Caleb Chang
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Yang Gao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ashley M. Deacon
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | - David M. Wilson
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Biomedical Research Institute, Hasselt University, 3500 Diepenbeek, Belgium
- Belgium & Boost Scientific, 3550 Heusden-Zolder, Belgium
| |
Collapse
|
8
|
Milde T, Fangusaro J, Fisher MJ, Hawkins C, Rodriguez FJ, Tabori U, Witt O, Zhu Y, Gutmann DH. Optimizing preclinical pediatric low-grade glioma models for meaningful clinical translation. Neuro Oncol 2023; 25:1920-1931. [PMID: 37738646 PMCID: PMC10628935 DOI: 10.1093/neuonc/noad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Canada
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Uri Tabori
- Department of Medical Biophysics, Institute of Medical Science and Paediatrics, University of Toronto, Toronto, Canada
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Da-Veiga MA, Coppieters N, Lombard A, Rogister B, Neirinckx V, Piette C. Comprehensive profiling of stem-like features in pediatric glioma cell cultures and their relation to the subventricular zone. Acta Neuropathol Commun 2023; 11:96. [PMID: 37328883 PMCID: PMC10276389 DOI: 10.1186/s40478-023-01586-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/20/2023] [Indexed: 06/18/2023] Open
Abstract
Pediatric high-grade gliomas (pHGG) are brain tumors occurring in children and adolescents associated with a dismal prognosis despite existing treatments. Therapeutic failure in both adult and pHGG has been partially imputed to glioma stem cells (GSC), a subset of cancer cells endowed with stem-like cell potential and malignant, invasive, adaptative, and treatment-resistant capabilities. Whereas GSC have largely been portrayed in adult tumors, less information has been provided in pHGG. The aim of our study was to comprehensively document the stem-like capacities of seven in-use pediatric glioma cell cultures (Res259, UW479, SF188, KNS42, SF8628, HJSD-DIPG-007 and HJSD-DIPG-012) using parallel in vitro assays assessing stem cell-related protein expression, multipotency, self-renewal and proliferation/quiescence, and in vivo investigation of their tumorigenicity and invasiveness. Data obtained from in vitro experiments revealed glioma subtype-dependent expression of stem cell-related markers and varying abilities for differentiation, self-renewal, and proliferation/quiescence. Among tested cultures, DMG H3-K27 altered cultures displayed a particular pattern of stem-like markers expression and a higher fraction of cells with self-renewal potential. Four cultures displaying distinctive stem-like profiles were further tested for their ability to initiate tumors and invade the brain tissue in mouse orthotopic xenografts. The selected cell cultures all showed a great tumor formation capacity, but only DMG H3-K27 altered cells demonstrated a highly infiltrative phenotype. Interestingly, we detected DMG H3-K27 altered cells relocated in the subventricular zone (SVZ), which has been previously described as a neurogenic area, but also a potential niche for brain tumor cells. Finally, we observed an SVZ-induced phenotypic modulation of the glioma cells, as evidenced by their increased proliferation rate. In conclusion, this study recapitulated a systematic stem-like profiling of various pediatric glioma cell cultures and call to a deeper characterization of DMG H3-K27 altered cells nested in the SVZ.
Collapse
Affiliation(s)
- Marc-Antoine Da-Veiga
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Neurosurgery, CHU Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Neurology, CHU Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Pediatrics, Division of Hematology-Oncology, CHU Liège, Liège, Belgium
| |
Collapse
|
10
|
Zanoletti L, Valdata A, Nehlsen K, Faris P, Casali C, Cacciatore R, Sbarsi I, Carriero F, Arfini D, van Baarle L, De Simone V, Barbieri G, Raimondi E, May T, Moccia F, Bozzola M, Matteoli G, Comincini S, Manai F. Cytological, molecular, cytogenetic, and physiological characterization of a novel immortalized human enteric glial cell line. Front Cell Neurosci 2023; 17:1170309. [PMID: 37153631 PMCID: PMC10158601 DOI: 10.3389/fncel.2023.1170309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Enteric glial cells (EGCs), the major components of the enteric nervous system (ENS), are implicated in the maintenance of gut homeostasis, thereby leading to severe pathological conditions when impaired. However, due to technical difficulties associated with EGCs isolation and cell culture maintenance that results in a lack of valuable in vitro models, their roles in physiological and pathological contexts have been poorly investigated so far. To this aim, we developed for the first time, a human immortalized EGC line (referred as ClK clone) through a validated lentiviral transgene protocol. As a result, ClK phenotypic glial features were confirmed by morphological and molecular evaluations, also providing the consensus karyotype and finely mapping the chromosomal rearrangements as well as HLA-related genotypes. Lastly, we investigated the ATP- and acetylcholine, serotonin and glutamate neurotransmitters mediated intracellular Ca2+ signaling activation and the response of EGCs markers (GFAP, SOX10, S100β, PLP1, and CCL2) upon inflammatory stimuli, further confirming the glial nature of the analyzed cells. Overall, this contribution provided a novel potential in vitro tool to finely characterize the EGCs behavior under physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Lisa Zanoletti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Aurora Valdata
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Pawan Faris
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Claudio Casali
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Rosalia Cacciatore
- Immunohematology and Transfusion Service, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Ilaria Sbarsi
- Immunohematology and Transfusion Service, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Francesca Carriero
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Davide Arfini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Veronica De Simone
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Giulia Barbieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Francesco Moccia
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Sergio Comincini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Federico Manai,
| |
Collapse
|
11
|
Design of Biopolymer-Based Interstitial Therapies for the Treatment of Glioblastoma. Int J Mol Sci 2021; 22:ijms222313160. [PMID: 34884965 PMCID: PMC8658694 DOI: 10.3390/ijms222313160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of primary brain cancer and has the highest morbidity rate and current treatments result in a bleak 5-year survival rate of 5.6%. Interstitial therapy is one option to increase survival. Drug delivery by interstitial therapy most commonly makes use of a polymer implant encapsulating a drug which releases as the polymer degrades. Interstitial therapy has been extensively studied as a treatment option for GBM as it provides several advantages over systemic administration of chemotherapeutics. Primarily, it can be applied behind the blood–brain barrier, increasing the number of possible chemotherapeutic candidates that can be used and reducing systemic levels of the therapy while concentrating it near the cancer source. With interstitial therapy, multiple drugs can be released locally into the brain at the site of resection as the polymer of the implant degrades, and the release profile of these drugs can be tailored to optimize combination therapy or maintain synergistic ratios. This can bypass the blood–brain barrier, alleviate systemic toxicity, and resolve drug resistance in the tumor. However, tailoring drug release requires appropriate consideration of the complex relationship between the drug, polymer, and formulation method. Drug physicochemical properties can result in intermolecular bonding with the polymeric matrix and affect drug distribution in the implant depending on the formulation method used. This review is focused on current works that have applied interstitial therapy towards GBM, discusses polymer and formulation methods, and provides design considerations for future implantable biodegradable materials.
Collapse
|
12
|
Delello Di Filippo L, Hofstätter Azambuja J, Paes Dutra JA, Tavares Luiz M, Lobato Duarte J, Nicoleti LR, Olalla Saad ST, Chorilli M. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm 2021; 168:76-89. [PMID: 34461214 DOI: 10.1016/j.ejpb.2021.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBM has aggressive development, and the pharmacological treatment remains a challenge due to GBM anatomical characteristics' (the blood-brain barrier and tumor microenvironment) and the increasing resistance to marketed drugs, such as temozolomide (TMZ), the first-line drug for GBM treatment. Due to physical-chemical properties such as short half-life time and the increasing resistance shown by GBM cells, high doses and repeated administrations are necessary, leading to significant adverse events. This review will discuss the main molecular mechanisms of TMZ resistance and the use of functionalized nanocarriers as an efficient and safe strategy for TMZ delivery. GBM-targeting nanocarriers are an important tool for the treatment of GBM, demonstrating to improve the biopharmaceutical properties of TMZ and repurpose its use in anti-GBM therapy. Technical aspects of nanocarriers will be discussed, and biological models highlighting the advantages and effects of functionalization strategies in TMZ anti-GBM activity. Finally, conclusions regarding the main findings will be made in the context of new perspectives for the treatment of GBM using TMZ as a chemotherapy agent, improving the sensibility and biological anti-tumor effect of TMZ through functionalization strategies.
Collapse
Affiliation(s)
| | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Luiza Ribeiro Nicoleti
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
13
|
Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:130-142. [PMID: 33115610 PMCID: PMC8666131 DOI: 10.1016/j.pbiomolbio.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium; Boost Scientific, Heusden-Zolder, Belgium; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Ashley M Deacon
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | | | | | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Andrew P Yeh
- Accelero Biostructures Inc., San Francisco, CA, USA
| | - Andrew S Arvai
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Davide Moiani
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Debanu Das
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA.
| |
Collapse
|
14
|
Arnold A, Yuan M, Price A, Harris L, Eberhart CG, Raabe EH. Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity. Neuro Oncol 2021; 22:563-574. [PMID: 31841591 DOI: 10.1093/neuonc/noz230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor. Many patients with unresectable or recurrent/refractory tumors have significant lifelong disability. The majority of pLGG have mutations increasing the activity of the Ras/mitogen-activated protein kinase (MAPK) pathway. Activation of mammalian target of rapamycin (mTOR) is also a hallmark of pLGG. We therefore hypothesized that the dual target of rapamycin complexes 1 and 2 (TORC1/2) kinase inhibitor TAK228 would synergize with the mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor trametinib in pLGG. METHODS We tested TAK228 and trametinib in patient-derived pLGG cell lines harboring drivers of pLGG including BRAFV600E and neurofibromatosis type 1 loss. We measured cell proliferation, pathway inhibition, cell death, and senescence. Synergy was analyzed via MTS assay using the Chou-Talalay method. In vivo, we tested for overall survival and pathway inhibition and performed immunohistochemistry for proliferation and vascularization. We performed a scratch assay and measured angiogenesis protein activation in human umbilical vein endothelial cells (HUVECs). RESULTS TAK228 synergized with trametinib in pLGG at clinically relevant doses in all tested cell lines, suppressing proliferation, inducing apoptosis, and causing senescence in a cell line-dependent manner. Combination treatment increased median survival by 70% and reduced tumor volume compared with monotreatment and control cohorts. Vascularization of tumors decreased as measured by CD31 and CD34. Combination treatment blocked activation of focal adhesion kinase (FAK) and sarcoma proto-oncogene non-receptor tyrosine kinase (SRC) in HUVEC cells and reduced HUVEC migration compared with each drug alone. CONCLUSIONS The combination of TAK228 and trametinib synergized to suppress the growth of pLGG. These agents synergized to reduce tumor vascularity and endothelial cell growth and migration by blocking activation of FAK and SRC.
