1
|
Harro CM, Sprenger KB, Chaurio RA, Powers JJ, Innamarato P, Anadon CM, Zhang Y, Biswas S, Mandal G, Mine JA, Cortina C, Nagy MZ, Martin AL, Handley KF, Borjas GJ, Chen PL, Pinilla-Ibarz J, Sokol L, Yu X, Conejo-Garcia JR. Sézary syndrome originates from heavily mutated hematopoietic progenitors. Blood Adv 2023; 7:5586-5602. [PMID: 37531660 PMCID: PMC10514084 DOI: 10.1182/bloodadvances.2022008562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains unclear. Using single-cell RNA or T-cell receptor (TCR) sequencing of 32 619 CD3+CD4+ and CD26+/CD7+ and 29 932 CD3+CD4+ and CD26-/CD7- lymphocytes from the peripheral blood of 7 patients with CTCL, coupled to single-cell ATAC-sequencing of 26,411 CD3+CD4+ and CD26+/CD7+ and 33 841 CD3+CD4+ and CD26-/CD7- lymphocytes, we show that tumor cells in Sézary syndrome and mycosis fungoides (MF) exhibit different phenotypes and trajectories of differentiation. When compared to MF, Sézary cells exhibit narrower repertoires of TCRs and exhibit clonal enrichment. Surprisingly, we identified ≥200 mutations in hematopoietic stem cells from multiple patients with Sézary syndrome. Mutations in key oncogenes were also present in peripheral Sézary cells, which also showed the hallmarks of recent thymic egression. Together our data suggest that CTCL arises from mutated lymphocyte progenitors that acquire TCRs in the thymus, which complete their malignant transformation in the periphery.
Collapse
Affiliation(s)
- Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
- Cancer Biology PhD Program, College of Arts and Sciences, University of South Florida, Tampa, FL
| | - Kimberly B. Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ricardo A. Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - John J. Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Carmen M. Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Yumeng Zhang
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Jessica A. Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Carla Cortina
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Mate Z. Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexandra L. Martin
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Katelyn F. Handley
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Gustavo J. Borjas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
2
|
Abstract
Primary cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis. CTCL subtypes demonstrate a variety of clinical, histological, and molecular features, and can follow an indolent or a very aggressive course. The underlying pathogenetic mechanisms are not yet entirely understood. The pathophysiology of CTCL is complex and a single initiating factor has not yet been identified. Diagnosis is based on clinicopathological correlation and requires an interdisciplinary team. Treatment decision is made based on short-term and long-term goals. Therapy options comprise skin-directed therapies, such as topical steroids or phototherapy, and systemic therapies, such as monoclonal antibodies or chemotherapy. So far, the only curative treatment approach is allogeneic haematopoietic stem cell transplantation. Novel therapies, such as chimeric antigen receptor T cells, monoclonal antibodies or small molecules, are being investigated in clinical trials. Patients with CTCL have reduced quality of life and a lack of effective treatment options. Further research is needed to better identify the underlying mechanisms of CTCL development and course as well as to better tailor treatment strategies to individual patients.
Collapse
|
3
|
Mikhael NL, Elsorady M. Clinical significance of T cell receptor excision circle (TREC) quantitation after allogenic HSCT. Blood Res 2019; 54:274-281. [PMID: 31915654 PMCID: PMC6942145 DOI: 10.5045/br.2019.54.4.274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background Hematopoietic stem cell transplantation (HSCT) is a well-established treatment modality for a variety of diseases. Immune reconstitution is an important event that determines outcomes. The immune recovery of T cells relies on peripheral expansion of mature graft cells, followed by differentiation of donor-derived hematopoietic stem cells. The formation of new T cells occurs in the thymus and as a byproduct, T cell receptor excision circles (TRECs) are released. Detection of TRECs by PCR is a reliable method for estimating the amount of newly formed T cells in the circulation and, indirectly, for estimating thymic function. The aim of this study was to determine the role of TREC quantitation in predicting outcomes of human leucocyte antigen (HLA) identical allogenic HSCT. Methods The study was conducted on 100 patients receiving allogenic HSCT from an HLA identical sibling. TREC quantification was done by real time PCR using a standard curve. Results TREC levels were inversely related to age (P=0.005) and were significantly lower in patients with malignant diseases than in those with benign diseases (P=0.038). TREC levels could predict relapse as an outcome but not graft versus host disease (GvHD) and infections. Conclusion Age and nature of disease determine the TREC levels, which are related to relapse.
