1
|
Xu H, Ma H, Li Y, Bi S, Cai K, Wu L, Zhang L, Guan H, Li C, Yang J, Qiu P. Propylene glycol alginate sodium sulfate suppressed lung metastasis by blocking P-selectin to recruit CD4 regulatory T cells. Int J Biol Macromol 2024; 279:134976. [PMID: 39179086 DOI: 10.1016/j.ijbiomac.2024.134976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
P-selectin has been shown to enhance growth and metastasis of mouse tumors by promoting regulatory T cell (Treg) infiltration into the tumors. Theoretically, a P-selectin antagonist could suppress the process. Popylene glycol alginate sodium sulfate (PSS) is a heparin-like marine drug, which was originally approved to treat cardiovascular disease in China. Previously, we reported that PSS was an effective P-selectin antagonist in vitro. However, it is unknown whether PSS can regulate Treg infiltration and its effect on lung metastasis in vivo. Our results showed that PSS at 30 mg/kg significantly suppressed lung metastasis and improved overall survival, with potency comparable to the positive control LMWH. Mechanistic study indicated that PSS blocked tumor cells adhesion and activated platelets by directly binding with activated platelet's P-selectin. Compared to the model group, PSS decreased the percent of Tregs by 63 % in lungs after treating for 21 days while increasing CD8+ T cells (1.59-fold) and Granzyme B+ CD8 T cells (2.08-fold)' percentage for generating an adaptive response for systemic tumor suppression. The study indicated that the P-selectin antagonist, PSS, suppressed lung metastasis by inhibiting the infiltration of regulatory T cells (Treg) into the tumors.
Collapse
Affiliation(s)
- Huixin Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, 700 Changcheng Rd, Qingdao, Shandong,266109, China
| | - Yannan Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Shijie Bi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Kaiyu Cai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Lijuan Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| |
Collapse
|
2
|
Xue J, Deng J, Qin H, Yan S, Zhao Z, Qin L, Liu J, Wang H. The interaction of platelet-related factors with tumor cells promotes tumor metastasis. J Transl Med 2024; 22:371. [PMID: 38637802 PMCID: PMC11025228 DOI: 10.1186/s12967-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
Collapse
Affiliation(s)
- Jie Xue
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Jianzhao Deng
- Clinical Laboratory, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Hongwei Qin
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Songxia Yan
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
3
|
Napolitano M, Siragusa S. The Role of Injectables in the Treatment and Prevention of Cancer-Associated Thrombosis. Cancers (Basel) 2023; 15:4640. [PMID: 37760609 PMCID: PMC10526875 DOI: 10.3390/cancers15184640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer-associated thrombosis (CAT) is a leading cause of death among patients with cancer. CAT can manifest itself as venous thromboembolism (VTE), in the form of deep vein thrombosis or pulmonary embolism, or arterial thromboembolism. The pathophysiology of CAT is complex and depends on cancer-, patient-, treatment- and biomarkers-related factors. Treatment of VTE in patients with cancer is complex and includes three major classes of anticoagulant agents: heparin and its derivatives, e.g., low molecular weight heparins, direct oral anticoagulants (DOACs), and vitamin K inhibitors. Given the tremendous heterogeneity of clinical situations in patients with cancer and the challenges of CAT, there is no single universal treatment option for patients suffering from or at risk of CAT. Initial studies suggested that patients seemed to prefer an anticoagulant that would not interfere with their cancer treatment, suggesting the primacy of cancer over VTE, and favoring efficacy and safety over convenience of route of administration. Recent studies show that when the efficacy and safety aspects are similar, patients prefer the oral route of administration. Despite this, injectables are a valid option for many patients with cancer.
Collapse
Affiliation(s)
- Mariasanta Napolitano
- Haematology Unit, Thrombosis and Haemostasis Reference Regional Center, University of Palermo, 90121 Palermo, Italy;
| | | |
Collapse
|
4
|
Sun F, Hou H, Li Y, Tang W, Wang J, Lu L, Fu J, Liu Z, Gao D, Zhao F, Gao X, Ling P, Wang F, Tan H. Glycol-Split Heparin-Linked Prodrug Nanoparticles Target the Mitochondrion Apparatus for Cancer Metastasis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206491. [PMID: 36965026 DOI: 10.1002/smll.202206491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The progression and metastasis of solid tumors rely strongly on neovascularization. However, angiogenesis inhibitors alone cannot meet the needs of tumor therapy. This study prepared a new drug conjugate (PTX-GSHP-CYS-ES2, PGCE) by combining polysaccharides (heparin without anticoagulant activity, GSHP), chemotherapeutic drugs (paclitaxel, PTX), and antiangiogenic drugs (ES2). Furthermore, a tumor-targeted prodrug nanoparticle delivery system is established. The nanoparticles appear to accumulate in the mitochondrial of tumor cells and achieve ES2 and PTX release under high glutathione and acidic environment. It has been confirmed that PGCE inhibited the expression of multiple metastasis-related proteins by targeting the tumor cell mitochondrial apparatus and disrupting their structure. Furthermore, PGCE nanoparticles inhibit migration, invasion, and angiogenesis in B16F10 tumor-bearing mice and suppress tumor growth and metastasis in vitro. Further in vitro and in vivo experiments show that PGCE has strong antitumor growth and metastatic effects and exhibits efficient anti-angiogenesis properties. This multi-targeted nanoparticle system potentially enhances the antitumor and anti-metastatic effects of combination chemotherapy and antiangiogenic drugs.
Collapse
Affiliation(s)
- Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| |
Collapse
|
5
|
Himes BT, Fain CE, Tritz ZP, Nesvick CL, Jin-Lee HJ, Geiger PA, Peterson TE, Jung MY, Parney IF. Use of heparin to rescue immunosuppressive monocyte reprogramming by glioblastoma-derived extracellular vesicles. J Neurosurg 2022; 138:1291-1301. [PMID: 36115048 DOI: 10.3171/2022.6.jns2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The profound immunosuppression found in glioblastoma (GBM) patients is a critical barrier to effective immunotherapy. Multiple mechanisms of tumor-mediated immune suppression exist, and the induction of immunosuppressive monocytes such as myeloid-derived suppressor cells (MDSCs) is increasingly appreciated as a key part of this pathology. GBM-derived extracellular vesicles (EVs) can induce the formation of MDSCs. The authors sought to identify the molecular consequences of these interactions in myeloid cells in order to identify potential targets that could pharmacologically disrupt GBM EV-monocyte interaction as a means to ameliorate tumor-mediated immune suppression. Heparin-sulfate proteoglycans (HSPGs) are a general mechanism by which EVs come into association with their target cells, and soluble heparin has been shown to interfere with EV-HSPG interactions. The authors sought to assess the efficacy of heparin treatment for mitigating the effects of GBM EVs on the formation of MDSCs. METHODS GBM EVs were collected from patient-derived cell line cultures via staged ultracentrifugation and cocultured with monocytes collected from apheresis cones from healthy blood donors. RNA was isolated from EV-conditioned and unconditioned monocytes after 72 hours of coculture, and RNA-sequencing analysis performed. For the heparin treatment studies, soluble heparin was added at the time of EV-monocyte coculture and flow cytometry analysis was performed 72 hours later. After the initial EV-monocyte coculture period, donor-matched T-cell coculture studies were performed by adding fluorescently labeled and stimulated T cells for 5 days of coculture. RESULTS Transcriptomic analysis of GBM EV-treated monocytes demonstrated downregulation of several important immunological and metabolic pathways, with upregulation of the pathways associated with synthesis of cholesterol and HSPG. Heparin treatment inhibited association between GBM EVs and monocytes in a dose-dependent fashion, which resulted in a concomitant reduction in MDSC formation (p < 0.01). The authors further demonstrated that reduced MDSC formation resulted in a partial rescue of immune suppression, as measured by effects on activated donor-matched T cells (p < 0.05). CONCLUSIONS The authors demonstrated that GBM EVs induce broad but reproducible reprogramming in monocytes, with enrichment of pathways that may portend an immunosuppressive phenotype. The authors further demonstrated that GBM EV-monocyte interactions are potentially druggable targets for overcoming tumor-mediated immune suppression, with heparin inhibition of EV-monocyte interactions demonstrating proof of principle.
Collapse
Affiliation(s)
| | - Cori E Fain
- 2Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | - Ian F Parney
- 1Department of Neurologic Surgery and.,2Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Programmed prodrug breaking the feedback regulation of P-selectin in plaque inflammation for atherosclerotic therapy. Biomaterials 2022; 288:121705. [PMID: 36002347 DOI: 10.1016/j.biomaterials.2022.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
Inflammation is the main driver of the aggravation of arteriosclerosis, and the complex inflammatory response in plaque is usually the result of the interaction of various cells and cytokines. Therefore, it is difficult to comprehensively regulate the inflammatory process of arteriosclerosis by intervening a single target, resulting in the poor effect of existing treatment method. Based on our clinical findings that P-selectin stably and highly expressed in patients' plaque endothelial cells, the programmed prodrug, low molecular weight heparin-indomethacin nanoparticles (LI NPs), were established as anti-inflammatory agent to multiphase inhibit arteriosclerosis by cascade interference of P-selectin. Structurally, LI NPs was obtained by simple esterification of low molecular weight heparin and indomethacin without any additives, guaranteeing the biocompatibility and applicability of LI NPs. Functionally, LI NPs could interfere with P-selectin in the inflammatory process, such as inhibiting macrophage adhesion, reducing the secretion of inflammatory factors, and inducing macrophage apoptosis. In the arteriosclerosis mice model, LI NPs significantly reduced the plaque area and showed satisfactory curative effect, which is related to the intervention of the multiphase inflammation between endothelial cells and macrophages. In conclusion, the programmed prodrug LI NPs offered a promising approach for the clinical therapy of arteriosclerosis.