Collapse
Affiliation(s)
- Antje Arnold
- Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, Maryland
| | - Ming Yuan
- Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, Maryland
| | - Antionette Price
- Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, Maryland
| | - Lauren Harris
- Johns Hopkins University Krieger School of Arts and Sciences, Department of Molecular and Cell Biology, Baltimore, Maryland
| | - Charles G Eberhart
- Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, Maryland
| | - Eric H Raabe
- Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, Maryland.,Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Division of Pediatric Oncology, Baltimore, Maryland
| |
Collapse
|
15
|
Hindle A, Koneru B, Makena MR, Lopez-Barcons L, Chen WH, Nguyen TH, Reynolds CP. The O6-methyguanine-DNA methyltransferase inhibitor O6-benzylguanine enhanced activity of temozolomide + irinotecan against models of high-risk neuroblastoma. Anticancer Drugs 2021; 32:233-247. [PMID: 33323683 PMCID: PMC9255907 DOI: 10.1097/cad.0000000000001020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA-damaging chemotherapy is a major component of therapy for high-risk neuroblastoma, and patients often relapse with treatment-refractory disease. We hypothesized that DNA repair genes with increased expression in alkylating agent resistant models would provide therapeutic targets for enhancing chemotherapy. In-vitro cytotoxicity of alkylating agents for 12 patient-derived neuroblastoma cell lines was assayed using DIMSCAN, and mRNA expression of 57 DNA repair, three transporter, and two glutathione synthesis genes was assessed by TaqMan low-density array (TLDA) with further validation by qRT-PCR in 26 cell lines. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was upregulated in cell lines with greater melphalan and temozolomide (TMZ) resistance. MGMT expression also correlated significantly with resistance to TMZ+irinotecan (IRN) (in-vitro as the SN38 active metabolite). Forced overexpression of MGMT (lentiviral transduction) in MGMT non-expressing cell lines significantly increased TMZ+SN38 resistance. The MGMT inhibitor O6-benzylguanine (O6BG) enhanced TMZ+SN38 in-vitro cytotoxicity, H2AX phosphorylation, caspase-3 cleavage, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. TMZ+IRN+O6BG delayed tumor growth and increased survival relative to TMZ+IRN in two of seven patient-derived xenografts established at time of death from progressive neuroblastoma. We demonstrated that high MGMT expression was associated with resistance to alkylating agents and TMZ+IRN in preclinical neuroblastoma models. The MGMT inhibitor O6BG enhanced the anticancer effect of TMZ+IRN in vitro and in vivo. These results support further preclinical studies exploring MGMT as a therapeutic target and biomarker of TMZ+IRN resistance in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Ashly Hindle
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Balakrishna Koneru
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Monish Ram Makena
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lluis Lopez-Barcons
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Wan Hsi Chen
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Thinh H. Nguyen
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - C. Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
16
|
Candido MF, Baldissera GC, Medeiros M, Umezawa K, Brassesco MS. NF-кB inhibition by DHMEQ: in vitro antiproliferative effects on pilocytic astrocytoma and concise review of the current literature. Childs Nerv Syst 2020; 36:2675-2684. [PMID: 32385563 DOI: 10.1007/s00381-020-04625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pilocytic astrocytoma (PA) is the most common brain tumor that affects the pediatric population. Even though PA is benign and treatment only involves surgery, recurrent or unresectable tumors require chemo- and radiotherapy. Besides BRAF, CDKN2A, or IDH mutations, the hyperactivation of the nuclear factor NF-κB contributes to tumor growth and survival. METHODS In the present study, we used publicly available data for the in silico analysis of NF-κB subunits (RELA, RELB, REL, NF-κB1, and NF-κB2) expression in PA samples. Besides, in vitro assays were performed to evaluate proliferation, migration, cell death, on the PA cell line Res286 comparing to human primary astrocytes. Sensitization to radiation therapy and temozolomide (TMZ) was also assayed. RESULTS Our results showed that all the members of the NF-kB family are upregulated in PA datasets compared to normal brain tissues. Moreover, DHMEQ treatment significantly reduced cell growth and motility, while sensitized cells to ionizing radiation and TMZ, as previously seen in high-grade gliomas. CONCLUSIONS This drug presents a potential application in clinical practice for the treatment of recurrent or inoperable PA. Moreover, its use might assist adjuvant chemotherapy and reduce irradiation doses to avoid toxicity to the surrounding tissues.
Collapse
Affiliation(s)
- M F Candido
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - G C Baldissera
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - M Medeiros
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - K Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - María Sol Brassesco
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
17
|
Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation. Cells 2020; 9:cells9071626. [PMID: 32640653 PMCID: PMC7408059 DOI: 10.3390/cells9071626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.
Collapse
|
18
|
Yu W, Zhang L, Wei Q, Shao A. O 6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front Oncol 2020; 9:1547. [PMID: 32010632 PMCID: PMC6979006 DOI: 10.3389/fonc.2019.01547] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance has been a significant problem affecting the efficacy of drugs targeting tumors for decades. MGMT, known as O6-methylguanine-DNA methyltransferase, is a DNA repair enzyme that plays an important role in chemoresistance to alkylating agents. Hence, MGMT is considered a promising target for tumor treatment. Several methods are employed to detect MGMT, each with its own advantages and disadvantages. Some of the detection methods are; immunohistochemistry, methylation-specific PCR (MSP), pyrophosphate sequencing, MGMT activity test, and real-time quantitative PCR. Methylation of MGMT promoter is a key predictor of whether alkylating agents can effectively control glioma cells. The prognostic value of MGMT in glioma is currently being explored. The expression of MGMT gene mainly depends on epigenetic modification–methylation of CpG island of MGMT promoter. CpG island covers a length of 762 bp, with 98 CpG sites located at the 5' end of the gene, ranging from 480 to 1,480 nucleotides. The methylation sites and frequencies of CpG islands vary in MGMT-deficient tumor cell lines, xenografts of glioblastoma and in situ glioblastoma. Methylation in some regions of promoter CpG islands is particularly associated with gene expression. The change in the methylation status of the MGMT promoter after chemotherapy, radiotherapy or both is not completely understood, and results from previous studies have been controversial. Several studies have revealed that chemotherapy may enhance MGMT expression in gliomas. This could be through gene induction or selection of high MGMT-expressing cells during chemotherapy. Selective survival of glioma cells with high MGMT expression during alkylating agent therapy may change MGMT status in case of recurrence. Several strategies have been pursued to improve the anti-tumor effects of temozolomide. These include the synthesis of analogs of O6-meG such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl) guanine (O6-BTG), RNAi, and viral proteins. This review describes the regulation of MGMT expression and its role in chemotherapy, especially in glioma. Targeting MGMT seems to be a promising approach to overcome chemoresistance. Further studies exploring new agents targeting MGMT with better curative effect and less toxicity are advocated. We anticipate that these developments will improve the current poor prognosis of glioma patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Lili Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Wu Y, Fan Q, Zeng F, Zhu J, Chen J, Fan D, Li X, Duan W, Guo Q, Cao Z, Briley-Saebo K, Li C, Tao X. Peptide-Functionalized Nanoinhibitor Restrains Brain Tumor Growth by Abrogating Mesenchymal-Epithelial Transition Factor (MET) Signaling. NANO LETTERS 2018; 18:5488-5498. [PMID: 30067910 DOI: 10.1021/acs.nanolett.8b01879] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Malignant gliomas are the most common primary brain tumors and are associated with aggressive growth, high morbidity, and mortality. Aberrant mesenchymal-epithelial transition factor (MET) activation occurs in approximately 30% of glioma patients and correlates with poor prognosis, elevated invasion, and increased drug resistance. Therefore, MET has emerged as an attractive target for glioma therapy. In this study, we developed a novel nanoinhibitor by conjugating MET-targeting cMBP peptides on the G4 dendrimer. Compared to the binding affinity of the free peptide ( KD = 3.96 × 10-7 M), the binding affinity of the nanoinhibitor to MET increased 3 orders of magnitude to 1.32 × 10-10 M. This nanoinhibitor efficiently reduced the proliferation and invasion of human glioblastoma U87MG cells in vitro by blocking MET signaling with remarkably attenuated levels of phosphorylated MET ( pMET) and its downstream signaling proteins, such as pAKT and pERK1/2. Although no obvious therapeutic effect was observed after treatment with free cBMP peptide, in vivo T2-weighted magnetic resonance imaging (MRI) showed a significant delay in tumor growth after intravenous injection of the nanoinhibitor. The medium survival in mouse models was extended by 59%, which is similar to the effects of PF-04217903, a small molecule MET inhibitor currently in clinical trials. Immunoblotting studies of tumor homogenate verified that the nanoinhibitor restrained glioma growth by blocking MET downstream signaling. pMET and its downstream proteins pAKT and pERK1/2, which are involved in the survival and invasion of cancer cells, decreased in the nanoinhibitor-treated group by 44.2%, 62.2%, and 32.3%, respectively, compared with those in the control group. In summary, we developed a peptide-functionalized MET nanoinhibitor that showed extremely high binding affinity to MET and effectively inhibited glioma growth by blocking MET downstream signaling. To the best of our knowledge, this is the first report of therapeutic inhibition of glioma growth by blocking MET signaling with a novel nanoinhibitor. Compared to antibodies and chemical inhibitors in clinical trials, the nanoinhibitor blocks MET signaling and provides a new approach for the treatment of glioma with the advantages of high efficiency, affordability, and, most importantly, potentially reduced drug resistance.