Collapse
Affiliation(s)
- Neveen Lewis Mikhael
- Clinical Pathology Department, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Manal Elsorady
- Clinical Hematology Department, Head of BMT Unit, Alexandria Faculty of Medicine, Alexandria, Egypt
| |
Collapse
|
4
|
Sivanand A, Surmanowicz P, Alhusayen R, Hull P, Litvinov IV, Zhou Y, Gniadecki R. Immunotherapy for Cutaneous T-Cell Lymphoma: Current Landscape and Future Developments. J Cutan Med Surg 2019; 23:537-544. [PMID: 31353944 DOI: 10.1177/1203475419867610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are chronic, progressive primary cutaneous T-cell lymphomas (CTCLs) for which there are no curative treatments. Skin-directed therapies, such as phototherapy, radiation therapy, or topical nitrogen mustard, provide only short-term remissions. Numerous attempts with different chemotherapeutic regimes failed to achieve meaningful clinical responses. Immunotherapy seems to be a promising avenue to achieve long-term disease control in CTCL. There is compelling evidence indicating that MF and SS are immunogenic lymphomas, which can be recognized by the patient's immune system. However, CTCL uses different strategies to impair host's immunity, eg, via repolarizing the T-cell differentiation from type I to type II, recruiting immunosuppressive regulatory T-cells, and limiting the repertoire of lymphocytes in the circulation. Many currently used therapies, such as interferon-α, imiquimod, extracorporeal phototherapy, and allogeneic bone marrow transplant, seem to exert their therapeutic effect via activation of the antitumor cytotoxic response and reconstitution of the host's immune system. It is likely that novel immunotherapies such as immune checkpoint inhibitors, cancer vaccines, and chimeric antigen receptor-T cells will help to manage CTCL more efficiently. We also discuss how current genomic techniques, such as estimating the mutational load by whole genome sequencing and neoantigen calling, are likely to provide clinically useful information facilitating personalized immunotherapy of CTCL.
Collapse
Affiliation(s)
- Arunima Sivanand
- 1 Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | | | - Raed Alhusayen
- 2 Division of Dermatology, University of Toronto, ON, Canada
| | - Peter Hull
- 3 Division of Clinical Dermatology and Cutaneous Science, Dalhousie University, Halifax, NS, Canada
| | - Ivan V Litvinov
- 4 Division of Dermatology, McGill University, Montreal, QC, Canada
| | - Youwen Zhou
- 5 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Robert Gniadecki
- 1 Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Marks E, Wang Y, Shi Y, Susa J, Jacobson M, Goldstein DY. Specific TCR gene rearrangements in mycosis fungoides: does advanced clinical stage show a preference? J Clin Pathol 2018; 71:1072-1077. [PMID: 30171087 DOI: 10.1136/jclinpath-2018-205324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/04/2022]
Abstract
AIMS The relationship between the presence of specific T-cell receptor (TCR) gene rearrangements and clinical stage in mycosis fungoides (MF) has not been studied. We analysed a cohort of patients with a diagnosis of MF to determine the different types of specific TCR gene rearrangements present and their relationship to disease stage. METHODS A retrospective chart review was used to select patients with a diagnosis of MF who had a skin biopsy and a positive TCR gene rearrangement study in either blood or tissue and at least 2 years of clinical follow-up. RESULTS 43 patients were identified and divided into two groups. The first group consisted of 23 patients with early stage disease (IA-IIA) that was either stable or went into partial or complete remission with minimal intervention. None of these patients advanced to late stage disease. The second group consisted of 20 patients who had either late stage disease at diagnosis or progressed to late stage disease at some point in time. In the first group, only 4/23 (17%) patients had a single TCR gene rearrangement in the Vɣ1-8 region. In contrast, the second group had 13/20 (65%) patients with a single TCR gene rearrangement in the Vɣ1-8 region (p=0.002). CONCLUSION The presence of a single TCR gene rearrangement in the Vɣ1-8 region could possibly be related to a more advanced stage of MF. However, more comprehensive studies, such as next generation sequencing, with a larger cohort is necessary for a more definitive conclusion.
Collapse
Affiliation(s)
- Etan Marks
- Department of Pathology, NYU Langone Medical Center, New York, USA
| | - Yanhua Wang
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yang Shi
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joseph Susa
- Division of Dermatopathology, Cockerell Dermatopathology, Dallas, Texas, USA
| | - Mark Jacobson
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - D Yitzchak Goldstein
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Phillips T, Devata S, Wilcox RA. Challenges and opportunities for checkpoint blockade in T-cell lymphoproliferative disorders. J Immunother Cancer 2016; 4:95. [PMID: 28031823 PMCID: PMC5170899 DOI: 10.1186/s40425-016-0201-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023] Open
Abstract
The T-cell lymphoproliferative disorders are a heterogeneous group of non-Hodgkin’s lymphomas (NHL) for which current therapeutic strategies are inadequate, as most patients afflicted with these NHL will succumb to disease progression within 2 years of diagnosis. Appreciation of the genetic and immunologic landscape of these aggressive NHL, including PD-L1 (B7-H1, CD274) expression by malignant T cells and within the tumor microenvironment, provides a strong rationale for therapeutic targeting this immune checkpoint. While further studies are needed, the available data suggests that responses with PD-1 checkpoint blockade alone will unlikely approach those achieved in other lymphoproliferative disorders. Herein, we review the unique challenges posed by the T-cell lymphoproliferative disorders and discuss potential strategies to optimize checkpoint blockade in these T-cell derived malignancies.
