1
|
Alhattab DM, Isaioglou I, Alshehri S, Khan ZN, Susapto HH, Li Y, Marghani Y, Alghuneim AA, Díaz-Rúa R, Abdelrahman S, Al-Bihani S, Ahmed F, Felimban RI, Alkhatabi H, Alserihi R, Abedalthagafi M, AlFadel A, Awidi A, Chaudhary AG, Merzaban J, Hauser CAE. Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res 2023; 27:111. [PMID: 37932837 PMCID: PMC10626721 DOI: 10.1186/s40824-023-00457-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.
Collapse
Affiliation(s)
- Dana M Alhattab
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yanyan Li
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yara Marghani
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arwa A Alghuneim
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rubén Díaz-Rúa
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shuroug Al-Bihani
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Farid Ahmed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, USA
| | - AlShaibani AlFadel
- Division of Hematology, Stem Cell Transplantation & Cellular Therapy, Oncology Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Medical School, The University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Adeel Gulzar Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Testa U, Castelli G, Pelosi E. The Molecular Characterization of Genetic Abnormalities in Esophageal Squamous Cell Carcinoma May Foster the Development of Targeted Therapies. Curr Oncol 2023; 30:610-640. [PMID: 36661697 PMCID: PMC9858483 DOI: 10.3390/curroncol30010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Esophageal cancer is among the most common tumors in the world and is associated with poor outcomes, with a 5-year survival rate of about 10-20%. Two main histological subtypes are observed: esophageal squamous cell carcinoma (ESCC), more frequent among Asian populations, and esophageal adenocarcinoma (EAC), the predominant type in Western populations. The development of molecular analysis techniques has led to the definition of the molecular alterations observed in ESCC, consistently differing from those observed in EAC. The genetic alterations observed are complex and heterogeneous and involve gene mutations, gene deletions and gene amplifications. However, despite the consistent progress in the definition of the molecular basis of ESCC, precision oncology for these patients is still virtually absent. The recent identification of molecular subtypes of ESCC with clinical relevance may foster the development of new therapeutic strategies. It is estimated that about 40% of the genetic alterations observed in ESCC are actionable. Furthermore, the recent introduction of solid tumor immunotherapy with immune checkpoint inhibitors (ICIs) showed that a minority of ESCC patients are responsive, and the administration of ICIs, in combination with standard chemotherapy, significantly improves overall survival over chemotherapy in ESCC patients with advanced disease.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | |
Collapse
|
3
|
Fritsche K, Boccellato F, Schlaermann P, Koeppel M, Denecke C, Link A, Malfertheiner P, Gut I, Meyer TF, Berger H. DNA methylation in human gastric epithelial cells defines regional identity without restricting lineage plasticity. Clin Epigenetics 2022; 14:193. [PMID: 36585699 PMCID: PMC9801550 DOI: 10.1186/s13148-022-01406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epigenetic modifications in mammalian DNA are commonly manifested by DNA methylation. In the stomach, altered DNA methylation patterns have been observed following chronic Helicobacter pylori infections and in gastric cancer. In the context of epigenetic regulation, the regional nature of the stomach has been rarely considered in detail. RESULTS Here, we establish gastric mucosa derived primary cell cultures as a reliable source of native human epithelium. We describe the DNA methylation landscape across the phenotypically different regions of the healthy human stomach, i.e., antrum, corpus, fundus together with the corresponding transcriptomes. We show that stable regional DNA methylation differences translate to a limited extent into regulation of the transcriptomic phenotype, indicating a largely permissive epigenetic regulation. We identify a small number of transcription factors with novel region-specific activity and likely epigenetic impact in the stomach, including GATA4, IRX5, IRX2, PDX1 and CDX2. Detailed analysis of the Wnt pathway reveals differential regulation along the craniocaudal axis, which involves non-canonical Wnt signaling in determining cell fate in the proximal stomach. By extending our analysis to pre-neoplastic lesions and gastric cancers, we conclude that epigenetic dysregulation characterizes intestinal metaplasia as a founding basis for functional changes in gastric cancer. We present insights into the dynamics of DNA methylation across anatomical regions of the healthy stomach and patterns of its change in disease. Finally, our study provides a well-defined resource of regional stomach transcription and epigenetics.
Collapse
Affiliation(s)
- Kristin Fritsche
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Philipp Schlaermann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Max Koeppel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Denecke
- Center for Bariatric and Metabolic Surgery, Center of Innovative Surgery (ZIC), Department of Surgery, Campus Virchow Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Barcelona, Spain
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
4
|
Qiu H, Zhang X, Qi J, Zhang J, Tong Y, Li L, Fu L, Qin YR, Guan X, Zhang L. Identification and characterization of FGFR2+ hematopoietic stem cell-derived fibrocytes as precursors of cancer-associated fibroblasts induced by esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2022; 41:240. [PMID: 35941662 PMCID: PMC9358838 DOI: 10.1186/s13046-022-02435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cancer-associated fibroblast (CAF) is an ideal target for cancer treatment. Recent studies have focused on eliminating CAFs and their effects by targeting their markers or blocking individual CAF-secreted factors. However, these strategies have been limited by their specificity for targeting CAFs and effectiveness in blocking widespread influence of CAFs. To optimize CAF-targeted therapeutic strategies, we tried to explore the molecular mechanisms of CAF generation in this study. Methods Using FGFR2 as a tracing marker, we identified a novel origin of CAFs in esophageal squamous cell carcinoma (ESCC). Furthermore, we successfully isolated CAF precursors from peripheral blood of ESCC patients and explored the mechanisms underlying their expansion, recruitment, and differentiation via RNA-sequencing and bioinformatics analysis. The mechanisms were further verified by using different models both in vitro and in vivo. Results We found that FGFR2+ hematopoietic stem cell (HSC)-derived fibrocytes could be induced by ESCC cells, recruited into tumor xenografts, and differentiated into functional CAFs. They were mobilized by cancer-secreted FGF2 and recruited into tumor sites via the CXCL12/CXCR4 axis. Moreover, they differentiated into CAFs through the activation of YAP-TEAD complex, which is triggered by directly contracting with tumor cells. FGF2 and CXCR4 neutralizing antibodies could effectively block the mobilization and recruitment process of FGFR2+ CAFs. The YAP-TEAD complex-based mechanism hold promise for locally activation of genetically encoded therapeutic payloads at tumor sites. Conclusions We identified a novel CAF origin and systematically studied the process of mobilization, recruitment, and maturation of CAFs in ESCC under the guidance of tumor cells. These findings give rise to new approaches that target CAFs before their incorporation into tumor stroma and use CAF-precursors as cellular vehicles to target tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02435-w.
Collapse
|
5
|
Feeding role of mouse embryonic fibroblast cells is influenced by genetic background, cell passage and day of isolation. ZYGOTE 2022; 30:550-560. [PMID: 35485762 DOI: 10.1017/s0967199421000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mouse embryonic fibroblast (MEF) cells are commonly used as feeder cells to maintain the pluripotent state of stem cells. MEFs produce growth factors and provide adhesion molecules and extracellular matrix (ECM) compounds for cellular binding. In the present study, we compared the expression levels of Fgf2, Bmp4, ActivinA, Lif and Tgfb1 genes at the mRNA level and the level of Fgf2 protein secretion and Lif cytokine secretion at passages one, three and five of MEFs isolated from 13.5-day-old and 15.5-day-old embryos of NMRI and C57BL/6 mice using real-time PCR and enzyme-linked immunosorbent assay. We observed differences in the expression levels of the studied genes and secretion of the two growth factors in the three passages of MEFs isolated from 13.5-day-old and 15.5-day-old embryos, respectively. These differences were also observed between the NMRI and C57BL/6 strains. The results of this study suggested that researchers should use mice embryos that have different genetic backgrounds and ages, in addition to different MEF passages, when producing MEFs based on the application and type of their study.
Collapse
|
6
|
Bregni G, Beck B. Toward Targeted Therapies in Oesophageal Cancers: An Overview. Cancers (Basel) 2022; 14:1522. [PMID: 35326673 PMCID: PMC8946490 DOI: 10.3390/cancers14061522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Oesophageal cancer is one of the leading causes of cancer-related death worldwide. Oesophageal cancer occurs as squamous cell carcinoma (ESCC) or adenocarcinoma (EAC). Prognosis for patients with either ESCC or EAC is poor, with less than 20% of patients surviving more than 5 years after diagnosis. A major progress has been made in the development of biomarker-driven targeted therapies against breast and lung cancers, as well as melanoma. However, precision oncology for patients with oesophageal cancer is still virtually non-existent. In this review, we outline the recent advances in oesophageal cancer profiling and clinical trials based on targeted therapies in this disease.
Collapse
Affiliation(s)
- Giacomo Bregni
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Benjamin Beck
- Welbio and FNRS Investigator at IRIBHM, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
7
|
The Prognostic Value of the Lymph Node in Oesophageal Adenocarcinoma; Incorporating Clinicopathological and Immunological Profiling. Cancers (Basel) 2021; 13:cancers13164005. [PMID: 34439160 PMCID: PMC8391676 DOI: 10.3390/cancers13164005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Oesophageal cancer rates are increasing rapidly with patients often presenting at an advanced stage. The current approach to treatment involves radiotherapy, chemotherapy, or combination chemoradiotherapy with surgery; however, only a fraction of these patients will achieve meaningful responses. Therefore, there is a need to better understand the tumour and lymph node microenvironments to inform future treatment strategies. This study measured immune markers including immune checkpoint expression in tumour and lymph node tissue in oesophageal cancer patients and patient clinical outcomes, including survival time, response to treatment, and adverse events. We report herein that nodal metastases is of equal prognostic importance to clinical tumour stage and tumour regression grade in OAC and we observed a more immunosuppressive microenvironment in the tumour compared with the lymph node. Abstract Response rates to the current gold standards of care for treating oesophageal adenocarcinoma (OAC) remain modest with 15–25% of patients achieving meaningful pathological responses, highlighting the need for novel therapeutic strategies. This study consists of immune, angiogenic, and inflammatory profiling of the tumour microenvironment (TME) and lymph node microenvironment (LNME) in OAC. The prognostic value of nodal involvement and clinicopathological features was compared using a retrospective cohort of OAC patients (n = 702). The expression of inhibitory immune checkpoints by T cells infiltrating tumour-draining lymph nodes (TDLNs) and tumour tissue post-chemo(radio)therapy at surgical resection was assessed by flow cytometry. Nodal metastases is of equal prognostic importance to clinical tumour stage and tumour regression grade (TRG) in OAC. The TME exhibited a greater immuno-suppressive phenotype than the LNME. Our data suggests that blockade of these checkpoints may have a therapeutic rationale for boosting response rates in OAC.