Collapse
|
7
|
Amerali M, Politou M. Tinzaparin—a review of its molecular profile, pharmacology, special properties, and clinical uses. Eur J Clin Pharmacol 2022; 78:1555-1565. [PMID: 35871241 PMCID: PMC9308487 DOI: 10.1007/s00228-022-03365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/16/2022] [Indexed: 11/05/2022]
Abstract
Purpose Low molecular weight heparins (LMWHs) are a group of heterogenous moieties, long used in the prevention and treatment of thrombosis. They derive from heparin and since they are prepared by different methods of depolymerization, they differ in pharmacokinetic properties and anticoagulant profiles, and thus are not clinically interchangeable. Methods In this review we provide an overview of tinzaparin's main characteristics and uses. Results Tinzaparin which is produced by the enzymatic depolymerization of unfractionated heparin (UFH) can be used for the treatment and prevention of deep venous thrombosis (DVT) and pulmonary embolism (PE); it has been also used in special populations such as elders, obese, pregnant women, and patients with renal impairment and/or cancer with favorable outcomes in both safety and efficacy, with a once daily dose regimen. Furthermore, LMWHs are extensively used in clinical practice for both thromboprophylaxis and thrombosis treatment of COVID-19 patients. Conclusion Tinzaparin features support the hypothesis for having a role in immunothrombosis treatment (i.e. in the context of cancer ,COVID-19), interfering not only with coagulation cascade but also exhibiting anti-inflammatory potency.
Collapse
|
8
|
Robador JR, Feinauer MJ, Schneider SW, Mayer FT, Gorzelanny C, Sacharow A, Liu X, Berghoff A, Brehm MA, Hirsch D, Stadler J, Vidal-Y-Si S, Wladykowski E, Asong M, Nowak K, Seiz-Rosenhagen M, Umansky V, Mess C, Pantel K, Winkler F, Bauer AT. Involvement of platelet-derived VWF in metastatic growth of melanoma in the brain. Neurooncol Adv 2022; 3:vdab175. [PMID: 34993481 PMCID: PMC8717898 DOI: 10.1093/noajnl/vdab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The prognosis of patients with brain metastases (BM) is poor despite advances in our understanding of the underlying pathophysiology. The high incidence of thrombotic complications defines tumor progression and the high mortality rate. We, therefore, postulated that von Willebrand factor (VWF) promotes BM via its ability to induce platelet aggregation and thrombosis. Methods We measured the abundance of VWF in the blood and intravascular platelet aggregates of patients with BM, and determined the specific contribution of endothelial and platelet-derived VWF using in vitro models and microfluidics. The relevance for the brain metastatic cascade in vivo was demonstrated in ret transgenic mice, which spontaneously develop BM, and by the intracardiac injection of melanoma cells. Results Higher levels of plasma VWF in patients with BM were associated with enhanced intraluminal VWF fiber formation and platelet aggregation in the metastatic tissue and peritumoral regions. Platelet activation triggered the formation of VWF multimers, promoting platelet aggregation and activation, in turn enhancing tumor invasiveness. The absence of VWF in platelets, or the blocking of platelet activation, abolished platelet aggregation, and reduced tumor cell transmigration. Anticoagulation and platelet inhibition consistently reduced the number of BM in preclinical animal models. Conclusions Our data indicate that platelet-derived VWF is involved in cerebral clot formation and in metastatic growth of melanoma in the brain. Targeting platelet activation with low-molecular-weight heparins represents a promising therapeutic approach to prevent melanoma BM.
Collapse
Affiliation(s)
- Jose R Robador
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Manuel J Feinauer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Frank T Mayer
- Department of Dermatology and Venereology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Artur Sacharow
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Xiaobo Liu
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Anna Berghoff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria A Brehm
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Daniela Hirsch
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Julia Stadler
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Sabine Vidal-Y-Si
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Ewa Wladykowski
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Marisse Asong
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kai Nowak
- Department of Surgery, RoMed Kliniken Klinkum Rosenheim, Rosenheim, Germany
| | | | - Viktor Umansky
- Department of Dermatology and Venereology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Mess
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf , Hamburg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander T Bauer
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
9
|
Lu Z, Long Y, Li J, Li J, Ren K, Zhao W, Wang X, Xia C, Wang Y, Li M, Zhang Z, He Q. Simultaneous inhibition of breast cancer and its liver and lung metastasis by blocking inflammatory feed-forward loops. J Control Release 2021; 338:662-679. [PMID: 34478751 DOI: 10.1016/j.jconrel.2021.08.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/13/2023]
Abstract
Inflammatory feed-forward loops including the steps of "inflammatory cell recruitment", "inflammatory signaling pathway activation" and "inflammatory factor production" are essential in the development of breast cancer and its metastasis. Herein, a doxorubicin-loaded micellar low-molecular-weight-heparin-astaxanthin nanoparticle (LMWH-AST/DOX, LA/DOX NP) was developed. The hydrophilic LMWH could decrease the recruitment of neutrophils in liver and myeloid-derived suppressor cells (MDSCs) in lung and tumor through P-selectin blockage. The hydrophobic AST could inhibit nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways. Therefore, LA/DOX NPs could block these loops and suppress the liver metastasis by inhibiting the formation of neutrophil extracellular traps (NETs), inhibit the lung metastasis and alleviate the inflammatory and immunosuppressive microenvironment in tumor. This is the first functional nanoparticle reported to shut down inflammatory feed-forward loops and the formation of NETs, which provides a promising therapeutic strategy for breast cancer and its liver and lung metastasis.
Collapse
Affiliation(s)
- Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chunyu Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
10
|
Mantziou S, Markopoulos G, Thrasyvoulou S, Noutsopoulos D, Gkartziou F, Vartholomatos G, Tzavaras T. Tinzaparin inhibits VL30 retrotransposition induced by oxidative stress and/or VEGF in HC11 mouse progenitor mammary cells: Association between inhibition of cancer stem cell proliferation and mammosphere disaggregation. Oncol Rep 2021; 46:241. [PMID: 34558648 PMCID: PMC8485018 DOI: 10.3892/or.2021.8192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Tinzaparin is an anticoagulant and antiangiogenic drug with inhibitory properties against tumor growth. VEGF stimulates angiogenesis, while an association between reactive oxygen species (ROS) and angiogenesis is involved in tumor progression. The present study aimed to investigate the effect of tinzaparin on VL30 retrotransposition-positive mouse HC11 mammary stem-like epithelial cells, previously reported to be associated with induced mammosphere/cancer stem cell (CSC) generation and tumorigenesis. Under 24 h serum starvation, 15.2% nominal retrotransposition frequency was increased to 29%. Additionally, while treatment with 3–12 ng/ml VEGF further induced retrotransposition frequency in a dose-dependent manner (up to 40.3%), pre-incubation with tinzaparin (2 IU/ml) for 0.5–4 h reduced this frequency to 18.3% in a time-dependent manner, confirmed by analogous results in NIH3T3 fibroblasts. Treatment with 10–40 pg/ml glucose oxidase (GO) for 24 h induced HC11 cell retrotransposition in a dose-dependent manner (up to 82.5%), while a 3 h pre-incubation with tinzaparin (1 or 2 IU/ml) elicited a 13.5 or 25.5% reduction in retrotransposition, respectively. Regarding tumorigenic VL30 retrotransposition-positive HC11 cells, treatment with 2 IU/ml tinzaparin for 5 days reduced proliferation rate in a time-dependent manner (up to ~55%), and after 3 weeks, disaggregated soft agar-formed foci, as well as low-adherent mammospheres, producing single mesenchymal-like cells with a ~50% reduced retrotransposition. With respect to the VL30 retrotransposition mechanism: While 12 ng/ml VEGF increased the level of VL30 and endogenous reverse transcriptase (enRT) transcripts ~1.41- and ~1.16-fold, respectively, subsequent tinzaparin treatment reduced both endogenous/ROS- and VEGF-induced levels 1.15- and 0.40-fold (VL30) and 0.60- and 0.52-fold (enRT), respectively. To the best of our knowledge, these data demonstrate for the first time, the novel inhibition activity of tinzaparin against ROS- and VEGF-induced VL30 retrotransposition, and the proliferation and/or aggregation of mouse HC11 mammosphere/tumor-initiating CSCs, thus contributing to the inhibition of VL30 retrotransposition-induced primary tumor growth.
Collapse
Affiliation(s)
- Stefania Mantziou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Markopoulos
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Soteroula Thrasyvoulou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Noutsopoulos
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Foteini Gkartziou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Vartholomatos
- Molecular Biology Unit, Hematology Laboratory, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Theodore Tzavaras
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
11
|
Qiu M, Huang S, Luo C, Wu Z, Liang B, Huang H, Ci Z, Zhang D, Han L, Lin J. Pharmacological and clinical application of heparin progress: An essential drug for modern medicine. Biomed Pharmacother 2021; 139:111561. [PMID: 33848775 DOI: 10.1016/j.biopha.2021.111561] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Heparin is the earliest and most widely used anticoagulant and antithrombotic drug that is still used in a variety of clinical indications. Since it was discovered in 1916, after more than a century of repeated exploration, heparin has not been replaced by other drugs, but a great progress has been made in its basic research and clinical application. Besides anticoagulant and antithrombotic effects, heparin also has antitumor, anti-inflammatory, antiviral, and other pharmacological activities. It is widely used clinically in cardiovascular and cerebrovascular diseases, lung diseases, kidney diseases, cancer, etc., as the first anticoagulant medicine in COVID-19 exerts anticoagulant, anti-inflammatory and antiviral effects. At the same time, however, it also leads to a lot of adverse reactions, such as bleeding, thrombocytopenia, elevated transaminase, allergic reactions, and others. This article comprehensively reviews the modern research progress of heparin compounds; discusses the structure, preparation, and adverse reactions of heparin; emphasizes the pharmacological activity and clinical application of heparin; reveals the possible mechanism of the therapeutic effect of heparin in related clinical applications; provides evidence support for the clinical application of heparin; and hints on the significance of exploring the wider application fields of heparin.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Binzhu Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| |
Collapse
|
12
|
Haschemi R, Gockel LM, Bendas G, Schlesinger M. A Combined Activity of Thrombin and P-Selectin Is Essential for Platelet Activation by Pancreatic Cancer Cells. Int J Mol Sci 2021; 22:3323. [PMID: 33805059 PMCID: PMC8037188 DOI: 10.3390/ijms22073323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer patients have an elevated risk of suffering from venous thrombosis. Among several risk factors that contribute to hypercoagulability of this malignancy, platelets possess a key role in the initiation of clot formation. Although single mechanisms of platelet activation are well-known in principle, combinations thereof and their potential synergy to mediate platelet activation is, in the case of pancreatic cancer, far from being clear. Applying an inhibitor screening approach using light transmission aggregometry, dense granule release, and thrombin formation assays, we provide evidence that a combination of tissue factor-induced thrombin formation by cancer cells and their platelet P-selectin binding is responsible for AsPC-1 and Capan-2 pancreatic cancer cell-mediated platelet activation. While the blockade of one of these pathways leads to a pronounced inhibition of platelet aggregation and dense granule release, the simultaneous blockade of both pathways is inevitable to prevent platelet aggregation completely and minimize ATP release. In contrast, MIA PaCa-2 pancreatic cancer cells express reduced levels of tissue factor and P-selectin ligands and thus turn out to be poor platelet activators. Consequently, a simultaneous blockade of thrombin and P-selectin binding seems to be a powerful approach, as mediated by heparin to crucially reduce the hypercoagulable state of pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | - Martin Schlesinger
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (R.H.); (L.M.G.); (G.B.)