Collapse
Affiliation(s)
- Tycel Phillips
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA
| | - Sumana Devata
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA ; University of Michigan Comprehensive Cancer Center, 4310 Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109 USA
| |
Collapse
|
7
|
Mensen A, Ochs C, Stroux A, Wittenbecher F, Szyska M, Imberti L, Fillatreau S, Uharek L, Arnold R, Dörken B, Thiel A, Scheibenbogen C, Na IK. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J Transl Med 2013; 11:188. [PMID: 23941115 PMCID: PMC3751290 DOI: 10.1186/1479-5876-11-188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND After hematopoietic stem cell transplantation (HSCT) T- and B-cell reconstitution from primary lymphoid organs are a prerequisite for an effective early lymphocyte reconstitution and a long-term survival for adult patients suffering from acute leukemia. Here, we asked whether quantification of T cell receptor excision circle, (TREC) and kappa-deleting recombination excision circle (KREC) before and within six month after allogeneic HSCT could be used to measure the thymic and bone marrow outputs in such patients. METHODS We used a duplex real time PCR assay to quantify the absolute copy counts of TREC and KREC, and correlated the data with absolute cell counts of CD3+CD4+ T-cell and CD19+ B-cell subsets determined by flow cytometry, respectively. RESULTS By comparing two recently proposed naïve T cell subsets, CD31+ naive and CD31- naive T cells, we found a better correlation for the CD31+ subset with TREC level post alloHSCT, in line with the assumption that it contained T cells recently derived from the thymus, indicating that TREC levels reflected real thymic de novo production. Transitional as well as naïve B cells highly correlated with KREC levels, which suggested an association of KREC levels with ongoing bone marrow B cell output. CD45RO+ memory T cells and CD27+ memory B cells were significantly less correlated with TREC and KREC recovery, respectively. CONCLUSION We conclude that simultaneous TREC/ KREC quantification is as a suitable and practicable method to monitor thymic and bone marrow output post alloHSCT in adult patients diagnosed with acute leukemia.
Collapse
Affiliation(s)
- Angela Mensen
- Institute of Medical Immunology, Charité CVK, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fozza C, Longinotti M. T-cell receptor repertoire usage in hematologic malignancies. Crit Rev Oncol Hematol 2012; 86:201-11. [PMID: 23219015 DOI: 10.1016/j.critrevonc.2012.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/27/2012] [Accepted: 11/14/2012] [Indexed: 12/14/2022] Open
Abstract
Over the last few years several studies have addressed the possible influence of different immune mechanisms on the evolution of hematologic malignancies. More specifically, a fundamental role of reactive T-cells has now been demonstrated in the pathogenesis of many of these disorders as well as in the typical immunological milieu observed after stem cell transplantation in patients affected by these malignancies. In this context the study of the T-cell receptor (TCR) repertoire performed by different techniques, such as for instance flow cytometry and spectratyping, has undoubtedly provided a fundamental contribution. More recently, these seminal observations have even opened new potential therapeutic avenues based on the employment of adoptive T-cells somehow engineered toward potential neoplastic targets. This review will run through the most relevant studies which have tried to dissect the TCR repertoire usage in patients with different hematologic malignancies, especially focusing on the possible pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Claudio Fozza
- Hematology, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | | |
Collapse
|
9
|
Han T, Abdel-Motal UM, Chang DK, Sui J, Muvaffak A, Campbell J, Zhu Q, Kupper TS, Marasco WA. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous T-cell lymphoma. PLoS One 2012; 7:e44455. [PMID: 22973452 PMCID: PMC3433438 DOI: 10.1371/journal.pone.0044455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/03/2012] [Indexed: 01/23/2023] Open
Abstract
Background Although several therapeutic options have become available for patients with Cutaneous T-cell Lymphoma (CTCL), no therapy has been curative. Recent studies have demonstrated that CTCL cells overexpress the CC chemokine receptor 4 (CCR4). Methodology/Principal Findings In this study, a xenograft model of CTCL was established and a recombinant adeno-associated viral serotype 8 (AAV8) vector expressing a humanized single-chain variable fragment (scFv)-Fc fusion (scFvFc or “minibody”) of anti-CCR4 monoclonal antibody (mAb) h1567 was evaluated for curative treatment. Human CCR4+ tumor-bearing mice treated once with intravenous infusion of AAV8 virions encoding the h1567 (AAV8-h1567) minibody showed anti-tumor activity in vivo and increased survival. The AAV8-h1567 minibody notably increased the number of tumor-infiltrating Ly-6G+ FcγRIIIa(CD16A)+ murine neutrophils in the tumor xenografts over that of AAV8-control minibody treated mice. Furthermore, in CCR4+ tumor-bearing mice co-treated with AAV8-h1567 minibody and infused with human peripheral blood mononuclear cells (PBMCs), marked tumor infiltration of human CD16A+ CD56+ NK cells was observed. The h1567 minibody also induced in vitro ADCC activity through both mouse neutrophils and human NK cells. Conclusions/Significance Overall, our data demonstrate that the in vivo anti-tumor activity of h1567 minibody is mediated, at least in part, through CD16A+ immune effector cell ADCC mechanisms. These data further demonstrate the utility of the AAV-minibody gene transfer system in the rapid evaluation of candidate anti-tumor mAbs and the potency of h1567 as a potential novel therapy for CTCL.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Blotting, Western
- DNA Primers/genetics
- Dependovirus/genetics
- Flow Cytometry
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Humans
- Image Processing, Computer-Assisted
