1
|
Yan D, Ma X, Hu Y, Zhang G, Hu B, Xiang B, Cheng X, Jing Y, Chen X. Nanomicellar Prodrug Delivery of Glucose-Paclitaxel: A Strategy to Mitigate Paclitaxel Toxicity. Int J Nanomedicine 2025; 20:2087-2101. [PMID: 39990288 PMCID: PMC11844307 DOI: 10.2147/ijn.s500999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
Background Paclitaxel-induced blood system disorders and peripheral neuropathy impede the progress of new formulations in clinical trials. Purpose of Study To mitigate these adverse effects by developing and validating a prodrug strategy that encapsulates a glucose-paclitaxel conjugate within nanomicelles. Material and Methods Succinic anhydride was used as a bridge to couple C2'-paclitaxel with methyl 2'-glucopyranose and prepare a glucose-paclitaxel conjugate. Nanomicelles were prepared via solid-phase dispersion, and dynamic light scattering was used to determine their average diameter and the polydispersity index. High-performance liquid chromatography (HPLC) was employed to evaluate drug-loading capacity and encapsulation efficiency. Pharmacokinetic studies and in vivo toxicity assays were performed in Sprague-Dawley (SD) rats. Results The nanomicellar product exhibited a spherical shape with a particle size distribution between 20-60 nm, a PDI of 0.26 ± 0.01, and an encapsulation efficiency of 95.59 ± 1.73%. The pharmacokinetic profile of glucose-paclitaxel nanomicelles in SD rats was markedly different from that of the paclitaxel solution group. Notably, the plasma drug concentration of glucose-paclitaxel nanomicelles was significantly higher than the paclitaxel solution 15 minutes post-administration, with a Vz at only 40% of that of the paclitaxel solution, while the AUC0-∞ was five times greater than that of the paclitaxel solution. Ultimately, glucose-paclitaxel nanomicelles effectively alleviated blood system disorders and peripheral neuropathy in SD rats. Conclusion The encapsulation of glucose-paclitaxel conjugates within nanomicelles presents a viable solution to the dose-limiting toxicities associated with paclitaxel, offering new perspectives on safety for the development of paclitaxel-based therapeutics.
Collapse
Affiliation(s)
- Didi Yan
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Xinyue Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Yixin Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Guogang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Bo Xiang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaokun Cheng
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
- New Drug Research & Development Co., Ltd., North China Pharmaceutical Group Corporation, Shijiazhuang, 050015, People’s Republic of China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Xi Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang, 050018, People’s Republic of China
| |
Collapse
|
2
|
De Nys L, Barzegar-Fallah A, Lanckmans K, Steurbaut S, Beckwée D, de Haar-Holleman A, Provyn S, Gasthuys E, Vande Casteele S, De Sutter PJ, Vermeulen A, Van Bocxlaer J, Wuyts SCM, Adriaenssens N. Dose-Limiting Toxicities of Paclitaxel in Breast Cancer Patients: Studying Interactions Between Pharmacokinetics, Physical Activity, and Body Composition-A Protocol for an Observational Cohort Study. Cancers (Basel) 2024; 17:50. [PMID: 39796679 PMCID: PMC11719000 DOI: 10.3390/cancers17010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Paclitaxel (PTX), a commonly used chemotherapy for breast cancer (BC), is associated with dose-limiting toxicities (DLTs) such as peripheral neuropathy and neutropenia. These toxicities frequently lead to dose reductions, treatment delays, or therapy discontinuation, negatively affecting patients' quality of life and clinical outcomes. Current dosing strategies based on body surface area (BSA) fail to account for individual variations in body composition (skeletal muscle mass (SMM) and adipose tissue (AT) mass) and physical activity (PA), which can influence drug metabolism and toxicity. This study aims to explore the relationships between PTX pharmacokinetics, body composition, and PA to predict DLTs. Methods: This single-group observational cohort study will recruit 40 female BC patients undergoing PTX treatment. Data collection will include plasma PTX concentrations, body composition assessments (using dual X-ray absorptiometry and bioelectrical impedance analysis), PA measurements (via accelerometers), and questionnaires to assess BC-related health-related quality of life, chemotherapy-induced peripheral neuropathy, and neutropenia during the PTX schedule using validated questionnaires. Dose-limiting toxicities will be graded according to the Common Terminology Criteria for Adverse Events v5.0 (grade 3 or higher). This protocol is designed to develop a population-based PK-PD model that predicts the occurrence of chemotherapy-induced peripheral neuropathy and neutropenia in women with stage II or III BC undergoing PTX therapy, focusing on explanatory outcomes related to SMM, AT mass, and PA.
Collapse
Affiliation(s)
- Len De Nys
- Rehabilitation Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 121, 1090 Jette, Belgium; (L.D.N.)
- Medical Oncology Department, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Jette, Belgium
| | - Anita Barzegar-Fallah
- Rehabilitation Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 121, 1090 Jette, Belgium; (L.D.N.)
| | - Katrien Lanckmans
- Clinical Biology Department, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Jette, Belgium
| | - Stephane Steurbaut
- Pharmacy Department, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Jette, Belgium; (S.S.)
- Vitality Research Group, Vrije Universiteit Brussel (VUB), 1090 Jette, Belgium
| | - David Beckwée
- Rehabilitation Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 121, 1090 Jette, Belgium; (L.D.N.)
| | - Amy de Haar-Holleman
- Medical Oncology Department, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Jette, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brusse (VUB), 1050 Brussels, Belgium
| | - Steven Provyn
- Human Physiology and Sports Physiotherapy (MFYS), Vrije Universiteit Brussel (VUB), 1090 Jette, Belgium
| | - Elke Gasthuys
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Gent, Belgium; (E.G.)
| | - Sofie Vande Casteele
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Gent, Belgium; (E.G.)
| | - Pieter-Jan De Sutter
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Gent, Belgium; (E.G.)
| | - An Vermeulen
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Gent, Belgium; (E.G.)
| | - Jan Van Bocxlaer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Gent, Belgium; (E.G.)
| | - Stephanie C. M. Wuyts
- Pharmacy Department, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Jette, Belgium; (S.S.)
- Research Centre for Digital Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nele Adriaenssens
- Rehabilitation Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 121, 1090 Jette, Belgium; (L.D.N.)
- Medical Oncology Department, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Jette, Belgium
| |
Collapse
|
3
|
Girdenytė M, Hu Y, Ginosyan A, Hammarlund-Udenaes M, Loryan I. Formulation-dependent differences in paclitaxel distribution to anatomical sites relevant to chemotherapy-induced peripheral neuropathy. Front Pharmacol 2024; 15:1486686. [PMID: 39568585 PMCID: PMC11576287 DOI: 10.3389/fphar.2024.1486686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting adverse event observed in patients receiving paclitaxel, associated with initial pathological changes in the peripheral nervous system, i.e., distal nerves and dorsal root ganglia (DRG). The prevalence of CIPN in patients receiving paclitaxel formulated i) in polyethylated castor oil with ethanol (CreEL-PTX), ii) as albumin-bound (nab-PTX), and iii) in XR17 micelles (micellar-PTX), is unexpectedly varying. We hypothesize that the discrepancy in CIPN prevalence could be governed by differences in the extent of paclitaxel distribution across blood-to-tissue barriers at the CIPN-sites, caused by the specific formulation. Methods The recently developed Combinatory Mapping Approach for CIPN was used to determine the unbound tissue-to-plasma concentration ratio Kp,uu,tissue, after a 4-h infusion of 4 mg/kg CreEL-PTX, 4 mg/kg nab-PTX or 1 mg/kg micellar-PTX in male and female Sprague Dawley rats. Kp,uu,tissue was determined in conventional (DRG, sciatic nerve) and non-conventional (brain, spinal cord, skeletal muscle) CIPN-sites. Results Based on our data, the Cremophor-free paclitaxel formulations were associated with a higher distribution of paclitaxel to CIPN-sites than CreEL-PTX, e.g., Kp,uu,DRG of 0.70 and 0.60 for nab-PTX and micellar-PTX, respectively, in comparison to 0.27 for CreEL-PTX (p < 0.01). In addition, the fraction of unbound paclitaxel in plasma was on average 1.6-fold higher in nab- and micellar PTX arms and equal to 0.061 and 0.065, respectively, compared to 0.039 for the CreEL-PTX treatment arm (p < 0.0001). Discussion In the case of similar unbound paclitaxel concentration in the plasma of patients and assumed species-independent extent of paclitaxel transport across the barriers, nab- and micellar-PTX formulations can lead to higher paclitaxel exposure at CIPN-sites in comparison to CreEL-PTX.
Collapse
Affiliation(s)
- Milda Girdenytė
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
- Pharmacy and Pharmacology Center, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Yang Hu
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Johnson K, Stoffel B, Schwitter M, Hayoz S, Rojas Mora A, Fischer Maranta A, El Saadany T, Hasler U, von Moos R, Patzen A, Mark M, Roberts G, Cathomas R. Prevention of taxane chemotherapy-induced nail changes and peripheral neuropathy by application of extremity cooling: a prospective single-centre study with intrapatient comparison. Support Care Cancer 2024; 32:554. [PMID: 39066890 PMCID: PMC11283420 DOI: 10.1007/s00520-024-08737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Common side effects of taxane chemotherapy are nail toxicity and peripheral neuropathy (CIPN) causing severe impact on the quality of life. Different methods of cryotherapy to prevent these side effects have been tested. We investigated the use of machine-controlled cooling of hands and feet to reduce nail toxicity and CIPN in patients receiving taxane chemotherapy. METHODS Patients receiving Docetaxel (planned dose ≥ 300 mg/m2) or Paclitaxel (planned dose ≥ 720 mg/m2 - ) in the adjuvant or palliative setting of different cancers were included. The dominant hand and foot were cooled to approximately 10 °C using the Hilotherapy machine. The contralateral hand and foot were used as intrapatient comparison. The primary endpoint was the occurrence of any CIPN due to paclitaxel or nail toxicity due to Docetaxel. Both the intention to treat population (ITT) and the per protocol population (PPP) were analyzed. RESULTS A total of 69 patients, 21 treated with Docetaxel and 48 with Paclitaxel, were included at our centre between 08/2020 and 08/2022. Nail toxicity due to Docetaxel was overall not significantly improved by cooling in the ITT or PPP but a significant benefit across visits was found for the ITT. CIPN due to Paclitaxel was numerically better in the ITT and significantly better in the PPP. A significant benefit of cooling on CIPN occurrence across visits was found for the ITT and the PPP. Cooling was very well tolerated. CONCLUSION Cooling of hands and feet has a clinically meaningful impact on reducing occurrence of CIPN and nail toxicity on treatment with taxanes. Effects are more significant over time and are dose dependent. TRIAL REGISTRATION NUMBER 2020-00381. Date of registration. 24th February 2020.
Collapse
Affiliation(s)
- Kristen Johnson
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
- Department of Internal Medicine, Kantonsspital Graubünden, Chur, Switzerland
| | - Barbara Stoffel
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Michael Schwitter
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | | | | | | | - Tämer El Saadany
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Ursula Hasler
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Roger von Moos
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Annalea Patzen
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Michael Mark
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Gillian Roberts
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Richard Cathomas
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland.