Collapse
|
8
|
Jabbour SK, Williams TM, Sayan M, Miller ED, Ajani JA, Chang AC, Coleman N, El-Rifai W, Haddock M, Ilson D, Jamorabo D, Kunos C, Lin S, Liu G, Prasanna PG, Rustgi AK, Wong R, Vikram B, Ahmed MM. Potential Molecular Targets in the Setting of Chemoradiation for Esophageal Malignancies. J Natl Cancer Inst 2021; 113:665-679. [PMID: 33351071 PMCID: PMC8600025 DOI: 10.1093/jnci/djaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Although the development of effective combined chemoradiation regimens for esophageal cancers has resulted in statistically significant survival benefits, the majority of patients treated with curative intent develop locoregional and/or distant relapse. Further improvements in disease control and survival will require the development of individualized therapy based on the knowledge of host and tumor genomics and potentially harnessing the host immune system. Although there are a number of gene targets that are amplified and proteins that are overexpressed in esophageal cancers, attempts to target several of these have not proven successful in unselected patients. Herein, we review our current state of knowledge regarding the molecular pathways implicated in esophageal carcinoma, and the available agents for targeting these pathways that may rationally be combined with standard chemoradiation, with the hope that this commentary will guide future efforts of novel combinations of therapy.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Norman Coleman
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Ilson
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Steven Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey Liu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Rosemary Wong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
9
|
Vitale DL, Caon I, Parnigoni A, Sevic I, Spinelli FM, Icardi A, Passi A, Vigetti D, Alaniz L. Initial Identification of UDP-Glucose Dehydrogenase as a Prognostic Marker in Breast Cancer Patients, Which Facilitates Epirubicin Resistance and Regulates Hyaluronan Synthesis in MDA-MB-231 Cells. Biomolecules 2021; 11:biom11020246. [PMID: 33572239 PMCID: PMC7914570 DOI: 10.3390/biom11020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
UDP-glucose-dehydrogenase (UGDH) synthesizes UDP-glucuronic acid. It is involved in epirubicin detoxification and hyaluronan synthesis. This work aimed to evaluate the effect of UGDH knockdown on epirubicin response and hyaluronan metabolism in MDA-MB-231 breast cancer cells. Additionally, the aim was to determine UGDH as a possible prognosis marker in breast cancer. We studied UGDH expression in tumors and adjacent tissue from breast cancer patients. The prognostic value of UGDH was studied using a public Kaplan–Meier plotter. MDA-MB-231 cells were knocked-down for UGDH and treated with epirubicin. Epirubicin-accumulation and apoptosis were analyzed by flow cytometry. Hyaluronan-coated matrix and metabolism were determined. Autophagic-LC3-II was studied by Western blot and confocal microscopy. Epirubicin accumulation increased and apoptosis decreased during UGDH knockdown. Hyaluronan-coated matrix increased and a positive modulation of autophagy was detected. Higher levels of UGDH were correlated with worse prognosis in triple-negative breast cancer patients that received chemotherapy. High expression of UGDH was found in tumoral tissue from HER2--patients. However, UGDH knockdown contributes to epirubicin resistance, which might be associated with increases in the expression, deposition and catabolism of hyaluronan. The results obtained allowed us to propose UGDH as a new prognostic marker in breast cancer, positively associated with development of epirubicin resistance and modulation of extracellular matrix.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Arianna Parnigoni
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Fiorella M. Spinelli
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Università degli Studio dell’Insubria, 21100 Varese, Italy; (I.C.); (A.P.); (A.P.)
- Correspondence: (D.V.); (L.A.); Tel.: + 39-332-307170 (D.V.); +54-236-4-407750 (ext. 11625) (L.A.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín 6000, Argentina; (D.L.V.); (I.S.); (F.M.S.); (A.I.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
- Correspondence: (D.V.); (L.A.); Tel.: + 39-332-307170 (D.V.); +54-236-4-407750 (ext. 11625) (L.A.)
| |
Collapse
|
10
|
Donlon NE, Sheppard A, Davern M, O’Connell F, Phelan JJ, Power R, Nugent T, Dinneen K, Aird J, Greene J, Nevins Selvadurai P, Bhardwaj A, Foley EK, Ravi N, Donohoe CL, Reynolds JV, Lysaght J, O’Sullivan J, Dunne MR. Linking Circulating Serum Proteins with Clinical Outcomes in Esophageal Adenocarcinoma-An Emerging Role for Chemokines. Cancers (Basel) 2020; 12:cancers12113356. [PMID: 33202734 PMCID: PMC7698106 DOI: 10.3390/cancers12113356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer of the esophagus (food pipe) is an aggressive type of cancer with poor prognosis and rates are increasing. Current treatments help to prolong survival but only for a minority of patients, therefore there is an urgent need to discover why some people do not respond and to develop new and improved treatments. Newer treatments targeting the immune system show promise but the anti-tumor immune response in esophageal cancer is not well understood. This study measured levels of 54 immune markers in serum of patients with esophageal cancer and evaluated a link with patient clinical outcomes, e.g., survival time, response to treatment, and adverse events. We found that certain chemokines, proteins which control immune cell trafficking, were particularly high in patients who survived longer (CCL22 and CCL26) and responded to treatment (CCL4), suggesting the importance of immune cell movement in orchestrating an effective immune response to esophageal cancer. Abstract Esophageal adenocarcinoma (EAC) is an aggressive cancer with poor prognosis and incidence is increasing rapidly in the Western world. Multi-modal treatment has improved survival outcomes but only for a minority of patients. Currently no markers have been identified to predict treatment response. This study investigated the association between clinical outcomes and pre-treatment levels of 54 serum proteins in n = 80 patients with EAC. Low tumor regression grade (TRG), corresponding to a favorable treatment response, was linked to prolonged overall survival (OS). CCL4 was higher in patients with a favorable treatment response, while Tie2 and CRP were higher in poor responders. Elevated CCL22 and CCL26 was associated with improved OS, while elevated IL-10 showed a negative association. CCL3, CCL4, IL-1α and IL-12/IL23p40 were highest in individuals with no adverse features of tumor biology, whereas levels of Tie2 and VEGF were lowest in this cohort. CCL4 was also elevated in patients with high tumor lymphocyte infiltration. Comparison of matched pre- and post-treatment serum (n = 28) showed a large reduction in VEGFC, and a concomitant increase in other cytokines, including CCL4. These data link several serum markers with clinical outcomes, highlighting an important role for immune cell trafficking in the EAC antitumor immune response.
Collapse
Affiliation(s)
- Noel E. Donlon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Andrew Sheppard
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Maria Davern
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - James J. Phelan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Robert Power
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Timothy Nugent
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Kate Dinneen
- Department of Histopathology, St James’s Hospital, Dublin 8, Ireland; (K.D.); (J.A.)
| | - John Aird
- Department of Histopathology, St James’s Hospital, Dublin 8, Ireland; (K.D.); (J.A.)
| | - John Greene
- Department of Medical Oncology, St James’s Hospital, Dublin 8, Ireland; (J.G.); (P.N.S.)
| | - Paul Nevins Selvadurai
- Department of Medical Oncology, St James’s Hospital, Dublin 8, Ireland; (J.G.); (P.N.S.)
| | - Anshul Bhardwaj
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Emma K. Foley
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Claire L. Donohoe
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - John V. Reynolds
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
- Correspondence:
| |
Collapse
|
11
|
Nesteruk K, Janmaat VT, Liu H, Ten Hagen TLM, Peppelenbosch MP, Fuhler GM. Forced expression of HOXA13 confers oncogenic hallmarks to esophageal keratinocytes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165776. [PMID: 32222541 DOI: 10.1016/j.bbadis.2020.165776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
HOXA13 overexpression has been detected in human ESCC tissue and high HOXA13 protein expression is correlated with a shorter median survival time in ESCC patients. Although aberrant expression of HOXA13 in ESCC has thus been established, little is known regarding the functional consequences thereof. The present study aimed to examine to what extent aberrant HOXA13 might drive carcinogenesis in esophageal keratinocytes. To this end, we overexpressed HOXA13 in a non-transformed human esophageal cell line EPC2-hTERT, performed gene expression profiling to identify key processes and functions, and performed functional experiments. We found that HOXA13 expression confers oncogenic hallmarks to esophageal keratinocytes. It provides proliferation advantage to keratinocytes, reduces sensitivity to chemical agents, regulates MHC class I expression and differentiation status and promotes cellular migration. Our data indicate a crucial role of HOXA13 at early stages of esophageal carcinogenesis.