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunohistochemistry
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/therapy
- Mice
- Mice, SCID
- Real-Time Polymerase Chain Reaction
- Receptors, CCR4/metabolism
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Thomas Han
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ussama M. Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - De-Kuan Chang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianhua Sui
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asli Muvaffak
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James Campbell
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Zhu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas S. Kupper
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| | - Wayne A. Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| |
Collapse
|
10
|
Gartner S, Liu Y, Natesan S. De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection. PLoS One 2012; 7:e40139. [PMID: 22911696 PMCID: PMC3399863 DOI: 10.1371/journal.pone.0040139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 06/04/2012] [Indexed: 12/03/2022] Open
Abstract
Nurse cells are defined as those that provide for the development of other cells. We report here, that in vitro, human monocyte-derived macrophages can behave as nurse cells with functional capabilities that include de novo generation of CD4+ T-lymphocytes and a previously unknown small cell with monocytoid characteristics. We named these novel cells “self-renewing monocytoid cells” (SRMC), because they could develop into nurse macrophages that produced another generation of SRMC. SRMC were not detectable in blood. Their transition to nurse behavior was characterized by expression of CD10, a marker of thymic epithelium and bone marrow stroma, typically absent on macrophages. Bromodeoxyuridine labeling and immunostaining for cdc6 expression confirmed DNA synthesis within nurse macrophages. T-cell excision circles were detected in macrophages, along with expression of pre-T-cell receptor alpha and recombination activating gene 1, suggesting that genetic recombination events associated with generation of the T-cell receptor were occurring in these cells. SRMC expressed CCR5, the coreceptor for R5 HIV-1 isolates, and were highly susceptible to HIV-1 entry leading to productive infection. While expressing HIV-1, SRMC could differentiate into nurse macrophages that produced another generation of HIV-1-expressing SRMC. The infected nurse macrophage/SRMC cycle could continue in vitro for multiple generations, suggesting it might represent a mechanism whereby HIV-1 can maintain persistence in vivo. HIV-1 infection of nurse macrophages led to a decline in CD4+ T-cell production. There was severe, preferential loss of the CCR5+ CD4+ T-cell subpopulation. Confocal microscopy revealed individual HIV-1-expressing nurse macrophages simultaneously producing both HIV-1-expressing SRMC and non-expressing CD3+ cells, suggesting that nurse macrophages might be a source of latently infected CD4+ T-cells. Real-time PCR experiments confirmed this by demonstrating 10-fold more HIV-1-genome-harboring T-cells, than virus-expressing ones. These phenomena have far-reaching implications, and elicit new perspectives regarding HIV pathogenesis and T-cell and hematopoietic cell development.
Collapse
Affiliation(s)
- Suzanne Gartner
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
11
|
Wysocka M, Dawany N, Benoit B, Kossenkov AV, Troxel AB, Gelfand JM, Sell MK, Showe LC, Rook AH. Synergistic enhancement of cellular immune responses by the novel Toll receptor 7/8 agonist 3M-007 and interferon-γ: implications for therapy of cutaneous T-cell lymphoma. Leuk Lymphoma 2012; 52:1970-9. [PMID: 21942329 DOI: 10.3109/10428194.2011.582202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) is responsive at all stages to immunotherapy. We determined whether a novel agonist for Toll-like receptor (TLR) 7/8 (3M-007) combined with either interferon-γ (IFN-γ) or interleukin-15 (IL-15) would enhance patients' immune responses in vitro. Our data demonstrate that IFN-γ or IL-15 in combination with 007 significantly increases patients' natural killer (NK) cytolytic activity against CTCL tumor cell lines and synergistically induces dendritic cell cytokines, compared to 007 alone. Microarray studies of gene expression of patients' peripheral blood mononuclear cells (PBMCs) primed with IFN-γ followed by stimulation with 007 identified significant up-regulation of the expression of IL-12 p35 (α-chain), IL-12 p40 (β-chain), and nine IFN-α genes. Importantly, the underlying mechanism of increased levels of IFN-α and IL-12 from combined treatment appears to involve IFN regulatory factor 8 (IRF-8). These results further support our hypothesis that combinations of biological modifiers activating different arms of the immune system may provide significant therapeutic benefits for patients with advanced CTCL.
Collapse
Affiliation(s)
- Maria Wysocka
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma. Blood 2012; 119:3534-8. [PMID: 22383798 DOI: 10.1182/blood-2011-12-396457] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tumor-derived galectin-1 (Gal-1), a β-galactoside-binding S-type lectin, has been shown to encourage T-cell death and promote T cell-mediated tumor immune escape. In this report, we show that patients with leukemic cutaneous T-cell lymphomas, known to have limited complexity of their T-cell repertoires, have a predominant T helper type-2 (Th2) cytokine profile and significantly elevated plasma levels of Gal-1 compared with healthy controls. Circulating clonal malignant T cells were a major source of Gal-1. The conditioned supernatant of cultured malignant T cells induced a β-galactoside-dependent inhibition of normal T-cell proliferation and a Th2 skewing of cytokine production. These data implicate Gal-1 in development of the Th2 phenotype in patients with advanced-stage cutaneous T-cell lymphoma and highlight the Gal-1-Gal-1 ligand axis as a potential therapeutic target for enhancing antitumor immune responses.