| |
Collapse
|
13
|
Review: Inhibitory potential of low molecular weight Heparin in cell adhesion; emphasis on tumor metastasis. Eur J Pharmacol 2020; 892:173778. [PMID: 33271153 DOI: 10.1016/j.ejphar.2020.173778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Low molecular weight heparin is a Heparin derivative, produced from commercial-grade Heparin through Chemical or enzymatic depolymerization. LMWH has remained a favored regimen for anticoagulation in cancer patients. Evidence from several studies has suggested that LMWHs possess antitumor and antimetastatic activity aside from their anticoagulant activity. Cancer metastasis is the foremost reason for cancer-related motility rate. Studies have pointed out that adhesion molecules play a decisive role in enhancing recurrent, invasive, and distant metastasis. Therefore, it is hypothesized that Cell adhesion molecules can be determined as a potential therapeutic target group, as antibodies or small-molecule inhibitors could easily access their extracellular domains. Furthermore, data from several investigations have reported LWMH potential effects as antimetastatic agents through influencing cell adhesion molecules. This review's objective is to emphasize the evidence available for the effects of the LMWHs in cell adhesion to inhibit tumor metastasis.
Collapse
|
14
|
The Antitumor Effect of Heparin is not Mediated by Direct NK Cell Activation. J Clin Med 2020; 9:jcm9082666. [PMID: 32824699 PMCID: PMC7463539 DOI: 10.3390/jcm9082666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes responsible for the elimination of infected or transformed cells. The activation or inhibition of NK cells is determined by the balance of target cell ligand recognition by stimulatory and inhibitory receptors on their surface. Previous reports have suggested that the glycosaminoglycan heparin is a ligand for the natural cytotoxicity receptors NKp30, NKp44 (human), and NKp46 (both human and mouse). However, the effects of heparin on NK cell homeostasis and function remain unclear. Here, we show that heparin does not enhance NK cell proliferation or killing through NK cell activation. Alternatively, in mice models, heparin promoted NK cell survival in vitro and controlled B16-F10 melanoma metastasis development in vivo. In human NK cells, heparin promisingly increased interferon (IFN)-γ production in synergy with IL-12, although the mechanism remains elusive. Our data showed that heparin is not able to increase NK cell cytotoxicity.
Collapse
|
15
|
Ripsman D, Fergusson DA, Montroy J, Auer RC, Huang JW, Dobriyal A, Wesch N, Carrier M, Lalu MM. A systematic review on the efficacy and safety of low molecular weight heparin as an anticancer therapeutic in preclinical animal models. Thromb Res 2020; 195:103-113. [PMID: 32683148 DOI: 10.1016/j.thromres.2020.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The therapeutic effects of low molecular weight heparins (LMWH) may extend past thrombosis prevention, with preclinical evidence demonstrating anti-metastatic properties. Clinical evidence on the topic, however, remains controversial. A systematic review of preclinical evidence may help elucidate reasons for this contradictory evidence. The objective of our systematic review is to assess the anti-metastatic properties of LMWHs in solid tumour animal models. METHODS MEDLINE, Embase, Web of Science and PubMed were searched from inception to May 12th, 2020. All articles were screened independently and in duplicate. Studies that compared LMWH to a placebo or no treatment arm in solid tumour animal models were included. The primary outcome was the burden of metastasis. Secondary outcomes included primary tumour growth and mortality. The risk of bias was assessed in duplicate using a modified Cochrane Risk of Bias tool. RESULTS Forty-two studies were included in the review. Administration of a LMWH was associated with a significant decrease in the burden of metastasis (SMD -2.18; 95% CI -2.66 to -1.70). Additionally, the administration of a LMWH was also associated with a significant reduction in primary tumour growth (SMD -1.95; 95% CI -2.56 to -1.34) and risk of death (RR 0.39; 95% CI 0.16-0.97). All included studies were deemed to be at an unclear risk of bias for at least one methodological criterion. CONCLUSIONS Our results demonstrate that LMWH can effectively reduce metastatic burden and reduce tumour growth in preclinical animal models of solid tumour malignancies. Reasons for the contradiction with clinical evidence require further exploration.
Collapse
Affiliation(s)
- David Ripsman
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada; Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada.
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada; Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada.
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada.
| | - Rebecca C Auer
- Department of Surgery, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada.
| | - Johnny W Huang
- Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada.
| | - Aditi Dobriyal
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada; Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada.
| | - Neil Wesch
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada
| | - Marc Carrier
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada; Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada.
| | - Manoj M Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada; Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Room B307, 1053 Carling Avenue, Mail Stop 249, Ottawa, ON K1Y 4E9, Canada; Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
16
|
Prognostic significance of preoperative plasma fibrinogen levels in primary gastrointestinal stromal tumours: a retrospective cohort study. Int J Clin Oncol 2020; 25:1506-1514. [PMID: 32577952 DOI: 10.1007/s10147-020-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Improved prediction of prognosis for gastrointestinal stromal tumours (GISTs) has become increasingly important since the introduction of targeted therapy. Here, we aimed to evaluate the prognostic significance of preoperative plasma fibrinogen (Fib) levels in patients with primary GISTs and to analyse their correlations with clinicopathological characteristics. METHODS A total of 201 previously untreated patients with primary GISTs who had undergone radical surgery at our institution between October 2004 and July 2018 were enrolled. The optimal cut-off value for Fib levels was calculated using time-dependent receiver-operating characteristic curve analysis. RFS, the primary endpoint, was calculated by the Kaplan-Meier method and compared by the log-rank test. Univariate and multivariate Cox regression models were calculated. RESULTS High preoperative plasma Fib levels were detected as an independent adverse prognostic factor (p = 0.008, hazard ratio 3.136, 95% CI 1.356‒7.256). Furthermore, high preoperative plasma Fib levels also indicated a poor prognosis within the modified National Institutes of Health (mNIH) high-risk subgroup (p = 0.041). In addition, preoperative plasma Fib levels showed a positive correlation with several prognostic factors and even a linear relationship with tumour size (Spearman correlation coefficient [r] = 0.411, p < 0.001). CONCLUSIONS Our results suggest that high preoperative plasma Fib levels may indicate a poor prognosis in patients with primary GISTs. As a cost-effective biomarker, preoperative assessment of plasma Fib levels may help to further risk stratify patients with mNIH high-risk GISTs and instruct the application of targeted therapy.
Collapse
|
17
|
Snigireva AV, Morenkov OS, Skarga YY, Lisov AV, Lisova ZA, Leontievsky AA, Zhmurina MA, Petrenko VS, Vrublevskaya VV. A 2,5-Dihydroxybenzoic Acid-Gelatin Conjugate Inhibits the Basal and Hsp90-Stimulated Migration and Invasion of Tumor Cells. J Funct Biomater 2020; 11:jfb11020039. [PMID: 32503118 PMCID: PMC7353502 DOI: 10.3390/jfb11020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
The extracellular cell surface-associated and soluble heat shock protein 90 (Hsp90) is known to participate in the migration and invasion of tumor cells. Earlier, we demonstrated that plasma membrane-associated heparan sulfate proteoglycans (HSPGs) bind the extracellular Hsp90 and thereby promote the Hsp90-mediated motility of tumor cells. Here, we showed that a conjugate of 2,5-dihydroxybenzoic acid with gelatin (2,5-DHBA–gelatin), a synthetic polymer with heparin-like properties, suppressed the basal (unstimulated) migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells, which was accompanied by the detachment of a fraction of Hsp90 from cell surface HSPGs. The polymeric conjugate also inhibited the migration/invasion of cells stimulated by exogenous soluble native Hsp90, which correlated with the inhibition of the attachment of soluble Hsp90 to cell surface HSPGs. The action of the 2,5-DHBA–gelatin conjugate on the motility of A-172 and HT1080 cells was similar to that of heparin. The results demonstrate a potential of the 2,5-DHBA–gelatin polymer for the development of antimetastatic drugs targeting cell motility and a possible role of extracellular Hsp90 in the suppression of the migration and invasion of tumor cells mediated by the 2,5-DHBA–gelatin conjugate and heparin.