Collapse
Affiliation(s)
| | | | - Hui Liu
- Erasmus MC- University Medical Center Rotterdam, the Netherlands
| | | | | | - Gwenny M Fuhler
- Erasmus MC- University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
12
|
Vitale DL, Spinelli FM, Del Dago D, Icardi A, Demarchi G, Caon I, García M, Bolontrade MF, Passi A, Cristina C, Alaniz L. Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget 2018; 9:36585-36602. [PMID: 30564299 PMCID: PMC6290962 DOI: 10.18632/oncotarget.26379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan, the main glycosaminoglycan of extracellular matrices, is concentrated in tissues with high cell proliferation and migration rates. In cancer, hyaluronan expression is altered and it becomes fragmented into low-molecular-weight forms, affecting mechanisms associated with cell proliferation, invasion, angiogenesis and multidrug resistance. Here, we analyzed the effect of low-molecular-weight hyaluronan on the response of T lymphoma, osteosarcoma, and mammary adenocarcinoma cell lines to the antineoplastic drug doxorubicin, and whether co-treatment with hyaluronan and doxorubicin modified the behavior of endothelial cells. Our aim was to associate the hyaluronan-doxorubicin response with angiogenic alterations in these tumors. After hyaluronan and doxorubicin co-treatment, hyaluronan altered drug accumulation and modulated the expression of ATP-binding cassette transporters in T-cell lymphoma cells. In contrast, no changes in drug accumulation were observed in cells from solid tumors, indicating that hyaluronan might not affect drug efflux. However, when we evaluated the effect on angiogenic mechanisms, the supernatant from tumor cells treated with doxorubicin exhibited a pro-angiogenic effect on endothelial cells. Hyaluronan-doxorubicin co-treatment increased migration and vessel formation in endothelial cells. This effect was independent of vascular endothelial growth factor but related to fibroblast growth factor-2 expression. Besides, we observed a pro-angiogenic effect on endothelial cells during hyaluronan and doxorubicin co-treatment in the in vivo murine model of T-cell lymphoma. Our results demonstrate for the first time that hyaluronan is a potential modulator of doxorubicin response by mechanisms that involve not only drug efflux but also angiogenic processes, providing an adverse tumor stroma during chemotherapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Daiana Del Dago
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Gianina Demarchi
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Mariana García
- Laboratorio de Terapia Génica, IIMT-CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcela F Bolontrade
- Laboratorio de Células Madre-Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Carolina Cristina
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| |
Collapse
|
13
|
Li Q, Liu R, Zhao H, Di R, Lu Z, Liu E, Wang Y, Chu M, Wei C. Identification and Characterization of Long Noncoding RNAs in Ovine Skeletal Muscle. Animals (Basel) 2018; 8:ani8070127. [PMID: 30041440 PMCID: PMC6071021 DOI: 10.3390/ani8070127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Simple Summary LncRNAs may play important role in many biological processes. The aims of this research were to identify potential lncRNAs active in skeletal muscle of the Texel and Ujumqin sheep and investigate their functions. Overall, 2002 lncRNA transcripts were found, some of which may be related to muscle development. The findings obtained here should promote understanding of the regulatory functions of lncRNAs in ovine muscle development and potentially also in other mammals. Abstract Long noncoding RNAs (lncRNAs) are increasingly being recognized as key regulators in many cellular processes. However, few reports of them in livestock have been published. Here, we describe the identification and characterization of lncRNAs in ovine skeletal muscle. Eight libraries were constructed from the gastrocnemius muscle of fetal (days 85 and 120), newborn and adult Texel and Ujumqin sheep. The 2002 identified transcripts shared some characteristics, such as their number of exons, length and distribution. We also identified some coding genes near these lncRNA transcripts, which are particularly associated with transcriptional regulation- and development-related processes, suggesting that the lncRNAs are associated with muscle development. In addition, in pairwise comparisons between the libraries of the same stage in different breeds, a total of 967 transcripts were differentially expressed but just 15 differentially expressed lncRNAs were common to all stages. Among them, we found that TCONS_00013201 exhibited higher expression in Ujumqin samples, while TCONS_00006187 and TCONS_00083104 were higher in Texel samples. Moreover, TCONS_00044801, TCONS_00008482 and TCONS_00102859 were almost completely absent from Ujumqin samples. Our results suggest that differences in the expression of these lncRNAs may be associated with the muscular differences observed between Texel and Ujumqin sheep breeds.
Collapse
Affiliation(s)
- Qing Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huijing Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zengkui Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Tzeng HE, Chang AC, Tsai CH, Wang SW, Tang CH. Basic fibroblast growth factor promotes VEGF-C-dependent lymphangiogenesis via inhibition of miR-381 in human chondrosarcoma cells. Oncotarget 2018; 7:38566-38578. [PMID: 27229532 PMCID: PMC5122411 DOI: 10.18632/oncotarget.9570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
A chondrosarcoma is a common, primary malignant bone tumor that can grow to destroy the bone, produce fractures and develop soft tissue masses. Left untreated, chondrosarcomas metastasize through the vascular system to the lungs and ultimately lead to large metastatic deposits of the malignant cartilage taking over lung volume and function. Vascular endothelial growth factor (VEGF)-C has been implicated in tumor-induced lymphangiogenesis and elevated expression of VEGF-C has been found to correlate with cancer metastasis. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis and metastasis. We have previously reported on the important role of bFGF in angiogenesis in chondrosarcomas. However, the effect of bFGF in VEGF-C regulation and lymphangiogenesis in chondrosarcomas is poorly understood. In this investigation, we demonstrate a correlation exists between bFGF and VEGF-C in tissue specimens from patients with chondrosarcomas. To examine the lymphangiogenic effect of bFGF, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. We found that bFGF-treated chondrosarcomas promoted LEC tube formation and cell migration. In addition, bFGF knockdown inhibited lymphangiogenesis in vitro and in vivo. We also found that bFGF-induced VEGF-C is mediated by the platelet-derived growth factor receptor (PDGFR) and c-Src signaling pathway. Furthermore, bFGF inhibited microRNA-381 expression via the PDGFR and c-Src cascade. Our study is the first to describe the mechanism of bFGF-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, bFGF could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Maehara O, Suda G, Natsuizaka M, Ohnishi S, Komatsu Y, Sato F, Nakai M, Sho T, Morikawa K, Ogawa K, Shimazaki T, Kimura M, Asano A, Fujimoto Y, Ohashi S, Kagawa S, Kinugasa H, Naganuma S, Whelan KA, Nakagawa H, Nakagawa K, Takeda H, Sakamoto N. Fibroblast growth factor-2-mediated FGFR/Erk signaling supports maintenance of cancer stem-like cells in esophageal squamous cell carcinoma. Carcinogenesis 2017; 38:1073-1083. [PMID: 28927233 PMCID: PMC5862278 DOI: 10.1093/carcin/bgx095] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/11/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022] Open
Abstract
In esophageal squamous cell carcinoma (ESCC), a subset of cells defined by high expression of CD44 and low expression of CD24 has been reported to possess characteristics of cancer stem-like cells (CSCs). Novel therapies directly targeting CSCs have the potential to improve prognosis of ESCC patients. Although fibroblast growth factor-2 (FGF-2) expression correlates with recurrence and poor survival in ESCC patients, the role of FGF-2 in regulation of ESCC CSCs has yet to be elucidated. We report that FGF-2 is significantly upregulated in CSCs and significantly increases CSC content in ESCC cell lines by inducing epithelial-mesenchymal transition (EMT). Conversely, the FGFR inhibitor, AZD4547, sharply diminishes CSCs via induction of mesenchymal-epithelial transition. Further experiments revealed that MAPK/Erk kinase (Mek)/extracellular signal-regulated kinases (Erk) pathway is crucial for FGF-2-mediated CSC regulation. Pharmacological inhibition of FGF receptor (FGFR)-mediated signaling via AZD4547 did not affect CSCs in Ras mutated cells, implying that Mek/Erk pathway, downstream of FGFR signaling, might be an important regulator of CSCs. Indeed, the Mek inhibitor, trametinib, efficiently suppressed ESCC CSCs even in the context of Ras mutation. Consistent with these findings in vitro, xenotransplantation studies demonstrated that inhibition of FGF-2-mediated FGFR/Erk signaling significantly delayed tumor growth. Taken together, these findings indicate that FGF-2 is an essential factor regulating CSCs via Mek/Erk signaling in ESCC. Additionally, inhibition of FGFR and/or Mek signaling represents a potential novel therapeutic option for targeting CSCs in ESCC.
Collapse
Affiliation(s)
- Osamu Maehara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Internal Medicine, Natsuizaka clinic, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshito Komatsu
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Fumiyuki Sato
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoe Shimazaki
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ayaka Asano
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Yoshiyuki Fujimoto
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shingo Kagawa
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi, Japan
| | - Kelly A Whelan
- Gastroenterology Division, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Gastroenterology Division, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Koji Nakagawa
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Li C, Che LH, Shi L, Yu JL. Suppression of Basic Fibroblast Growth Factor Expression by Antisense Oligonucleotides Inhibits Neural Stem Cell Proliferation and Differentiation in Rat models With Focal Cerebral Infarction. J Cell Biochem 2017; 118:3875-3882. [PMID: 28390174 DOI: 10.1002/jcb.26038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
Abstract
This study is designed to investigate the role of basic fibroblast growth factor (bFGF) antisense oligonucleotide (ASODN) on the proliferation and differentiation of neural stem cells (NSCs) in rat models with focal cerebral infarction (CI). Seventy-five Sprague-Dawlay (SD) rats were randomly divided into the control, sham, middle cerebral artery occlusion (MCAO), MCAO + nonsense oligonucleotide (NODN), and MCAO + ASODN groups. Proliferation and differentiation of NSCs were detected by bromodeoxyuridine (BrdU) and immunofluorescence staining, respectively. ELISA was performed to detect the expressions of endogenous factors that include insulin-like growth factor 1 (IGF-1), glial cell line derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), transforming growth factor-α1 (TGF-α1), bFGF, and nerve growth factor (NGF). Results show significant neurological deficits and focal CI in the MCAO and MCAO + NODN groups. An obvious increase of NSC proliferation, reactive proliferation of astrocytes in CI areas, differentiation of newly proliferated NSCs into mature neuronal cells, and expressions of endogenous growth factors exhibited in the MCAO, MCAO + NODN and MCAO + ASODN groups. Compared to the MCAO and MACO + NODN groups, the MCAO + ASODN group showed a significant decrease NSC proliferation and differentiation in CI areas as well as decrease expressions of endogenous growth factors. These findings may offer insight to help us understand more as to how bFGF ASODN can effectively suppress the proliferation and differentiation of NSCs. These findings are expected to help contribute to research for new targets in the treatment of focal CI. J. Cell. Biochem. 118: 3875-3882, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, P.R. China
| | - Li-He Che
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| | - Lei Shi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| | - Jin-Lu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| |
Collapse
|
17
|
Vlaanderen J, Pronk A, Rothman N, Hildesheim A, Silverman D, Hosgood HD, Spaan S, Kuijpers E, Godderis L, Hoet P, Lan Q, Vermeulen R. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology 2017; 11:395-404. [DOI: 10.1080/17435390.2017.1308031] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jelle Vlaanderen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anjoeka Pronk
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Allan Hildesheim
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Suzanne Spaan
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Eelco Kuijpers
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Lode Godderis
- Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
| | - Peter Hoet
- Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Bodner-Adler B, Mayerhofer K, Czerwenka K, Kimberger O, Koelbl H, Bodner K. The role of fibroblast growth factor 2 in patients with uterine smooth muscle tumors: an immunohistochemical study. Eur J Obstet Gynecol Reprod Biol 2016; 207:62-67. [PMID: 27825029 DOI: 10.1016/j.ejogrb.2016.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/21/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Fibroblast growth factor 2 (FGF-2) is considered to be a potent stimulator of angiogenesis and seems therefore to play an important role in the growth of tumors. We compared the immunohistochemical profile of FGF-2 in patients with uterine leiomyomas, smooth muscle tumors of uncertain malignant potential (STUMP) and leiomyosarcoma (LMS). Furthermore, we tried to clarify the prognostic role of FGF-2 in uterine leiomyosarcoma. STUDY DESIGN FGF-2 expression was investigated by immunohistochemistry from paraffin-embedded tissue in 26 patients with leiomyoma, in 24 cases with STUMP and in 21 patients with LMS. The immunohistochemical profile of these 3 tumor entities was compared and regarding LMS correlated with different clinicopathologic parameters. RESULTS FGF-2 was expressed in 85% of leiomyomas, in 88% of STUMP and in 57% of LMS. Significant differences regarding the frequency of FGF-2 expression were observed between leiomyoma and LMS as well as between STUMP and LMS (p<0.05). In uterine LMS FGF-2 expression was statistically more frequent in cases with high histological grade (p<0.05). Furthermore, FGF-2 positive tumors demonstrated a statistically significant higher rate of recurrence disease and tumor progression (p=0.005). Disease free as well as overall survival was significantly shortened in patients with FGF-2 positive compared to FGF-2 negative tumors (p<0.05). CONCLUSION The significant correlation between FGF-2 expression and high histological grade indicates that FGF-2 might work as a negative predictive factor. Higher rates of recurrence disease as well as shortened disease free and overall survival among FGF-2 positive LMS support the potential role as prognosticator for poor clinical outcome.