Collapse
|
13
|
Macias ES, Pereira FA, Rietkerk W, Safai B. Superantigens in dermatology. J Am Acad Dermatol 2011; 64:455-72; quiz 473-4. [DOI: 10.1016/j.jaad.2010.03.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/18/2010] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
|
14
|
Seksenyan A, Ron-Harel N, Azoulay D, Cahalon L, Cardon M, Rogeri P, Ko MK, Weil M, Bulvik S, Rechavi G, Amariglio N, Konen E, Koronyo-Hamaoui M, Somech R, Schwartz M. Thymic involution, a co-morbidity factor in amyotrophic lateral sclerosis. J Cell Mol Med 2010; 14:2470-82. [PMID: 19650830 PMCID: PMC3823164 DOI: 10.1111/j.1582-4934.2009.00863.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 07/10/2009] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease, characterized by extremely rapid loss of motor neurons. Our studies over the last decade have established CD4(+) T cells as important players in central nervous system maintenance and repair. Those results, together with recent findings that CD4(+) T cells play a protective role in mouse models of ALS, led us to the current hypothesis that in ALS, a rapid T-cell malfunction may develop in parallel to the motor neuron dysfunction. Here, we tested this hypothesis by assessing thymic function, which serves as a measure of peripheral T-cell availability, in an animal model of ALS (mSOD1 [superoxide dismutase] mice; G93A) and in human patients. We found a significant reduction in thymic progenitor-cell content, and abnormal thymic histology in 3-4-month-old mSOD1 mice. In ALS patients, we found a decline in thymic output, manifested in the reduction in blood levels of T-cell receptor rearrangement excision circles, a non-invasive measure of thymic function, and demonstrated a restricted T-cell repertoire. The morbidity of the peripheral immune cells was also manifested in the increase of pro-apoptotic BAX/BCXL2 expression ratio in peripheral blood mononuclear cells (PBMCs) of these patients. In addition, gene expression screening in the same PBMCs, revealed in the ALS patients a reduction in key genes known to be associated with T-cell activity, including: CD80, CD86, IFNG and IL18. In light of the reported beneficial role of T cells in animal models of ALS, the present observation of thymic dysfunction, both in human patients and in an animal model, might be a co-pathological factor in ALS, regardless of the disease aetiology. These findings may lead to the development of novel therapeutic approaches directed at overcoming the thymic defect and T-cell deficiency.
Collapse
Affiliation(s)
- Akop Seksenyan
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| | - Noga Ron-Harel
- Department of Neurobiology, the Weizmann Institute of ScienceRehovot, Israel
| | - David Azoulay
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| | - Liora Cahalon
- Department of Neurobiology, the Weizmann Institute of ScienceRehovot, Israel
| | - Michal Cardon
- Department of Neurobiology, the Weizmann Institute of ScienceRehovot, Israel
| | - Patricia Rogeri
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| | - Minhee K Ko
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| | - Miguel Weil
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Shlomo Bulvik
- Hematology Department, Laniado HospitalNetanya, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Tel Hashomer and Sackler School of MedicineTel Aviv, Israel
| | - Ninette Amariglio
- Cancer Research Center, Sheba Medical Center, Tel Hashomer and Sackler School of MedicineTel Aviv, Israel
| | - Eli Konen
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer and Sackler School of MedicineTel Aviv, Israel
| | - Maya Koronyo-Hamaoui
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| | - Raz Somech
- Cancer Research Center, Sheba Medical Center, Tel Hashomer and Sackler School of MedicineTel Aviv, Israel
- Pediatric Immunology Service, Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer and Sackler School of MedicineTel Aviv, Israel
| | - Michal Schwartz
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA
- Department of Neurobiology, the Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
15
|
Mirvish ED, Pomerantz RG, Geskin LJ. Infectious agents in cutaneous T-cell lymphoma. J Am Acad Dermatol 2010; 64:423-31. [PMID: 20692726 DOI: 10.1016/j.jaad.2009.11.692] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/18/2009] [Accepted: 11/29/2009] [Indexed: 12/12/2022]
Abstract
Infectious agents have long been suspected as potential causative agents in cutaneous T-cell lymphoma (CTCL). Tissues of patients with CTCL have been evaluated for evidence of infection with a number of agents, including Staphylococcus aureus, retroviruses, and herpesviruses. These studies have failed to reveal a consistent association of CTCL with investigated agents. However, there is substantial evidence suggesting a potential role of a yet unidentified virus in CTCL. This article will review the findings of studies exploring potential roles of infectious agents in CTCL. In addition, we investigated CTCL tissues for evidence of infection with Merkel cell polyomavirus, a novel polyomavirus that was recently discovered as a probable carcinogenic agent in Merkel cell carcinoma. Cutaneous lesions demonstrating mycosis fungoides were stained with a monoclonal antibody against the Merkel cell polyomavirus T antigen, along with appropriate positive and negative controls. Immunohistochemical stains produced negative results in all examined mycosis fungoides specimens. These findings, which suggest a lack of association of CTCL with Merkel cell polyomavirus, add to the current body of knowledge regarding infectious agents and CTCL.