- University of Zürich, Zurich, Switzerland.
| |
Collapse
|
5
|
Hu Y, Girdenyté M, Roest L, Liukkonen I, Siskou M, Bällgren F, Hammarlund-Udenaes M, Loryan I. Analysis of the contributing role of drug transport across biological barriers in the development and treatment of chemotherapy-induced peripheral neuropathy. Fluids Barriers CNS 2024; 21:13. [PMID: 38331886 PMCID: PMC10854123 DOI: 10.1186/s12987-024-00519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) represents a major unmet medical need that currently has no preventive and/or curative treatment. This is, among others, driven by a poor understanding of the contributive role of drug transport across biological barriers to target-site exposure. METHODS Here, we systematically investigated the transport of 11 small-molecule drugs, both, associated and not with CIPN development, at conventional (dorsal root ganglia, sciatic nerve) and non-conventional (brain, spinal cord, skeletal muscle) CIPN sites. We developed a Combinatory Mapping Approach for CIPN, CMA-CIPN, combining in vivo and in vitro elements. RESULTS Using CMA-CIPN, we determined the unbound tissue-to-plasma concentration ratio (Kp,uu) and the unbound intracellular-to-extracellular concentration ratio (Kp,uu,cell), to quantitatively assess the extent of unbound drug transport across endothelial interfaces and parenchymal cellular barriers of investigated CIPN-sites, respectively, in a rat model. The analysis revealed that unique pharmacokinetic characteristics underly time-dependent accumulation of the CIPN-positive drugs paclitaxel and vincristine at conventional (dorsal root ganglia and sciatic nerve) and non-conventional (skeletal muscle) CIPN sites. Investigated CIPN-positive drugs displayed intracellular accumulation contrary to CIPN-negative drugs nilotinib and methotrexate, which lacked this feature in all investigated tissues. CONCLUSIONS Hence, high unbound drug intracellular and extracellular exposure at target sites, driven by an interplay of drug transport across the endothelial and parenchymal cellular barriers, is a predisposing factor to CIPN development for CIPN-positive drugs. Critical drug-specific features of unbound drug disposition at various CIPN- sites provide invaluable insights into understanding the pharmacological/toxicological effects at the target-sites which will inform new strategies for monitoring and treatment of CIPN.
Collapse
Affiliation(s)
- Yang Hu
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
- Current Affiliation: Discovery ADME, Drug Discovery Sciences, Boehringer Ingelheim RCV, GmbH & Co KG, 1121, Vienna, Austria
| | - Milda Girdenyté
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
- Pharmacy and Pharmacology Center, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M.K. Čiurlionio, Str. 21/27, 03101, Vilnius, Lithuania
| | - Lieke Roest
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Iida Liukkonen
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Maria Siskou
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Frida Bällgren
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
| |
Collapse
|
6
|
Radovanovic M, Galettis P, Flynn A, Martin JH, Schneider JJ. Paclitaxel and Therapeutic Drug Monitoring with Microsampling in Clinical Practice. Pharmaceuticals (Basel) 2023; 17:63. [PMID: 38256896 PMCID: PMC10820540 DOI: 10.3390/ph17010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Paclitaxel is an anticancer agent efficacious in various tumors. There is large interindividual variability in drug plasma concentrations resulting in a wide variability in observed toxicity in patients. Studies have shown the time the concentration of paclitaxel exceeds 0.05 µM is a predictive parameter of toxicity, making dose individualization potentially useful in reducing the adverse effects. To determine paclitaxel drug concentration, a venous blood sample collected 24 h following the end of infusion is required, often inconvenient for patients. Alternatively, using a microsampling device for self-sampling would facilitate paclitaxel monitoring regardless of the patient's location. We investigated the feasibility of collecting venous and capillary samples (using a Mitra® device) from cancer patients to determine the paclitaxel concentrations. The relationship between the venous plasma and whole blood and venous and capillary blood (on Mitra®) paclitaxel concentrations, defined by a Passing-Bablok regression, were 0.8433 and 0.8569, respectively. Demonstrating a clinically acceptable relationship between plasma and whole blood paclitaxel concentration would reduce the need to establish new target concentrations in whole blood. However, in this study, comparison of venous and capillary blood using Mitra® for sampling displayed wide confidence intervals suggesting the results from the plasma and whole blood on this device may not be interchangeable.
Collapse
Affiliation(s)
- Mirjana Radovanovic
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Peter Galettis
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alex Flynn
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer H. Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer J. Schneider
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW 2308, Australia; (P.G.); (A.F.); (J.H.M.); (J.J.S.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
7
|
Rodwin RL, Siddiq NZ, Ehrlich BE, Lustberg MB. Biomarkers of Chemotherapy-Induced Peripheral Neuropathy: Current Status and Future Directions. FRONTIERS IN PAIN RESEARCH 2022; 3:864910. [PMID: 35360655 PMCID: PMC8963873 DOI: 10.3389/fpain.2022.864910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is an often severe and debilitating complication of multiple chemotherapeutic agents that can affect patients of all ages, across cancer diagnoses. CIPN can persist post-therapy, and significantly impact the health and quality of life of cancer survivors. Identifying patients at risk for CIPN is challenging due to the lack of standardized objective measures to assess for CIPN. Furthermore, there are no approved preventative treatments for CIPN, and therapeutic options for CIPN remain limited once it develops. Biomarkers of CIPN have been studied but are not widely used in clinical practice. They can serve as an important clinical tool to identify individuals at risk for CIPN and to better understand the pathogenesis and avenues for treatment of CIPN. Here we review promising biomarkers of CIPN in humans and their clinical implications.
Collapse
Affiliation(s)
- Rozalyn L. Rodwin
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Namrah Z. Siddiq
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
| | - Maryam B. Lustberg
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
- *Correspondence: Maryam B. Lustberg
| |
Collapse
|
8
|
Pozzi E, Alberti P. Management of Side Effects in the Personalized Medicine Era: Chemotherapy-Induced Peripheral Neurotoxicity. Methods Mol Biol 2022; 2547:95-140. [PMID: 36068462 DOI: 10.1007/978-1-0716-2573-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pharmacogenomics is a powerful tool to predict individual response to treatment, in order to personalize therapy, and it has been explored extensively in oncology practice. Not only efficacy on the malignant disease has been investigated but also the possibility to predict adverse effects due to drug administration. Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of those. This potentially severe and long-lasting/permanent side effect of commonly administered anticancer drugs can severely impair quality of life (QoL) in a large cohort of long survival patients. So far, a pharmacogenomics-based approach in CIPN regard has been quite delusive, making a methodological improvement warranted in this field of interest: even the most refined genetic analysis cannot be effective if not applied correctly. Here we try to devise why it is so, suggesting how THE "bench-side" (pharmacogenomics) might benefit from and should cooperate with THE "bed-side" (clinimetrics), in order to make genetic profiling effective if applied to CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- NeuroMI (Milan Center for Neuroscience), Milan, Italy.
| |
Collapse
|
9
|
Hiramoto S, Asano H, Miyamoto T, Takegami M, Kawabata A. Risk factors and pharmacotherapy for chemotherapy-induced peripheral neuropathy in paclitaxel-treated female cancer survivors: A retrospective study in Japan. PLoS One 2021; 16:e0261473. [PMID: 34972132 PMCID: PMC8719717 DOI: 10.1371/journal.pone.0261473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting adverse reaction in cancer patients treated with several cytotoxic anticancer agents including paclitaxel. Duloxetine, an antidepressant known as a serotonin-noradrenalin reuptake inhibitor, is the only agent that has moderate evidence for the use to treat painful CIPN. The present retrospective cohort study aimed to analyze risk factors for paclitaxel-induced peripheral neuropathy (PIPN), and investigate ongoing prescription drug use for PIPN in Japan. Female breast and gynecologic cancer patients who underwent paclitaxel-based chemotherapy at a single center in Japan between January 2016 and December 2019 were enrolled in this study. Patients' information obtained from electronic medical records were statistically analyzed to test possible risk factors on PIPN diagnosis. Patients' age, total paclitaxel dose, the history of female hormone-related diseases, hypertension and body mass index (BMI), but not additional platinum agents, were significantly associated with increased PIPN diagnosis. Drugs prescribed for PIPN included duloxetine, pregabalin, mecobalamin and Goshajinkigan, a polyherbal medicine, regardless of poor evidence for their effectiveness against CIPN, and were greatly different between breast and gynecologic cancer patients diagnosed with PIPN at the departments of Surgery and Gynecology, respectively. Thus, older age, greater total paclitaxel dose, the history of estrogen-related diseases, hypertension and BMI are considered risk factors for PIPN in paclitaxel-based chemotherapy of female cancer patients. It appears an urgent need to establish a guideline of evidence-based pharmacotherapy for PIPN.
Collapse
Affiliation(s)
- Shiori Hiramoto
- Division of Pharmacology and Pathophysiology Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
- Division of Pharmacy, Kindai University Hospital, Osakasayama, Japan
| | - Hajime Asano
- Division of Pharmacy, Kindai University Hospital, Osakasayama, Japan
| | - Tomoyoshi Miyamoto
- Division of Pharmacology and Pathophysiology Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Manabu Takegami
- Division of Pharmacy, Kindai University Hospital, Osakasayama, Japan
| | - Atsufumi Kawabata
- Division of Pharmacology and Pathophysiology Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| |
Collapse
|
10
|
Optimized Dosing: The Next Step in Precision Medicine in Non-Small-Cell Lung Cancer. Drugs 2021; 82:15-32. [PMID: 34894338 DOI: 10.1007/s40265-021-01654-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
In oncology, and especially in the treatment of non-small-cell lung cancer (NSCLC), dose optimization is often a neglected part of precision medicine. Many drugs are still being administered in "one dose fits all" regimens or based on parameters that are often only minor determinants for systemic exposure. These dosing approaches often introduce additional pharmacokinetic variability and do not add to treatment outcomes. Fortunately, pharmacological knowledge is increasing, providing valuable information regarding the potential of, for example, therapeutic drug monitoring. This article focuses on the evidence for the most promising and easily implemented optimized dosing approaches for the small-molecule inhibitors, chemotherapeutic agents, and monoclonal antibodies as treatment options currently approved for NSCLC. Despite limitations such as investigations having been conducted in oncological diseases other than NSCLC or the retrospective origin of many analyses, an alternative dosing regimen could be beneficial for treatment outcomes, prescriber convenience, or financial burden on healthcare systems. This review of the literature provides recommendations on the implementation of dose optimization and advice regarding promising strategies that deserve further research in NSCLC.
Collapse
|
11
|
van Eerden RAG, van Doorn L, de Man FM, Heersche N, Doukas M, van den Bosch TPP, Oomen-de Hoop E, de Bruijn P, Bins S, Ibrahim E, Nikkessen S, Friberg LE, Koolen SLW, Spaander MCW, Mathijssen RHJ. Tissue Type Differences in ABCB1 Expression and Paclitaxel Tissue Pharmacokinetics in Patients With Esophageal Cancer. Front Pharmacol 2021; 12:759146. [PMID: 34858183 PMCID: PMC8632367 DOI: 10.3389/fphar.2021.759146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Data from previous work suggests that there is no correlation between systemic (plasma) paclitaxel exposure and efficacy in patients treated for esophageal cancer. In this trial, we investigated ATP-binding cassette efflux transporter expression and intratumoral pharmacokinetics of paclitaxel to identify changes which could be a first sign of chemoresistance. Methods: Patients with esophageal cancer treated with paclitaxel and carboplatin (± concomitant radiotherapy) were included. During the first and last cycle of weekly paclitaxel, blood samples and biopsies of esophageal mucosa and tumor tissue were taken. Changes in paclitaxel exposure and expression of ABCB1 (P-glycoprotein) over time were studied in both tumor tissue and normal appearing esophageal mucosa. Results: ABCB1 was significantly higher expressed in tumor tissue compared to esophageal tissue, during both the first and last cycle of paclitaxel (cycle 1: p < 0.01; cycle 5/6: p = 0.01). Interestingly, ABCB1 expression was significantly higher in adenocarcinoma than in squamous cell carcinoma (p < 0.01). During the first cycle, a trend towards a higher intratumoral paclitaxel concentration was observed compared to the esophageal mucosa concentration (RD:43%; 95%CI: −3% to 111% p = 0.07). Intratumoral and plasma paclitaxel concentrations were significantly correlated during the first cycle (AUC0–48 h: r = 0.72; p < 0.01). Conclusion: Higher ABCB1 expression in tumor tissue, and differences between histological tumor types might partly explain why tumors respond differently to systemic treatment. Resistance by altered intratumoral paclitaxel concentrations could not be demonstrated because the majority of the biopsies taken at the last cycle of paclitaxel did contain a low amount of tumor cells or no tumor.