Collapse
Affiliation(s)
- Barbara Bodner-Adler
- Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Austria.
| | - Klaus Mayerhofer
- Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Austria
| | - Klaus Czerwenka
- Department of Gynecopathology, Medical University of Vienna, Vienna, Austria
| | - Oliver Kimberger
- Department of Anesthesiology, Medical University of Vienna, Vienna, Austria; Outcomes Research Consortium, Cleveland, OH, USA
| | - Heinz Koelbl
- Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Austria
| | - Klaus Bodner
- Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Austria
| |
Collapse
|
19
|
Takase N, Koma YI, Urakawa N, Nishio M, Arai N, Akiyama H, Shigeoka M, Kakeji Y, Yokozaki H. NCAM- and FGF-2-mediated FGFR1 signaling in the tumor microenvironment of esophageal cancer regulates the survival and migration of tumor-associated macrophages and cancer cells. Cancer Lett 2016; 380:47-58. [PMID: 27317650 DOI: 10.1016/j.canlet.2016.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 12/30/2022]
Abstract
Tumor-associated macrophages (TAMs) have important roles in the angiogenesis and tumor immunosuppression of various cancers, including esophageal squamous cell carcinomas (ESCCs). To elucidate the roles of TAMs in ESCCs, we compared the gene expression profiles between human peripheral blood monocyte-derived macrophage-like cells (Macrophage_Ls) and Macrophage_Ls stimulated with conditioned medium of the TE series human ESCC cell line (TECM) (TAM_Ls) using cDNA microarray analysis. Among the highly expressed genes in TAM_Ls, we focused on neural cell adhesion molecule (NCAM). NCAM knockdown in TAM_Ls revealed a significant decrease of migration and survival via a suppression of PI3K-Akt and fibroblast growth factor receptor 1 (FGFR1) signaling. Stimulation by TECM up-regulated the level of FGFR1 in Macrophage_Ls. Recombinant human fibroblast growth factor-2 (rhFGF-2) promoted the migration and survival of TAM_Ls and TE-cells through FGFR1 signaling. Our immunohistochemical analysis of 70 surgically resected ESCC samples revealed that the up-regulated FGF-2 in stromal cells, including macrophages, was associated with more aggressive phenotypes and a high number of infiltrating M2 macrophages. These findings may indicate a novel role of NCAM- and FGF-2-mediated FGFR1 signaling in the tumor microenvironment of ESCCs.
Collapse
Affiliation(s)
- Nobuhisa Takase
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Naoki Urakawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Noriaki Arai
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroaki Akiyama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
20
|
Shi H, Xu J, Zhao R, Wu H, Gu L, Chen Y. FGF2 regulates proliferation, migration, and invasion of ECA109 cells through PI3K/Akt signalling pathway in vitro. Cell Biol Int 2016; 40:524-33. [PMID: 26833879 DOI: 10.1002/cbin.10588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/28/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Shi
- Department of Thoracic Surgery; The First Affiliated Hospital of Nanjing Medical University; Nanjing 210000 Jiangsu China
- Department of Biochemistry and Molecular Biology; Nanjing Medical University; Nanjing 210000 Jiangsu China
- Department of Thoracic Surgery; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Jingjing Xu
- Nursing School of Nantong University; Nantong 226001 Jiangsu China
| | - Rui Zhao
- Nursing School of Nantong University; Nantong 226001 Jiangsu China
| | - Huiqun Wu
- Medical School of Nantong University; Nantong 226001 Jiangsu China
| | - Luo Gu
- Department of Biochemistry and Molecular Biology; Nanjing Medical University; Nanjing 210000 Jiangsu China
| | - Yijiang Chen
- Department of Thoracic Surgery; The First Affiliated Hospital of Nanjing Medical University; Nanjing 210000 Jiangsu China
| |
Collapse
|
21
|
The broad-spectrum anti-DNA virus agent cidofovir inhibits lung metastasis of virus-independent, FGF2-driven tumors. Oncotarget 2016; 6:4633-48. [PMID: 25609197 PMCID: PMC4467104 DOI: 10.18632/oncotarget.3079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023] Open
Abstract
The FDA-approved anti-DNA virus agent cidofovir (CDV) is being evaluated in phase II/III clinical trials for the treatment of human papillomavirus (HPV)-associated tumors. However, previous observations had shown that CDV also inhibits the growth of vascular tumors induced by fibroblast growth factor-2 (FGF2)-transformed FGF2-T-MAE cells. Here, we demonstrate that CDV inhibits metastasis induced by FGF2-driven, virus-independent tumor cells. Pre-treatment of luciferase-expressing FGF2-T-MAE cells with CDV reduced single cell survival and anchorage-independent growth in vitro and lung metastasis formation upon intravenous inoculation into SCID mice. This occurred in the absence of any effect on homing of FGF2-T-MAE cells to the lungs and on the growth of subconfluent cell cultures or subcutaneous tumors in mice. Accordingly, CDV protected against lung metastasis when given systemically after tumor cell injection. Lung metastases in CDV-treated mice showed reduced Ki67 expression and increased nuclear accumulation of p53, indicating that CDV inhibits metastasis by affecting single cell survival properties. The anti-metastatic potential of CDV was confirmed on B16-F10 melanoma cells, both in zebrafish embryos and mice. These findings suggest that CDV may have therapeutic potential as an anti-metastatic agent and warrants further study to select those tumor types that are most likely to benefit from CDV therapy.
Collapse
|
22
|
Ueno N, Shimizu A, Kanai M, Iwaya Y, Ueda S, Nakayama J, Seo MK. Enhanced Expression of Fibroblast Growth Factor Receptor 3 IIIc Promotes Human Esophageal Carcinoma Cell Proliferation. J Histochem Cytochem 2015; 64:7-17. [PMID: 26487184 DOI: 10.1369/0022155415616161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Deregulated expression of fibroblast growth factor receptors (FGFRs) and their ligands plays critical roles in tumorigenesis. The gene expression of an alternatively spliced isoforms of FGFR3, FGFR3IIIc, was analyzed by RT-PCR in samples from patients with esophageal carcinoma (EC), including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). The incidence of FGFR3IIIc was higher in EC [12/16 (75%); p=0.073] than in non-cancerous mucosa (NCM) [6/16 (38%)]. Indeed, an immunohistochemical analysis of early-stage ESCC showed that carcinoma cells expressing FGFR3IIIc stained positively with SCC-112, a tumor marker, and Ki67, a cell proliferation marker, suggesting that the expression of FGFR3IIIc promotes cell proliferation. We used EC-GI-10 cells endogenously expressing FGFR3IIIc as a model of ESCC to provide mechanistic insight into the role of FGFR3IIIc in ESCC. The knockdown of endogenous FGFR3 using siRNA treatment significantly abrogated cell proliferation and the overexpression of FGFR3IIIc in cells with enhanced cell proliferation. EC-GI-10 cells and ESCC from patients with EC showed endogenous expression of FGF2, a specific ligand for FGFR3IIIc, suggesting that the upregulated expression of FGFR3IIIc may create autocrine FGF signaling in ESCC. Taken together, FGFR3IIIc may have the potential to be an early-stage tumor marker and a molecular target for ESCC therapy.
Collapse
Affiliation(s)
- Nobuhiro Ueno
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan (NU, AS, MKS)
| | - Akio Shimizu
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan (NU, AS, MKS)
| | - Michiyuki Kanai
- Digestive Disease Center, Hanwasumiyoshi General Hospital, Osaka, Japan (MK)
| | - Yugo Iwaya
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan (YI)
| | - Shugo Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan (SU)
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan (JN)
| | - Misuzu Kurokawa Seo
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan (NU, AS, MKS)
| |
Collapse
|
23
|
Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond) 2015; 129:147-58. [PMID: 25735814 DOI: 10.1042/cs20140390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrosarcoma, a common malignant tumour, develops in bone. Effective adjuvant therapy remains inadequate for treatment, meaning poor prognosis. It is imperative to explore novel remedies. Angiogenesis is a rate-limiting step in progression that explains neovessel formation for blood supply in the tumour microenvironment. Numerous studies indicate that EPCs (endothelial progenitor cells) promote angiogenesis and contribute to tumour growth. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis, and correlates with tumorigenesis. However, the role of bFGF in angiogenesis-related tumour progression by recruiting EPCs in human chondrosarcoma is rarely discussed. In the present study, we found that bFGF induced VEGF (vascular endothelial growth factor) expression via the FGFR1 (fibroblast growth factor receptor 1)/c-Src/p38/NF-κB (nuclear factor κB) signalling pathway in chondrosarcoma cells, thereby triggering angiogenesis of endothelial progenitor cells. Our in vivo data revealed that tumour-secreted bFGF promotes angiogenesis in both mouse plug and chick CAM (chorioallantoic membrane) assays. Xenograft mouse model data, due to bFGF-regulated angiogenesis, showed the bFGF regulates angiogenesis-linked tumour growth. Finally, bFGF was highly expressed in chondrosarcoma patients compared with normal cartilage, positively correlating with VEGF expression and tumour stage. The present study reveals a novel therapeutic target for chondrosarcoma progression.