Collapse
Affiliation(s)
- Anastasiya V. Snigireva
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Oleg S. Morenkov
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Yuri Y. Skarga
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Alexander V. Lisov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.L.); (Z.A.L.); (A.A.L.)
| | - Zoya A. Lisova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.L.); (Z.A.L.); (A.A.L.)
| | - Alexey A. Leontievsky
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.L.); (Z.A.L.); (A.A.L.)
| | - Mariya A. Zhmurina
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Viktoria S. Petrenko
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Veronika V. Vrublevskaya
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
- Correspondence: ; Tel.: +7-4967-739221
| |
Collapse
|
18
|
Bal Dit Sollier C, Dillinger JG, Drouet L. Anticoagulant activity and pleiotropic effects of heparin. JOURNAL DE MEDECINE VASCULAIRE 2020; 45:147-157. [PMID: 32402428 DOI: 10.1016/j.jdmv.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/23/2020] [Indexed: 06/11/2023]
Abstract
The recognized therapeutic effect of heparins is an anticoagulant activity (anti-Xa and anti-IIa) acting in an indirect manner (cofactor of antithrombin) but which is carried by only 20% at best of the glycan chains composing any commercial preparation of heparin, whether unfractionated or low molecular weight. However, the effects of glycan chains that participate in the therapeutic but also potentially adverse effects of heparin preparations must also be considered. These specific effects of glycans are potentially different for each commercial preparation of heparins and, in particular, low molecular weight heparins (LMWH) compared with unfractionated heparin (UFH) and LMWH between them. The glycanic nature of heparin is responsible for its very particular pharmacology: exchange with the glycocalyx of cells in particular endothelial. Exchanges which depend on the length and structure of the glycan chains therefore different between UFH and LMWH between the different heparin preparations between them but also according to the state of glycocalyx differently altered according to the underlying diseases and their degree of evolution. If the anticoagulant effects of heparins can potentially be replaced with those of new oral anticoagulants, the glycan effects of heparins cannot be replaced by synthetic non-glycan molecules. This replacement will undoubtedly limit certain risks such as heparin-induced thrombocytopenia (HIT) but other beneficial effects participating to the overall efficacy of heparin (whose relative importance remains to be ascertained), will also disappear: effects on surfaces, anti-inflammatory effects, antineoplastic and anti-metastatic effects, ancillary anticoagulant effects (not dependent on antithrombin), effect on endothelial dysfunction. This review will be focused on all of these related/pleiotropic effects of heparins that are in fact the effects of the glycan nature of heparin. Among the antithrombotic effects not dependent on antithrombin one has been more recently highlighted: the passivation/neutralization of the positively charged fibrils of Netosis, by the negatively charged glycan chains of heparin. This also has clinical implications: in the era of generics and biosimilars where biosimilar heparins begin to appear, it is important to know that accordingly to FDA and EMEA rules: their biosimilarity is judged only on the "classical" anticoagulation effect cofactor of antithrombin (anti-IIa/anti-Xa) but that all glycan effects that are potentially beneficial or potentially deleterious are not taken into consideration in their assessment.
Collapse
Affiliation(s)
- C Bal Dit Sollier
- CREATIF (Centre de Référence et d'Éducation aux AntiThrombotiques d'Île de France), Lariboisière Hospital, 2, rue Ambroise Paré, 75475 Paris cedex 10, France; Department of Cardiology, Lariboisière Hospital, 2, rue Ambroise Paré, 75475 Paris cedex 10, France
| | - J-G Dillinger
- CREATIF (Centre de Référence et d'Éducation aux AntiThrombotiques d'Île de France), Lariboisière Hospital, 2, rue Ambroise Paré, 75475 Paris cedex 10, France; Department of Cardiology, Lariboisière Hospital, 2, rue Ambroise Paré, 75475 Paris cedex 10, France
| | - L Drouet
- CREATIF (Centre de Référence et d'Éducation aux AntiThrombotiques d'Île de France), Lariboisière Hospital, 2, rue Ambroise Paré, 75475 Paris cedex 10, France; Department of Cardiology, Lariboisière Hospital, 2, rue Ambroise Paré, 75475 Paris cedex 10, France.
| |
Collapse
|
19
|
Heparanase in Cancer Metastasis – Heparin as a Potential Inhibitor of Cell Adhesion Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:309-329. [DOI: 10.1007/978-3-030-34521-1_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Schwarz S, Gockel LM, Naggi A, Barash U, Gobec M, Bendas G, Schlesinger M. Glycosaminoglycans as Tools to Decipher the Platelet Tumor Cell Interaction: A Focus on P-Selectin. Molecules 2020; 25:molecules25051039. [PMID: 32110917 PMCID: PMC7179249 DOI: 10.3390/molecules25051039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cell–platelet interactions are regarded as an initial crucial step in hematogenous metastasis. Platelets protect tumor cells from immune surveillance in the blood, mediate vascular arrest, facilitate tumor extravasation, growth, and finally angiogenesis in the metastatic foci. Tumor cells aggregate platelets in the bloodstream by activation of the plasmatic coagulation cascade and by direct contact formation. Antimetastatic activities of unfractionated or low molecular weight heparin (UFH/LMWH) can undoubtedly be related to attenuated platelet activation, but molecular mechanisms and contribution of contact formation vs. coagulation remain to be elucidated. Using a set of non-anticoagulant heparin derivatives varying in size or degree of sulfation as compared with UFH, we provide insight into the relevance of contact formation for platelet activation. Light transmission aggregometry and ATP release assays confirmed that only those heparin derivatives with P-selectin blocking capacities were able to attenuate breast cancer cell-induced platelet activation, while pentasaccharide fondaparinux was without effects. Furthermore, a role of P-selectin in platelet activation and signaling could be confirmed by proteome profiler arrays detecting platelet kinases. In this study, we demonstrate that heparin blocks tumor cell-induced coagulation. Moreover, we identify platelet P-selectin, which obviously acts as molecular switch and controls aggregation and secretion of procoagulant platelets.
Collapse
Affiliation(s)
- Svenja Schwarz
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
| | - Lukas Maria Gockel
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Via G. Colombo 81, 20133 Milan, Italy;
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, PO Box 9649, Haifa 31096, Israel;
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia;
| | - Gerd Bendas
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
| | - Martin Schlesinger
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
- Correspondence: ; Tel.: +49-228-735225
| |
Collapse
|
21
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
22
|
Xiong A, Spyrou A, Forsberg-Nilsson K. Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:365-403. [PMID: 32274718 DOI: 10.1007/978-3-030-34521-1_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors are aggressive and devastating diseases. The most common type of brain tumor, glioblastoma (GBM), is incurable and has one of the worst five-year survival rates of all human cancers. GBMs are invasive and infiltrate healthy brain tissue, which is one main reason they remain fatal despite resection, since cells that have already migrated away lead to rapid regrowth of the tumor. Curative therapy for medulloblastoma (MB), the most common pediatric brain tumor, has improved, but the outcome is still poor for many patients, and treatment causes long-term complications. Recent advances in the classification of pediatric brain tumors reveal distinct subgroups, allowing more targeted therapy for the most aggressive forms, and sparing children with less malignant tumors the side-effects of massive treatment. Heparan sulfate proteoglycans (HSPGs), main components of the neurogenic niche, interact specifically with a large number of physiologically important molecules and vital roles for HS biosynthesis and degradation in neural stem cell differentiation have been presented. HSPGs are composed of a core protein with attached highly charged, sulfated disaccharide chains. The major enzyme that degrades HS is heparanase (HPSE), an important regulator of extracellular matrix (ECM) remodeling which has been suggested to promote the growth and invasion of other types of tumors. This is of clinical interest because GBM are highly invasive and children with metastatic MB at the time of diagnosis exhibit a worse outcome. Here we review the involvement of HS and HPSE in development of the nervous system and some of its most malignant brain tumors, glioblastoma and medulloblastoma.
Collapse
Affiliation(s)
- Anqi Xiong
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Insitutet, Stockholm, Sweden
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Vlodavsky I, Sanderson RD, Ilan N. Non-Anticoagulant Heparins as Heparanase Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:493-522. [PMID: 32274724 PMCID: PMC7142274 DOI: 10.1007/978-3-030-34521-1_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chapter will review early and more recent seminal contributions to the discovery and characterization of heparanase and non-anticoagulant heparins inhibiting its peculiar enzymatic activity. Indeed, heparanase displays a unique versatility in degrading heparan sulfate chains of several proteoglycans expressed in all mammalian cells. This endo-β-D-glucuronidase is overexpressed in cancer, inflammation, diabetes, atherosclerosis, nephropathies and other pathologies. Starting from known low- or non-anticoagulant heparins, the search for heparanase inhibitors evolved focusing on structure-activity relationship studies and taking advantage of new chemical-physical analytical methods which have allowed characterization and sequencing of polysaccharide chains. New methods to screen heparanase inhibitors and to evaluate their mechanism of action and in vivo activity in experimental models prompted their development. New non-anticoagulant heparin derivatives endowed with anti-heparanase activity are reported. Some leads are under clinical evaluation in the oncology field (e.g., acute myeloid leukemia, multiple myeloma, pancreatic carcinoma) and in other pathological conditions (e.g., sickle cell disease, malaria, labor arrest).
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
24
|
Beyond the boundaries of cardiology: Still untapped anticancer properties of the cardiovascular system-related drugs. Pharmacol Res 2019; 147:104326. [DOI: 10.1016/j.phrs.2019.104326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
|
25
|
Buijs JT, Laghmani EH, van den Akker RFP, Tieken C, Vletter EM, van der Molen KM, Crooijmans JJ, Kroone C, Le Dévédec SE, van der Pluijm G, Versteeg HH. The direct oral anticoagulants rivaroxaban and dabigatran do not inhibit orthotopic growth and metastasis of human breast cancer in mice. J Thromb Haemost 2019; 17:951-963. [PMID: 30929299 PMCID: PMC6849835 DOI: 10.1111/jth.14443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
Essentials Factor Xa (FXa)-targeting direct oral anticoagulants (DOACs) reduce venous thromboembolism (VTE) The effects of FXa-targeting DOACs on cancer progression remain to be studied In xenograft models, a FXa-targeting DOAC did not inhibit breast cancer growth and metastasis A thrombin-targeting DOAC, dabigatran, also did not inhibit breast cancer growth and metastasis ABSTRACT: Background Factor Xa-targeting DOACs were recently found to reduce recurrent VTE efficiently in cancer patients when compared to the standard treatment with low-molecular-weight heparins (LMWHs). While the anticancer effects of LMWHs have been extensively studied in preclinical cancer models, the effects of FXa-targeting DOACs on cancer progression remain to be studied. Objective We investigated whether the FXa-targeting DOAC rivaroxaban and the thrombin-targeting DOAC dabigatran etexilate (DE) affected human breast cancer growth and metastasis in orthotopic xenograft models. Methods/results Mice that were put on a custom-made chow diet supplemented with rivaroxaban (0.4 or 1.0 mg/g diet) or dabigatran etexilate (DE) (10 mg/g diet) showed prolonged ex vivo coagulation times (prothrombin time [PT] and activated partial thromboplastin time [aPTT] assay, respectively). However, rivaroxaban and DE did not inhibit MDA-MB-231 tumor growth and metastasis formation in lungs or livers of 7-week-old fully immunodeficient NOD/SCID/ƴC-/- (NSG) mice. Comparable data were obtained for rivaroxaban-treated mice when using NOD-SCID mice. Rivaroxaban and DE treatment also did not significantly inhibit tumor growth and metastasis formation when using another human triple negative breast cancer (TNBC) cell line (HCC1806) in NOD-SCID mice. The FXa and thrombin-induced gene expression of the downstream target CXCL8 in both cell lines, but FXa and thrombin, did not significantly stimulate migration, proliferation, or stemness in vitro. Conclusion Although effectively inhibiting coagulation, the DOACs rivaroxaban and DE did not inhibit orthotopic growth and metastasis of human TNBC. It remains to be investigated whether DOACs exert antitumorigenic effects in other types of cancer.