Collapse
Affiliation(s)
- Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Niels Heersche
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Eman Ibrahim
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Suzan Nikkessen
- Department of Gastroenterology and Hepatology Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands.,Department of Pharmacy, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
12
|
Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells 2021; 10:cells10061504. [PMID: 34203746 PMCID: PMC8232646 DOI: 10.3390/cells10061504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.
Collapse
|
13
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|
14
|
Muth M, Ojara FW, Kloft C, Joerger M. Role of TDM-based dose adjustments for taxane anticancer drugs. Br J Clin Pharmacol 2020; 87:306-316. [PMID: 33247980 DOI: 10.1111/bcp.14678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 01/14/2023] Open
Abstract
The classical taxanes (paclitaxel, docetaxel), the newer taxane cabazitaxel and the nanoparticle-bound nab-paclitaxel are among the most widely used anticancer drugs. Still, the optimal use and the value of pharmacological personalization of the taxanes is still controversial. We give an overview on the pharmacological properties of the taxanes, including metabolism, pharmacokinetics-pharmacodynamic relations and aspects in the clinical use of taxanes. The latter includes the ongoing debate on the most effective and safe regimen, the recommended initial dose, and pharmacological dosing individualization. The taxanes are among the most widely used anticancer drugs in patients with solid malignancies. Despite their longtime use in clinical routine, the optimal dosing strategy (weekly versus 3-weekly) or optimal average dose (cabazitaxel, nab-paclitaxel) has not been fully resolved, as it may differ according to tumour entity and line of treatment. The value of pharmacological individualization of the taxanes (TDM, TCI) has been partly explored for 3-weekly paclitaxel and docetaxel, but remains mostly unexplored for cabazitaxel and nab-paclitaxel at present.
Collapse
Affiliation(s)
- Marsilla Muth
- Department of Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Francis Williams Ojara
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Germany.,Graduate Research Training Program PharMetrX, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Markus Joerger
- Department of Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
15
|
Ojara FW, Henrich A, Frances N, Huisinga W, Hartung N, Joerger M, Kloft C. Time-to-Event Analysis of Paclitaxel-Associated Peripheral Neuropathy in Advanced Non-Small-Cell Lung Cancer Highlighting Key Influential Treatment/Patient Factors. J Pharmacol Exp Ther 2020; 375:430-438. [PMID: 33008871 DOI: 10.1124/jpet.120.000053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022] Open
Abstract
Paclitaxel-associated peripheral neuropathy (PN), a major dose-limiting toxicity, significantly impacts patients' quality of life/treatment outcome. Evaluation of risk factors often ignores time of PN onset, precluding the impact of time-dependent factors, e.g., drug exposure, needed to comprehensively characterize PN. We employed parametric time-to-event (TTE) analysis to describe the time course of risk of first occurrence of clinically relevant PN grades ≥2 (PN2+, n = 105, common terminology criteria v4.0) and associated patient/treatment characteristics, leveraging data from 365 patients (1454 cycles) receiving paclitaxel every 3 weeks (plus carboplatin AUC = 6 or cisplatin 80 mg/m2) for ≤6 cycles. Paclitaxel was intravenously administered (3 hours) as standard 200-mg/m2 doses (n = 182) or as pharmacokinetic-guided dosing (n = 183). A cycle-varying hazard TTE model linking surge in hazard of PN2+ to paclitaxel administration [PN2+ proportions (i.e., cases per 1000 patients), 1st day, cycle 1: 4.87 of 1000; cycle 6: 7.36 of 1000] and linear decline across cycle (last day, cycle 1: 1.64 of 1000; cycle 6: 2.48 of 1000) adequately characterized the time-varying hazard of PN2+. From joint covariate evaluation, PN2+ proportions (1st day, cycle 1) increased by 1.00 per 1000 with 5-μmol·h/l higher paclitaxel exposure per cycle (AUC between the start and end of a cycle, most relevant covariate), 0.429 per 1000 with 5-year higher age, 1.31 per 1000 (smokers vs. nonsmokers), and decreased by 0.670 per 1000 (females vs. males). Compared to 200 mg/m2 dosing every 3 weeks, model-predicted cumulative risk of PN2+ was significantly higher (42%) with 80 mg/m2 weekly dosing but reduced by 11% with 175 mg/m2 dosing every 3 weeks. The established TTE modeling framework enables quantification and comparison of patient's cumulative risks of PN2+ for different clinically relevant paclitaxel dosing schedules, sparing patients PN2+ to improve paclitaxel therapy. SIGNIFICANCE STATEMENT: Characterization of risk factors of paclitaxel-associated peripheral neuropathy (PN) typically involves time-independent comparison of PN odds in patient subpopulations, concealing the impact of time-dependent factors, e.g., changing paclitaxel exposure, required to comprehensively characterize PN. We developed a parametric time-to-event model describing the time course in risk of clinically relevant paclitaxel-associated PN, identifying the highest risk in older male smokers with higher paclitaxel area under the plasma concentration-time curve between the start and end of a cycle. The developed framework enabled quantification of patient's risk of PN for clinically relevant paclitaxel dosing schedules, facilitating future dosing decisions.
Collapse
Affiliation(s)
- Francis W Ojara
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Andrea Henrich
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Nicolas Frances
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Wilhelm Huisinga
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Niklas Hartung
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Markus Joerger
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany (F.W.O., A.H., C.K.); Graduate Research Training Program PharMetrX, Germany (F.W.O., A.H.); Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.F.), Institute of Mathematics, University of Potsdam, Potsdam, Germany (N.H, W.H.); and Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland (M.J.)
| |
Collapse
|
16
|
Wang J, Qiao W, Zhao H, Yang X. Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles. Biochem Pharmacol 2020; 182:114232. [PMID: 32979350 DOI: 10.1016/j.bcp.2020.114232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
The side effects and low bioavailability of paclitaxel (PTX) limit its clinical application. The formation of self-assembled nanomedicines without structural modification is attractive for biomedical applications. Here, we constructed a supramolecular co-assembled nanoparticles (NPs), which is formed by betulonic acid (BTA) and PTX mainly through hydrogen bond interaction and hydrophobic interaction. It not only has the characteristics of NPs but also the activity of natural small molecules (NSMs). The results of in vitro and in vivo experiments showed that BTA-PTX NPs showed excellent synergistic enhancement of anti-tumor efficacy, because BTA and PTX have different anti-tumor mechanisms. What's more, BTA-PTX NPs showed excellent biosafety and low toxicity, because BTA has impressive biological activity and biosafety. This work provides an effective and simple method to construct high efficiency and minimize side effects of NPs, which provides more possibilities for the application of NSMs in drug delivery.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China
| | - Wenshu Qiao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China.
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
17
|
Sugita Y, Takao K, Uesawa Y, Nagai J, Iijima Y, Sano M, Sakagami H. Development of Newly Synthesized Chromone Derivatives with High Tumor Specificity against Human Oral Squamous Cell Carcinoma. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E50. [PMID: 32858984 PMCID: PMC7555025 DOI: 10.3390/medicines7090050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Since many anticancer drugs show severe adverse effects such as mucositis, peripheral neurotoxicity, and extravasation, it was crucial to explore new compounds with much reduced adverse effects. Comprehensive investigation with human malignant and nonmalignant cells demonstrated that derivatives of chromone, back-bone structure of flavonoid, showed much higher tumor specificity as compared with three major polyphenols in the natural kingdom, such as lignin-carbohydrate complex, tannin, and flavonoid. A total 291 newly synthesized compounds of 17 groups (consisting of 12 chromones, 2 esters, and 3 amides) gave a wide range of the intensity of tumor specificity, possibly reflecting the fitness for the optimal 3D structure and electric state. Among them, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one (compound 22), which belongs to 3-styrylchromones, showed the highest tumor specificity. 22 induced subG1 and G2 + M cell population in human oral squamous cell carcinoma cell line, with much less keratinocyte toxicity as compared with doxorubicin and 5-FU. However, 12 active compounds selected did not necessarily induce apoptosis and mitotic arrest. This compound can be used as a lead compound to manufacture more active compound.
Collapse
Affiliation(s)
- Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-858, Japan
| | - Junko Nagai
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-858, Japan
| | - Yosuke Iijima
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan
| | - Motohiko Sano
- Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo 142-8501, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
18
|
Chen Y, Fang F, Kidwell KM, Vangipuram K, Marcath LA, Gersch CL, Rae JM, Hayes DF, Lavoie Smith EM, Henry NL, Beutler AS, Hertz DL. Genetic variation in Charcot-Marie-Tooth genes contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Pharmacogenomics 2020; 21:841-851. [PMID: 32700628 DOI: 10.2217/pgs-2020-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: This study explored whether inherited variants in genes causing the hereditary neuropathy condition Charcot-Marie-Tooth disease are associated with sensitivity to paclitaxel-induced peripheral neuropathy (PN). Patients & methods: Hereditary neuropathy genes previously associated with risk of paclitaxel-induced PN were sequenced in paclitaxel-treated patients. Eight putative genetic predictors in five hereditary neuropathy genes (ARHGEF10, SBF2, FGD4, FZD3 and NXN) were tested for association with PN sensitivity after accounting for systemic exposure and clinical variables. Results: FZD3 rs7833751, a proxy for rs7001034, decreased PN sensitivity (additive model, β = -0.41; 95% CI: -0.66 to -0.17; p = 0.0011). None of the other genetic predictors were associated with PN sensitivity. Conclusion: Our results support prior evidence that FZD3 rs7001034 is protective of PN and may be useful for individualizing paclitaxel treatment to prevent PN.
Collapse
Affiliation(s)
- Yongzhen Chen
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Fang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Lauren A Marcath
- Department of Pharmacotherapy, Washington State University College of Pharmacy & Pharmaceutical Sciences, Pullman, WA 99164, USA
| | - Christina L Gersch
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James M Rae
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ellen M Lavoie Smith
- Department of Health Behavior & Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI 48109, USA
| | - N Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas S Beutler
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55902, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Daniel L Hertz
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109.,Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Chou PL, Huang YP, Cheng MH, Rau KM, Fang YP. Improvement of Paclitaxel-Associated Adverse Reactions (ADRs) via the Use of Nano-Based Drug Delivery Systems: A Systematic Review and Network Meta-Analysis. Int J Nanomedicine 2020; 15:1731-1743. [PMID: 32210563 PMCID: PMC7075337 DOI: 10.2147/ijn.s231407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Paclitaxel is wildly used in chemotherapy, however, the adverse drug reactions (ADRs) occurred frequently. Various novel nano-based paclitaxel delivery systems were developed. The aim performed systemically review and meta-analyses to evaluate the effect adverse drug reactions (ADRs) of paclitaxel and its nano-based delivery systems. Methods Systematically searched PubMed, Embase, Web of Science, Cochrane, Clinicalkey, Clinicaltrial.com, ASCO and ESMO. Data of adverse effect were analyzed to odds ratio (ORs) with 95% confidence interval (CI). The quality of studies was assessed with CASP Randomised Controlled Trial Checklist. Statistical analysis was used WinBUGS software (version 1.4.3) with the NetMetaXL interface (version 1.6.1). Results Twenty-one studies, including 7011 patients and 6 paclitaxel formulations fulfilled the inclusion criteria. In all grade hypersensitivity reactions, comparing to SB-P, people with Lip-P had 0.19 times (95% CI= 0.02, 1.3) of chance, with Nab-P had 0.47 times (95% CI= 0.11, 1.40) of chance, with PPX had 0.44 times (95% CI= 0.03, 5.7) of chance for all grade adverse effect. In All grad neutropenia, comparing to Lip-P, people with SB-P had 0.83 times (95% CI= 0.15, 4.81) of chance for all grade adverse effect; comparing to PM-P, people with SB-P had 0.73 times (95% CI= 0.22, 2.42) of chance for all grade adverse effect. In leucopenia, comparing to Nab-P, people with SB-P had 0.66 times (95% CI= 0.50, 0.87) of chance for all grade adverse effect; comparing to PM-P, people with SB-P had 0.64 times (95% CI= 0.32, 1.16) of chance for all grade adverse effect. The rate of incidence in peripheral sensory neuropathy, myalgias and arthralgias tend to no significant differences between different formulations. Conclusion Nano-based paclitaxel delivery resulted in fewer hypersensitivity reactions than solvent-based delivery. However, the incidence of neutropenia and leucopenia was higher in nano-based than solvent-based paclitaxel delivery. Dose-dependent ADRs were more frequent in paclitaxel anticancer treatment.