Collapse
|
24
|
Role of fibroblast growth factor in squamous cell carcinoma of the bladder: prognostic biomarker and potential therapeutic target. Urol Oncol 2014; 33:111.e1-7. [PMID: 25477183 DOI: 10.1016/j.urolonc.2014.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND We evaluated the association of fibroblast growth factor (FGF2) expression with pathologic features and clinical outcomes of squamous cell carcinoma (SCC) of the urinary bladder. METHODS Immunohistochemistry of FGF2 was performed on radical cystectomy specimens with pure SCC from 1997 to 2003. The relationship between FGF2 and pathologic parameters and oncological outcome was assessed. RESULTS The study included 151 patients with SCC (98 men) with a median age of 52 years (range: 36-74 y). Schistosomal infection was found in 81% of patients. Pathologic category was T2 and T3 in 88% of patients and the grade was low in>50%. Lymph node invasion and lymphovascular invasion were found in 30.5% and 16%. Altered FGF2 was associated with tumor grade (P = 0.014), lymph node invasion, and lymphovascular invasion (P = 0.042). Altered FGF2 was associated with both disease recurrence and cancer-specific mortality (P≤0.001) in Kaplan-Meier analyses and was an independent predictor of cancer recurrence (hazard ratio = 2.561, P = 0. 009) and cancer-specific mortality (hazard ratio = 2.679, P = 0. 033) in multivariate Cox regression analyses. Adding FGF2 to a model including standard clinicopathologic prognostics (pathologic T category, lymph node status, and grade) showed a significant improvement (6%) in accuracy of prediction poor oncological outcome. CONCLUSIONS FGF2 overexpression is associated with aggressive pathologic features and worse outcomes after radical cystectomy for SCC, suggesting a good prognostic and possible therapeutic role.
Collapse
|
25
|
MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med 2014; 46:e112. [PMID: 25190353 PMCID: PMC4150934 DOI: 10.1038/emm.2014.51] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the proliferation and metastasis of cancer cells. Here, we showed that miR-152 was downregulated in non-small-cell lung cancer (NSCLC) tissues and cell lines. Overexpression of miR-152 suppressed cell proliferation and colony formation and also limited migration and invasion. Fibroblast growth factor 2 (FGF2) was confirmed as a direct target of miR-152. FGF2 knockdown suppressed cell proliferation, colony formation, migration and invasion, whereas FGF2 overexpression partially reversed the suppressive effect of miR-152. Furthermore, the presence of miR-152 was inversely correlated with FGF2 in NSCLC tissues. Overall, this study demonstrated that miR-152 suppressed the proliferation and invasion of NSCLC cells by downregulating FGF2. These findings provide novel insights with potential therapeutic applications for the treatment of NSCLC.
Collapse
|
26
|
Chen Y, Li X, Yang H, Xia Y, Guo L, Wu X, He C, Lu Y. Expression of basic fibroblast growth factor, CD31, and α-smooth muscle actin and esophageal cancer recurrence after definitive chemoradiation. Tumour Biol 2014; 35:7275-82. [PMID: 24777337 DOI: 10.1007/s13277-014-1987-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
There is cumulative evidence that stromal reaction in cancer has an important diagnostic and prognostic significance. The aims of this study were to analyze the expression of basic fibroblast growth factor (FGF-2), CD31, and α-smooth muscle actin (SMA) in esophageal cancer patients and to establish their significance as indicators of disease recurrence after definitive chemoradiation (CRT). Protein expressions of FGF-2, CD31, and SMA were evaluated by immunohistochemistry and Western blot analysis in 70 patients, 20 with esophageal squamous cell carcinoma (ESCC) and 50 with locally recurrent ESCC after definitive CRT. Twenty matched normal esophageal squamous epithelium were also studied as controls. Esophageal cancer tissues showed positive expression of FGF-2, CD31, and SMA; in contrast, FGF-2 expression was not detected and only little staining for CD31 and SMA was noted in normal epithelium. Protein levels of FGF-2, CD31, and SMA were significantly elevated in recurrent ESCC. Among the patients with locally recurrent disease, expression of FGF-2 and SMA was notably high in whom the tumor recurred locally within 24 months after definitive CRT. The 2- and 5-year local recurrence-free survival rate was 15.4 % and 0 in patients with high FGF-2 expression, compared with 45.8 and 33.3 % in those who expressed low FGF-2, respectively (P = 0.005). Of patients who expressed high SMA, the 2- and 5-year local recurrence-free survival rate was 21.7 and 8.7 %, respectively, compared to those with low SMA expression which was 37.0 and 22.2 %, respectively (P = 0.016). Overexpression of FGF-2 and SMA is associated with local recurrence and reduced recurrence-free survival after definitive CRT for ESCC. The data also suggest that targeting stromal cells may be an attractive approach for esophageal cancer therapy strategies.
Collapse
Affiliation(s)
- Yongshun Chen
- Division of Thoracic Oncology, West China Hospital, Cancer Center, West China School of Clinical Medicine, Sichuan University, 37, Guoxue Lane, Chengdu, 610041, China,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
McEachern LA, Murphy PR. Chromatin-remodeling factors mediate the balance of sense-antisense transcription at the FGF2 locus. Mol Endocrinol 2014; 28:477-89. [PMID: 24552587 DOI: 10.1210/me.2013-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antisense transcription is prevalent in mammalian genomes, yet the function of many antisense transcripts remains elusive. We have previously shown that the fibroblast growth factor 2 (FGF2) gene is regulated endogenously by an overlapping antisense gene called Nudix-type motif 6 (NUDT6). However, the molecular mechanisms that determine the balance of FGF2 and NUDT6 transcripts are not yet well understood. Here we demonstrate that there is a strong negative correlation between FGF2 and NUDT6 across 7 different cell lines. Small interfering RNA-mediated knockdown of NUDT6 causes an increase in nascent FGF2 transcripts, including a short FGF2 variant that lacks sequence complementarity with NUDT6, indicating the involvement of transcriptional mechanisms. In support of this, we show that changes in histone acetylation by trichostatin A treatment, histone deacetylase inhibition, or small interfering RNA knockdown of the histone acetyltransferase CSRP2BP, oppositely affect NUDT6 and FGF2 mRNA levels. A significant increase in histone acetylation with trichostatin A treatment was only detected at the genomic region where the 2 genes overlap, suggesting that this may be an important regulatory region for determining the balance of NUDT6 and FGF2. Knockdown of the histone demethylase KDM4A similarly causes a shift in the balance of NUDT6 and FGF2 transcripts. Expression of CSRP2BP and KDM4A correlates positively with NUDT6 expression and negatively with FGF2 expression. The results presented here indicate that histone acetylation and additional chromatin modifiers are important in determining the relative levels of FGF2 and NUDT6 and support a model in which epigenetic remodeling contributes to their relative expression levels.
Collapse
Affiliation(s)
- Lori A McEachern
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | |
Collapse
|
28
|
Fibroblast growth factor 2 is of prognostic value for patients with locally advanced squamous cell carcinoma of the head and neck. Strahlenther Onkol 2013; 190:68-74. [PMID: 23861152 DOI: 10.1007/s00066-013-0368-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE Patients with locally advanced SCCHN have a poor prognosis. This study investigated the prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients treated with surgery followed by radiotherapy. PATIENTS AND METHODS The impact of FGF-2-expression and 11 additional potential prognostic factors on loco-regional control (LRC), metastases-free survival (MFS), and overall survival (OS) was retrospectively evaluated in 146 patients. Additional factors included age, gender, performance status, pre-radiotherapy hemoglobin levels, tumor site, histologic grade, T-category, N-category, human papilloma virus (HPV) status, extent of resection, and chemotherapy. Univariate analyses were performed with the Kaplan-Meier method and the log-rank test, multivariate analyses with the Cox proportional hazard model. RESULTS On multivariate analysis, improved LRC was significantly associated with FGF-2-negativity [risk ratio (RR): 7.33; 95%-confidence interval (CI): 2.88-19.05; p<0.001], lower T-category (RR: 2.42; 95%-CI: 1.47-4.33; p<0.001), lower N-category (RR: 12.36; 95%-CI: 3.48-78.91; p<0.001), and pre-radiotherapy hemoglobin levels ≥ 12 g/dl (RR: 4.18; 95%-CI: 1.73-10.53; p=0.002). No factor was significantly associated with improved MFS. Lower T-category showed a trend (RR: 1.59; 95%-CI: 0.97-2.82; p=0.069). Better OS was significantly associated with FGF-2-negativity (RR: 5.10; 2.22-11.80; p<0.001), lower T-category (RR: 2.17; 95%-CI: 1.38-3.68; p < 0.001), lower N-category (RR: 3.86; 95%-CI: 1.60-10.85; p=0.002), and pre-radiotherapy hemoglobin levels ≥ 12 g/dl (RR: 3.20; 95%-CI: 1.46-7.30; p=0.004). HPV-positivity showed a trend (RR: 2.36; 95%-CI: n.a.; p=0.054). CONCLUSIONS Tumor cell expression of FGF-2 proved to be an independent prognostic factor for LRC and OS. This factor can help personalize treatment and stratify patients in future trials.