Collapse
Affiliation(s)
- Yingwei Wu
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Qi Fan
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Feng Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Jinyu Zhu
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Dandan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Xinwei Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Qinghua Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Zhonglian Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Karen Briley-Saebo
- Department of Radiology , the Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging , Columbus , Ohio 43210 , United States
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| |
Collapse
|
20
|
Graham-Gurysh E, Moore KM, Satterlee AB, Sheets KT, Lin FC, Bachelder EM, Miller CR, Hingtgen SD, Ainslie KM. Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection. Mol Pharm 2018; 15:1309-1318. [PMID: 29342360 DOI: 10.1021/acs.molpharmaceut.7b01114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The primary cause of mortality for glioblastoma (GBM) is local tumor recurrence following standard-of-care therapies, including surgical resection. With most tumors recurring near the site of surgical resection, local delivery of chemotherapy at the time of surgery is a promising strategy. Herein drug-loaded polymer scaffolds with two distinct degradation profiles were fabricated to investigate the effect of local drug delivery rate on GBM recurrence following surgical resection. The novel biopolymer, acetalated dextran (Ace-DEX), was compared with commercially available polyester, poly(l-lactide) (PLA). Steady-state doxorubicin (DXR) release from Ace-DEX scaffolds was found to be faster when compared with scaffolds composed of PLA, in vitro. This increased drug release rate translated to improved therapeutic outcomes in a novel surgical model of orthotopic glioblastoma resection and recurrence. Mice treated with DXR-loaded Ace-DEX scaffolds (Ace-DEX/10DXR) resulted in 57% long-term survival out to study completion at 120 days compared with 20% survival following treatment with DXR-loaded PLA scaffolds (PLA/10DXR). Additionally, all mice treated with PLA/10DXR scaffolds exhibited disease progression by day 38, as defined by a 5-fold growth in tumor bioluminescent signal. In contrast, 57% of mice treated with Ace-DEX/10DXR scaffolds displayed a reduction in tumor burden, with 43% exhibiting complete remission. These results underscore the importance of polymer choice and drug release rate when evaluating local drug delivery strategies to improve prognosis for GBM patients undergoing tumor resection.
Collapse
Affiliation(s)
- Elizabeth Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kathryn M Moore
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kevin T Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Departments of Neurology and Pharmacology, Lineberger Comprehensive Cancer Center, and Neuroscience Center, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
21
|
Kurimoto T, Kondo A, Ogino I, Fujimura J, Arakawa A, Arai H, Shimizu T. Effect of O 6-methylguanine-DNA methyltransferase methylation in medulloblastoma. Mol Clin Oncol 2017; 7:1107-1111. [PMID: 29285383 DOI: 10.3892/mco.2017.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
Medulloblastoma is a highly malignant brain tumor that predominately affects children and requires multimodal treatment, including chemotherapy with alkylating agents. O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that plays an important role in tumor resistance to alkylating agents. Recent studies demonstrated that MGMT promoter methylation suppresses the expression of MGMT and is associated with favorable outcomes of malignant glioma patients. However, the MGMT methylation status and its prognostic impact on medulloblastoma have not been fully elucidated to date. The objective of the present study was to investigate the association between MGMT status and clinical outcomes of pediatric medulloblastoma patients. The records of 15 patients with medulloblastoma treated at our institution were reviewed, and the methylation status of 18 CpG sites in the MGMT promoter region was determined using bisulfite sequencing analysis. A larger number of methylated CpG sites was identified in 9 patients with complete remission (median, 5 sites; range, 2-9 sites) compared with that in 6 patients with relapse (median, 2 sites, range, 1-4 sites; P=0.041). These results suggest that a higher number of methylated CpG sites in the MGMT promoter region are associated with a favorable outcome of medulloblastoma.
Collapse
Affiliation(s)
- Tomoko Kurimoto
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo 112-8421, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo 112-8421, Japan
| | - Junya Fujimura
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo 112-8421, Japan
| | - Atsushi Arakawa
- Department of Pathology, Juntendo University Faculty of Medicine, Tokyo 112-8421, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo 112-8421, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo 112-8421, Japan
| |
Collapse
|
22
|
Bonfim-Silva R, Ferreira Melo FU, Thomé CH, Abraham KJ, De Souza FAL, Ramalho FS, Machado HR, De Oliveira RS, Cardoso AA, Covas DT, Fontes AM. Functional analysis of HOXA10 and HOXB4 in human medulloblastoma cell lines. Int J Oncol 2017; 51:1929-1940. [PMID: 29039487 DOI: 10.3892/ijo.2017.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Medulloblastoma (MB) is a malignant childhood brain tumor which at molecular level is classified into at least four major subtypes: WNT, SHH, group C and group D differing in response to treatment. Previous studies have associated changes in expression levels and activation of certain HOX genes with MB development. In the present study, we investigate the role of HOX genes in two attributes acquired by tumor cells: migration and proliferation potential, as well as, in vivo tumorigenic potential. We analyzed UW402, UW473, DAOY and ONS-76 human pediatric MB cell lines and cerebellum primary cultures. Two-color microarray-based gene expression analysis was used to identify differentially expressed HOX genes. Among the various HOX genes significantly overexpressed in DAOY and ONS-76 cell lines compared to UW402 and UW473 cell lines, HOXA10 and HOXB4 were selected for further analysis. The expression levels of these HOX genes were validated by real-time PCR. A mouse model was used to study the effect of the HOXA10 and HOXB4 genes on the in vivo tumorigenic potential and the in vitro proliferative and migration potential of MB cell lines. Our results show that the inhibition of HOXA10 in DAOY cell line led to increased in vitro cell migration while in vitro cell proliferation or in vivo tumorigenic potential were unaffected. We also observed that induced expression of HOXB4 in the UW473 cell line significantly reduced in vitro cell proliferation and migration capability of UW473 cells with no effect on the in vivo tumorigenicity. This suggests that HOXA10 plays a role in migration events and the HOXB4 gene is involved in proliferation and migration processes of medulloblastoma cells, however, it appears that these genes are not essential for the tumorigenic process of these cells.