Collapse
Affiliation(s)
- Pi-Ling Chou
- School of Nursing, College of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ping Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacy, Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Meng-Hsuan Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ping Fang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medical and Cell Therapy Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Marcath LA, Kidwell KM, Vangipuram K, Gersch CL, Rae JM, Burness ML, Griggs JJ, Van Poznak C, Hayes DF, Smith EML, Henry NL, Beutler AS, Hertz DL. Genetic variation in EPHA contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Br J Clin Pharmacol 2020; 86:880-890. [PMID: 31823378 DOI: 10.1111/bcp.14192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Chemotherapy-induced peripheral neuropathy (PN) is a treatment limiting toxicity of paclitaxel. We evaluated if EPHA genetic variation (EPHA4, EPHA5, EPHA6, and EPHA8) is associated with PN sensitivity by accounting for variability in systemic paclitaxel exposure (time above threshold). METHODS Germline DNA from 60 patients with breast cancer was sequenced. PN was measured using the 8-item sensory subscale (CIPN8) of the patient-reported CIPN20. Associations for 3 genetic models were tested by incorporating genetics into previously published PN prediction models integrating measured paclitaxel exposure and cumulative treatment. Significant associations were then tested for association with PN-related treatment disruption. RESULTS EPHA5 rs7349683 (minor allele frequency = 0.32) was associated with increased PN sensitivity (β-coefficient = 0.39, 95% confidence interval 0.11-0.67, p = 0.007). Setting a maximum tolerable threshold of CIPN8 = 30, optimal paclitaxel exposure target is shorter for rs7349683 homozygous (11.6 h) than heterozygous (12.6 h) or wild-type (13.6 h) patients. Total number of missense variants (median = 0, range 0-2) was associated with decreased PN sensitivity (β-coefficient: -0.42, 95% confidence interval -0.72 to -0.12, P = .006). No association with treatment disruption was detected for the total number of missense variants or rs7349683. CONCLUSION Isolating toxicity sensitivity by accounting for exposure is a novel approach, and rs7349683 represents a promising marker for PN sensitivity that may be used to individualize paclitaxel treatment.
Collapse
Affiliation(s)
- Lauren A Marcath
- Department of Pharmacotherapy, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, USA
| | - Kelley M Kidwell
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | | | - James M Rae
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Monika L Burness
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer J Griggs
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine Van Poznak
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ellen M Lavoie Smith
- Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI, USA
| | - N Lynn Henry
- Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andreas S Beutler
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Does Older Age Lead to Higher Risk for Neutropenia in Patients Treated with Paclitaxel? Pharm Res 2019; 36:163. [PMID: 31617004 DOI: 10.1007/s11095-019-2697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE There is ongoing concern regarding increased toxicity from paclitaxel in elderly patients, particularly of severe neutropenia. Yet, data so far is controversial and this concern is not supported by a clinically relevant age-dependent difference in pharmacokinetics (PK) of paclitaxel. This study assessed whether age is associated with increased risk for paclitaxel-induced neutropenia. METHODS Paclitaxel plasma concentration-time data, pooled from multiple different studies, was combined with available respective neutrophil count data during the first treatment cycle. Paclitaxel pharmacokinetic-pharmacodynamic (PK-PD) data was modeled using a non-linear mixed effects approach and a semiphysiological neutropenia model, where systemic paclitaxel exposure was linked to reduced proliferation of neutrophils. The impact of age was evaluated on relevant variables in the model, using a significance threshold of p < 0.005. RESULTS Paclitaxel PK-PD data was evaluated from 300 patients, with a median age of 65 years (range 23-84 years), containing 116 patients ≥70 years (39%). First cycle neutrophil counts were adequately described by a threshold effect model of paclitaxel on the proliferation rate of neutrophils. Age as a continuous or dichotomous variable (≥70 versus <70 years) did not significantly impact sensitivity of the bone marrow to paclitaxel nor the average maturation time of neutrophils (both p > 0.005), causing a decline in the respective interindividual variability of <1%. CONCLUSION Results from this large retrospective patient cohort do not suggest elderly patients to be at an increased risk of developing paclitaxel-associated neutropenia during the first treatment cycle. Reflexive dose reductions of paclitaxel in elderly patients are unlikely to improve the risk of severe neutropenia and may be deleterious.
Collapse
|
22
|
Chan A, Hertz DL, Morales M, Adams EJ, Gordon S, Tan CJ, Staff NP, Kamath J, Oh J, Shinde S, Pon D, Dixit N, D'Olimpio J, Dumitrescu C, Gobbo M, Kober K, Mayo S, Pang L, Subbiah I, Beutler AS, Peters KB, Loprinzi C, Lustberg MB. Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Support Care Cancer 2019; 27:3729-3737. [PMID: 31363906 DOI: 10.1007/s00520-019-04987-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating condition associated with a number of chemotherapeutic agents. Drugs commonly implicated in the development of CIPN include platinum agents, taxanes, vinca alkaloids, bortezomib, and thalidomide analogues. As a drug response can vary between individuals, it is hypothesized that an individual's specific genetic variants could impact the regulation of genes involved in drug pharmacokinetics, ion channel functioning, neurotoxicity, and DNA repair, which in turn affect CIPN development and severity. Variations of other molecular markers may also affect the incidence and severity of CIPN. Hence, the objective of this review was to summarize the known biological (molecular and genomic) predictors of CIPN and discuss the means to facilitate progress in this field.
Collapse
Affiliation(s)
- Alexandre Chan
- National University of Singapore, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Manuel Morales
- University Hospital Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elizabeth J Adams
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Sharon Gordon
- University of Connecticut, Storrs, USA
- East Carolina University, Greenville, USA
| | - Chia Jie Tan
- National University of Singapore, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Jayesh Kamath
- University of Connecticut Health Center, Storrs, USA
| | - Jeong Oh
- MD Anderson Cancer Center, Houston, USA
| | - Shivani Shinde
- University of Colorado, Colorado, USA
- VA Eastern Colorado Health Care Systems, Aurora, MS, USA
| | - Doreen Pon
- Western University of Health Sciences, Pomona, USA
| | - Niharkia Dixit
- University of California San Francisco, San Francisco, USA
- Zuckerberg San Francisco General Hospital, San Francisco, USA
| | - James D'Olimpio
- Northwell Cancer Institute, New Hyde Park, USA
- Zucker School of Medicine at Hofstra, 500 Hofstra Blvd, Hempstead, USA
| | | | | | - Kord Kober
- University of California San Francisco, San Francisco, USA
- Helen Diller Comprehensive Cancer Centre, San Francisco, USA
| | | | | | | | | | | | | | - Maryam B Lustberg
- The Ohio State University Comprehensive Cancer Center, Columbus, USA.
| |
Collapse
|
23
|
Perbowo P, Askandar B, Soebady R, Bashory A. The Comparison of Neutropenia and Peripheral Neuropathy Condition as an Impact of 3-hours and 24-hour Paclitaxel Infusion of Paclitaxel-Carboplatin Chemotherapy on Ovarian Cancer Patients. PAIN MEDICINE 2019. [DOI: 10.31636/pmjua.v4i2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study is aimed to compare the difference of neutropenia with peripheral neuropathy condition, after administration of 3 hours and 24 hours Paclitaxel infusion in adjuvant therapy with PaclitaxelCarboplatin toward patient with ovarian carcinoma. The method that used was experimental research with samples randomized after consecutively recruited based on inclusive criteria. Before and every after chemotherapy, NCS was performed and differential count laboratories’ test and then analysed with Ttest and Chisquare test. The result showed that from three times administration of 3 hours PaclitaxelCarboplatin infusion group, the neutropenia condition after first up to third chemotherapy was 20 %, 30 %, 30 %, and the peripheral neuropathy condition was 30 %, 60 %, 50 % respectively. Meanwhile, in 24 hours PaclitaxelCarboplatin infusion group, the incident of neutropenia after first up to third chemotherapy was 40 %, 50 %, 40 %, and the incident of peripheral neuropathy was 20 %, 20 %, 20 % respectively. The statistic result was p > 0.05. Hence, there was no significant difference in neutropenia and peripheral neuropathy incident on two study group.
Collapse
|
24
|
Zhang J, Zhou F, Qi H, Ni H, Hu Q, Zhou C, Li Y, Baburina I, Courtney J, Salamone SJ. Randomized study of individualized pharmacokinetically-guided dosing of paclitaxel compared with body-surface area dosing in Chinese patients with advanced non-small cell lung cancer. Br J Clin Pharmacol 2019; 85:2292-2301. [PMID: 31077432 DOI: 10.1111/bcp.13982] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/08/2019] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS This prospective, randomized study was initiated to assess the impact of pharmacokinetically (PK)-guided paclitaxel (PTX) dosing on toxicity and efficacy compared with body-surface area (BSA)-based dosing in Chinese non-small cell lung cancer patients. METHODS A total of 319 stage IIIB/IV non-small cell lung cancer patients receiving first-line chemotherapy were enrolled. Patients were randomized to receive 3-weekly carboplatin plus PTX at a starting dose of 175 mg/m2 with subsequent PTX dosing based on either BSA or PK-guided dosing targeting time above a PTX plasma concentration of 0.05 μmol/L (PTXTc > 0.05 ) between 26 and 31 hours. The primary safety endpoint was grade 4 haematological toxicity. The secondary endpoints were neuropathy, objective response rate, progression-free survival and overall survival. RESULTS In total, 275 (86%) patients completed ≥2 cycles of chemotherapy (140 in BSA arm and 135 in PK arm). In cycle 1, with the same PTX dose, average PTXTc > 0.05 was 37 hours (range = 18-57 hours). Over cycles 2-4, patients in the PK arm had significantly lower average PTX doses and exposure compared with the BSA arm (128 vs 161 mg/m2 , P < .0001 and 29 vs 35 hours, P < .0001). PK-guided dosing significantly reduced the cumulative incidence of grade 4 haematological toxicity (15% vs 24%, P = .004), grade 4 neutropenia (15% vs 23%, P = .009) and grade ≥ 2 neuropathy (8% vs 21%, P = .005). Objective response rate (32% vs 26%, P = .28) and overall survival (21.0 vs 24.0 months, P = .815) were similar in PK and BSA arms. Progression-free survival was slightly improved in PK arm (4.67 vs 4.17 months, P = .026). CONCLUSION PK-guided PTX dosing significantly reduced grade 4 haematological toxicities and grade ≥ 2 neuropathy without an adverse impact on clinical outcomes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiwei Qi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huijuan Ni
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Hu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunying Li
- Saladax Biomedical, Inc., Bethlehem, PA, USA
| | | | | | | |
Collapse
|
25
|
Guo X, Sun H, Dong J, Feng Y, Li H, Zhuang R, Wang P, Cai W, Zhou Y. Does nab-paclitaxel have a higher incidence of peripheral neuropathy than solvent-based paclitaxel? Evidence from a systematic review and meta-analysis. Crit Rev Oncol Hematol 2019; 139:16-23. [PMID: 31112878 DOI: 10.1016/j.critrevonc.2019.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy is a common reason for dose reduction or early cessation of therapy. Nab-paclitaxel was developed to provide additional clinical benefits and overcome the safety drawbacks of solvent-based paclitaxel. However, the incidence of peripheral neuropathy induced by nab-paclitaxel was reported higher than solvent-based paclitaxel but evidence remains inconsistent. Therefore, we conducted a meta-analysis to compare the incidence and severity of peripheral neuropathy between nab-paclitaxel and solvent-based paclitaxel mono-chemotherapy. In total, 24 articles were included in this meta-analysis. Results revealed the incidence of peripheral neuropathy induced by nab-paclitaxel was higher than solvent-based paclitaxel. The dosage and assessment method could influence the comparison of the incidence and severity of peripheral neuropathy between nab-paclitaxel and solvent-based paclitaxel. Current evidence suggests the incidence of peripheral neuropathy induced by nab-paclitaxel was higher than solvent-based paclitaxel among cancer patients received mono-chemotherapy. When received nab-paclitaxel, more attention should be paid to peripheral neuropathy.