Collapse
Affiliation(s)
- Jeroen T. Buijs
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - El H. Laghmani
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rob F. P. van den Akker
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Chris Tieken
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Esther M. Vletter
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Kim M. van der Molen
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Juliette J. Crooijmans
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Chantal Kroone
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sylvia E. Le Dévédec
- Division of Drug Discovery and SafetyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
26
|
Kim SH, Kim H, Lee JH, Park JW. Oxalomalate suppresses metastatic melanoma through IDH-targeted stress response to ROS. Free Radic Res 2019; 53:418-429. [DOI: 10.1080/10715762.2019.1597974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sung Hwan Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hyunjin Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
27
|
Ma H, Qiu P, Xu H, Xu X, Xin M, Chu Y, Guan H, Li C, Yang J. The Inhibitory Effect of Propylene Glycol Alginate Sodium Sulfate on Fibroblast Growth Factor 2-Mediated Angiogenesis and Invasion in Murine Melanoma B16-F10 Cells In Vitro. Mar Drugs 2019; 17:E257. [PMID: 31035725 PMCID: PMC6562581 DOI: 10.3390/md17050257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/06/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023] Open
Abstract
Melanoma is one of the most malignant and aggressive types of cancer worldwide. Fibroblast growth factor 2 (FGF2) is one of the critical regulators of melanoma angiogenesis and metastasis; thus, it might be an effective anti-cancer strategy to explore FGF2-targeting drug candidates from existing drugs. In this study, we evaluate the effect of the marine drug propylene glycol alginate sodium sulfate (PSS) on FGF2-mediated angiogenesis and invasion. The data shows that FGF2 selectively bound to PSS with high affinity. PSS inhibited FGF2-mediated angiogenesis in a rat aortic ring model and suppressed FGF2-mediated invasion, but not the migration of murine melanoma B16-F10 cells. The further mechanism study indicates that PSS decreased the expression of activated matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and also suppressed their activity. In addition, PSS was found to decrease the level of Vimentin in B16-F10 cells, which is known to participate in the epithelial-mesenchymal transition. Notably, PSS did not elicit any changes in cancer cell viability. Based on the results above, we conclude that PSS might be a potential drug to regulate the tumor microenvironment in order to facilitate the recovery of melanoma patients.
Collapse
Affiliation(s)
- He Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Peiju Qiu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Huixin Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Meng Xin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Yanyan Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Huashi Guan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
28
|
Heparin: An essential drug for modern medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:1-19. [PMID: 31030744 DOI: 10.1016/bs.pmbts.2019.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin is a life-saving drug, which belongs to few clinically used drugs without defined molecular structures in modern medicine. Heparin is the mostly negatively charged biopolymer with a broad distributions in molecular weight, charge density, and biological activities. Heparin is mainly composed of repeating trisulfated disaccharide units, which is made by mast cells that are enriched in the intestines, lungs or livers of animals. Porcine intestines and bovine lungs are two mostly used sources for heparin isolation. Heparin is well known for its anticoagulant and antithrombotic pharmacological effects. The anticoagulant activity of heparin is attributable to a 3-O-sulfate and 6-O-sulfate containing pentasaccharide sequence or a minimum eight-repeating disaccharide units containing the pentasaccharide sequence that catalyzes the suicidal inactivation of factor Xa or thrombin by a serpin or serine protease inhibitor named antithrombin III, respectively. Thus, heparin is responsible for the simultaneous inhibition of both thrombin generation and thrombin activity in the blood circulation. Moreover, heparin has many pharmacological properties such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects though high affinity interactions with a variety of proteases, protease inhibitors, chemokines, cytokines, growth factors, and their respective receptors. The one drug multiple molecular targeting properties make heparin a very special drug in that various clinical trials are still conducting worldwide even 100 years after its discovery. In this review, we will summarize the structure-function relationship and the molecular mechanisms of heparin. We will also provide an overview of different clinical and potential clinical applications of heparin.
Collapse
|
29
|
Structure-activity relationship of propylene glycol alginate sodium sulfate derivatives for blockade of selectins binding to tumor cells. Carbohydr Polym 2019; 210:225-233. [PMID: 30732758 DOI: 10.1016/j.carbpol.2019.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
Selectins dominate the formation of the metastasis niche and are considered important targets for exploring antimetastatic drugs. In this study, we evaluated the effect of the marine drug propylene glycol alginate sodium sulfate (PSS) and a series of PSS derivatives on P-, L- or E-selectin-mediated binding with tumor cells. We found that PSS effectively prevented the binding of P- or L-selectin with tumor cells. Moreover, the structure-activity relationship study indicated that the activity of PSS is related to the sulfate group at the C-2/C-3 position, the propylene glycol substituent at the C-6 position, the ratio of guluronic acid to mannuronic acid, and the molecular weight. Additionally, PSS derivatives significantly suppressed lung metastasis in vivo. Our results demonstrated that PSS and its derivatives are potential antimetastatic drugs candidates.
Collapse
|
30
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
31
|
Long Y, Lu Z, Mei L, Li M, Ren K, Wang X, Tang J, Zhang Z, He Q. Enhanced Melanoma-Targeted Therapy by "Fru-Blocked" Phenyboronic Acid-Modified Multiphase Antimetastatic Micellar Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800229. [PMID: 30479911 PMCID: PMC6247072 DOI: 10.1002/advs.201800229] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/12/2018] [Indexed: 05/22/2023]
Abstract
Metastasis remains the main driver of mortality in patients suffering from cancer because of the refractoriness resulting from the multi-phase metastatic cascade. Herein, a multifunctional self-delivering PBA-LMWH-TOS nanoparticle (PLT NP) is established that acts as both nanocarrier and anti-metastatic agent with effects on most hematogenous metastases of cancers. The hydrophilic segment (low molecular weight heparin, LMWH) inhibits the interactions between tumor cells and platelets. The hydrophobic segment (d-α-tocopheryl succinate, TOS) could inhibit the expression of matrix metalloproteinase-9 (MMP-9) in B16F10 cells which is first reported in this article. Surprisingly, even the blank NPs showed excellent anti-metastatic capacity in three mouse models by acting on different phases of the metastatic cascade. Moreover, the overexpression of sialic acid (SA) residues on tumor cells is implicated in the malignant and metastatic phenotypes of cancers. Thus, these 3-aminophenylboronic acid (PBA)-modified doxorubicin (DOX)-loaded NPs offer an efficient approach for the treatment of both solid melanomas and metastases. Furthermore, a simple pH-sensitive "Fructose (Fru)-blocking" coping strategy is established to reduce the NP distribution in normal tissues and distinctly increases the accumulation in melanoma tumors. These micellar NPs consisting of biocompatible materials offer a promising approach for the clinical therapy of highly invasive solid tumors and metastases.
Collapse
Affiliation(s)
- Yang Long
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Zhengze Lu
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Ling Mei
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Man Li
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Kebai Ren
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Xuhui Wang
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Jiajing Tang
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| |
Collapse
|
32
|
Taghizadeh Kermani A, Hosseini S, Fanipakdel A, Joudi Mashhad M, Akhavan Rezayat K, Zardadi M, Gholami A, Javadinia SA, Ferns GA, Avan A. A randomized clinical trial on the antitumoral effects of low molecular weight heparin in the treatment of esophageal cancer. J Cell Physiol 2018; 234:4191-4199. [PMID: 30362518 DOI: 10.1002/jcp.27177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 11/09/2022]
Abstract
The current treatment approaches for esophageal cancer are associated with poor survival, and there are ongoing efforts to find new and more effective therapeutic strategies. There are several reports on the antitumoral effects of low-molecular-weight heparins (LMWHs). We have assessed the possible survival benefit of LMWHs in esophageal malignancies. This was a randomized, single-blind, multicenter, Phase II clinical trial on nonmetastatic esophageal cancer candidate for neoadjuvant chemoradiotherapy. Patients were randomly assigned to the chemoradiotherapy-only arm or chemoradiotherapy plus enoxaparin arm using 1:1 allocation. Radiotherapy was delivered in 1.8-Gy daily fractions to a dose of 50.4 Gy in both groups. Paclitaxel 50 mg/m2 and carboplatin (AUC 2) were administered weekly, concurrent with radiotherapy. In the intervention group, patients received enoxaparin (40 mg) and chemoradiation daily. 4-6 weeks after treatment, all patients underwent esophagectomy. After a median follow up of 7 months, estimated 1 year disease-free survival (DFS) in the intervention group was 78.9% and was 70% in the control groups ( p = 0.5). Toxicity from the experimental treatment was minimal, and there were no treatment-related deaths. A pathologically complete response in intervention and control group was 64.8% and 62.5%, respectively ( p = 0.9). There was a nonsignificant trend toward improved survival by the addition of enoxaparin to the concurrent chemoradiotherapy regimen. However, 1 y DFS of both groups were high as expected. A longer follow-up and a larger sample size are required.