Collapse
|
29
|
Baguma-Nibasheka M, Macfarlane LA, Murphy PR. Regulation of fibroblast growth factor-2 expression and cell cycle progression by an endogenous antisense RNA. Genes (Basel) 2012; 3:505-20. [PMID: 24704982 PMCID: PMC3899992 DOI: 10.3390/genes3030505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 01/22/2023] Open
Abstract
Basic fibroblast growth factor (FGF2) is a potent wide-spectrum mitogen whose overexpression is associated with immortalization and unregulated cell proliferation in many tumors. The FGF2 gene locus is bi-directionally transcribed to produce FGF2 mRNA from the “sense” strand and a cis-antisense RNA (NUDT6) from the NUDT6 gene on the “antisense” strand. The NUDT6 gene encodes a nudix motif protein of unknown function, while its mRNA has been implicated in the post-transcriptional regulation of FGF2 expression. FGF2 and NUDT6 are co-expressed in rat C6 glioma cells, and ectopic overexpression of NUDT6 suppresses cellular FGF2 accumulation and cell cycle progression. However, the role of the endogenous antisense RNA in regulation of FGF2 is unclear. In the present study, we employed siRNA-mediated gene knockdown to examine the role of the endogenous NUDT6 RNA in regulation of FGF2 expression and cell cycle progression. Knockdown of either FGF2 or NUDT6 mRNA was accompanied by a significant (>3 fold) increase in the complementary partner RNA. Similar reciprocal effects were observed at the protein level, indicating that these two transcripts are mutually regulatory. Remarkably, knockdown of either FGF2 or NUDT6 significantly reduced cell proliferation and inhibited S-phase re-entry following serum deprivation, implicating both FGF2 and NUDT6 in the regulation of cell transformation and cell cycle progression.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Leigh Ann Macfarlane
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Paul R Murphy
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
30
|
Abstract
INTRODUCTION Esophageal cancer is an aggressive disease with poor prognosis. The majority of the patients are diagnosed at an advanced stage and many with early stage disease will develop recurrent disease. AREAS COVERED Angiogenesis is essential to the progress and aggressiveness of solid malignancies. Success of anti-angiogenic therapy in colorectal, lung and breast cancers is a proof of principle. Thus far, evidence for benefit from anti-angiogenic therapy in esophageal cancer is lacking. Several Phase II trials with different agents have provided mixed results and the only Phase III trial in the esophageal and gastric cancer failed to show that these agents improve overall survival (OS). However, lack of observed benefit could be due to the challenges specific to the management of esophageal cancers as well as issues with the design of clinical trials for anti-angiogenic therapy. EXPERT OPINION An understanding of the biology of the esophageal cancer and its management is essential to the development of anti-angiogenic therapy in this disease. This article reviews the management of esophageal cancer and elaborates on the challenges in the development of anti-angiogenic therapy in esophageal cancer. At the end, strategies are proposed for successful development of anti-angiogenic therapy in esophageal cancer.
Collapse
Affiliation(s)
- Afsaneh Barzi
- Keck School of Medicine, Medical Oncology, Norris Comprehensive Cancer Center, 1414 Eastlake Ave. Suite 3440, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
31
|
Effect of non-anticoagulant N-desulfated heparin on basic fibroblast growth factor expression, angiogenesis, and metastasis of gastric carcinoma in vitro and in vivo. Gastroenterol Res Pract 2012; 2012:752940. [PMID: 22888341 PMCID: PMC3410322 DOI: 10.1155/2012/752940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/11/2012] [Indexed: 01/11/2023] Open
Abstract
Objective. The present study was performed to investigate the effect of N-desulfated heparin on basic fibroblast growth factor (bFGF) expression, tumor angiogenesis and metastasis of gastric carcinoma. Methods. Human gastric cancer SGC-7901 tissues were orthotopically implanted into the stomach of NOD SCID mice. Twenty mice were randomly divided into two groups which received either intravenous injection of 0.9% NaCl solution (normal saline group) or 10 mg/kg N-desulfated heparin (N-desulfated heparin group) twice weekly for three weeks. In vitro, human gastric carcinoma SGC-7901 cells were treated with N-desulfated heparin in different concentration (0.1 mg/mL, 1 mg/mL, N-desulfated heparin group), and treated with medium (control group). Results. In vivo, the tumor metastasis rates were 9/10 in normal saline group and 2/10 in N-desulfated heparin group (P < 0.05). The intratumoral microvessel density was higher in normal saline group than in N-desulfated heparin group (P < 0.05). bFGF expression in gastric tissue was inhibited by N-desulfated heparin (P < 0.05). There was no bleeding in N-desulfated heparin group. In vitro, N-desulfated heparin inhibited significantly bFGF protein and mRNA expression of gastric carcinoma cells (P < 0.05). Conclusions. N-desulfated heparin can inhibit the metastasis of gastric cancer through inhibiting tumor bFGF expression and tumor angiogenesis with no obvious anticoagulant activity.
Collapse
|
32
|
|
33
|
Phage displayed peptides/antibodies recognizing growth factors and their tyrosine kinase receptors as tools for anti-cancer therapeutics. Int J Mol Sci 2012; 13:5254-5277. [PMID: 22606042 PMCID: PMC3344278 DOI: 10.3390/ijms13045254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/09/2012] [Accepted: 04/20/2012] [Indexed: 12/21/2022] Open
Abstract
The basic idea of displaying peptides on a phage, introduced by George P. Smith in 1985, was greatly developed and improved by McCafferty and colleagues at the MRC Laboratory of Molecular Biology and, later, by Barbas and colleagues at the Scripps Research Institute. Their approach was dedicated to building a system for the production of antibodies, similar to a naïve B cell repertoire, in order to by-pass the standard hybridoma technology that requires animal immunization. Both groups merged the phage display technology with an antibody library to obtain a huge number of phage variants, each of them carrying a specific antibody ready to bind its target molecule, allowing, later on, rare phage (one in a million) to be isolated by affinity chromatography. Here, we will briefly review the basis of the technology and the therapeutic application of phage-derived bioactive molecules when addressed against key players in tumor development and progression: growth factors and their tyrosine kinase receptors.
Collapse
|
34
|
Wang L, Park H, Chhim S, Ding Y, Jiang W, Queen C, Kim KJ. A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Mol Cancer Ther 2012; 11:864-72. [PMID: 22351746 DOI: 10.1158/1535-7163.mct-11-0813] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expression of fibroblast growth factor 2 (FGF2) is believed to be a contributing factor to the growth of a number of tumor types, including hepatocellular carcinoma (HCC). However, the potential of monoclonal antibodies that neutralize FGF2 for treatment of patients with cancer has not yet been explored in clinical trials. We therefore generated a novel monoclonal antibody (mAb), GAL-F2, specific for FGF2 and characterized its properties in vitro and in vivo. GAL-F2 binds to a different epitope than several previous anti-FGF2 mAbs tested. This novel epitope was defined using chimeric FGF1/FGF2 proteins and alanine scanning mutagenesis and was shown to comprise amino acids in both the amino and carboxy regions of FGF2. GAL-F2 blocked binding of FGF2 to each of its four cellular receptors, strongly inhibited FGF2-induced proliferation and downstream signaling in human umbilical vein endothelial cells, and inhibited proliferation and downstream signaling in two HCC cell lines. Moreover, GAL-F2, administered at 5 mg/kg i.p. twice weekly, potently inhibited growth of xenografts of the SMMC-7721, HEP-G2, and SK-HEP-1 human HCC cell lines in nude mice, and in some models, had a strong additive effect with an anti-VEGF mAb or sorafenib. Treatment with GAL-F2 also blocked angiogenesis and inhibited downstream cellular signaling in xenografts, indicating its antitumor mechanism of action. Our report supports clinical testing of a humanized form of the GAL-F2 mAb for treatment of HCC and potentially other cancers.
Collapse
Affiliation(s)
- Lihong Wang
- Galaxy Biotech, LLC, Sunnyvale, California 94089, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang J, Liu XT, Huang H, Xiao G, Zhou ZY, Chen Y, Yu ZH, He SL, Chen AA, Wang DD, He Y, Zhang ZC, Hong A. Antitumor activity of a recombinant soluble ectodomain of mutant human fibroblast growth factor receptor-2 IIIc. Mol Cancer Ther 2011; 10:1656-66. [PMID: 21750221 DOI: 10.1158/1535-7163.mct-11-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fibroblast growth factor (FGF) signaling pathway is a recognized target of cancer therapy. We have developed a strong inhibitor (S252W mutant soluble ectodomain of FGF recptor-2 IIIc, msFGFR2) that binds FGFs and blocks the activation of FGFRs. Thermodynamic binding studies indicated that msFGFR2 bound FGF-2 16.9 times as strongly as wild-type soluble FGFR2IIIc ectodomain (wsFGFR2). It successfully suppressed the growth, angiogenesis, and metastasis of two tumor cell lines in vitro and in vivo, and it potently inhibited cancer cell proliferation but not normal cell proliferation. Therefore, msFGFR2 is a useful probe for FGF-dependent signaling pathways and a potential broad-spectrum antitumor agent.
Collapse
Affiliation(s)
- Ju Wang
- Guangdong Provincial Key Laboratory of Bio-engineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rades D, Setter C, Dahl O, Schild SE, Noack F. Fibroblast growth factor 2--a predictor of outcome for patients irradiated for stage II-III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2010; 82:442-7. [PMID: 20950963 DOI: 10.1016/j.ijrobp.2010.08.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 11/16/2022]
Abstract
PURPOSE The prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients with non-small-cell lung cancer (NSCLC) is unclear. The present study investigated the effect of tumor cell expression of FGF-2 on the outcome of 60 patients irradiated for Stage II-III NSCLC. METHODS AND MATERIALS The effect of FGF-2 expression and 13 additional factors on locoregional control (LRC), metastasis-free survival (MFS), and overall survival (OS) were retrospectively evaluated. These additional factors included age, gender, Karnofsky performance status, histologic type, histologic grade, T and N category, American Joint Committee on Cancer stage, surgery, chemotherapy, pack-years, smoking during radiotherapy, and hemoglobin during radiotherapy. Locoregional failure was identified by endoscopy or computed tomography. Univariate analyses were performed with the Kaplan-Meier method and the Wilcoxon test and multivariate analyses with the Cox proportional hazard model. RESULTS On univariate analysis, improved LRC was associated with surgery (p = .017), greater hemoglobin levels (p = .036), and FGF-2 negativity (p <.001). On multivariate analysis of LRC, surgery (relative risk [RR], 2.44; p = .037), and FGF-2 expression (RR, 5.06; p <.001) maintained significance. On univariate analysis, improved MFS was associated with squamous cell carcinoma (p = .020), greater hemoglobin levels (p = .007), and FGF-2 negativity (p = .001). On multivariate analysis of MFS, the hemoglobin levels (RR, 2.65; p = .019) and FGF-2 expression (RR, 3.05; p = .004) were significant. On univariate analysis, improved OS was associated with a lower N category (p = .048), greater hemoglobin levels (p <.001), and FGF-2 negativity (p <.001). On multivariate analysis of OS, greater hemoglobin levels (RR, 4.62; p = .002) and FGF-2 expression (RR, 3.25; p = .002) maintained significance. CONCLUSIONS Tumor cell expression of FGF-2 appeared to be an independent negative predictor of LRC, MFS, and OS.