Collapse
Affiliation(s)
- Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Sun
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Feng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peipei Wang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Hanai A, Ishiguro H, Sozu T, Tsuda M, Yano I, Nakagawa T, Imai S, Hamabe Y, Toi M, Arai H, Tsuboyama T. Effects of Cryotherapy on Objective and Subjective Symptoms of Paclitaxel-Induced Neuropathy: Prospective Self-Controlled Trial. J Natl Cancer Inst 2019; 110:141-148. [PMID: 29924336 PMCID: PMC6007752 DOI: 10.1093/jnci/djx178] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/04/2017] [Indexed: 01/19/2023] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting and disabling side effect of taxane anticancer agents. We prospectively evaluated the efficacy of cryotherapy for CIPN prevention. Methods Breast cancer patients treated weekly with paclitaxel (80 mg/m2 for one hour) wore frozen gloves and socks on the dominant side for 90 minutes, including the entire duration of drug infusion. Symptoms on the treated sides were compared with those on the untreated (nondominant) sides. The primary end point was CIPN incidence assessed by changes in tactile sensitivity from pretreatment baseline in a monofilament test at a cumulative dose of 960 mg/m2. We also assessed thermosensory deficits, subjective symptoms (Patient Neuropathy Questionnaire [PNQ]), manipulative dexterity, and the time to events and hazard ratio by PNQ. All statistical tests were two-sided. Results Among the 40 patients, four did not reach the cumulative dose (due to the occurrence of pneumonia, severe fatigue, severe liver dysfunction, and macular edema), leaving 36 patients for analysis. None dropped out due to cold intolerance. The incidence of objective and subjective CIPN signs was clinically and statistically significantly lower on the intervention side than on the control (hand: tactile sensitivity = 27.8% vs 80.6%, odds ratio [OR] = 20.00, 95% confidence interval [CI] = 3.20 to 828.96, P < .001; foot: tacile sensitivity = 25.0% vs 63.9%, OR = infinite, 95% CI = 3.32 to infinite, P < .001; hand: warm sense = 8.8% vs 32.4%, OR = 9.00, 95% CI = 1.25 to 394.48, P = .02; foot: warm sense: 33.4% vs 57.6%, OR = 5.00, 95% CI = 1.07 to 46.93, P = .04; hand: PNQ = 2.8% vs 41.7%, OR = infinite, 95% CI = 3.32 to infinite, P < .001; foot: PNQ = 2.8% vs 36.1%, OR = infinite, 95% CI = 2.78 to infinite, P < .001; hand: hazard ratio [HR] = 0.13, 95% CI = 0.05 to 0.34; foot: HR = 0.13, 95% CI = 0.04 to 0.38, dexterity mean delay = −2.5 seconds, SD = 12.0 seconds, vs + 8.6 seconds, SD = 25.8 seconds, P = .005). Conclusions Cryotherapy is useful for preventing both the objective and subjective symptoms of CIPN and resultant dysfunction.
Collapse
Affiliation(s)
- Akiko Hanai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan.,National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hiroshi Ishiguro
- Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Medical Oncology, International University of Health and Welfare Hospital
| | - Takashi Sozu
- Department of Information and Computer Technology, Tokyo University of Science, Tokyo, Japan
| | - Moe Tsuda
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | - Masakazu Toi
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | | |
Collapse
|
27
|
Impact of Older Age on the Exposure of Paclitaxel: a Population Pharmacokinetic Study. Pharm Res 2019; 36:33. [PMID: 30617624 DOI: 10.1007/s11095-018-2563-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Limited available data suggest that older patients are more prone to develop paclitaxel-induced toxicity than their younger peers. It remains unclear whether this is related to age-dependent pharmacokinetics (PK) of paclitaxel. Primary objective of this study was to determine the influence of older age on the PK of paclitaxel. METHODS PK data of patients aged ≥70 years who received paclitaxel intravenously at the Netherlands Cancer Institute (NKI) and the Radboud University Medical Center between September 2012 and May 2017 were collected. These prospectively collected data were pooled with previously published databases from multiple clinical trials conducted at the NKI and Erasmus MC Cancer Institute. A previously developed 3-compartment population PK model with saturable distribution and elimination was used to describe paclitaxel plasma concentration-time data. Hereafter, influence of age on paclitaxel PK was assessed in a previously established full covariate model. RESULTS In total, paclitaxel PK data from 684 patients were available, consisting of 166 patients ≥70 years (24%). Median age of the cohort was 61 years (range 18 to 84 years). The impact of age, either treated as a continuous or dichotomous covariate (<70 versus ≥70 years), on the elimination of paclitaxel was only marginal but statistically significant (both p < 0.001 with no clinically relevant decrease in interindividual variability). For a typical patient, maximal elimination capacity decreased by only 5% for a 10-year increment of age. CONCLUSION In this extensive multi-center dataset, which included a considerable number of older patients, older age had no clinically relevant impact on paclitaxel PK.
Collapse
|
28
|
Marcath LA, Kidwell KM, Robinson AC, Vangipuram K, Burness ML, Griggs JJ, Poznak CV, Schott AF, Hayes DF, Henry NL, Hertz DL. Patients carrying CYP2C8*3 have shorter systemic paclitaxel exposure. Pharmacogenomics 2018; 20:95-104. [PMID: 30520341 DOI: 10.2217/pgs-2018-0162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM First, evaluate if patients carrying putatively diminished activity CYP2C8 genotype have longer paclitaxel exposure (e.g., time above threshold concentration of 0.05 μM [Tc >0.05]). Second, screen additional pharmacogenes for associations with Tc >0.05. Methods: Pharmacogene panel genotypes were translated into genetic phenotypes for associations with Tc >0.05 (n = 58). RESULTS Patients with predicted low-activity CYP2C8 had shorter Tc >0.05 after adjustment for age, body surface area and race (9.65 vs 11.03 hrs, β = 5.47, p = 0.02). This association was attributed to CYP2C8*3 (p = 0.006), not CYP2C8*4 (p = 0.58). Patients with predicted low-activity SLCO1B1 had longer Tc >0.05 (12.12 vs 10.15 hrs, β = 0.85, p = 0.012). CONCLUSION Contrary to previous publications, CYP2C8*3 may confer increased paclitaxel metabolic activity. SLCO1B1 and CYP2C8 genotype may explain some paclitaxel pharmacokinetic variability.
Collapse
Affiliation(s)
- Lauren A Marcath
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kelley M Kidwell
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Adam C Robinson
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Monika L Burness
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer J Griggs
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine Van Poznak
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anne F Schott
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah Lynn Henry
- Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Morton LM, Kerns SL, Dolan ME. Role of Germline Genetics in Identifying Survivors at Risk for Adverse Effects of Cancer Treatment. Am Soc Clin Oncol Educ Book 2018; 38:775-786. [PMID: 30231410 DOI: 10.1200/edbk_201391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The growing population of cancer survivors often faces adverse effects of treatment, which have a substantial impact on morbidity and mortality. Although certain adverse effects are thought to have a significant heritable component, much work remains to be done to understand the role of germline genetic factors in the development of treatment-related toxicities. In this article, we review current understanding of genetic susceptibility to a range of adverse outcomes among cancer survivors (e.g., fibrosis, urinary and rectal toxicities, ototoxicity, chemotherapy-induced peripheral neuropathy, subsequent malignancies). Most previous research has been narrowly focused, investigating variation in candidate genes and pathways such as drug metabolism, DNA damage and repair, and inflammation. Few of the findings from these earlier candidate gene studies have been replicated in independent populations. Advances in understanding of the genome, improvements in technology, and reduction in laboratory costs have led to recent genome-wide studies, which agnostically interrogate common and/or rare variants across the entire genome. Larger cohorts of patients with homogeneous treatment exposures and systematic ascertainment of well-defined outcomes as well as replication in independent study populations are essential aspects of the study design and are increasingly leading to the discovery of variants associated with each of the adverse outcomes considered in this review. In the long-term, validated germline genetic associations hold tremendous promise for more precisely identifying patients at highest risk for developing adverse treatment effects, with implications for frontline therapy decision-making, personalization of long-term follow-up guidelines, and potential identification of targets for prevention or treatment of the toxicity.
Collapse
Affiliation(s)
- Lindsay M Morton
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - Sarah L Kerns
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - M Eileen Dolan
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
30
|
Validation of a Commercial Assay and Decision Support Tool for Routine Paclitaxel Therapeutic Drug Monitoring (TDM). Ther Drug Monit 2018; 39:617-624. [PMID: 28937535 DOI: 10.1097/ftd.0000000000000446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The value of therapeutic drug monitoring (TDM) for paclitaxel (PTX) was recently demonstrated in the largest TDM trial ever conducted in oncology. The trial demonstrated significant reduction in neuropathy when using TDM. Dose adjustment for PTX was based on time above a threshold concentration (Tc>0.05). Tc>0.05 must be calculated with a pharmacokinetic model and complex nonlinear mixed-effects software. The use of the software and chromatographic methods to measure PTX requires specialized expertise. User-friendly methods to quantitate PTX and calculate Tc>0.05 could simplify the introduction of TDM into routine clinical practice. METHODS The immunoassay (MyPaclitaxel) was used to quantitate PTX in samples from the clinical trial; the results were used to calculate Tc>0.05 using a stand-alone computer program with a simple, friendly graphical user interface for nonlinear mixed-effects pharmacokinetic calculations (MyCare Drug Exposure Calculator). The resulting dose recommendations from the calculated Tc>0.05 were compared with those using liquid chromatography-ultraviolet detection and NONMEM to examine the efficacy of the simpler tools for TDM. RESULTS There was a good agreement between the immunoassay and liquid chromatography-ultraviolet detection: Passing-Bablok regression slope was 1.045 and intercept was -6.00, R was 0.9757, and mean bias was -1.77 ng/mL (-2.07 nmol/L). Dosing recommendations were identical for 70% of the cycles and within 10% for 89% of the samples. All Tc>0.05 values were at the same or adjacent medical decision points. CONCLUSIONS MyPaclitaxel assay and MyCare Drug Exposure Calculator are convenient, user-friendly tools that may be suitable for routine TDM of PTX in clinical care.