Collapse
Affiliation(s)
- Ali Taghizadeh Kermani
- Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Joudi Mashhad
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kambiz Akhavan Rezayat
- Gastroenterology and Hepatology Research Center, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Zardadi
- Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Gholami
- Department of Radiation Oncology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Javadinia
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Josic D, Martinovic T, Pavelic K. Glycosylation and metastases. Electrophoresis 2018; 40:140-150. [PMID: 30246896 DOI: 10.1002/elps.201800238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
The change of cellular glycosylation is one of the key events in malignant transformation and neoplastic progression, and tumor-related glycosylation alterations are promising targets in both tumor diagnosis and therapy. Both malignant transformation and neoplastic progression are the consequence of gene expression alterations and alterations in protein expression. Micro environmental factors such as extracellular matrix (ECM) also play an important role in their growth and metastasis. Tumor-associated glycans are important biomarker candidates for cancer diagnosis and prognosis, and analytical methods for their detection were developed recently. Glycoproteomics that use mass spectrometry for identification of cancer antigens and structural analysis of glycans play a key role in the investigation of changes of glycosylation during malignant transformation and tumor development and metastasis. Deep understanding of glycan remodeling in cancer and the role of glycosyltransferases that are involved in this process will require a detailed profiling of glycosylation patterns of tumor cells, and corresponding analytical methods for their detection were developed.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| | - Tamara Martinovic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia
| | - Kresimir Pavelic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| |
Collapse
|
34
|
The Low Molecular Weight Heparin Tinzaparin Attenuates Platelet Activation in Terms of Metastatic Niche Formation by Coagulation-Dependent and Independent Pathways. Molecules 2018; 23:molecules23112753. [PMID: 30356007 PMCID: PMC6278400 DOI: 10.3390/molecules23112753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
An intimate interplay with platelets is an initial key issue for tumor cells in terms of hematogenous metastasis. Tumor cells activate platelets by different pathways and receive, upon forming a platelet cloak, protection from immune surveillance and support in metastatic niche creation. Therapeutic intervention with this early interaction is promising to antagonize the whole metastatic cascade. Here we aimed to investigate the capability of low molecular weight heparin (LMWH), unfractionated heparin (UFH), and a non-anticoagulant heparin derivative or FXa inhibitor fondaparinux to interfere with platelet activation by tumor cells. Coagulation-dependent and independent pathways of platelet activation by three tumor cell lines, and interference therewith were analyzed by fluorigenic thrombin formation assay, platelet aggregometry, ATP and VEGF release and endothelial tube formation assay. LMWH and UFH were found to repress various routes of platelet activation, reflected by attenuated endothelial tube formation. This confirms the duality of anti-coagulative and anti-adhesive properties of heparin. While non-anticoagulative heparin (RO-heparin) depressed platelets’ ATP and VEGF release by contact inhibition sufficiently, fondaparinux just attenuated tissue factor mediated thrombin generation. Concluding, these data suggest that LMWH as a guideline-based drug for anticoagulative strategies in oncology is promising to provide additional benefit for interference with metastatic activities.
Collapse
|
35
|
Meyer G, Besse B, Doubre H, Charles-Nelson A, Aquilanti S, Izadifar A, Azarian R, Monnet I, Lamour C, Descourt R, Oliviero G, Taillade L, Chouaid C, Giraud F, Falcoz PE, Revel MP, Westeel V, Dixmier A, Tredaniel J, Dehette S, Decroisette C, Prevost A, Pichon E, Fabre E, Soria JC, Friard S, Stern JB, Jabot L, Dennewald G, Pavy G, Petitpretz P, Tourani JM, Alifano M, Chatellier G, Girard P. Anti-tumour effect of low molecular weight heparin in localised lung cancer: a phase III clinical trial. Eur Respir J 2018; 52:13993003.01220-2018. [DOI: 10.1183/13993003.01220-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/06/2018] [Indexed: 11/05/2022]
Abstract
The anti-tumour and anti-metastatic properties of heparins have not been tested in patients with early stage cancer. Whether adjuvant low molecular weight heparin (LMWH) tinzaparin impacts the survival of patients with resected non-small cell lung cancer (NSCLC) was investigated.Patients with completely resected stage I, II or IIIA NSCLC were randomly allocated to receive subcutaneous tinzaparin 100 IU·kg−1 once a day for 12 weeks or no treatment in addition to standard of care. The trial was open-label with blinded central adjudication of study outcomes. The primary outcome was overall survival.In 549 patients randomised to tinzaparin (n=269) or control (n=280), mean±sd age was 61.6±8.9 years, 190 (34.6%) patients had stage II−III disease, and 220 (40.1%) patients received adjuvant chemotherapy. Median follow-up was 5.7 years. There was no significant difference in overall survival between groups (hazard ratio (HR) 1.24, 95% CI 0.92–1.68; p=0.17). There was no difference in the cumulative incidence of recurrence between groups (subdistribution HR 0.94, 95% CI 0.68–1.30; p=0.70).Adjuvant tinzaparin had no detectable impact on overall and recurrence-free survival of patients with completely resected stage I−IIIA NSCLC. These results do not support further clinical evaluation of LMWHs as anti-tumour agents.
Collapse
|
36
|
Cho A, McKelvey KJ, Lee A, Hudson AL. The intertwined fates of inflammation and coagulation in glioma. Mamm Genome 2018; 29:806-816. [PMID: 30062485 DOI: 10.1007/s00335-018-9761-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
Inflammation and coagulation are two intertwined pathways with evolutionary ties being traced back to the hemocyte, a single cell type in invertebrates that has functions in both the inflammatory and coagulation pathways. These systems have functioned together throughout evolution to provide a solid defence against infection, damaged cells and irritants. While these systems work in harmony the majority of the time, they can also become dysregulated or corrupted by tumours, enhancing tumour proliferation, invasion, dissemination and survival. This review aims to give a brief overview of how these systems work in harmony and how dysregulation of these systems aids in the development and progression of cancer, using glioma as an example.
Collapse
Affiliation(s)
- Angela Cho
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, 2065, Australia.,Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, Camperdown, NSW, 2065, Australia
| | - Kelly J McKelvey
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, 2065, Australia.,Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, Camperdown, NSW, 2065, Australia
| | - Adrian Lee
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, 2065, Australia.,Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, Camperdown, NSW, 2065, Australia
| | - Amanda L Hudson
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, 2065, Australia. .,Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia. .,Sydney Medical School Northern, University of Sydney, Camperdown, NSW, 2065, Australia.
| |
Collapse
|
37
|
Javadinia SA, Gholami A, Joudi Mashhad M, Ferns GA, Shahidsales S, Avan A, Kermani AT. Anti-tumoral effects of low molecular weight heparins: A focus on the treatment of esophageal cancer. J Cell Physiol 2018; 233:6523-6529. [PMID: 29741755 DOI: 10.1002/jcp.26613] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
Esophageal cancer is one of the most prevalent types of cancer globally. With current treatment options, the survival is poor, and there are ongoing efforts to find new and more efficient therapeutic approaches. There are several reports on the anti-tumoral effects of low-molecular-weight heparins (LMWH). We have assessed the possible survival benefits and underlying mechanisms of LMWHs in malignancies with a focus on esophageal cancer. We conclude that the effects of LMWHs on survival of cancer patients is probably due to a combination of direct anti-tumoral, anti-angiogenic, and immunomodulatory effects and indirect effects on the coagulation system.
Collapse
Affiliation(s)
| | - Arezoo Gholami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Joudi Mashhad
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Department of Medical Education, Brighton and Sussex Medical School Brighton & Sussex Medical School, Falmer, Brighton, Sussex, UK
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Taghizadeh Kermani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev 2018; 36:305-329. [PMID: 28752248 PMCID: PMC5557869 DOI: 10.1007/s10555-017-9683-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as "cancers follow bleeding." The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.
| | - Dominika Hempel
- Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA.,Departments of Chemistry, Wayne State University, Detroit, MI, 48202, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, 48202, USA
| |
Collapse
|
39
|
Khattar NK, James RF. Heparin: The Silver Bullet of Aneurysmal Subarachnoid Hemorrhage? Front Neurol 2018; 9:97. [PMID: 29636721 PMCID: PMC5880902 DOI: 10.3389/fneur.2018.00097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/12/2018] [Indexed: 01/27/2023] Open
Abstract
Various neurological diseases have recently been associated with neuroinflammation and worsening outcomes. Subarachnoid hemorrhage has been shown to generate a potent neuroinflammatory response. Heparin is a potential effective anti-inflammatory agent to prevent initial injury as well as delayed neurological decline. Different mechanisms of action for heparin have been proposed including, but not limited to the binding and neutralization of oxyhemoglobin, decreased transcription and signal transduction of endothelin-1, inhibition of binding to vessel wall selectins and vascular leakage into the subarachnoid space as well as direct binding and neutralization of inflammatory molecules. With a reasonably safe side-effect profile, heparin has shown significant promise in small series in human studies of aneurysmal subarachnoid hemorrhage in decreasing both initial and delayed neurological injury. Further studies are needed to validate various neuroprotective features of heparin in subarachnoid hemorrhage as well as other disease states.
Collapse
Affiliation(s)
- Nicolas K Khattar
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Robert F James
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
40
|
García-Escobar I, Beato-Zambrano C, Muñoz Langa J, Brozos Vázquez E, Obispo Portero B, Gutiérrez-Abad D, Muñoz Martín AJ. Pleiotropic effects of heparins: does anticoagulant treatment increase survival in cancer patients? Clin Transl Oncol 2018; 20:1097-1108. [PMID: 29470777 DOI: 10.1007/s12094-018-1835-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
The association between venous thromboembolism (VTE) and cancer has been recognized for more than 100 years. Numerous studies have been performed to investigate strategies to decrease VTE incidence and to establish whether treating VTE impacts cancer progression and overall survival. Accordingly, it is important to understand the role of the hemostatic system in tumorigenesis and progression, as there is abundant evidence associating it with cell survival and proliferation, tumor angiogenesis, invasion, and dissemination, and metastasis formation. In attempts to further the scientific evidence, several studies examine survival benefits in cancer patients treated with anticoagulant therapy, specifically treatment with vitamin K antagonists, unfractionated heparin, and low-molecular-weight heparin. Several studies and meta-analyses have been conducted with a special focus on brain tumors. However, no definitive conclusions have been obtained, and more well-designed clinical trials are needed.