Collapse
Affiliation(s)
- Ricardo Bonfim-Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Ursoli Ferreira Melo
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Hassibe Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Kuruvilla Joseph Abraham
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fábio Augusto Labre De Souza
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Silva Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery of the Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Santos De Oliveira
- Division of Pediatric Neurosurgery of the Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Angelo A Cardoso
- Center for Gene Therapy, City of Hope Alpha Stem Cell Clinic, Duarte, CA 91010, USA
| | - Dimas Tadeu Covas
- Department of Internal Medicine, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Aparecida Maria Fontes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
23
|
Xi G, Li YD, Grahovac G, Rajaram V, Wadhwani N, Pundy T, Mania-Farnell B, James CD, Tomita T. Targeting CD133 improves chemotherapeutic efficacy of recurrent pediatric pilocytic astrocytoma following prolonged chemotherapy. Mol Cancer 2017; 16:21. [PMID: 28137267 PMCID: PMC5282778 DOI: 10.1186/s12943-017-0593-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
Background Pilocytic astrocytomas (PAs) are the most common pediatric central nervous system neoplasms. In the majority of cases these tumors are benign and receive favorable prognosis following gross total surgical resection. In patients with progressive or symptomatic tumors, aggressive surgical resection is generally not feasible, thus radiation or chemotherapy are accepted initial or adjuvant interventions. Due to serious long-lasting side-effects, radiation is limited in young children; therefore, chemotherapy is widely practiced as an adjuvant treatment for these patients. However, chemotherapy can promote the emergence of multidrug resistant tumor cells that are more malignant than those of the original tumor. CD133, a putative stem cell marker in normal tissue and malignant brain tumors, enhances multidrug resistant gene 1 (MDR1) expression following chemotherapy in adult malignant glioblastomas. This study examines the relationship between CD133 and MDR1 in pediatric PAs exposed to chemotherapy, with the goal of identifying therapeutic targets that manifest as a result of chemotherapy. Methods Slides were obtained for 15 recurrent PAs, seven of which had received chemotherapy prior to surgical treatment for the recurrent tumor. These samples, as well as primary tumor tissue slides from the same patients were used to investigate CD133 and MDR1 expression via immunofluorescence. Archived frozen tissue samples from the same patients were used to examine CD133, MDR1 and PI3K-Akt-NF-κB signaling mediators, via western blot. Two drug resistant pediatric PA cell lines Res186 and Res199 were also used to evaluate the role of CD133 on cell response to cytotoxic therapy. Results CD133 and MDR1 were co-expressed and their expression was elevated in recurrent PAs from patients that had received chemotherapy, compared to patients that had not received chemotherapy. PI3K-Akt-NF-κB signaling mediator expression was also elevated in recurrent, chemotherapy-treated PA. Suppressing CD133 expression with siCD133 decreased levels of PI3K-Akt-NF-κB signaling mediators and MDR1, while increasing cell chemosensitivity, as indicated by quantification of apoptotic cells following chemotherapy. Conclusions CD133 contributes to multidrug resistance by regulating MDR1 levels via the PI3K-Akt-NF-κB signal pathway not only in adult glioblastomas, but also in pediatric PAs. Targeting CD133, adjuvant to conventional chemotherapy may improve outcomes for children with recurrent PA. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0593-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guifa Xi
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA. .,Development Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Yuping Derek Li
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA
| | - Gordan Grahovac
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA
| | - Veena Rajaram
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nitin Wadhwani
- Department of Pathology, Children's Medical Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tatiana Pundy
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA.,Development Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Charles David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tadanori Tomita
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA. .,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Smith SJ, Ward JH, Tan C, Grundy RG, Rahman R. Endothelial-like malignant glioma cells in dynamic three dimensional culture identifies a role for VEGF and FGFR in a tumor-derived angiogenic response. Oncotarget 2016. [PMID: 26203665 PMCID: PMC4673156 DOI: 10.18632/oncotarget.4339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aims: Recent studies have observed that cells from high-grade glial tumors are capable of assuming an endothelial phenotype and genotype, a process termed ‘vasculogenic mimicry’ (VM). Here we model and manipulate VM in dynamic 3-dimensional (3D) glioma cultures. Methods: The Rotary Cell Culture System (RCCS) was used to derive large macroscopic glioma aggregates, which were sectioned for immunohistochemistry and RNA extracted prior to angiogenic array-PCR. Results: A 3D cell culture induced microenvironment (containing only glial cells) is sufficient to promote expression of the endothelial markers CD105, CD31 and vWF in a proportion of glioma aggregates in vitro. Many pro-angiogenic genes were upregulated in glioma aggregates and in primary explants and glioma cells were capable of forming tubular-like 3D structures under endothelial-promoting conditions. Competitive inhibition of either vascular endothelial growth factor or fibroblast growth factor receptor was sufficient to impair VM and downregulate the tumor-derived angiogenic response, whilst impairing tumor cell derived tubule formation. Glioma xenografts using the same cells reveal tumor-derived vessel-like structures near necrotic areas, consistent with widespread tumor-derived endothelial expression in primary glioma tissue. Conclusions: Our findings support studies indicating that tumor-derived endothelial cells arise in gliomas and describe a dynamic 3D culture as a bona fide model to interrogate the molecular basis of this phenomenon in vitro. Resistance to current anti-angiogenic therapies and the contribution of tumor derived endothelial cells to such resistance are amenable to study using the RCCS.
Collapse
Affiliation(s)
- Stuart J Smith
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jennifer H Ward
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Christopher Tan
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Richard G Grundy
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: Choosing the right tool for the job. J Biotechnol 2016; 236:10-25. [PMID: 27498314 DOI: 10.1016/j.jbiotec.2016.07.028] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
The recently-defined four molecular subgroups of medulloblastoma have required updating of our understanding of in vitro models to include molecular classification and risk stratification features from clinical practice. This review seeks to build a more comprehensive picture of the in vitro systems available for modelling medulloblastoma. The subtype classification and molecular characterisation for over 40 medulloblastoma cell-lines has been compiled, making it possible to identify the strengths and weaknesses in current model systems. Less than half (18/44) of established medulloblastoma cell-lines have been subgrouped. The majority of the subgrouped cell-lines (11/18) are Group 3 with MYC-amplification. SHH cell-lines are the next most common (4/18), half of which exhibit TP53 mutation. WNT and Group 4 subgroups, accounting for 50% of patients, remain underrepresented with 1 and 2 cell-lines respectively. In vitro modelling relies not only on incorporating appropriate tumour cells, but also on using systems with the relevant tissue architecture and phenotype as well as normal tissues. Novel ways of improving the clinical relevance of in vitro models are reviewed, focusing on 3D cell culture, extracellular matrix, co-cultures with normal cells and organotypic slices. This paper champions the establishment of a collaborative online-database and linked cell-bank to catalyse preclinical medulloblastoma research.
Collapse
Affiliation(s)
- Delyan P Ivanov
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - David A Walker
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
26
|
Zomerman WW, Plasschaert SLA, Diks SH, Lourens HJ, Meeuwsen-de Boer T, Hoving EW, den Dunnen WFA, de Bont ESJM. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines. PLoS One 2015; 10:e0141381. [PMID: 26496080 PMCID: PMC4619778 DOI: 10.1371/journal.pone.0141381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
Recent clinical trials investigating receptor tyrosine kinase (RTK) inhibitors showed a limited clinical response in medulloblastoma. The present study investigated the role of micro-environmental growth factors expressed in the brain, such as HGF and EGF, in relation to the effects of hepatocyte growth factor receptor (MET) and epidermal growth factor receptor family (ErbB1-4) inhibition in medulloblastoma cell lines. Medulloblastoma cell lines were treated with tyrosine kinase inhibitors crizotinib or canertinib, targeting MET and ErbB1-4, respectively. Upon treatment, cells were stimulated with VEGF-A, PDGF-AB, HGF, FGF-2 or EGF. Subsequently, we measured cell viability and expression levels of growth factors and downstream signaling proteins. Addition of HGF or EGF phosphorylated MET or EGFR, respectively, and demonstrated phosphorylation of Akt and ERK1/2 as well as increased tumor cell viability. Crizotinib and canertinib both inhibited cell viability and phosphorylation of Akt and ERK1/2. Specifically targeting MET using shRNA’s resulted in decreased cell viability. Interestingly, addition of HGF to canertinib significantly enhanced cell viability as well as phosphorylation of Akt and ERK1/2. The HGF-induced bypass of canertinib was reversed by addition of crizotinib. HGF protein was hardly released by medulloblastoma cells itself. Addition of canertinib did not affect RTK cell surface or growth factor expression levels. This manuscript points to the bypassing capacity of exogenous HGF in medulloblastoma cell lines. It might be of great interest to anticipate on these results in developing novel clinical trials with a combination of MET and EGFR inhibitors in medulloblastoma.
Collapse
Affiliation(s)
- Walderik W. Zomerman
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Sabine L. A. Plasschaert
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- * E-mail:
| | - Sander H. Diks
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm-Jan Lourens
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Tiny Meeuwsen-de Boer
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Eelco W. Hoving
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Wilfred F. A. den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Eveline S. J. M. de Bont
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Abstract
OBJECTIVES Survivin, an antiapoptotic gene inhibited by p53, is overexpressed in human cancers and correlates with chemotherapy resistance. Here, we investigated the mutual regulatory mechanism between MGMT (O-methylguanine DNA methyltransferase) and survivin. METHODS This study used standard techniques for protein and messenger RNA levels, promoter activity, protein-DNA interaction, cell viability, and correlative animal model. RESULTS O-benzylguanine (BG), a potent inhibitor of MGMT (a DNA repair protein), curtails the expression of survivin in pancreatic cancer. Silencing MGMT by small interfering RNA down-regulates survivin transcription. p53 inhibition enhances MGMT and survivin expressions. When p53 was silenced, BG-induced MGMT inhibition was not associated with the down-regulation of survivin, underscoring the regulatory role of p53 in the MGMT-survivin axis. O-benzylguanine inhibits survivin and PCNA (proliferating cell nuclear antigen) at messenger RNA and protein levels in PANC-1 and L3.6pl cells and decreases survivin promoter activity via increased p53 recruitment to the survivin promoter. In orthotopic pancreatic xenografts established in nude mice, BG ± gemcitabine (GEM) decrease survivin expression in tumor tissue; protein levels and immunohistochemistry show significant decrease in survivin and PCNA levels, which correlate with increased sensitivity to GEM. CONCLUSIONS MGMT inhibition is associated with decrease in survivin expression and increase in sensitivity to GEM in pancreatic cancer.
Collapse
|
28
|
Sie M, den Dunnen WFA, Lourens HJ, Meeuwsen-de Boer TGJ, Scherpen FJG, Zomerman WW, Kampen KR, Hoving EW, de Bont ESJM. Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through Akt and Erk phosphorylation in pediatric low grade astrocytoma and ependymoma. PLoS One 2015; 10:e0122555. [PMID: 25799134 PMCID: PMC4370756 DOI: 10.1371/journal.pone.0122555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/23/2015] [Indexed: 01/20/2023] Open
Abstract
Up to now, several clinical studies have been started investigating the relevance of receptor tyrosine kinase (RTK) inhibitors upon progression free survival in various pediatric brain tumors. However, single targeted kinase inhibition failed, possibly due to tumor resistance mechanisms. The present study will extend our previous observations that vascular endothelial growth factor receptor (VEGFR)-2, platelet derived growth factor receptor (PDGFR)β, Src, the epidermal growth factor receptor (ErbB) family, and hepatocyte growth factor receptor (HGFR/cMet) are potentially drugable targets in pediatric low grade astrocytoma and ependymoma with investigations concerning growth-factor-driven rescue. This was investigated in pediatric low grade astrocytoma and ependymoma cell lines treated with receptor tyrosine kinase (RTK) inhibitors e.g. sorafenib, dasatinib, canertinib and crizotinib. Flow cytometry analyses showed high percentage of cells expressing VEGFR-1, fibroblast growth factor receptor (FGFR)-1, ErbB1/EGFR, HGFR and recepteur d’origine nantais (RON) (respectively 52-77%, 34-51%, 63-90%, 83-98%, 65-95%). Their respective inhibitors induced decrease of cell viability, measured with WST-1 cell viability assays. At least this was partially due to increased apoptotic levels measured by Annexin V/Propidium Iodide apoptosis assays. EGF, HGF and FGF, which are normally expressed in brain (tumor) tissue, showed to be effective rescue inducing growth factors resulting in increased cell survival especially during treatment with dasatinib (complete rescue) or sorafenib (partial rescue). Growth-factor-driven rescue was less prominent when canertinib or crizotinib were used. Rescue was underscored by significantly activating downstream Akt and/or Erk phosphorylation and increased tumor cell migration. Combination treatment showed to be able to overcome the growth-factor-driven rescue. In conclusion, our study highlights the extensive importance of environmentally present growth factors in developing tumor escape towards RTK inhibitors in pediatric low grade astrocytoma and ependymoma. It is of great interest to anticipate upon these results for the design of new therapeutic trials with RTK inhibitors in these pediatric brain tumors.