Collapse
|
31
|
Hertz DL, Kidwell KM, Vangipuram K, Li F, Pai MP, Burness M, Griggs JJ, Schott AF, Van Poznak C, Hayes DF, Lavoie Smith EM, Henry NL. Paclitaxel Plasma Concentration after the First Infusion Predicts Treatment-Limiting Peripheral Neuropathy. Clin Cancer Res 2018; 24:3602-3610. [PMID: 29703818 DOI: 10.1158/1078-0432.ccr-18-0656] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
Purpose: Paclitaxel exposure, specifically the maximum concentration (Cmax) and amount of time the concentration remains above 0.05 μmol/L (Tc>0.05), has been associated with the occurrence of paclitaxel-induced peripheral neuropathy. The objective of this study was to validate the relationship between paclitaxel exposure and peripheral neuropathy.Experimental Design: Patients with breast cancer receiving paclitaxel 80 mg/m2 × 12 weekly doses were enrolled in an observational clinical study (NCT02338115). Paclitaxel plasma concentration was measured at the end of and 16-26 hours after the first infusion to estimate Cmax and Tc>0.05 Patient-reported peripheral neuropathy was collected via CIPN20 at each dose, and an 8-item sensory subscale (CIPN8) was used in the primary analysis to test for an association with Tc>0.05 Secondary analyses were conducted using Cmax as an alternative exposure parameter and testing each parameter with a secondary endpoint of the occurrence of peripheral neuropathy-induced treatment disruption.Results: In 60 subjects included in the analysis, the increase in CIPN8 during treatment was associated with baseline CIPN8, cumulative dose, and relative dose intensity (P < 0.05), but neither Tc>0.05 (P = 0.27) nor Cmax (P = 0.99). In analyses of the secondary endpoint, cumulative dose (OR = 1.46; 95% confidence interval (CI), 1.18-1.80; P = 0.0008) and Tc>0.05 (OR = 1.79; 95% CI, 1.06-3.01; P = 0.029) or Cmax (OR = 2.74; 95% CI, 1.45-5.20; P = 0.002) were associated with peripheral neuropathy-induced treatment disruption.Conclusions: Paclitaxel exposure is predictive of the occurrence of treatment-limiting peripheral neuropathy in patients receiving weekly paclitaxel for breast cancer. Studies are warranted to determine whether exposure-guided dosing enhances treatment effectiveness and/or prevents peripheral neuropathy in these patients. Clin Cancer Res; 24(15); 3602-10. ©2018 AACR.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan. .,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Kelley M Kidwell
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Feng Li
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Manjunath P Pai
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Monika Burness
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer J Griggs
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anne F Schott
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Catherine Van Poznak
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ellen M Lavoie Smith
- Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, Michigan
| | - N Lynn Henry
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
32
|
Ferber S, Tiram G, Sousa-Herves A, Eldar-Boock A, Krivitsky A, Scomparin A, Yeini E, Ofek P, Ben-Shushan D, Vossen LI, Licha K, Grossman R, Ram Z, Henkin J, Ruppin E, Auslander N, Haag R, Calderón M, Satchi-Fainaro R. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. eLife 2017; 6:25281. [PMID: 28976305 PMCID: PMC5644959 DOI: 10.7554/elife.25281] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier. dPGS is able to cross the BBB, bind to P/L-selectins and accumulate selectively in intracranial tumors. We show that dPGS has dual targeting properties, as we found that P-selectin is not only expressed on tumor endothelium but also on glioblastoma cells. We delivered dPGS-PTX in combination with a peptidomimetic of the anti-angiogenic protein thrombospondin-1 (TSP-1 PM). This combination resulted in a remarkable synergistic anticancer effect on intracranial human and murine glioblastoma via induction of Fas and Fas-L, with no side effects compared to free PTX or temozolomide. This study shows that our unique therapeutic approach offers a viable alternative for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Sousa-Herves
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laura Isabel Vossen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, Evanston, United States
| | - Eytan Ruppin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Computer Science, University of Maryland, College Park, United States
| | - Noam Auslander
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Department of Computer Science, University of Maryland, College Park, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
The early onset of peripheral neuropathy might be a robust predictor for time to treatment failure in patients with metastatic breast cancer receiving chemotherapy containing paclitaxel. PLoS One 2017; 12:e0184322. [PMID: 28898275 PMCID: PMC5595337 DOI: 10.1371/journal.pone.0184322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Background Paclitaxel plays a central role in chemotherapy for breast cancer. Peripheral neuropathy, a well-known toxicity with paclitaxel, may be of interest in predicting the efficacy of paclitaxel therapy for patients with metastatic breast cancer. We performed a retrospective analysis assessing whether the early occurrence of peripheral neuropathy (EPN) was a predictive marker for better efficacy in patients with metastatic breast cancer receiving chemotherapy containing paclitaxel. Patients and methods Between January 2000 and August 2008, we examined the records of 168 patients with metastatic breast cancer treated with paclitaxel in our hospital. EPN was defined as a symptom of Grade 2 or more during first three months of treatment. The overall response rate (ORR) and time to treatment failure (TTF) in each group were analyzed retrospectively. Results Of 168 patients with metastatic breast cancer who were treated with paclitaxel, EPN was documented in 101 patients (60.1%). The clinical benefit rate (CR, PR, and SD ≥ 6 months) was 72.3% in the EPN group and 49.3% in the non-EPN group (p = 0.002). The TTF of the EPN group (median 11.2 months, 95% CI: 9.5–12.9) was significantly longer than that of the non-EPN group (5.7 months, 95% CI: 4.6–6.8) (p<0.001). Multivariate analysis demonstrated that EPN (p<0.001), dose intensity of less than 70% (p<0.001), and the history of microtubule agents (p = 0.001) were the significant favorable prognostic factors for TTF. Conclusion The early onset of peripheral neuropathy might be a robust predictor for TTF in patients with metastatic breast cancer treated with paclitaxel.
Collapse
|
34
|
Mehrotra S, Sharma MR, Gray E, Wu K, Barry WT, Hudis C, Winer EP, Lyss AP, Toppmeyer DL, Moreno-Aspitia A, Lad TE, Valasco M, Overmoyer B, Rugo H, Ratain MJ, Gobburu JV. Kinetic-Pharmacodynamic Model of Chemotherapy-Induced Peripheral Neuropathy in Patients with Metastatic Breast Cancer Treated with Paclitaxel, Nab-Paclitaxel, or Ixabepilone: CALGB 40502 (Alliance). AAPS J 2017; 19:1411-1423. [PMID: 28620884 PMCID: PMC5711539 DOI: 10.1208/s12248-017-0101-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/11/2017] [Indexed: 01/26/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting toxicity caused by several chemotherapeutic agents. Currently, CIPN is managed by empirical dose modifications at the discretion of the treating physician. The goal of this research is to quantitate the dose-CIPN relationship to inform the optimal strategies for dose modification. Data were obtained from the Cancer and Leukemia Group B (CALGB) 40502 trial, a randomized phase III trial of paclitaxel vs. nab-paclitaxel vs. ixabepilone as first-line chemotherapy for locally recurrent or metastatic breast cancer. CIPN was measured using a subset of the Functional Assessment of Cancer Therapy-Gynecologic Oncology Group Neurotoxicity (FACT-GOG-NTX) scale. A kinetic-pharmacodynamic (K-PD) model was utilized to quantitate the dose-CIPN relationship simultaneously for the three drugs. Indirect response models with linear and Smax drug effects were evaluated. The model was evaluated by comparing the predicted proportion of patients with CIPN (score ≥8 or score ≥12) to the observed proportion. An indirect response model with linear drug effect was able to describe the longitudinal CIPN data reasonably well. The proportion of patients that were falsely predicted to have CIPN or were falsely predicted not to have CIPN was 20% or less at any cycle. The model will be utilized to identify an early time point that can predict CIPN at later time points. This strategy will be utilized to inform dose adjustments to prospectively manage CIPN. Clinicaltrials.gov ID: NCT00785291.
Collapse
Affiliation(s)
- Shailly Mehrotra
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | | | - Elizabeth Gray
- NorthShore University Health System, Evanston, Illinois, USA
| | - Kehua Wu
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Beijing, China
| | - William T Barry
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina, USA
| | - Clifford Hudis
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric P Winer
- Dana-Farber/Partners CancerCare/ Harvard Cancer Center, Boston, Massachusetts, USA
| | - Alan P Lyss
- Heartland Cancer Research NCORP, St. Louis, Missouri, USA
| | | | | | - Thomas E Lad
- John H. Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| | - Mario Valasco
- Decatur Memorial Hospital/Cancer Care Specialists of Illinois/ Heartland Cancer Research NCORP, Decatur, Illinois, USA
| | - Beth Overmoyer
- Dana-Farber/Partners CancerCare/ Harvard Cancer Center, Boston, Massachusetts, USA
| | - Hope Rugo
- University of California-San Francisco, San Francisco, California, USA
| | | | - Jogarao V Gobburu
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA.
- Center for Translational Medicine, School of Pharmacy, University of Maryland, 20 N Pine Street, Room 513, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
35
|
Stage TB, Bergmann TK, Kroetz DL. Clinical Pharmacokinetics of Paclitaxel Monotherapy: An Updated Literature Review. Clin Pharmacokinet 2017; 57:7-19. [DOI: 10.1007/s40262-017-0563-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Agergaard K, Mau-Sørensen M, Stage TB, Jørgensen TL, Hassel RE, Steffensen KD, Pedersen JW, Milo MLH, Poulsen SH, Pottegård A, Hallas J, Brøsen K, Bergmann TK. Clopidogrel-Paclitaxel Drug-Drug Interaction: A Pharmacoepidemiologic Study. Clin Pharmacol Ther 2017; 102:547-553. [DOI: 10.1002/cpt.674] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/11/2022]
Affiliation(s)
- K Agergaard
- Clinical Pharmacology and Pharmacy; Department of Public Health, University of Southern Denmark; Odense Denmark
| | - M Mau-Sørensen
- Department of Oncology; Rigshospitalet, Copenhagen University Hospital; Copenhagen Denmark
| | - TB Stage
- Clinical Pharmacology and Pharmacy; Department of Public Health, University of Southern Denmark; Odense Denmark
- Department of Bioengineering and Therapeutics Sciences; University of California San Francisco; San Francisco California USA
| | - TL Jørgensen
- Department of Oncology; Odense University Hospital; Odense Denmark
- AgeCare, Academy of Geriatric Cancer Research; Odense University Hospital; Odense Denmark
| | - RE Hassel
- Department of Oncology; Aarhus University Hospital; Aarhus Denmark
| | - KD Steffensen
- Department of Oncology; Lillebaelt Hospital; Vejle Denmark
| | - JW Pedersen
- Department of Oncology; Herlev Hospital, Copenhagen University Hospital; Herlev Denmark
| | - MLH Milo
- Department of Oncology; Aalborg University Hospital; Aalborg Denmark
| | - SH Poulsen
- Department of Oncology; Rigshospitalet, Copenhagen University Hospital; Copenhagen Denmark
| | - A Pottegård
- Clinical Pharmacology and Pharmacy; Department of Public Health, University of Southern Denmark; Odense Denmark
| | - J Hallas
- Clinical Pharmacology and Pharmacy; Department of Public Health, University of Southern Denmark; Odense Denmark
| | - K Brøsen
- Clinical Pharmacology and Pharmacy; Department of Public Health, University of Southern Denmark; Odense Denmark
- OPEN; Odense Patient Data Explorative Network, Odense University Hospital; Odense Denmark
| | - TK Bergmann
- Department of Clinical Biochemistry and Pharmacology; Odense University Hospital; Odense Denmark
- Hospital Pharmacy; Hospital of South West Denmark; Esbjerg Denmark
| |
Collapse
|
37
|
Crotti S, Posocco B, Marangon E, Nitti D, Toffoli G, Agostini M. Mass spectrometry in the pharmacokinetic studies of anticancer natural products. MASS SPECTROMETRY REVIEWS 2017; 36:213-251. [PMID: 26280357 DOI: 10.1002/mas.21478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/29/2015] [Indexed: 05/08/2023]
Abstract
In the history of medicine, nature has represented the main source of medical products. Indeed, the therapeutic use of plants certainly goes back to the Sumerian and Hippocrates and nowadays nature still represents the major source for new drugs discovery. Moreover, in the cancer treatment, drugs are either natural compounds or have been developed from naturally occurring parent compounds firstly isolated from plants and microbes from terrestrial and marine environment. A critical element of an anticancer drug is represented by its severe toxicities and, after administration, the drug concentrations have to remain in an appropriate range to be effective. Anyway, the drug dosage defined during the clinical studies could be inappropriate for an individual patient due to differences in drug absorption, metabolism and excretion. For this reason, personalized medicine, based on therapeutic drug monitoring (TDM), represents one of most important challenges in cancer therapy. Mass spectrometry sensitivity, specificity and fastness lead to elect this technique as the Golden Standard for pharmacokinetics and drug metabolism studies therefore for TDM. This review focuses on the mass spectrometry-based methods developed for pharmacokinetic quantification in human plasma of anticancer drugs derived from natural sources and already used in clinical practice. Particular emphasis was placed both on the pre-analytical and analytical steps, such as: sample preparation procedures, sample size required by the analysis and the limit of quantification of drugs and metabolites to give some insights on the clinical practice applicability. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:213-251, 2017.