Collapse
Affiliation(s)
- Dirk Rades
- Department of Radiation Oncology, University of Lubeck, Lubeck, Germany.
| | | | | | | | | |
Collapse
|
37
|
MacFarlane LA, Murphy PR. Regulation of FGF-2 by an endogenous antisense RNA: Effects on cell adhesion and cell-cycle progression. Mol Carcinog 2010; 49:1031-44. [DOI: 10.1002/mc.20686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Nakawatari M, Iwakawa M, Ohno T, Kato S, Nakamura E, Ohkubo Y, Tamaki T, Imai T. Change in fibroblast growth factor 2 expression as an early phase radiotherapy-responsive marker in sequential biopsy samples from patients with cervical cancer during fractionated radiotherapy. Cancer 2010; 116:5082-92. [DOI: 10.1002/cncr.25433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Tao J, Xiang JJ, Li D, Deng N, Wang H, Gong YP. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2. Biochem Biophys Res Commun 2010; 394:767-73. [PMID: 20227391 DOI: 10.1016/j.bbrc.2010.03.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
Abstract
Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8x10(-9)M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.
Collapse
Affiliation(s)
- Jun Tao
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | |
Collapse
|
40
|
MacFarlane LA, Gu Y, Casson AG, Murphy PR. Regulation of fibroblast growth factor-2 by an endogenous antisense RNA and by argonaute-2. Mol Endocrinol 2010; 24:800-12. [PMID: 20197313 DOI: 10.1210/me.2009-0367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have previously reported that elevated fibroblast growth factor-2 (FGF-2) expression is associated with tumor recurrence and reduced survival after surgical resection of esophageal cancer and that these risks are reduced in tumors coexpressing an endogenous antisense (FGF-AS) RNA. In the present study, we examined the role of the endogenous FGF-AS transcript in the regulation of FGF-2 expression in the human lung adenocarcinoma cell line Seg-1. FGF-2 and FGF-AS were temporally and spatially colocalized in the cytoplasm of individual cells, and knockdown of either FGF-2 or FGF-AS by target-specific siRNAs resulted in dose-dependent up-regulation of the complementary transcript and its encoded protein product. Using a luciferase reporter system, we show that these effects are mediated by interaction of the endogenous antisense RNA with the 3'-untranslated region of the FGF-2 mRNA. Deletion mapping identified a 392-nucleotide sequence in the 5823-nucleotide FGF-2 untranslated tail that is targeted by FGF-AS. Small interfering RNA-mediated knockdown of either FGF-AS or FGF-2 significantly increased the stability of the complementary partner mRNA, demonstrating that these mRNAs are mutually regulatory. Knockdown of FGF-AS also resulted in reduced expression of argonaute-2 (AGO-2) and a number of other elements of the endogenous micro-RNA/RNA interference pathways. Conversely, small interfering RNA-mediated knockdown of AGO-2 significantly increased the stability of the FGF-2 mRNA transcript and the steady-state levels of both FGF-2 mRNA and protein, suggesting a role for AGO-2 in the regulation of FGF-2 expression.
Collapse
Affiliation(s)
- Leigh-Ann MacFarlane
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
41
|
Uehara M, Sano K, Ikeda H, Nonaka M, Asahina I. Hypoxia-inducible factor 1 alpha in oral squamous cell carcinoma and its relation to prognosis. Oral Oncol 2010; 45:241-6. [PMID: 18675581 DOI: 10.1016/j.oraloncology.2008.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/12/2008] [Accepted: 05/06/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the correlation between the expression of hypoxia-inducible factor 1 alpha (HIF-1 alpha) and proliferative activity in tumor cells, lymph node metastasis, as well as prognosis in patients with oral squamous cell carcinoma (OSCC). Fifty-seven biopsy specimens of OSCC were investigated for the expression of HIF-1 alpha and proliferating cell nuclear antigen (PCNA) by immunohistochemistry. None of the patients had received any prior treatments. The percentage of HIF-1 alpha immunopositive area (PHIA) was calculated using computer-assisted image analysis for quantitative assessment of HIF-1 alpha expression. The PCNA labeling index (LI) was evaluated as a proliferation marker. We found that the mean PHIA in all stages was 12.1% in the poor prognosis patients, and it was 6.4% in the good prognosis patients. There was a significant difference of PHIA between poor prognosis and good prognosis patients (P=0.0065). Furthermore, the mean PHIA in the patients who had no metastatic lymph nodes was 7.5%, while it was 11.7% in the patients who had metastatic lymph nodes. There was also a significant difference of PHIA between patients who had no metastatic lymph nodes and those who had metastatic lymph nodes (P=0.0487). On the other hand, significant correlation between PHIA and PCNA LI was not observed. These results provide the clinical data indicating that HIF-1 alpha may play an important role in lymph node metastasis and prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Masataka Uehara
- Division of Regenerative Oral Surgery, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|
42
|
Vallböhmer D, Brabender J, Metzger R, Hölscher AH. Genetics in the pathogenesis of esophageal cancer: possible predictive and prognostic factors. J Gastrointest Surg 2010; 14 Suppl 1:S75-80. [PMID: 19756878 DOI: 10.1007/s11605-009-1021-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/25/2009] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Esophageal adenocarcinoma is the most rapidly increasing cancer in Western countries. Like esophageal squamous-cell carcinoma, these tumors are often detected at an advanced stage, requiring a multimodal concept. Despite improvements in detection, surgical resection, and (neo-) adjuvant therapy, the overall survival of esophageal cancer remains lower than other solid tumors. In fact, just 30-40% of the patients with advanced esophageal cancer benefit from a neoadjuvant therapy. Therefore, predictive/prognostic markers are needed to allow tailored multimodality therapy with increased efficacy. DISCUSSION In recent years, there has been an exponential growth in our understanding of the cellular and molecular events associated with cell cycle regulation, programmed cell death, angiogenesis, and tumor growth. In this review, the classification of Hanahan and Weinberg is used concerning the six essential changes in carcinogenesis, i.e., the six hallmarks of cancer: (1) self-sufficiency in growth signals; (2) insensitivity to antigrowth signals; (3) avoidance of apoptosis; (4) limitless replicative potential; (5) sustained angiogenesis; and (6) tissue invasion and metastasis. CONCLUSIONS According to these six steps, this review provides an update of the most recent data about predictive/prognostic molecular markers in patients with esophageal cancer.
Collapse
Affiliation(s)
- Daniel Vallböhmer
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| | | | | | | |
Collapse
|
43
|
An X, Jin Y, Guo H, Foo SY, Cully BL, Wu J, Zeng H, Rosenzweig A, Li J. Response gene to complement 32, a novel hypoxia-regulated angiogenic inhibitor. Circulation 2009; 120:617-27. [PMID: 19652095 DOI: 10.1161/circulationaha.108.841502] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Response gene to complement 32 (RGC-32) is induced by activation of complement and regulates cell proliferation. To determine the mechanism of RGC-32 in angiogenesis, we examined the role of RGC-32 in hypoxia-related endothelial cell function. METHODS AND RESULTS Hypoxia/ischemia is able to stimulate both angiogenesis and apoptosis. Hypoxia-inducible factor-1/vascular endothelial growth factor is a key transcriptional regulatory pathway for angiogenesis during hypoxia. We demonstrated that the increased RGC-32 expression by hypoxia was via hypoxia-inducible factor-1/vascular endothelial growth factor induction in cultured endothelial cells. However, overexpression of RGC-32 reduced the proliferation and migration and destabilized vascular structure formation in vitro and inhibited angiogenesis in Matrigel assays in vivo. Silencing RGC-32 had an opposing, stimulatory effect. RGC-32 also stimulated apoptosis as shown by the increased apoptotic cells and caspase-3 cleavage. Mechanistic studies revealed that the effect of RGC-32 on the antiangiogenic response was via attenuating fibroblast growth factor 2 expression and further inhibiting expression of cyclin E without affecting vascular endothelial growth factor and fibroblast growth factor 2 signaling in endothelial cells. In the mouse hind-limb ischemia model, RGC-32 inhibited capillary density with a significant attenuation in blood flow. Additionally, treatment with RGC-32 in the xenograft tumor model resulted in reduced growth of blood vessels that is consistent with reduced colon tumor size. CONCLUSIONS We provide the first direct evidence for RGC-32 as a hypoxia-inducible gene and antiangiogenic factor in endothelial cells. These data suggest that RGC-32 plays an important homeostatic role in that it contributes to differentiating the pathways for vascular endothelial growth factor and fibroblast growth factor 2 in angiogenesis and provides a new target for ischemic disorder and tumor therapies.
Collapse
Affiliation(s)
- Xiaojin An
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Demou ZN, Hendrix MJC. Microgenomics profile the endogenous angiogenic phenotype in subpopulations of aggressive melanoma. J Cell Biochem 2009; 105:562-73. [PMID: 18655191 DOI: 10.1002/jcb.21855] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Beyond the elemental role of blood vessels in tumor growth, fluid conducting networks lacking endothelium (termed vasculogenic mimicry) were identified previously in metastatic melanoma and other cancer types. The etiology remains unclear, though it appears to involve dysregulation of the tumor-specific phenotype and transdifferentiation. Instigating the molecular deciphering of this phenomenon, we established a novel technique for microdissecting the spontaneously formed vascular-like networks and the randomly arranged cells (nests) from living 3D cultures of melanoma and performed microgenomics analysis. For the first time we show that despite the shared genotype, transcription was differentially regulated among the phenotypically distinct melanoma structures in vasculogenic mimicry. Several angiogenesis-specific genes were differentially expressed in higher levels in network cells of both uveal and cutaneous melanoma with intriguing representation of the ephrin family of angiogenesis factors, which was confirmed with immunocytochemistry. Interestingly, the adjacent nest-cells over-expressed ECM-related genes. Moreover, expression of angiogenesis-specific genes in melanoma resembled that of normal microvascular cells and was enhanced in melanoma disseminating hematogenously. The findings suggest that melanoma plasticity could enable autopoiesis of vascular-mimicking elements within the tumor infrastructure with significant clinical implications, such as response to anti-angiogenic treatments. Identifying factors regulating tumor plasticity and heterogeneity at the molecular level is essential in designing effective anti-cancer therapies.