Collapse
Affiliation(s)
- Mariska Sie
- Department of Pediatrics, Beatrix Children’s Hospital, Pediatric Oncology/Hematology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wilfred F. A. den Dunnen
- Department of Pathology and Medical Biology, Pathology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harm Jan Lourens
- Department of Pediatrics, Beatrix Children’s Hospital, Pediatric Oncology/Hematology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tiny G. J. Meeuwsen-de Boer
- Department of Pediatrics, Beatrix Children’s Hospital, Pediatric Oncology/Hematology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Frank J. G. Scherpen
- Department of Pediatrics, Beatrix Children’s Hospital, Pediatric Oncology/Hematology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Walderik W. Zomerman
- Department of Pediatrics, Beatrix Children’s Hospital, Pediatric Oncology/Hematology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kim R. Kampen
- Department of Pediatrics, Beatrix Children’s Hospital, Pediatric Oncology/Hematology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eelco W. Hoving
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eveline S. J. M. de Bont
- Department of Pediatrics, Beatrix Children’s Hospital, Pediatric Oncology/Hematology division, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
29
|
Xu J, Margol A, Asgharzadeh S, Erdreich-Epstein A. Pediatric brain tumor cell lines. J Cell Biochem 2015; 116:218-24. [PMID: 25211508 PMCID: PMC10656279 DOI: 10.1002/jcb.24976] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 12/30/2022]
Abstract
Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.
Collapse
Affiliation(s)
- Jingying Xu
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
| | - Ashley Margol
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
- Department of Pathology, Saban Research Institute at Children’s Hospital Los Angeles and the Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Anat Erdreich-Epstein
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
- Department of Pathology, Saban Research Institute at Children’s Hospital Los Angeles and the Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| |
Collapse
|
30
|
Hiddingh L, Tannous BA, Teng J, Tops B, Jeuken J, Hulleman E, Boots-Sprenger SH, Vandertop WP, Noske DP, Kaspers GJL, Wesseling P, Wurdinger T. EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma. Oncotarget 2015; 5:363-74. [PMID: 24495907 PMCID: PMC3964213 DOI: 10.18632/oncotarget.1620] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Temozolomide (TMZ) is the standard chemotherapeutic agent for this disease. However, intrinsic and acquired TMZ-resistance represents a major obstacle for this therapy. In order to identify factors involved in TMZ-resistance, we engineered different TMZ-resistant glioblastoma cell lines. Gene expression analysis demonstrated that EFEMP1, an extracellular matrix protein, is associated with TMZ-resistant phenotype. Silencing of EFEMP1 in glioblastoma cells resulted in decreased cell survival following TMZ treatment, whereas overexpression caused TMZ-resistance. EFEMP1 acts via multiple signaling pathways, including γ-secretase-mediated activation of the Notch pathway. We show that inhibition of γ-secretase by RO4929097 causes at least partial sensitization of glioblastoma cells to temozolomide in vitro and in vivo. In addition, we show that EFEMP1 expression levels correlate with survival in TMZ-treated glioblastoma patients. Altogether our results suggest EFEMP1 as a potential therapeutic target to overcome TMZ-resistance in glioblastoma.
Collapse
Affiliation(s)
- Lotte Hiddingh
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sørensen MD, Fosmark S, Hellwege S, Beier D, Kristensen BW, Beier CP. Chemoresistance and chemotherapy targeting stem-like cells in malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:111-38. [PMID: 25895710 DOI: 10.1007/978-3-319-16537-0_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glioblastoma remains a tumor with a dismal prognosis because of failure of current treatment. Glioblastoma cells with stem cell (GSC) properties survive chemotherapy and give rise to tumor recurrences that invariably result in the death of the patients. Here we summarize the current knowledge on chemoresistance of malignant glioma with a strong focus on GSC. Chemoresistant GSC are the most likely cause of tumor recurrence, but it remains controversial if GSC and under which conditions GSC are more chemoresistant than non-GSC within the tumor. Regardless of this uncertainty, the chemoresistance varies and it is mainly mediated by intrinsic factors. O6-methyl-guanidine methyltransferase (MGMT) remains the most potent mediator of chemoresistance, but disturbed mismatch repair system and multidrug resistance proteins contribute substantially. However, the intrinsic resistance by MGMT expression is regulated by extrinsic factors like hypoxia increasing MGMT expression and thereby resistance to alkylating chemotherapy. The search of new biomarkers helping to predict the tumor response to chemotherapy is ongoing and will complement the already known markers like MGMT.
Collapse
Affiliation(s)
- Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense C, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K, Hatzinger SJ, Ellenbogen RG, Silber JR, Zhang M. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS NANO 2014; 8:10383-95. [PMID: 25247850 PMCID: PMC4212796 DOI: 10.1021/nn503735w] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/23/2014] [Indexed: 05/21/2023]
Abstract
Resistance to temozolomide (TMZ) based chemotherapy in glioblastoma multiforme (GBM) has been attributed to the upregulation of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Inhibition of MGMT using O(6)-benzylguanine (BG) has shown promise in these patients, but its clinical use is hindered by poor pharmacokinetics that leads to unacceptable toxicity. To improve BG biodistribution and efficacy, we developed superparamagnetic iron oxide nanoparticles (NP) for targeted convection-enhanced delivery (CED) of BG to GBM. The nanoparticles (NPCP-BG-CTX) consist of a magnetic core coated with a redox-responsive, cross-linked, biocompatible chitosan-PEG copolymer surface coating (NPCP). NPCP was modified through covalent attachment of BG and tumor targeting peptide chlorotoxin (CTX). Controlled, localized BG release was achieved under reductive intracellular conditions and NPCP-BG-CTX demonstrated proper trafficking of BG in human GBM cells in vitro. NPCP-BG-CTX treated cells showed a significant reduction in MGMT activity and the potentiation of TMZ toxicity. In vivo, CED of NPCP-BG-CTX produced an excellent volume of distribution (Vd) within the brain of mice bearing orthotopic human primary GBM xenografts. Significantly, concurrent treatment with NPCP-BG-CTX and TMZ showed a 3-fold increase in median overall survival in comparison to NPCP-CTX/TMZ treated and untreated animals. Furthermore, NPCP-BG-CTX mitigated the myelosuppression observed with free BG in wild-type mice when administered concurrently with TMZ. The combination of favorable physicochemical properties, tumor cell specific BG delivery, controlled BG release, and improved in vivo efficacy demonstrates the great potential of these NPs as a treatment option that could lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Zachary R. Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Forrest M. Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Omid Veiseh
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Peter A. Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Chen Fang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shelby J. Hatzinger
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
- Department of Radiology, University of Washington, Seattle, Washington 98195, United States
| | - John R. Silber
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
- Address correspondence to
| |
Collapse
|
33
|
Schwake M, Günes D, Köchling M, Brentrup A, Schroeteler J, Hotfilder M, Fruehwald MC, Stummer W, Ewelt C. Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid. Acta Neurochir (Wien) 2014; 156:1077-84. [PMID: 24777761 DOI: 10.1007/s00701-014-2096-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) enables more complete resections of tumors in adults. 5-ALA elicits accumulation of fluorescent porphyrins in various cancerous tissues, which can be visualized using a modified neurosurgical microscope with blue light. Although this technique is well established in adults, it has not been investigated systematically in pediatric brain tumors. Specifically, it is unknown how quickly, how long, and to what extent various pediatric tumors accumulate fluorescence. The purpose of this study was to determine utility and time course of 5-ALA-induced fluorescence in typical pediatric brain tumors in vitro. METHODS Cell cultures of medulloblastoma [DAOY and UW228], cPNET [PFSK] atypical teratoid rhabdoid tumor [BT16] and ependymoma [RES196] were incubated with 5-ALA for either 60 minutes or continuously. Porphyrin fluorescence intensities were determined using a fluorescence-activated cell sorter (FACS) after 1, 3, 6, 9, 12 and 24 hours. C6 and U87 cells served as controls. RESULTS All pediatric brain tumor cell lines displayed fluorescence compared to their respective controls without 5-ALA (p < 0.05). Sixty minutes of incubation resulted in peaks between 3 and 6 hours, whereas continuous incubation resulted in peaks at 12 hours or beyond. 60 minute incubation peak levels were between 52 and 91 % of maxima achieved with continuous incubation. Accumulation and clearance varied between cell types. CONCLUSIONS We demonstrate that 5-ALA exposure of cell lines derived from typical pediatric central nervous system (CNS) tumors induces accumulation of fluorescent porphyrins. Differences in uptake and clearance indicate that different application modes may be necessary for fluorescence-guided resection, depending on tumor type.