Collapse
Affiliation(s)
- Sara Crotti
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
- Istituto di Ricerca Pediatrica - Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Elena Marangon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Donato Nitti
- Surgical Clinic, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Nicolo Giustiniani 2, 35128, Padova, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Marco Agostini
- Istituto di Ricerca Pediatrica - Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
- Surgical Clinic, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Nicolo Giustiniani 2, 35128, Padova, Italy
| |
Collapse
|
38
|
Taguchi K. [Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy]. YAKUGAKU ZASSHI 2016; 136:287-96. [PMID: 26831807 DOI: 10.1248/yakushi.15-00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral neuropathy is a common adverse effect of paclitaxel and oxaliplatin treatment. The major dose-limiting side effect of these drugs is peripheral sensory neuropathy. The symptoms of paclitaxel-induced neuropathy are mostly sensory and peripheral in nature, consisting of mechanical allodynia/hyperalgesia, tingling, and numbness. Oxaliplatin-induced neurotoxicity manifests as rapid-onset neuropathic symptoms that are exacerbated by cold exposure and as chronic neuropathy that develops after several treatment cycles. Although many basic and clinical researchers have studied anticancer drug-induced peripheral neuropathy, the mechanism is not well understood. In this review, we focus on (1) analysis of transient receptor potential vanilloid 1 (TRPV1) channel expression in the rat dorsal root ganglion (DRG) after paclitaxel treatment and (2) analysis of transient receptor potential ankyrin 1 (TRPA1) channel in the DRG after oxaliplatin treatment. This review describes that (1) paclitaxel-induced neuropathic pain may be the result of up-regulation of TRPV1 in small- and medium-diameter DRG neurons. In addition, paclitaxel treatment increases the release of substance P, but not calcitonin gene-related peptide, in the superficial layers of the spinal dorsal horn. (2) TRPA1 expression via activation of p38 mitogen-activated protein kinase in small-diameter DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia. We suggest that TRPV1 or TRPA1 antagonists may be potential therapeutic lead compounds for treating anticancer drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Kyoji Taguchi
- Departments of Medicinal Pharmacology, Showa Pharmaceutical University
| |
Collapse
|
39
|
Sato J, Mori M, Nihei S, Kumagai M, Takeuchi S, Kashiwaba M, Kudo K. The effectiveness of regional cooling for paclitaxel-induced peripheral neuropathy. J Pharm Health Care Sci 2016; 2:33. [PMID: 27891244 PMCID: PMC5111235 DOI: 10.1186/s40780-016-0067-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023] Open
Abstract
Background There are currently no promising therapies available to treat or prevent peripheral neuropathy (PN) induced by anticancer drugs in a cumulative dose-dependent manner. In this study, we investigated the efficacy of regional cooling of hands and feet in preventing paclitaxel (PTX)-induced PN. Methods Patients with gynecologic cancer who received a tri-weekly cycle of chemotherapy including PTX at doses of 150–175 mg/m2 were included in this study. Regional cooling was performed by covering patient hands and feet with cold insulators during PTX administration (regional cooling group). The primary end-point was ≥grade 2 PN evaluated by the Common Terminology Criteria for Adverse Events (CTCAE) v4.0. The secondary end-points were the frequency of PN therapeutic drug use, PTX dose reduction due to PN, and adverse events due to regional cooling. The efficacy of regional cooling was compared with data retrospectively extracted from the medical records of patients who did not receive regional cooling (control group). All end-points were evaluated for up to six cycles. Results There were 40 and 142 patients in the regional cooling and control groups, respectively. As a primary end-point, incidences of ≥grade 2 PN in the fourth to sixth cycles were significantly lower than that in the cooling group (5.0–9.1 % vs. 19.8–31.6 %, p < 0.05 after the fourth cycle and p < 0.01 after the fifth cycle). Among secondary end-points, neither the use of PN therapeutic drugs nor the PTX dose reduction due to PN were significantly lower in the cooling group than in the control group (27.5 vs. 36.6 %, p = 0.378 and 5.0 vs. 3.5 %, p = 0.645, respectively). There were no serious regional cooling-associated adverse events such as frostbite. Conclusions Regional cooling of hands and feet during PTX administration might have good effectiveness and tolerability, suggesting this approach as a potentially effective supportive care to prevent PTX-induced PN. Trial registration The trial approval number in the institution; H25-26. Registered 5 June 2014.
Collapse
Affiliation(s)
- Junya Sato
- Department of Pharmacy, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505 Japan ; Department of Clinical Pharmaceutics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694 Japan
| | - Megumi Mori
- Department of Pharmacy, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505 Japan
| | - Satoru Nihei
- Department of Pharmacy, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505 Japan ; Department of Clinical Pharmaceutics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694 Japan
| | - Masumi Kumagai
- Department of Nursing, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505 Japan
| | - Satoshi Takeuchi
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505 Japan
| | - Masahiro Kashiwaba
- Department of Breast Surgery, Breastpia Miyazaki Hospital, 2-112-1 Maruyama, Miyazaki, Miyazaki, 880-0052 Japan
| | - Kenzo Kudo
- Department of Pharmacy, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505 Japan ; Department of Clinical Pharmaceutics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694 Japan
| |
Collapse
|
40
|
Banerjee S, Hwang DJ, Li W, Miller DD. Current Advances of Tubulin Inhibitors in Nanoparticle Drug Delivery and Vascular Disruption/Angiogenesis. Molecules 2016; 21:molecules21111468. [PMID: 27827858 PMCID: PMC6272853 DOI: 10.3390/molecules21111468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
Extensive research over the last decade has resulted in a number of highly potent tubulin polymerization inhibitors acting either as microtubule stabilizing agents (MSAs) or microtubule destabilizing agents (MDAs). These inhibitors have potent cytotoxicity against a broad spectrum of human tumor cell lines. In addition to cytotoxicity, a number of these tubulin inhibitors have exhibited abilities to inhibit formation of new blood vessels as well as disrupt existing blood vessels. Tubulin inhibitors as a vascular disrupting agents (VDAs), mainly from the MDA family, induce rapid tumor vessel occlusion and massive tumor necrosis. Thus, tubulin inhibitors have become increasingly popular in the field of tumor vasculature. However, their pharmaceutical application is halted by a number of limitations including poor solubility and toxicity. Thus, recently, there has been considerable interests in the nanoparticle drug delivery of tubulin inhibitors to circumvent those limitations. This article reviews recent advances in nanoparticle based drug delivery for tubulin inhibitors as well as their tumor vasculature disruption properties.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| |
Collapse
|
41
|
Bergmann TK, Filppula AM, Launiainen T, Nielsen F, Backman JT, Brosen K. Neurotoxicity and low paclitaxel clearance associated with concomitant clopidogrel therapy in a 60-year-old Caucasian woman with ovarian carcinoma. Br J Clin Pharmacol 2016; 81:313-5. [PMID: 26446447 DOI: 10.1111/bcp.12795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
AIM The aim of the present case report was to describe a novel pharmacokinetic drug–drug interaction between the antiplatelet agent clopidogrel and the antineoplastic agent paclitaxel. METHODS The patient was identified in a previously described cohort of 93 patients with ovarian carcinoma treated with paclitaxel. The effect of clopidogrel acyl-β-D-glucuronide on the metabolism of paclitaxel was assessed in human liver microsomes. The analysis of clopidogrel in plasma and the quantification of paclitaxel and 6-hydroxypaclitaxel in in vitro samples were performed by liquid chromatography tandem mass spectrometry. RESULTS The patient was a 60-year-old female treated with an unknown dose of clopidogrel at the time of paclitaxel therapy. Clopidogrel was present in all three of the plasma samples obtained during paclitaxel dosing. Estimated unbound paclitaxel clearance was 238 l h−1, which was only 62% of the cohort geometric mean (385 l h−1; range 176–726). She was hospitalized three times, developed severe neuropathy and paclitaxel treatment was subsequently discontinued. In vitro, 30-min preincubation with 100 μM clopidogrel acyl-β-D-glucuronide inhibited the depletion rate of 0.5 μM paclitaxel by 51% and the formation rate of 6-hydroxypaclitaxel by 77%. CONCLUSION This is the first report of a clopidogrel–paclitaxel interaction, suggesting that clinically used doses of clopidogrel can reduce the cytochrome P450 2C8 (CYP2C8)-mediated systemic clearance of paclitaxel, leading to an increased risk of paclitaxel toxicity. Caution should be exercised whenever the simultaneous use of paclitaxel and clopidogrel cannot be avoided.
Collapse
|
42
|
Kus T, Aktas G, Kalender ME, Demiryurek AT, Ulasli M, Oztuzcu S, Sevinc A, Kul S, Camci C. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. Onco Targets Ther 2016; 9:5073-80. [PMID: 27574448 PMCID: PMC4990373 DOI: 10.2147/ott.s106574] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. METHODS From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m(2) every 3 weeks for four cycles, or IV 80 mg/m(2) weekly for 12 cycles, and IV 100 mg/m(2) docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. RESULTS Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172-6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033-4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001-3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. CONCLUSION ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy.
Collapse
Affiliation(s)
- Tulay Kus
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Gokmen Aktas
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Mehmet Emin Kalender
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | | | - Mustafa Ulasli
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Alper Sevinc
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Seval Kul
- Department of Biostatistics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Celaletdin Camci
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| |
Collapse
|
43
|
Nanocarriers in cancer clinical practice: a pharmacokinetic issue. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:583-599. [PMID: 27520727 DOI: 10.1016/j.nano.2016.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 01/24/2023]
Abstract
The advent of nanocarriers for drug delivery has given rise to new intriguing scenarios in the cancer field. Nanocarriers indeed partly overcome the limits of traditional cytotoxic drugs principally changing the pharmacokinetic behavior of the parental drug. The peculiar characteristics of these systems strongly minimize the adverse reactions and ensure a more precise release of the compound to the tumor site. Several nanocarriers have been developed for the delivery of cytotoxic drugs such as paclitaxel and doxorubicin in order to improve both the outcome and the patients' quality of life. The aims of this review are to describe in detail the pharmacokinetics of nanocarriers, already marketed or in advanced clinical phases, for paclitaxel and doxorubicin, to highlight the main differences with the parental drugs, and to underline, in a critical manner, benefits and disadvantages related to the use of these new drug delivery systems.