Collapse
Affiliation(s)
- Ezra D Mirvish
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
16
|
Yamanaka KI, Fuhlbrigge RC, Mizutani H, Kupper TS. Restoration of peripheral blood T cell repertoire complexity during remission in advanced cutaneous T cell lymphoma. Arch Dermatol Res 2010; 302:453-9. [PMID: 20111968 DOI: 10.1007/s00403-009-1023-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 12/11/2022]
Abstract
In advanced stages, cutaneous T cell lymphomas (CTCL) are associated with increased mortality from infections and also increased susceptibility to skin malignancies. In this study, we analyzed the complexity of the peripheral blood T cell repertoire with a sensitive b-variable (BV) complementarity-determining region 3 (CDR3) spectratyping analysis and flow cytometry in three-stage IV CTCL/Sezary syndrome patients who achieved complete clinical remission after therapy. The T cell repertoire of peripheral blood T cells before treatment was profoundly abnormal across multiple BV subfamilies. Following treatment, CDR3 spectratype patterns showed dramatic restoration of normal diversity and complexity. However, absolute CD4 counts across multiple BV families remained low for many months, even after identifiable circulating malignant T cell populations were eliminated. These data suggest that the diversity of the T cell repertoire can be recovered after successful treatment of even advanced CTCL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Blood Circulation/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Separation
- Diphtheria Toxin/therapeutic use
- Female
- Flow Cytometry
- Humans
- Interferon-alpha/therapeutic use
- Interleukin-2/therapeutic use
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/physiopathology
- Male
- Middle Aged
- Neoplasm Staging
- Receptors, Antigen, T-Cell/genetics
- Recombinant Fusion Proteins/therapeutic use
- Remission Induction
- Skin/blood supply
- Skin/immunology
- Skin/pathology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Kei-ichi Yamanaka
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
17
|
Regulation gone wrong: a subset of Sézary patients have malignant regulatory T cells. J Invest Dermatol 2009; 129:2747-50. [PMID: 19901946 DOI: 10.1038/jid.2009.290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are non-Hodgkin's lymphomas derived from T cells that home to and inhabit the skin. There are conflicting reports as to whether CTCLs represent a malignancy of regulatory T cells (Tregs), a T-cell subset that can suppress local immune reactions. In this issue, Heid et al. present convincing evidence that the malignant T cells in a subgroup of Sézary patients are FOXP3(+) regulatory T cells. Clonal malignant T cells showed increased expression of the Treg-associated transcription factor FOXP3 and demethylation of the FOXP3 gene locus, and T cells from at least some of these patients suppressed T-cell proliferation in vitro.
Collapse
|
18
|
Yamanaka KI, Yuta A, Kakeda M, Sasaki R, Kitagawa H, Gabazza EC, Okubo K, Kurokawa I, Mizutani H. Induction of IL-10-producing regulatory T cells with TCR diversity by epitope-specific immunotherapy in pollinosis. J Allergy Clin Immunol 2009; 124:842-5.e7. [PMID: 19703707 DOI: 10.1016/j.jaci.2009.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 05/08/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|
19
|
Abstract
Mature T- and natural killer (NK)-cell neoplasms are relatively rare forms of leukemia/lymphoma. The diagnosis of these entities is often difficult, necessitating extensive immunophenotypic, molecular, and genetic testing. Despite the accumulating information on the pathobiology of these neoplasms, in many cases the prognosis remains poor. This article presents an updated view of the morphologic, immunophenotypic, genetic, and molecular characteristics of the mature T- and NK-cell neoplasms. For a better understanding of this complex topic, the development of normal T and NK cells is briefly discussed. The presentation of the characteristic features of the neoplasms in the 2008 World Health Organization classification of hematopoietic neoplasms includes advances in the understanding of the pathobiology of each diagnostic category.
Collapse
Affiliation(s)
- Claudiu V Cotta
- Hematopathology Section, Pathology and Laboratory Medicine Institute, Cleveland Clinic, OH 44195, USA.