Collapse
Affiliation(s)
- Michael Schwake
- Department of Neurosurgery, University Hospital, Albert-Schweitzer-Campus 1, Gebäude A1, D-48149, Münster, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lagah S, Tan IL, Radhakrishnan P, Hirst RA, Ward JH, O’Callaghan C, Smith SJ, Stevens MFG, Grundy RG, Rahman R. RHPS4 G-quadruplex ligand induces anti-proliferative effects in brain tumor cells. PLoS One 2014; 9:e86187. [PMID: 24454961 PMCID: PMC3893285 DOI: 10.1371/journal.pone.0086187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 12/07/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Telomeric 3' overhangs can fold into a four-stranded DNA structure termed G-quadruplex (G4), a formation which inhibits telomerase. As telomerase activation is crucial for telomere maintenance in most cancer cells, several classes of G4 ligands have been designed to directly disrupt telomeric structure. METHODS We exposed brain tumor cells to the G4 ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) and investigated proliferation, cell cycle dynamics, telomere length, telomerase activity and activated c-Myc levels. RESULTS Although all cell lines tested were sensitive to RHPS4, PFSK-1 central nervous system primitive neuroectodermal cells, DAOY medulloblastoma cells and U87 glioblastoma cells exhibited up to 30-fold increased sensitivity compared to KNS42 glioblastoma, C6 glioma and Res196 ependymoma cells. An increased proportion of S-phase cells were observed in medulloblastoma and high grade glioma cells whilst CNS PNET cells showed an increased proportion of G1-phase cells. RHPS4-induced phenotypes were concomitant with telomerase inhibition, manifested in a telomere length-independent manner and not associated with activated c-Myc levels. However, anti-proliferative effects were also observed in normal neural/endothelial cells in vitro and ex vivo. CONCLUSION This study warrants in vivo validation of RHPS4 and alternative G4 ligands as potential anti-cancer agents for brain tumors but highlights the consideration of dose-limiting tissue toxicities.
Collapse
Affiliation(s)
- Sunil Lagah
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - I-Li Tan
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Priya Radhakrishnan
- Department of Infection, Immunity and Inflammation, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Robert A. Hirst
- Department of Infection, Immunity and Inflammation, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Jennifer H. Ward
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Chris O’Callaghan
- Department of Respiratory Medicine, Portex Unit, Institute of Child Health, University College London and Great Ormond Street Hospital, London, United Kingdom
| | - Stuart J. Smith
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Malcolm F. G. Stevens
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard G. Grundy
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
DNA repair inhibition in anti-cancer therapeutics. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Pavelitz T, Gray LT, Padilla SL, Bailey AD, Weiner AM. PGBD5: a neural-specific intron-containing piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans. Mob DNA 2013; 4:23. [PMID: 24180413 PMCID: PMC3902484 DOI: 10.1186/1759-8753-4-23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND piggyBac domain (PGBD) transposons are found in organisms ranging from fungi to humans. Three domesticated piggyBac elements have been described. In the ciliates Paramecium tetraurelia and Tetrahymena thermophila, homologs known as piggyMacs excise internal eliminated sequences from germline micronuclear DNA during regeneration of the new somatic macronucleus. In primates, a PGBD3 element inserted into the Cockayne syndrome group B (CSB) gene over 43 Mya serves as an alternative 3' terminal exon, enabling the CSB gene to generate both full length CSB and a conserved CSB-PGBD3 fusion protein that joins an N-terminal CSB domain to the C-terminal transposase domain. RESULTS We describe a fourth domesticated piggyBac element called PGBD5. We show that i) PGBD5 was first domesticated in the common ancestor of the cephalochordate Branchiostoma floridae (aka lancelet or amphioxus) and vertebrates, and is conserved in all vertebrates including lamprey but cannot be found in more basal urochordates, hemichordates, or echinoderms; ii) the lancelet, lamprey, and human PGBD5 genes are syntenic and orthologous; iii) no potentially mobile ancestral PGBD5 elements can be identified in other more deeply rooted organisms; iv) although derived from an IS4-related transposase of the RNase H clan, PGBD5 protein is unlikely to retain enzymatic activity because the catalytic DDD(D) motif is not conserved; v) PGBD5 is preferentially expressed in certain granule cell lineages of the brain and in the central nervous system based on available mouse and human in situ hybridization data, and the tissue-specificity of documented mammalian EST and mRNA clones; vi) the human PGBD5 promoter and gene region is rich in bound regulatory factors including the neuron-restrictive silencer factors NRSF/REST and CoREST, as well as SIN3, KAP1, STAT3, and CTCF; and vii) despite preferential localization within the nucleus, PGBD5 protein is unlikely to bind DNA or chromatin as neither DNase I digestion nor high salt extraction release PGBD5 from fractionated mouse brain nuclei. CONCLUSIONS We speculate that the neural-specific PGBD5 transposase was domesticated >500 My after cephalochordates and vertebrates split from urochordates, and that PGBD5 may have played a role in the evolution of a primitive deuterostome neural network into a centralized nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Alan M Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA.
| |
Collapse
|
37
|
Rogers HA, Mayne C, Chapman RJ, Kilday JP, Coyle B, Grundy RG. PI3K pathway activation provides a novel therapeutic target for pediatric ependymoma and is an independent marker of progression-free survival. Clin Cancer Res 2013; 19:6450-60. [PMID: 24077346 DOI: 10.1158/1078-0432.ccr-13-0222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Currently, there are few effective adjuvant therapies for pediatric ependymoma outside confocal radiation, and prognosis remains poor. The phosphoinositide 3-kinase (PI3K) pathway is one of the most commonly activated pathways in cancer. PI3Ks transduce signals from growth factors and cytokines, resulting in the phosphorylation and activation of AKT, which in turn induces changes in cell growth, proliferation, and apoptosis. EXPERIMENTAL DESIGN PI3K pathway status was analyzed in ependymoma using gene expression data and immunohistochemical analysis of phosphorylated AKT (P-AKT). The effect of the PI3K pathway on cell proliferation was investigated by immunohistochemical analysis of cyclin D1 and Ki67, plus in vitro functional analysis. To identify a potential mechanism of PI3K pathway activation, PTEN protein expression and the mutation status of PI3K catalytic subunit α-isoform gene (PIK3CA) was investigated. RESULTS Genes in the pathway displayed significantly higher expression in supratentorial than in posterior fossa and spinal ependymomas. P-AKT protein expression, indicating pathway activation, was seen in 72% of tumors (n = 169) and P-AKT expression was found to be an independent marker of a poorer progression-free survival. A significant association between PI3K pathway activation and cell proliferation was identified, suggesting that pathway activation was influencing this process. PTEN protein loss was not associated with P-AKT staining and no mutations were identified in PIK3CA. CONCLUSIONS Our results suggest that the PI3K pathway could act as a biomarker, not only identifying patients with a worse prognosis but also those that could be treated with therapies targeted against the pathway, a strategy potentially effective in a high percentage of ependymoma patients.
Collapse
Affiliation(s)
- Hazel A Rogers
- Authors' Affiliation: Children's Brain Tumour Research Centre, D Floor Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Ryoo I, Choi SH, Kim JH, Sohn CH, Kim SC, Shin HS, Yeom JA, Jung SC, Lee AL, Yun TJ, Park CK, Park SH. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles. PLoS One 2013; 8:e71704. [PMID: 23977117 PMCID: PMC3747204 DOI: 10.1371/journal.pone.0071704] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022] Open
Abstract
Purpose To evaluate the usefulness of dynamic susceptibility contrast (DSC) enhanced perfusion MR imaging in predicting major genetic alterations in glioblastomas. Materials and Methods Twenty-five patients (M:F = 13∶12, mean age: 52.1±15.2 years) with pathologically proven glioblastoma who underwent DSC MR imaging before surgery were included. On DSC MR imaging, the normalized relative tumor blood volume (nTBV) of the enhancing solid portion of each tumor was calculated by using dedicated software (Nordic TumorEX, NordicNeuroLab, Bergen, Norway) that enabled semi-automatic segmentation for each tumor. Five major glioblastoma genetic alterations (epidermal growth factor receptor (EGFR), phosphatase and tensin homologue (PTEN), Ki-67, O6-methylguanine-DNA methyltransferase (MGMT) and p53) were confirmed by immunohistochemistry and analyzed for correlation with the nTBV of each tumor. Statistical analysis was performed using the unpaired Student t test, ROC (receiver operating characteristic) curve analysis and Pearson correlation analysis. Results The nTBVs of the MGMT methylation-negative group (mean 9.5±7.5) were significantly higher than those of the MGMT methylation-positive group (mean 5.4±1.8) (p = .046). In the analysis of EGFR expression-positive group, the nTBVs of the subgroup with loss of PTEN gene expression (mean: 10.3±8.1) were also significantly higher than those of the subgroup without loss of PTEN gene expression (mean: 5.6±2.3) (p = .046). Ki-67 labeling index indicated significant positive correlation with the nTBV of the tumor (p = .01). Conclusion We found that glioblastomas with aggressive genetic alterations tended to have a high nTBV in the present study. Thus, we believe that DSC-enhanced perfusion MR imaging could be helpful in predicting genetic alterations that are crucial in predicting the prognosis of and selecting tailored treatment for glioblastoma patients.