Collapse
|
44
|
Qu B, Xing R, Wang H, Chen X, Ge Q, Peng D, Wang G. Multiple effects of magnesium isoglycyrrhizinate on the disposition of docetaxel in docetaxel-induced liver injury. Xenobiotica 2016; 47:290-296. [PMID: 27218144 DOI: 10.1080/00498254.2016.1185195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Magnesium isoglycyrrhizinate (MgIg) has been extensively used in treating liver injury which is the common adverse reaction of docetaxel (DOC). Due to the narrow therapeutic window, small changes in pharmacokinetic profiles can alter the toxicity and therapeutic efficacy of DOC significantly. The study aimed to explore the effects of MgIg on the disposition of DOC and the potential mechanism in DOC-induced liver injury. 2. Pharmacokinetics and tissues distribution behaviors showed that there was no significant difference between DOC group (DOCG) and MgIg + DOC group (MDOCG). The mRNA and protein levels of cytochrome P450 3A1 (CYP3A1) in liver, intestine, and kidney were significantly upregulated, and the P-glycoprotein (P-gp) was obviously downregulated in MDOCG when compared with DOCG. 3. Immunoglobulin M (IgM), CD8+ were upregulated in DOCG; while in MDOCG, IgM, CD8+ recovered to normal levels and complement C3; CD4+ were upregulated. 4. MgIg had no significant effects on the disposition of DOC in docetaxel-induced liver injury. Additional, potential drug-drug interaction may happen if MgIg co-administered with antitumor drugs which are the substrates of CYP3A4 or P-gp. Hepatoprotective mechanism of MgIg perhaps was through upregulation of C3, CD4+ and downregulation of IgM, CD8+.
Collapse
Affiliation(s)
- Biao Qu
- a Anhui University of Chinese Medicine , Hefei , P.R. China
| | - Rong Xing
- b Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , P.R. China , and.,c Department of Pharmacy , The First Affiliated Hospital of Bengbu Medical College , Bengbu , P.R. China
| | - Hong Wang
- b Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , P.R. China , and
| | - Xin Chen
- a Anhui University of Chinese Medicine , Hefei , P.R. China
| | - Qin Ge
- a Anhui University of Chinese Medicine , Hefei , P.R. China
| | - Daiyin Peng
- a Anhui University of Chinese Medicine , Hefei , P.R. China
| | - Guangji Wang
- b Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , P.R. China , and
| |
Collapse
|
45
|
Hertz DL, Owzar K, Lessans S, Wing C, Jiang C, Kelly WK, Patel J, Halabi S, Furukawa Y, Wheeler HE, Sibley AB, Lassiter C, Weisman L, Watson D, Krens SD, Mulkey F, Renn CL, Small EJ, Febbo PG, Shterev I, Kroetz DL, Friedman PN, Mahoney JF, Carducci MA, Kelley MJ, Nakamura Y, Kubo M, Dorsey SG, Dolan ME, Morris MJ, Ratain MJ, McLeod HL. Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a VAC14 Polymorphism that Increases Risk of Docetaxel-Induced Neuropathy. Clin Cancer Res 2016; 22:4890-4900. [PMID: 27143689 DOI: 10.1158/1078-0432.ccr-15-2823] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Discovery of SNPs that predict a patient's risk of docetaxel-induced neuropathy would enable treatment individualization to maximize efficacy and avoid unnecessary toxicity. The objectives of this analysis were to discover SNPs associated with docetaxel-induced neuropathy and mechanistically validate these associations in preclinical models of drug-induced neuropathy. EXPERIMENTAL DESIGN A genome-wide association study was conducted in metastatic castrate-resistant prostate cancer patients treated with docetaxel, prednisone and randomized to bevacizumab or placebo on CALGB 90401. SNPs were genotyped on the Illumina HumanHap610-Quad platform followed by rigorous quality control. The inference was conducted on the cumulative dose at occurrence of grade 3+ sensory neuropathy using a cause-specific hazard model that accounted for early treatment discontinuation. Genes with SNPs significantly associated with neuropathy were knocked down in cellular and mouse models of drug-induced neuropathy. RESULTS A total of 498,081 SNPs were analyzed in 623 Caucasian patients, 50 (8%) of whom experienced grade 3+ neuropathy. The 1,000 SNPs most associated with neuropathy clustered in relevant pathways including neuropathic pain and axonal guidance. An SNP in VAC14 (rs875858) surpassed genome-wide significance (P = 2.12 × 10-8, adjusted P = 5.88 × 10-7). siRNA knockdown of VAC14 in stem cell-derived peripheral neuronal cells increased docetaxel sensitivity as measured by decreased neurite processes (P = 0.0015) and branches (P < 0.0001). Prior to docetaxel treatment, VAC14 heterozygous mice had greater nociceptive sensitivity than wild-type litter mate controls (P = 0.001). CONCLUSIONS VAC14 should be prioritized for further validation of its potential role as a predictor of docetaxel-induced neuropathy and biomarker for treatment individualization. Clin Cancer Res; 22(19); 4890-900. ©2016 AACR.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan. UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Durham, North Carolina. Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Sherrie Lessans
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Claudia Wing
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Chen Jiang
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | | | - Jai Patel
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - Susan Halabi
- Duke Cancer Institute, Durham, North Carolina. Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Cameron Lassiter
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Lois Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Dorothy Watson
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Stefanie D Krens
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Flora Mulkey
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Cynthia L Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Eric J Small
- Department of Medicine, UCSF, San Francisco, California
| | | | - Ivo Shterev
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Paula N Friedman
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - John F Mahoney
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - Michael A Carducci
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Michael J Kelley
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, Illinois. Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- Lab for Genotyping Development, Riken Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Mark J Ratain
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Howard L McLeod
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
46
|
Treatment regimens of classical and newer taxanes. Cancer Chemother Pharmacol 2015; 77:221-33. [PMID: 26589792 DOI: 10.1007/s00280-015-2893-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
The classical taxanes (paclitaxel, docetaxel), the newer taxane cabazitaxel and the nanoparticle-bound nab-paclitaxel are among the most widely used anticancer drugs. The taxanes share the characteristics of extensive hepatic metabolism and biliary excretion, the need for dose adaptation in patients with liver dysfunction, and a substantial pharmacokinetic variability even after taking into account known covariates. Data from clinical studies suggest that optimal scheduling of the taxanes is dependent not only on the specific taxane compound, but also on the tumor type and line of treatment. Still, the optimal dosing regimen (weekly vs 3 weekly) and optimal dose of the taxanes are controversial, as is the value of pharmacological personalization of taxane dosing. In this article, an overview is given on the pharmacological properties of the taxanes, including metabolism, pharmacokinetics-pharmacodynamics and aspects in the clinical use of taxanes. The latter includes the ongoing debate on the most active and safe regimen, the recommended initial dose and the issue of therapeutic drug dosing.
Collapse
|
47
|
Patel JN, Papachristos A. Personalizing chemotherapy dosing using pharmacological methods. Cancer Chemother Pharmacol 2015; 76:879-96. [PMID: 26298089 DOI: 10.1007/s00280-015-2849-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Given the toxic nature and narrow therapeutic index of traditional chemotherapeutics, better methods of dose and therapy selection are critical. Pharmacological methods, including pharmacogenomics and pharmacokinetics, offer a practical method to enrich drug exposure, reduce toxicity, and improve quality of life for patients. METHODS PubMed and key abstracts from the American Society of Clinical Oncology (ASCO) and American Association for Cancer Research (AACR) were searched until July 2015 for clinical data relating to pharmacogenomic- and/or pharmacokinetic-guided dosing of anticancer drugs. RESULTS Based on the results returned from a thorough search of the literature and the plausibility of utilizing pharmacogenomic and/or pharmacokinetic methods to personalize chemotherapy dosing, we identified several chemotherapeutic agents with the potential for therapy individualization. We highlight the available data, clinical validity, and utility of using pharmacogenomics to personalize therapy for tamoxifen, 5-fluorouracil, mercaptopurine, and irinotecan, in addition to using pharmacokinetics to personalize dosing for 5-fluorouracil, busulfan, methotrexate, taxanes, and topotecan. CONCLUSION A concerted effort should be made by researchers to further elucidate the role of pharmacological methods in personalizing chemotherapy dosing to optimize the risk-benefit profile. Clinicians should be aware of the clinical validity, utility, and availability of pharmacogenomic- and pharmacokinetic-guided therapies in clinical practice, to ultimately allow optimal dosing for each and every cancer patient.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | | |
Collapse
|
48
|
Nieuweboer AJM, Smid M, de Graan AJM, Elbouazzaoui S, de Bruijn P, Martens JW, Mathijssen RHJ, van Schaik RHN. Predicting paclitaxel-induced neutropenia using the DMET platform. Pharmacogenomics 2015; 16:1231-41. [PMID: 26265135 DOI: 10.2217/pgs.15.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The use of paclitaxel in cancer treatment is limited by paclitaxel-induced neutropenia. We investigated the ability of genetic variation in drug-metabolizing enzymes and transporters to predict hematological toxicity. PATIENTS & METHODS Using a discovery and validation approach, we identified a pharmacogenetic predictive model for neutropenia. For this, a drug-metabolizing enzymes and transporters plus DNA chip was used, which contains 1936 SNPs in 225 metabolic enzyme and drug-transporter genes. RESULTS Our 10-SNP model in 279 paclitaxel-dosed patients reached 43% sensitivity in the validation cohort. Analysis in 3-weekly treated patients only resulted in improved sensitivity of 79%, with a specificity of 33%. None of our models reached statistical significance. CONCLUSION Our drug-metabolizing enzymes and transporters-based SNP-models are currently of limited value for predicting paclitaxel-induced neutropenia in clinical practice. Original submitted 9 March 2015; Revision submitted 20 May 2015.
Collapse
Affiliation(s)
- Annemieke J M Nieuweboer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Anne-Joy M de Graan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Samira Elbouazzaoui
- Department of Clinical Chemistry, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - John W Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
49
|
Management of side effects in the personalized medicine era: chemotherapy-induced peripheral neuropathy. Methods Mol Biol 2015; 1175:301-22. [PMID: 25150874 DOI: 10.1007/978-1-4939-0956-8_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pharmacogenomics has been establishing itself as a powerful tool to predict individual response to treatment, in order to personalize therapy management; this field has been explored in particular in Oncology. Not only efficacy on the malignant disease has been investigated, but also the possibility to predict adverse effects due to drug administration. Chemotherapy-Induced Neurotoxicity (CIPN) is one of those. This potentially severe and long-lasting/permanent side effect of commonly administered anticancer drugs can severely impair Quality of Life (QoL) in a large cohort of long survival patients. So far, a pharmacogenomics-based approach in CIPN regard has been quite delusive, making a methodological improvement warranted in this field of interest: even the most refined genetic analysis cannot be effective if not applied correctly. Here, we try to devise why it is so, suggesting how THE "bench-side" (Pharmacogenomics) might benefit from and should cooperate with THE "bed-side" (Clinimetrics), in order to make genetic profiling effective if applied to CIPN.
Collapse
|
50
|
Kraff S, Nieuweboer AJM, Mathijssen RHJ, Baty F, de Graan AJ, van Schaik RHN, Jaehde U, Joerger M. Pharmacokinetically based dosing of weekly paclitaxel to reduce drug-related neurotoxicity based on a single sample strategy. Cancer Chemother Pharmacol 2015; 75:975-83. [DOI: 10.1007/s00280-015-2724-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
|