| | | |
Collapse
|
20
|
Epstein–Barr virus-associated B-cell lymphoma secondary to FCD-C therapy in patients with peripheral T-cell lymphoma. Int J Hematol 2008; 88:434-440. [DOI: 10.1007/s12185-008-0176-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/06/2008] [Accepted: 08/21/2008] [Indexed: 01/20/2023]
|
21
|
Abstract
Mycosis fungoides and Sézary syndrome are the most common of the cutaneous T-cell lymphomas, which are a heterogeneous group of neoplasms that affect the skin as a primary site. Although the aetiologies of mycosis fungoides and Sézary syndrome are unknown, important insights have been gained in the immunological and genetic perturbations that are associated with these diseases. Unlike some B-cell lymphomas, cutaneous T-cell lymphomas as a group are rarely if ever curable and hence need chronic-disease management. New approaches to treatments are being investigated and include biological and cytotoxic drugs, phototherapy, and monoclonal antibodies that are directed towards novel molecular targets. New molecular technologies such as complementary-DNA microarray have the potential to increase the accuracy of diagnosis and provide important prognostic information. Treatments can be combined to greatly improve clinical outcome without substantially increasing toxic effects in advanced disease that is otherwise difficult to treat. Although present treatment strategies are generally not curative, there is hope that experimental treatments, particularly immunotherapy, might eventually reverse or suppress the abnormalities of mycosis fungoides and Sézary syndrome to the point at which they become non-life-threatening, chronic diseases.
Collapse
Affiliation(s)
- Sam T Hwang
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA.
| | | | | | | |
Collapse
|
22
|
Shin J, Monti S, Aires DJ, Duvic M, Golub T, Jones DA, Kupper TS. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood 2007; 110:3015-27. [PMID: 17638852 PMCID: PMC2018675 DOI: 10.1182/blood-2006-12-061507] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is defined by infiltration of activated and malignant T cells in the skin. The clinical manifestations and prognosis in CTCL are highly variable. In this study, we hypothesized that gene expression analysis in lesional skin biopsies can improve understanding of the disease and its management. Based on 63 skin samples, we performed consensus clustering, revealing 3 patient clusters. Of these, 2 clusters tended to differentiate limited CTCL (stages IA and IB) from more extensive CTCL (stages IB and III). Stage IB patients appeared in both clusters, but those in the limited CTCL cluster were more responsive to treatment than those in the more extensive CTCL cluster. The third cluster was enriched in lymphocyte activation genes and was associated with a high proportion of tumor (stage IIB) lesions. Survival analysis revealed significant differences in event-free survival between clusters, with poorest survival seen in the activated lymphocyte cluster. Using supervised analysis, we further characterized genes significantly associated with lower-stage/treatment-responsive CTCL versus higher-stage/treatment-resistant CTCL. We conclude that transcriptional profiling of CTCL skin lesions reveals clinically relevant signatures, correlating with differences in survival and response to treatment. Additional prospective long-term studies to validate and refine these findings appear warranted.
Collapse
|
23
|
Vallejo AN. Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease. Trends Mol Med 2007; 13:94-102. [PMID: 17267287 DOI: 10.1016/j.molmed.2007.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/08/2007] [Accepted: 01/19/2007] [Indexed: 01/01/2023]
Abstract
Immunological studies of aging and of patients with chronic immune-mediated diseases document overlap of immune phenotypes. Here, the term "immune remodeling" refers to these phenotypes that are indicative of biological processes of deterioration and repair. This concept is explored through lessons from studies about the changes in the T-cell repertoire and the functional diversity of otherwise oligoclonal, senescent T cells. Immune remodeling suggests a gradual process that occurs throughout life. However, similar but more drastic remodeling occurs disproportionately among young patients with chronic disease. In this article, I propose that immune remodeling is a beneficial adaptation of aging to promote healthy survival beyond reproductive performance, but acute remodeling poses risk of premature exhaustion of the immune repertoire and, thus, is detrimental in young individuals.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Departments of Pediatrics and Immunology, University of Pittsburgh School of Medicine, 3460 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Milner JD, Ward JM, Keane-Myers A, Paul WE. Lymphopenic mice reconstituted with limited repertoire T cells develop severe, multiorgan, Th2-associated inflammatory disease. Proc Natl Acad Sci U S A 2007; 104:576-81. [PMID: 17202252 PMCID: PMC1761908 DOI: 10.1073/pnas.0610289104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphopenia and restricted T cell repertoires in humans are often associated with severe eosinophilic disease and a T cell Th2 bias. To examine the pathogenesis of this phenomenon, C57BL/6 Rag2-/- mice received limited (3 x 10(4)) or large (2 x 10(6)) numbers of CD4 T cells. Three to 5 months after transfer, mice that had received 3 x 10(4) T cells, but not those that received 2 x 10(6), developed fulminant macrophage pneumonia with eosinophilia, Ym1 deposition, and methacholine-induced airway hyperresponsiveness, as well as eosinophilic gastritis; esophagitis and other organ damage occurred in some cases. Donor cells were enriched for IL-4, IL-5, and IL-13 producers. When 3 x 10(4) cells were transferred into CD3epsilon-/- hosts, the mice developed strikingly elevated serum IgE. Prior transfer of 3 x 10(5) CD25+ CD4 T cells into Rag2-/- recipients prevented disease upon subsequent transfer of CD25- CD4 T cells, whereas 3 x 10(4) regulatory T cells (Tregs) did not, despite the fact that there were equal total numbers of Tregs in the host at the time of transfer of CD25- CD4 T cells. Limited repertoire complexity of Tregs may lead to a failure to control induction of immunopathologic responses, and limitation in repertoire complexity of conventional cells may be responsible for the Th2 phenotype.