Collapse
Affiliation(s)
- Zoe N Demou
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614-4314, USA
| | | |
Collapse
|
45
|
Seim I, Carter SL, Herington AC, Chopin LK. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene. BMC Mol Biol 2008; 9:95. [PMID: 18954468 PMCID: PMC2621237 DOI: 10.1186/1471-2199-9-95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022] Open
Abstract
Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | |
Collapse
|
46
|
Nakagawa T, Otsuki N, Masai Y, Sasaki R, Tsukuda M, Nibu KI. Additive effects of oral fluoropyrimidine derivative S-1 and radiation on human hypopharyngeal cancer xenografts. Acta Otolaryngol 2008; 128:936-40. [PMID: 18607998 DOI: 10.1080/00016480701784999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION The results presented here provide evidence of the enhancing effect of oral fluoropyrimidine derivative S-1 in concomitant chemoradiotherapy for head and neck cancer and further insights into its biological mechanism. OBJECTIVE To investigate the additive effect of S-1 and radiation for human hypopharyngeal cancer. MATERIALS AND METHODS Nude mice bearing hypopharyngeal cancer cells (H891) were used for an in vivo model. S-1 was administered at a volume of 0.01 mg/g body weight per mouse for 14 days, and tumors were irradiated with 2.0 Gy on days 1 and 8. Mice treated with either radiation or S-1 alone were used as controls. The growth of tumors in each group was measured and, after completion of the treatment, a focused DNA array was used to determine mRNA expression levels in the tumors of 132 genes related to 5-fluorouracil (5-FU), radiation or carcinogenesis. RESULTS The additive antitumor effect of S-1 and radiation was statistically confirmed on day 14 (p=0.01). DNA array assay showed significant changes in expression of several genes, including DNA repair gene POLD, angiogenesis-related genes bFGF and TP, DNA topoisomerase TOP2A, and nucleoside transporter gene ENT1.
Collapse
|
47
|
Chen MX, Chen JL, Lu JL, Hong J, Chen WX, Zhu JS, Chen NW, Geng JG. In vitro effect of N-desulfated heparin on the expression of basic fibroblast growth factor in gastric carcinoma cell line SGC-7901. Shijie Huaren Xiaohua Zazhi 2008; 16:1920-1925. [DOI: 10.11569/wcjd.v16.i17.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-desulfated heparin on the expression of basic fibroblast growth factor (bFGF) in human gastric carcinoma SGC-7901 cells in vitro.
METHODS: Human gastric carcinoma cell line SGC-7901 was cultured in vitro, and then treated with N-desulfated heparin at different concentrations (0.1, 1.0 g/L). Meanwhile, SGC-7901 cells cultured in single RPMI 1640 medium were used as controls. Each group contained 3 paralleled samples. Enzyme-linked immunosorbent assay (ELISA) and real time polymerase chain reaction (PCR) were used to detect the expression of bFGF in SGC-7901 cells at 12 h and 24 h, respectively.
RESULTS: After treatment with 0.1 or 1.0 g/L N-desulfated heparin for 12 or 24 h, bFGF protein expression was decreased significantly (t = 7.502, P = 0.002; t = 55.416, P = 0.000; t = 52.221, P = 0.000; t = 48.080, P = 0.000). The expression of bFGF (CT value) in each N-desulfated heparin group was higher than that in the control group at the same time. The inhibition of N-desulfated heparin on bFGF protein and mRNA expression in SGC-7901 cells was dose- and time-dependent.
CONCLUSION: N-desulfated heparin can inhibit the expression of bFGF in gastric cancer cell line SGC-7901 in a dose- and time-dependent manner in vitro.
Collapse
|
48
|
Zhang SC, MacDonald KA, Baguma-Nibasheka M, Geldenhuys L, Casson AG, Murphy PR. Alternative splicing and differential subcellular localization of the rat FGF antisense gene product. BMC Mol Biol 2008; 9:10. [PMID: 18215310 PMCID: PMC2254637 DOI: 10.1186/1471-2199-9-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 01/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background GFG/NUDT is a nudix hydrolase originally identified as the product of the fibroblast growth factor-2 antisense (FGF-AS) gene. While the FGF-AS RNA has been implicated as an antisense regulator of FGF-2 expression, the expression and function of the encoded GFG protein is largely unknown. Alternative splicing of the primary FGF-AS mRNA transcript predicts multiple GFG isoforms in many species including rat. In the present study we focused on elucidating the expression and subcellular distribution of alternatively spliced rat GFG isoforms. Results RT-PCR and immunohistochemistry revealed tissue-specific GFG mRNA isoform expression and subcellular distribution of GFG immunoreactivity in cytoplasm and nuclei of a wide range of normal rat tissues. FGF-2 and GFG immunoreactivity were co-localized in some, but not all, tissues examined. Computational analysis identified a mitochondrial targeting sequence (MTS) in the N-terminus of three previously described rGFG isoforms. Confocal laser scanning microscopy and subcellular fractionation analysis revealed that all rGFG isoforms bearing the MTS were specifically targeted to mitochondria whereas isoforms and deletion mutants lacking the MTS were localized in the cytoplasm and nucleus. Mutation and deletion analysis confirmed that the predicted MTS was necessary and sufficient for mitochondrial compartmentalization. Conclusion Previous findings strongly support a role for the FGF antisense RNA as a regulator of FGF2 expression. The present study demonstrates that the antisense RNA itself is translated, and that protein isoforms resulting form alternative RNA splicing are sorted to different subcellular compartments. FGF-2 and its antisense protein are co-expressed in many tissues and in some cases in the same cells. The strong conservation of sequence and genomic organization across animal species suggests important functional significance to the physical association of these transcript pairs.
Collapse
Affiliation(s)
- Shuo Cheng Zhang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | | | | | | | |
Collapse
|
49
|
Baguma-Nibasheka M, Barclay C, Li AW, Geldenhuys L, Porter GA, Blay J, Casson AG, Murphy PR. Selective cyclooxygenase-2 inhibition suppresses basic fibroblast growth factor expression in human esophageal adenocarcinoma. Mol Carcinog 2007; 46:971-80. [PMID: 17477358 DOI: 10.1002/mc.20339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of cyclooxygenase (COX)-2 is reported to suppress growth and induce apoptosis in human esophageal adenocarcinoma (EADC) cells, although the precise biologic mechanism is unclear. In this study we tested the hypothesis that the antitumor activity of COX-2 inhibitors may involve modulation of basic fibroblast growth factor (FGF-2), which is overexpressed in EADC. We evaluated the effects of NS-398, a selective COX-2 inhibitor, on FGF-2 expression and proliferation of EADC cell lines that express COX-2 and those that do not. We also correlated COX-2 and FGF-2 expression with clinico-pathologic findings and outcome in a well-characterized series of surgically resected EADC tissues. Seg-1 cells robustly expressed COX-2 and FGF-2, whereas Bic-1 cells expressed neither transcript. FGF-2 was reduced to undetectable levels in Seg-1 cells following NS-398 treatment, but increased within 4 h of drug removal. NS-398 significantly inhibited the growth of Seg-1 cells, and this effect was ameliorated by addition of exogenous FGF-2. In contrast, NS-398 had no effect on Bic-1 cell proliferation and FGF-2 alone had no effect on proliferation of either cell line. NS-398, or a neutralizing anti-FGF-2 antibody, induced apoptosis in Seg-1 cells, and these effects were inhibited by addition of exogenous FGF-2. COX-2 protein was strongly expressed in 46% (10/22) of EADCs, and was associated with a trend towards reduced disease-free survival. These findings indicate that the antitumor effects of COX-2 inhibition in EADC cells may be mediated via suppression of FGF-2, and that COX-2 may be a clinically relevant molecular marker in the management of human EADC.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang SC, Barclay C, Alexander LA, Geldenhuys L, Porter GA, Casson AG, Murphy PR. Alternative splicing of the FGF antisense gene: differential subcellular localization in human tissues and esophageal adenocarcinoma. J Mol Med (Berl) 2007; 85:1215-28. [PMID: 17569023 DOI: 10.1007/s00109-007-0219-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 03/24/2007] [Accepted: 05/24/2007] [Indexed: 05/15/2023]
Abstract
Overexpression of FGF-2 is associated with tumor recurrence and reduced survival after surgical resection of esophageal cancer, and these risks are reduced in tumors co-expressing the FGF antisense (FGF-AS) RNA. The aim of this study was to characterize the expression of alternatively spliced FGF-AS transcripts and encoded nudix-motif proteins in normal human tissues and in esophageal adenocarcinoma, and to correlate their expression with clinicopathologic findings and outcome. Three alternatively spliced FGF-AS transcripts encoding GFG/NUDT6 isoforms with distinct N termini were detected in various human tissues including esophageal adenocarcinoma. Expression of each isoform as a fusion protein with enhanced green fluorescent protein revealed differential subcellular trafficking: hGFGa is localized to mitochondria by an N-terminal targeting sequence (MTS), whereas hGFGb and hGFGc were localized in the cytoplasm and nucleus. Mutation/deletion analysis confirmed that the predicted MTS was necessary and sufficient for mitochondrial compartmentalization. The predominant FGF-AS mRNA expressed in esophageal tumors was splice variant b. GFG immunoreactivity was detected in the cytoplasm of all esophageal adenocarcinomas and in 88% of tumor cell nuclei. Although we found a trend towards reduced disease-free survival in patients with FGF-2 overexpressing esophageal adenocarcinomas, significantly worse disease-free survival was noted among patients whose tumors did not also overexpress the FGF-AS b isoform (p = 0.03). Tetracycline-inducible FGF-AS b expression in stably transfected human Seg-1 esophageal adenocarcinoma cells resulted in a significant suppression of steady state FGF-2 mRNA content and cell proliferation. Our data implicate the FGF-AS b isoform in modulation of FGF-2 expression and clinical outcome in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Shuo Cheng Zhang
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | | | | | | | | | |
Collapse
|