Collapse
Affiliation(s)
- Inseon Ryoo
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| | - Ji-Hoon Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Chin Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hwa Seon Shin
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong A. Yeom
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Chai Jung
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - A. Leum Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Qian L, Zheng J, Wang K, Tang Y, Zhang X, Zhang H, Huang F, Pei Y, Jiang Y. Cationic core-shell nanoparticles with carmustine contained within O⁶-benzylguanine shell for glioma therapy. Biomaterials 2013; 34:8968-78. [PMID: 23953782 DOI: 10.1016/j.biomaterials.2013.07.097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/28/2013] [Indexed: 12/18/2022]
Abstract
The application of carmustine (BCNU) for glioma treatment is limited due to its poor selectivity for tumor and tumor resistance caused by O⁶-methylguanine-DNA-methyl transferase (MGMT). To improve the efficacy of BCNU, we constructed chitosan surface-modified poly (lactide-co-glycolides) nanoparticles (PLGA/CS NPs) for targeting glioma, loading BCNU along with O⁶-benzylguanine (BG), which could directly deplete MGMT. With core-shell structure, PLGA/CS NPs in the diameter around 177 nm showed positive zeta potential. In vitro plasma stability of BCNU in NPs was improved compared with free BCNU. The cellular uptake of NPs increased with surface modification of CS and decreasing particle size. The cytotoxicity of BCNU against glioblastoma cells was enhanced after being encapsulated into NPs; furthermore, with the co-encapsulation of BCNU and BG into NPs, BCNU + BG PLGA/CS NPs showed the strongest inhibiting ability. Compared to free drugs, PLGA/CS NPs could prolong circulation time and enhance accumulation in tumor and brain. Among all treatment groups, F98 glioma-bearing rats treated with BCNU + BG PLGA/CS NPs showed the longest survival time and the smallest tumor size. The studies suggested that the co-encapsulation of BCNU and BG into PLGA/CS NPs could remarkably enhance the efficacy of BCNU, accompanied with greater convenience for therapy.
Collapse
Affiliation(s)
- Lili Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhang Heng Road, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vlachostergios PJ, Hatzidaki E, Papandreou CN. MGMT repletion after treatment of glioblastoma cells with temozolomide and O6-benzylguanine implicates NFκB and mutant p53. Neurol Res 2013; 35:879-82. [PMID: 23561593 DOI: 10.1179/1743132813y.0000000191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The DNA repair enzyme O6-methylguanine methyltransferase (MGMT) is a major determinant of glioma resistance to alkylating agents. Several strategies have been used to induce sensitization to alkylator-based treatments, including the direct MGMT inhibitor O6-benzylguanine (BG). However, replenishment of MGMT is often observed after the withdrawal of combined schedules of temozolomide (TMZ) and BG, thus preventing further treatment efficacy. In this study we investigated the potential mechanisms of resistance to combination treatment with TMZ and BG in the MGMT-proficient, p53-mutated (mt p53) T98G glioblastoma (GBM) cell line, looking for an effect on nuclear factor kappa B (NFκB) and mt p53, which are both transcriptional regulators of MGMT. The administration of TMZ alone led to minimal inhibition of T98G cell viability which was, however, enhanced with the addition of BG. This effect coincided with reduced expression of MGMT protein and transcript levels, and a decrease in cellular amount of NFκB and mt p53. However, withdrawal of the drugs led to an increase in cell viability, which was in parallel with repletion of MGMT protein and transcript levels and was also accompanied by elevated protein levels of NFκB and mt p53. Overall, these results suggest that NFκB and mt p53 induction may be responsible for the failure of BG to induce prolonged inhibition of direct repair in TMZ co-treated GBM cells with mt p53 status.
Collapse
|
41
|
Szeliga M, Zgrzywa A, Obara-Michlewska M, Albrecht J. Transfection of a human glioblastoma cell line with liver-type glutaminase (LGA) down-regulates the expression of DNA-repair gene MGMT and sensitizes the cells to alkylating agents. J Neurochem 2012; 123:428-36. [PMID: 22888977 DOI: 10.1111/j.1471-4159.2012.07917.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/30/2012] [Accepted: 08/05/2012] [Indexed: 12/21/2022]
Abstract
O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA-repair protein promoting resistance of tumor cells to alkylating chemotherapeutic agents. Glioma cells are particularly resistant to this class of drugs which include temozolomide (TMZ) and carmustine (BCNU). A previous study using the RNA microarray technique showed that decrease of MGMT mRNA stands out among the alterations in gene expression caused by the cell growth-depressing transfection of a T98G glioma cell line with liver-type glutaminase (LGA) [Szeliga et al. (2009) Glia, 57, 1014]. Here, we show that stably LGA-transfected cells (TLGA) exhibit decreased MGMT protein expression and activity as compared with non-transfected or mock transfected cells (controls). However, the decrease of expression occurs in the absence of changes in the methylation of the promoter region, indicating that LGA circumvents, by an as yet unknown route, the most common mechanism of MGMT silencing. TLGA turned out to be significantly more sensitive to treatment with 100-1000 μM of TMZ and BCNU in the acute cell growth inhibition assay (MTT). In the clonogenic survival assay, TLGA cells displayed increased sensitivity even to 10 μM TMZ and BCNU. Our results indicate that enrichment with LGA, in addition to inhibiting glioma growth, may facilitate chemotherapeutic intervention.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | |
Collapse
|
42
|
Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours. Br J Cancer 2012; 107:1399-408. [PMID: 22976800 PMCID: PMC3494444 DOI: 10.1038/bjc.2012.403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tumours are responsive to temozolomide (TMZ) if they are deficient in O(6)-methylguanine-DNA methyltransferase (MGMT), and mismatch repair (MMR) proficient. METHODS The effect of TMZ on medulloblastoma (MB) cell killing was analysed with clonogenic survival assays. Expression of DNA repair genes and enzymes was investigated using microarrays, western blot, and immunohistochemistry. DNA sequencing and promoter methylation analysis were employed to investigate the cause of loss of the expression of MMR gene MLH1. RESULTS Temozolomide exhibited potent cytotoxic activity in D425Med (MGMT deficient, MLH1 proficient; IC(50)=1.7 μM), moderate activity against D341Med (MGMT proficient, MLH1 deficient), and DAOY MB cells (MGMT proficient, MLH1 proficient). MGMT inhibitor O(6)-benzylguanine sensitised DAOY, but not D341Med cells to TMZ. Of 12 MB cell lines, D341Med, D283Med, and 1580WÜ cells exhibited MMR deficiency due to MLH1 promoter hypermethylation. DNA sequencing of these cells provided no evidence for somatic genetic alterations in MLH1. Expression analyses of MMR and MGMT in MB revealed that all patient specimens (n=74; expression array, n=61; immunostaining, n=13) are most likely MMR proficient, whereas some tumours had low MGMT expression levels (according to expression array) or were totally MGMT deficient (3 out of 13 according to immunohistochemistry). CONCLUSION A subset of MB may respond to TMZ as some patient specimens are MGMT deficient, and tumours appear to be MMR proficient.
Collapse
|
43
|
Sikkema AH, den Dunnen WF, Hulleman E, van Vuurden DG, Garcia-Manero G, Yang H, Scherpen FJ, Kampen KR, Hoving EW, Kamps WA, Diks SH, Peppelenbosch MP, de Bont ES. EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol 2012; 14:1125-35. [PMID: 22723427 PMCID: PMC3424207 DOI: 10.1093/neuonc/nos130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 04/25/2012] [Indexed: 01/05/2023] Open
Abstract
Eph/ephrin signaling has been implicated in various types of key cancer-enhancing processes, like migration, proliferation, and angiogenesis. In medulloblastoma, invading tumor cells characteristically lead to early recurrence and a decreased prognosis. Based on kinase-activity profiling data published recently, we hypothesized a key role for the Eph/ephrin signaling system in medulloblastoma invasion. In primary medulloblastoma samples, a significantly higher expression of EphB2 and the ligand ephrin-B1 was observed compared with normal cerebellum. Furthermore, medulloblastoma cell lines showed high expression of EphA2, EphB2, and EphB4. Stimulation of medulloblastoma cells with ephrin-B1 resulted in a marked decrease in in vitro cell adhesion and an increase in the invasion capacity of cells expressing high levels of EphB2. The cell lines that showed an ephrin-B1-induced phenotype possessed increased levels of phosphorylated EphB2 and, to a lesser extent, EphB4 after stimulation. Knockdown of EphB2 expression by short hairpin RNA completely abolished ephrin ligand-induced effects on adhesion and migration. Analysis of signal transduction identified p38, Erk, and mTOR as downstream signaling mediators potentially inducing the ephrin-B1 phenotype. In conclusion, the observed deregulation of Eph/ephrin expression in medulloblastoma enhances the invasive phenotype, suggesting a potential role in local tumor cell invasion and the formation of metastases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Eveline S.J.M. de Bont
- Department of Pediatric Oncology/Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, the Netherlands (A.H.S., F.J.G.S., K.R.K., W.A.K., S.H.D., E.S.J.M.B.); Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, the Netherlands (W.F.A.D.); Neuro-Oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, Amsterdam, the Netherlands (E.H., D.G.V.); Department of Leukemia, Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, USA (G.G.-M., H.Y.); Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands (E.W.H.); Department of Gastroenterology and Hepatology, Erasmus MC, L-459, 's-Gravendijkwal 230, Rotterdam, the Netherlands (M.P.P.)
| |
Collapse
|
44
|
van Vuurden DG, Hulleman E, Meijer OLM, Wedekind LE, Kool M, Witt H, Vandertop PW, Würdinger T, Noske DP, Kaspers GJL, Cloos J. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2012; 2:984-96. [PMID: 22184287 PMCID: PMC3282104 DOI: 10.18632/oncotarget.362] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Poly ADP-ribose polymerase (PARP) is a protein involved in single strand break repair. Recently, PARP inhibitors have shown considerable promise in the treatment of several cancers, both in monotherapy and in combination with cytotoxic agents. Synthetic lethal action of PARP inhibitors has been observed in tumors with mutations in double strand break repair pathways. In addition, PARP inhibition potentially enhances sensitivity of tumor cells to DNA damaging agents, including radiotherapy. Aim of this study is to determine the radiosensitizing properties of the PARP inhibitor Olaparib in childhood medulloblastoma, ependymoma and high grade glioma (HGG). Increased PARP1 expression was observed in medulloblastoma, ependymoma and HGG, as compared to non-neoplastic brain tissue. Pediatric high grade glioma, medulloblastoma and ependymoma gene expression profiling revealed that high PARP1 expression is associated with poor prognosis. Cell growth inhibition assays with Olaparib resulted in differential sensitivity, with IC50 values ranging from 1.4 to 8.4 μM, irrespective of tumor type and PARP1 protein expression. Sensitization to radiation was observed in medulloblastoma, ependymoma and HGG cell lines with subcytotoxic concentrations of Olaparib, which coincided with persistence of double strand breaks. Combining PARP inhibitors with radiotherapy in clinical studies in childhood high grade brain tumors may improve therapeutic outcome.