Collapse
Affiliation(s)
| | - Jerrold M. Ward
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, and
| | - Andrea Keane-Myers
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - William E. Paul
- *Laboratory of Immunology
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Kim EJ, Lin J, Junkins-Hopkins JM, Vittorio CC, Rook AH. Mycosis fungoides and sezary syndrome: An update. Curr Oncol Rep 2006; 8:376-86. [PMID: 16901399 DOI: 10.1007/s11912-006-0061-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycosis fungoides (MF), and the associated leukemic variant Sezary Syndrome (SS), are the most common group of cutaneous T-cell lymphomas. MF/SS is a non-Hodgkin's lymphoma of mature, skin-homing, clonal, malignant T lymphocytes that initially presents in the skin as patches, plaques, tumors, or generalized erythema (erythroderma) and can involve the lymph nodes and peripheral blood. Much progress has been made in recent years in understanding the origin of the malignant T cell in MF/SS and the pathophysiology and immunology of the disease. This recent work has made a great impact on diagnosis, prognostication, and treatment. In this review, we survey the MF/SS published literature over the past year and highlight some of the important advances.
Collapse
Affiliation(s)
- Ellen J Kim
- Department of Dermatology, University of Pennsylvania Health System, Philadelphia, 19104, USA.
| | | | | | | | | |
Collapse
|
26
|
Yamanaka KI, Clark R, Dowgiert R, Hurwitz D, Shibata M, Rich BE, Hirahara K, Jones DA, Eapen S, Mizutani H, Kupper TS. Expression of Interleukin-18 and Caspase-1 in Cutaneous T-Cell Lymphoma. Clin Cancer Res 2006; 12:376-82. [PMID: 16428475 DOI: 10.1158/1078-0432.ccr-05-1777] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cutaneous T-cell lymphoma (CTCL) is a malignancy of skin-homing Th2 T cells. Clonal T cells and CTCL skin lesions typically express Th2 cytokines, including interleukin (IL)-4, IL-5, and IL-10, but fail to produce Th1 cytokines. However, the reason for Th2 bias is unknown. IL-18 is a pleiotropic proinflammatory cytokine produced by monocytes/macrophages lineage as well as epithelial cells, such as human keratinocytes. In the absence of IL-12, IL-18 leads to increased immunoglobulin E production from B cells and enhanced production of IL-4 and IL-13 by basophils, mast cells, and CD4(+) T cells. We have analyzed cytokines in CTCL patients, which may bias the immune response around the Th1/Th2 axis. EXPERIMENTAL DESIGN We examined plasma of 95 CTCL patients and skin of 20 CTCL patients for IL-18, caspase-1, IL-12, and other cytokines. To identify the presence or absence of these cytokine proteins in CTCL and normal skin, we cultured explants from skin biopsies on three-dimensional matrices. RESULTS Plasma levels of IL-18 and its converting enzyme, caspase-1, were significantly elevated in CTCL. mRNA levels for these factors were also elevated in CTCL skin lesions. Matrices populated with CTCL lesional skin produced significant amounts of IL-18 and caspase-1; however, production of IL-12 protein was barely detectable. CONCLUSIONS We propose that the high levels of IL-18 expression in lesional CTCL skin contribute to increased plasma levels of IL-18 and that this, in the face of significantly lower levels of IL-12, may contribute to the Th2 bias seen in this disease.
Collapse
Affiliation(s)
- Kei-ichi Yamanaka
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yamanaka KI, Clark R, Rich B, Dowgiert R, Hirahara K, Hurwitz D, Shibata M, Mirchandani N, Jones DA, Goddard DS, Eapen S, Mizutani H, Kupper TS. Skin-derived interleukin-7 contributes to the proliferation of lymphocytes in cutaneous T-cell lymphoma. Blood 2005; 107:2440-5. [PMID: 16322477 PMCID: PMC1895734 DOI: 10.1182/blood-2005-03-1139] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are malignancies of T cells that have a special affinity for the skin. We have previously reported that much of the T-cell receptor repertoire is altered in CTCL, and both malignant and nonmalignant clones are numerically expanded, presumably in response to T-cell trophic cytokines. We therefore examined levels of the T-cell trophic cytokines IL-2, IL-4, IL-7, IL-12, IL-13, and IL-15 in plasma in 93 CTCL patients and healthy controls. Only IL-7 levels were elevated in CTCL. We next looked at lesional skin from patients with CTCL and found elevated levels of IL-7 mRNA. Explant cultures of normal and lesional CTCL skin biopsies revealed significantly more IL-7 protein production in CTCL skin. Additionally, cultures of CTCL skin released greater numbers of T cells than normal skin; this was blocked by the addition of an IL-7 neutralizing antibody. Finally, these cultures induced proliferation of normal peripheral skin-homing T cells that were added to the cultures. These observations led us to postulate that IL-7 produced by skin cells contributes to the survival and proliferation of T cells within skin lesions and is likely the source of elevated circulating IL-7 in CTCL.
Collapse
Affiliation(s)
- Kei-ichi Yamanaka
- Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|