Collapse
Affiliation(s)
- I García-Escobar
- Medical Oncology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - C Beato-Zambrano
- Medical Oncology GU and Breast Cancer Department, Hospital Universitario Virgen Macarena, Seville, Spain
| | - J Muñoz Langa
- Medical Oncology, Hospital Universitario La Fe, Valencia, Spain
| | - E Brozos Vázquez
- Medical Oncology, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - B Obispo Portero
- Medical Oncology, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - D Gutiérrez-Abad
- Medical Oncology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - A J Muñoz Martín
- Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|
41
|
Ek L, Gezelius E, Bergman B, Bendahl PO, Anderson H, Sundberg J, Wallberg M, Falkmer U, Verma S, Belting M. Randomized phase III trial of low-molecular-weight heparin enoxaparin in addition to standard treatment in small-cell lung cancer: the RASTEN trial. Ann Oncol 2018; 29:398-404. [PMID: 29106448 PMCID: PMC5834130 DOI: 10.1093/annonc/mdx716] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Coagulation activation and venous thromboembolism (VTE) are hallmarks of malignant disease and represent a major cause of morbidity and mortality in cancer. Coagulation inhibition with low-molecular-weight heparin (LMWH) may improve survival specifically in small-cell lung cancer (SCLC) patients by preventing VTE and tumor progression; however, randomized trials with well-defined patient populations are needed to obtain conclusive data. The aim of RASTEN was to investigate the survival effect of LMWH enoxaparin in a homogenous population of SCLC patients. Patients and methods We carried out a randomized, multicenter, open-label trial to investigate the addition of enoxaparin at a supraprophylactic dose (1 mg/kg) to standard treatment in patients with newly diagnosed SCLC. The primary outcome was overall survival (OS), and secondary outcomes were progression-free survival (PFS), incidence of VTE and hemorrhagic events. Results In RASTEN, 390 patients were randomized over an 8-year period (2008-2016), of whom 186 and 191 were included in the final analysis in the LMWH and control arm, respectively. We found no evidence of a difference in OS or PFS by the addition of enoxaparin [hazard ratio (HR), 1.11; 95% confidence interval (CI) 0.89-1.38; P = 0.36 and HR, 1.18; 95% CI 0.95-1.46; P = 0.14, respectively]. Subgroup analysis of patients with limited and extensive disease did not show reduced mortality by enoxaparin. The incidence of VTE was significantly reduced in the LMWH arm (HR, 0.31; 95% CI 0.11-0.84; P = 0.02). Hemorrhagic events were more frequent in the LMWH-treated group but fatal bleedings occurred in both arms. Conclusion LMWH enoxaparin in addition to standard therapy did not improve OS in SCLC patients despite being administered at a supraprophylactic dose and despite resulting in a significant reduction in VTE incidence. Addition of LMWH cannot be generally recommended in the management of SCLC patients, and predictive biomarkers of VTE and LMWH-associated bleeding in cancer patients are warranted.
Collapse
Affiliation(s)
- L Ek
- Department of Heart and Lung Disease, Skåne University Hospital, Lund, Sweden
| | - E Gezelius
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden; Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - B Bergman
- Department of Lung Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - P O Bendahl
- Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - H Anderson
- Section of Cancer Epidemiology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - J Sundberg
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden
| | - M Wallberg
- Department of Heart and Lung Disease, Skåne University Hospital, Lund, Sweden
| | - U Falkmer
- Department of Oncology, University Hospital, Aalborg, Denmark
| | - S Verma
- Department of Oncology, University of Calgary, Calgary, Canada
| | - M Belting
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden; Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.
| |
Collapse
|
42
|
Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb Haemost 2017; 117:437-444. [DOI: 10.1160/th16-08-0620] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/20/2016] [Indexed: 11/05/2022]
Abstract
SummaryThe heparins, well-known for their anticoagulant properties, may also have anti-inflammatory effects that could contribute to their effectiveness in the treatment of venous thromboembolism and other vascular diseases. This review focuses on the inflammatory pathophysiology that underlies the development of thrombosis and the putative effects of heparin on these pathways. We present evidence supporting the use of heparin for other indications, including autoimmune disease, malignancy, and disseminated intravascular coagulation. These considerations highlight the need for further research to elucidate the mechanisms of the possible pleiotropic effects of the heparins, with a view to advancing treatments based upon heparin derivatives.
Collapse
|
43
|
Abstract
Current guidelines recommend low-molecular-weight heparin treatment in patients with cancer with established venous thromboembolism (VTE). The aim of this article was to study the pharmacological properties and effectiveness of tinzaparin in patients with cancer as well as its potential anticancer properties. A search of PubMed and ScienceDirect databases up to March 2016 was carried out to identify published studies that detect the properties and use of tinzaparin in oncology. Protamine sulfate partially (60% to 65%) neutralized tinzaparin’s anti-Xa activity. No dose adjustment of tinzaparin is needed even in patients with severe renal impairment and Creatinine Clearance ≥20 mL/min. Tinzaparin demonstrated a statistically significant decline in VTE recurrence at 1 year post the index thromboembolic event. A statistically significant reduction in minor bleeding rates was also described, whereas major bleeding events did not decrease in patients with cancer treated with tinzaparin versus those who received vitamin K antagonists. Tinzaparin treatment in patients suffering from deep vein thrombosis reduced the incidence of postthrombotic syndrome and venous ulcers. Tinzaparin’s ability to prevent both metastatic dissemination of cancer cells and tumor angiogenesis has been delineated in preclinical research. Current data show that tinzaparin is safe and efficacious either for short-term or for long-term treatment of VTE in patients with cancer. Clinical trials are needed in order to examine the utility of tinzaparin in primary prevention of VTE and validate its potential anticancer advantages exhibited in preclinical research.
Collapse
Affiliation(s)
- Evangelos P Dimakakos
- 1 Oncology Unit GPP, Sotiria General Hospital Athens School of Medicine, Athens, Greece
| | - Ioannis Vathiotis
- 1 Oncology Unit GPP, Sotiria General Hospital Athens School of Medicine, Athens, Greece
| | - Konstantinos Syrigos
- 1 Oncology Unit GPP, Sotiria General Hospital Athens School of Medicine, Athens, Greece
| |
Collapse
|
44
|
Mitsis M, Koliou P, Bali C, Ntounousi E, Tatsis V, Nousias V, Lianos GD, Vartholomatos G, Nastos D. In Surgical Colon Cancer Patients Extended-Duration Thromboprophylaxis (30 days) with the Highest Dose of Tinzaparin (4,500 IU s.c./q.d.) Normalizes the Postoperative VEGF Levels. J Cancer 2017; 8:2899-2906. [PMID: 28928880 PMCID: PMC5604440 DOI: 10.7150/jca.20107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/30/2017] [Indexed: 01/05/2023] Open
Abstract
Background/Purpose: In colon cancer (CC) patients preoperative (pre-op) levels of VEGF-A165 (VEGF) is a strong predictor for disease recurrence. Elevated postoperative (post-op) VEGF levels could have undesirable effects by enhancing tumor growth and metastasis formation. It has been suggested that thromboprophylaxis with a Low Molecular Weight Heparin (LMWH) in surgical cancer patients, further to thromboembolic protection, may exert some anti-neoplastic properties, as well. The aim of our study was to assess the potential impact of the LMWH Tinzaparin (Innohep® - Leo Pharma, Copenhagen, Denmark), given at different doses and for different perioperative (peri-op) periods, upon the post-op variability of serum VEGF levels in surgical CC patients. Methods: A total of 54 consecutive CC patients who underwent a curative resection were randomized in four groups according to their peri-op thromboprophylaxis scheme, which was based on administrating Tinzaparin in different doses and at different periods, as follows: group I: 3,500 IU for 10 days, group II: 3,500 IU for 30 days, group III: 4,500 IU for 10 days and group IV: 4,500 IU for 30 days. Serum VEGF concentrations were evaluated on the pre-op day (Day 0) and on the 10th and 30th post-op days (Day 10 and Day 30, respectively). For statistical analyses the mixed design ANOVA was used. P < 0.05 was considered significant. Results: On Day 0, VEGF didn't differ between groups I, II, III and IV (p>0.05, for every comparison). On Day 10, VEGF was increased in all groups. Between Day 10 and Day 30, VEGF remained stable in groups I (p=0.031) and II (p=1.000) and increased significantly in group III (p=0.005). On the contrary, VEGF decreased significantly in group IV (p<0.001). The most remarkable finding was observed when we compared VEGF between Day 0 and Day 30: while in groups I, II and III, VEGF remained significantly higher compared to Day 0 (p<0.001, p=0.041 and p<0.001, respectively), on the contrary, in group IV (extended-duration with the highest dose of 4,500 IU of tinzaparin) it was comparable to Day 0 (p=1.000). Conclusions: In surgical CC patients only the recommended thromboprophylaxis scheme with the highest prophylactic dose of Tinzaparin (4,500 IU) for extended-duration (30 days) normalizes VEGF levels at the end of the first post-op month by reducing them to the pre-op levels.