Collapse
Affiliation(s)
- Dannis G van Vuurden
- Department of Pediatric Oncology / Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pan Q, Yang XJ, Wang HM, Dong XT, Wang W, Li Y, Li JM. Chemoresistance to temozolomide in human glioma cell line U251 is associated with increased activity of O6-methylguanine-DNA methyltransferase and can be overcome by metronomic temozolomide regimen. Cell Biochem Biophys 2012; 62:185-91. [PMID: 21892781 DOI: 10.1007/s12013-011-9280-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temozolomide (TMZ) is a novel cytotoxic alkylating agent for chemotherapy of malignant gliomas. However, intrinsic or acquired resistance to TMZ often defines poor efficacy of chemotherapy in malignant gliomas. A growing number of studies indicate that expression of O(6)-methylguanine-DNA methyltransferase (MGMT) is one of the principal mechanisms responsible for this chemoresistance. In the present study, we evaluated the relationship between expression of MGMT and resistance to TMZ. We generated a TMZ-resistant cell line, U251/TR, by stepwise (8 months) exposure of parental U251 cells to TMZ. The resistance to TMZ was quantified using SRB assay. MGMT expression was evaluated at mRNA (RT-PCR) and protein (Western blot) levels. U251/TR cells showed increased (~ sevenfold) resistance to TMZ. The MGMT expression (both mRNA and protein) was significantly (P < 0.01) increased in U251/TR cells compared with parental U251 cells. Further, MGMT expression fluctuated during exposure of U251/TR cells to TMZ. The resistance of U251/TR cells to TMZ could be overcome by application of elevated doses of TMZ when MGMT expression was at the lowest level. In conclusion, our results demonstrate that the primary mechanism responsible for resistance of U251/TR cells to TMZ is associated with increased expression of MGMT. Resistance of malignant gliomas to TMZ can be overcome by synchronizing metronomic TMZ regimen with MGMT expression.
Collapse
Affiliation(s)
- Qiang Pan
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Heping District, Tianjin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Giussani P, Bassi R, Anelli V, Brioschi L, De Zen F, Riccitelli E, Caroli M, Campanella R, Gaini SM, Viani P, Riboni L. Glucosylceramide synthase protects glioblastoma cells against autophagic and apoptotic death induced by temozolomide and Paclitaxel. Cancer Invest 2012; 30:27-37. [PMID: 22236187 DOI: 10.3109/07357907.2011.629379] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma is a deadly cancer with intrinsic chemoresistance. Understanding this property will aid in therapy. Glucosylceramide synthase (GCS) is associated with resistance and poor outcome; little is known about glioblastomas. In glioblastoma cells, temozolomide and paclitaxel induce ceramide increase, which in turn promotes cytotoxicity. In drug-resistant cells, both drugs are unable to accumulate ceramide, increased expression and activity of GCS is present, and its inhibitors hinder resistance. Resistant cells exhibit cross-resistance, despite differing in marker expression, and cytotoxic mechanism. These findings suggest that GCS protects glioblastoma cells against autophagic and apoptotic death, and contributes to cell survival under chemotherapy.
Collapse
Affiliation(s)
- P Giussani
- Department of Medical Chemistry, Biochemistry and Biotechnology, LITA-Segrate, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blakeley J, Grossman SA. Chemotherapy with cytotoxic and cytostatic agents in brain cancer. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:229-54. [PMID: 22230447 DOI: 10.1016/b978-0-444-52138-5.00017-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Beier D, Schulz JB, Beier CP. Chemoresistance of glioblastoma cancer stem cells--much more complex than expected. Mol Cancer 2011; 10:128. [PMID: 21988793 PMCID: PMC3207925 DOI: 10.1186/1476-4598-10-128] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 10/11/2011] [Indexed: 12/14/2022] Open
Abstract
Glioblastomas (GBM) are a paradigm for the investigation of cancer stem cells (CSC) in solid malignancies. The susceptibility of GBM CSC to standard chemotherapeutic drugs is controversial as the existing literature presents conflicting experimental data. Here, we summarize the experimental evidence on the resistance of GBM CSC to alkylating chemotherapeutic agents, with a special focus on temozolomide (TMZ). The data suggests that CSC are neither resistant nor susceptible to chemotherapy per se. Detoxifying proteins such as O6-methylguanine-DNA-methyltransferase (MGMT) confer a strong intrinsic resistance to CSC in all studies. Extrinsic factors may also contribute to the resistance of CSC to TMZ. These may include TMZ concentrations in the brain parenchyma, TMZ dosing schemes, hypoxic microenvironments, niche factors, and the re-acquisition of stem cell properties by non-stem cells. Thus, the interaction of CSC and chemotherapy is more complex than may be expected and it is necessary to consider these factors in order to overcome chemoresistance in the patient.
Collapse
Affiliation(s)
- Dagmar Beier
- Department of Neurology, RWTH Aachen, Medical School, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
49
|
Warren KE, Gururangan S, Geyer JR, McLendon RE, Poussaint TY, Wallace D, Balis FM, Berg SL, Packer RJ, Goldman S, Minturn JE, Pollack IF, Boyett JM, Kun LE. A phase II study of O6-benzylguanine and temozolomide in pediatric patients with recurrent or progressive high-grade gliomas and brainstem gliomas: a Pediatric Brain Tumor Consortium study. J Neurooncol 2011; 106:643-9. [PMID: 21968943 DOI: 10.1007/s11060-011-0709-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
To estimate the sustained (≥8 weeks) objective response rate in pediatric patients with recurrent or progressive high-grade gliomas (HGG, Stratum A) or brainstem gliomas (BSG, Stratum B) treated with the combination of O6-benzylguanine (O6BG) and temozolomide(®) (TMZ). Patients received O6BG 120 mg/m(2)/d IV followed by TMZ 75 mg/m(2)/d orally daily for 5 consecutive days of each 28-day course. The target objective response rate to consider the combination active was 17%. A two-stage design was employed. Forty-three patients were enrolled; 41 were evaluable for response, including 25 patients with HGG and 16 patients with BSG. The combination of O6BG and TMZ was tolerable, and the primary toxicities were myelosuppression and gastrointestinal symptoms. One sustained (≥8 weeks) partial response was observed in the HGG cohort; no sustained objective responses were observed in the BSG cohort. Long-term (≥6 courses) stable disease (SD) was observed in 4 patients in Stratum A and 1 patient in Stratum B. Of the 5 patients with objective response or long-term SD, 3 underwent central review with 2 reclassified as low-grade gliomas. The combination of O6BG and TMZ did not achieve the target response rate for activity in pediatric patients with recurrent or progressive HGG and BSG.
Collapse
Affiliation(s)
- Katherine E Warren
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bobola MS, Jankowski PP, Gross ME, Schwartz J, Finn LS, Blank A, Ellenbogen RG, Silber JR. Apurinic/apyrimidinic endonuclease is inversely associated with response to radiotherapy in pediatric ependymoma. Int J Cancer 2011; 129:2370-9. [PMID: 21207372 DOI: 10.1002/ijc.25900] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/04/2010] [Indexed: 11/08/2022]
Abstract
Apurinic/apyrimidinic endonuclease (Ap endo) is a key DNA repair activity that confers radiation resistance in human cells. Here we examined the association between Ap endo activity and response to radiotherapy in pediatric ependymomas, tumors for which treatment options are limited and survival rates are only about 50%. We assayed Ap endo activity in 36 ependymomas and expression of Ape1/Ref-1, the predominant Ap endo activity in humans, in 44 tumors by immunostaining. Cox proportional hazards regression models were used to analyze the association of activity or expression with progression-free survival or with overall survival. Activity varied 13-fold and was not associated with tumor or patient characteristics. In univariate models with Ap endo activity entered as a continuous variable, the hazard ratio for progression increased by a factor of 2.18 for every 0.01 unit increase in activity (p ≤ 0.003) in 24 grade II ependymomas. Risk for death increased by a factor of 1.89 (p ≤ 0.02) in the same population. The fraction of Ape1/Ref-1 immunopositive cells varied widely within individual tumors and was not associated with either progression-free or with overall survival. Suppressing Ap endo activity in pediatric ependymoma cells significantly increased radiation sensitivity, suggesting that the association of activity with radiation response reflected, at least in part, repair of radiation-induced DNA lesions. Our data indicate that Ap endo activity is predictive of outcome following radiotherapy, and suggest that Ape1/Ref-1 promotes radiation resistance in pediatric ependymomas. Our findings support the use of inhibitors of Ap endo activity to overcome resistance.
Collapse
Affiliation(s)
- Michael S Bobola
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195-6470, USA
| | | | | | | | | | | | | | | |
Collapse
|