Collapse
Affiliation(s)
- Michail Mitsis
- Department of Surgery, University Hospital of Ioannina, Greece
| | | | - Christina Bali
- Department of Surgery, University Hospital of Ioannina, Greece
| | | | | | | | | | - Georgios Vartholomatos
- Unit of Molecular Biology of the Haematology Laboratory, University Hospital of Ioannina, Greece
| | | |
Collapse
|
45
|
Zhu L, Li XJ, Kalimuthu S, Gangadaran P, Lee HW, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Natural Killer Cell (NK-92MI)-Based Therapy for Pulmonary Metastasis of Anaplastic Thyroid Cancer in a Nude Mouse Model. Front Immunol 2017; 8:816. [PMID: 28785259 PMCID: PMC5519537 DOI: 10.3389/fimmu.2017.00816] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Objective Natural killer (NK) cells represent the third largest population of lymphocytes, and they play an important role in immune surveillance against tumors. The lungs are a common metastatic site for anaplastic thyroid cancer (ATC), and metastasis is one of the most frequent causes of mortality in this type of cancer. In the current study, we evaluated the effects of NK cell-based immunotherapy for pulmonary metastasis of ATC and determined how it affects the effector molecules of NK cells. Methods Human NK cells (NK-92MI) were retrovirally transduced to express the effluc gene. Human ATC cells (CAL-62) were transduced with the effluc and Rluc genes. The cytotoxicity of NK cells against CAL-62 cells was assessed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay system. Pulmonary metastases of ATC were developed by i.v. injection of CAL-62, and metastasis growth was monitored using bioluminescence imaging (BLI). To treat the metastases, five million NK-92MI cells were injected twice into the caudal vein of nude mice. To assess the targetability of NK cells to ATC tumors, NK-92MI cells expressing the effluc gene (NK/F) were administered through the tail vein of nude mice with a pulmonary metastasis or tumor xenograft. BLI was subsequently performed at 1, 3, 24, and 48 h. Results NK/F and CAL-62 cells expressing the effluc or Rluc gene (CAL-62/F, CAL-62/R) were successfully established. Expression of the effluc and Rluc genes in NK/F, CAL-62/F, and CAL-62/R cells was verified by RT-polymerase chain reaction, western blotting, and luciferase assay. After coculture of NK-92MI and CAL-62/F cells for 24 h, the BLI signal intensity of CAL-62/F cells proportionally decreased with the number of cocultured NK cells. An ATC pulmonary metastasis mouse model was successfully generated, and NK cells significantly inhibited the growth of the metastasis (p < 0.01). The NK/F cells exhibited targetability to the pulmonary metastasis and tumor xenograft in the mouse model. Conclusion The results of present study suggest that NK cells are able to target ATC tumors and that NK cell-based immunotherapy may serve as an effective therapeutic approach for pulmonary metastases of ATC.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Xiu Juan Li
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.,Department of Radiology, Taian City Central Hospital, Taian, China
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
46
|
Leentjens J, Peters M, Esselink AC, Smulders Y, Kramers C. Initial anticoagulation in patients with pulmonary embolism: thrombolysis, unfractionated heparin, LMWH, fondaparinux, or DOACs? Br J Clin Pharmacol 2017; 83:2356-2366. [PMID: 28593681 DOI: 10.1111/bcp.13340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
The initial treatment of haemodynamically stable patients with pulmonary embolism (PE) has dramatically changed since the introduction of low molecular weight heparins (LMWHs). With the recent discovery of the direct oral anticoagulant drugs (DOACs), initial treatment of PE will be simplified even further. In several large clinical trials it has been demonstrated that DOACs are not inferior to standard therapy for the initial treatment of PE, and because of their practicability they are becoming the agents of first choice. However, many relative contraindications to DOACs were exclusion criteria in the clinical trials. Therefore, LMWHs will continue to play an important role in initial PE treatment and in some cases there still is a role for unfractionated heparin (UFH). In this review we will give an overview of the biophysical, pharmacokinetic and pharmacodynamic properties of anticoagulants currently available for the initial management of PE. In addition, we will provide a comprehensive overview of the indications for the use of UFH, LMWHs and DOACs in the initial management of PE from a pharmacokinetic/-dynamic point of view.
Collapse
Affiliation(s)
- Jenneke Leentjens
- Department of Internal Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mike Peters
- VU University Medical Center, Amsterdam, The Netherlands
| | - Anne C Esselink
- Department of Internal Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Yvo Smulders
- VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis Kramers
- Department of Internal Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
47
|
The Impact of the Low Molecular Weight Heparin Tinzaparin on the Sensitization of Cisplatin-Resistant Ovarian Cancers-Preclinical In Vivo Evaluation in Xenograft Tumor Models. Molecules 2017; 22:molecules22050728. [PMID: 28467373 PMCID: PMC6154624 DOI: 10.3390/molecules22050728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022] Open
Abstract
Resistance formation of tumors against chemotherapeutics is the major obstacle in clinical cancer therapy. Although low molecular weight heparin (LMWH) is an important component in oncology referring to guideline-based antithrombotic prophylaxis of tumor patients, a potential interference of LMWH with chemoresistance is unknown. We have recently shown that LMWH reverses the cisplatin resistance of A2780cis human ovarian cancer cells in vitro. Here we address the question whether this LMWH effect is also valid under in vivo conditions. Therefore, we established tumor xenografts of A2780 and cisplatin resistant A2780cis cells in nude mice and investigated the impact of daily tinzaparin applications (10 mg/kg BW) on anti-tumor activity of cisplatin (6 mg/kg BW, weekly) considering the tumor growth kinetics. Intratumoral platinum accumulation was detected by GF-AAS. Xenografts of A2780 and A2780cis cells strongly differed in cisplatin sensitivity. As an overall consideration, tinzaparin co-treatment affected the response to cisplatin of A2780cis, but not A2780 tumors in the later experimental time range. A subgroup analysis confirmed that initially smaller A2780cis tumors benefit from tinzaparin, but also small A2780 xenografts. Tinzaparin did not affect cisplatin accumulation in A2780cis xenografts, but strongly increased the platinum content in A2780, obviously related to morphological differences in both xenografts. Although we cannot directly confirm a return of A2780cis cisplatin resistance by tinzaparin, as shown in vitro, the present findings give reason to discuss heparin effects on cytostatic drug efficiency for small tumors and warrants further investigation.
Collapse
|
48
|
Heparin and Heparin-Derivatives in Post-Subarachnoid Hemorrhage Brain Injury: A Multimodal Therapy for a Multimodal Disease. Molecules 2017; 22:molecules22050724. [PMID: 28468328 PMCID: PMC6154575 DOI: 10.3390/molecules22050724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Pharmacologic efforts to improve outcomes following aneurysmal subarachnoid hemorrhage (aSAH) remain disappointing, likely owing to the complex nature of post-hemorrhage brain injury. Previous work suggests that heparin, due to the multimodal nature of its actions, reduces the incidence of clinical vasospasm and delayed cerebral ischemia that accompany the disease. This narrative review examines how heparin may mitigate the non-vasospastic pathological aspects of aSAH, particularly those related to neuroinflammation. Following a brief review of early brain injury in aSAH and heparin’s general pharmacology, we discuss potential mechanistic roles of heparin therapy in treating post-aSAH inflammatory injury. These roles include reducing ischemia-reperfusion injury, preventing leukocyte extravasation, modulating phagocyte activation, countering oxidative stress, and correcting blood-brain barrier dysfunction. Following a discussion of evidence to support these mechanistic roles, we provide a brief discussion of potential complications of heparin usage in aSAH. Our review suggests that heparin’s use in aSAH is not only safe, but effectively addresses a number of pathologies initiated by aSAH.
Collapse
|
49
|
Schindewolf M, Recke A, Zillikens D, Lindhoff-Last E, Ludwig RJ. Nadroparin carries a potentially high risk of inducing cutaneous delayed-type hypersensitivity responses. Contact Dermatitis 2017; 77:35-41. [DOI: 10.1111/cod.12764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Marc Schindewolf
- Division of Haemostaseology, Department of Internal Medicine; Goethe University Hospital; 60590 Frankfurt am Main Germany
- Division of Vascular Medicine, Swiss Cardiovascular Centre; University Hospital Bern; 3010 Bern Switzerland
| | - Andreas Recke
- Department of Dermatology and Lübeck Institute of Experimental Dermatology; University of Lübeck; 23538 Lübeck Germany
| | - Detlef Zillikens
- Department of Dermatology and Lübeck Institute of Experimental Dermatology; University of Lübeck; 23538 Lübeck Germany
| | - Edelgard Lindhoff-Last
- Division of Haemostaseology, Department of Internal Medicine; Goethe University Hospital; 60590 Frankfurt am Main Germany
- Agaplesion Bethanien Hospital, Cardiovascular Centre Bethanien (CCB); 60389 Frankfurt am Main Germany
| | - Ralf J. Ludwig
- Department of Dermatology and Lübeck Institute of Experimental Dermatology; University of Lübeck; 23538 Lübeck Germany
| |
Collapse
|
50
|
Kamel AM, El-Faissal Y, Aboulghar M, Mansour R, Serour GI, Aboulghar M. Does intrauterine injection of low-molecular-weight heparin improve the clinical pregnancy rate in intracytoplasmic sperm injection? Clin Exp Reprod Med 2017; 43:247-252. [PMID: 28090465 PMCID: PMC5234286 DOI: 10.5653/cerm.2016.43.4.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
Abstract
Objective Heparin can modulate proteins, and influence processes involved in implantation and trophoblastic development. This study aimed to assess the improvement of clinical pregnancy and implantation rates after local intrauterine injection of low-molecular-weight heparin (LMWH) in patients undergoing intracytoplasmic sperm injection (ICSI). Methods A randomised case/control design was followed in women scheduled for ICSI. The study arm was injected with intrauterine LMWH during mock embryo transfer immediately following the ovum pickup procedure, while the control arm was given an intrauterine injection with a similar volume of tissue culture media. Side effects, the clinical pregnancy rate, and the implantation rate were recorded. Results The pregnancy rate was acceptable (33.9%) in the LMWH arm with no significant reported side effects, confirming the safety of the intervention. No statistically significant differences were found in the clinical pregnancy and implantation rates between both groups (p=0.182 and p=0.096, respectively). The odds ratio of being pregnant after intrauterine injection with LMWH compared to the control group was 0.572 (95% confidence interval [CI], 0.27−1.22), while the risk ratio was 0.717 (95% CI, 0.46−1.13; p=0.146). No statistical significance was found between the two groups in other factors affecting implantation, such as day of transfer (p=0.726), number of embryos transferred (p=0.362), or embryo quality. Conclusion Intrauterine injection of LMWH is a safe intervention, but the dose used in this study failed to improve the outcome of ICSI. Based on its safety, further research involving modification of the dosage and/or the timing of administration could result in improved ICSI success rates.
Collapse
Affiliation(s)
- Ahmed Mohamed Kamel
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| | - Yahia El-Faissal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| | - Mona Aboulghar
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| | | | - Gamal I Serour
- Egyptian IVF and ET Center, Cairo, Egypt.; Department of Obstetrics and Gynecology, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Mohamed Aboulghar
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| |
Collapse
|